Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
blob50038d946cede6baae64d9b223c61a273d25f458
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
109 u32 sem_bits = 0;
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
169 u32 temp;
170 int count = UDELAY_COUNT;
172 while (count) {
173 temp = ql_read32(qdev, reg);
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
196 int count = UDELAY_COUNT;
197 u32 temp;
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
208 return -ETIMEDOUT;
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
253 * Wait for the bit to clear after signaling hw.
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
266 u32 offset = 0;
267 int status;
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
317 break;
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
326 exit:
327 return status;
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
336 u32 offset = 0;
337 int status = 0;
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
372 case MAC_ADDR_TYPE_CAM_MAC:
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
419 case MAC_ADDR_TYPE_VLAN:
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
444 exit:
445 return status;
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 eth_zero_addr(zero_mac_addr);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
480 void ql_link_on(struct ql_adapter *qdev)
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
487 void ql_link_off(struct ql_adapter *qdev)
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
499 int status = 0;
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
592 case 0: /* Clear the E-bit on an entry. */
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
614 exit:
615 return status;
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
662 u32 var = 0;
663 struct intr_context *ctx;
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
718 return csum;
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
753 /* Get flash offset for function and adjust
754 * for dword access.
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
818 /* Second function's parameters follow the first
819 * function's.
821 if (qdev->port)
822 offset = size;
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
919 *data = (u64) lo | ((u64) hi << 32);
921 exit:
922 return status;
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
927 int status;
929 * Get MPI firmware version for driver banner
930 * and ethool info.
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
952 int status = 0;
953 u32 data;
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
966 return status;
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COMP | GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
1100 return -ENOMEM;
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
1109 rx_ring->pg_chunk.page = NULL;
1110 netif_err(qdev, drv, qdev->ndev,
1111 "PCI mapping failed.\n");
1112 return -ENOMEM;
1114 rx_ring->pg_chunk.map = map;
1115 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1118 /* Copy the current master pg_chunk info
1119 * to the current descriptor.
1121 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123 /* Adjust the master page chunk for next
1124 * buffer get.
1126 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1127 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1128 rx_ring->pg_chunk.page = NULL;
1129 lbq_desc->p.pg_chunk.last_flag = 1;
1130 } else {
1131 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1132 get_page(rx_ring->pg_chunk.page);
1133 lbq_desc->p.pg_chunk.last_flag = 0;
1135 return 0;
1137 /* Process (refill) a large buffer queue. */
1138 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 u32 clean_idx = rx_ring->lbq_clean_idx;
1141 u32 start_idx = clean_idx;
1142 struct bq_desc *lbq_desc;
1143 u64 map;
1144 int i;
1146 while (rx_ring->lbq_free_cnt > 32) {
1147 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1149 "lbq: try cleaning clean_idx = %d.\n",
1150 clean_idx);
1151 lbq_desc = &rx_ring->lbq[clean_idx];
1152 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1153 rx_ring->lbq_clean_idx = clean_idx;
1154 netif_err(qdev, ifup, qdev->ndev,
1155 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1156 i, clean_idx);
1157 return;
1160 map = lbq_desc->p.pg_chunk.map +
1161 lbq_desc->p.pg_chunk.offset;
1162 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1163 dma_unmap_len_set(lbq_desc, maplen,
1164 rx_ring->lbq_buf_size);
1165 *lbq_desc->addr = cpu_to_le64(map);
1167 pci_dma_sync_single_for_device(qdev->pdev, map,
1168 rx_ring->lbq_buf_size,
1169 PCI_DMA_FROMDEVICE);
1170 clean_idx++;
1171 if (clean_idx == rx_ring->lbq_len)
1172 clean_idx = 0;
1175 rx_ring->lbq_clean_idx = clean_idx;
1176 rx_ring->lbq_prod_idx += 16;
1177 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1178 rx_ring->lbq_prod_idx = 0;
1179 rx_ring->lbq_free_cnt -= 16;
1182 if (start_idx != clean_idx) {
1183 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1184 "lbq: updating prod idx = %d.\n",
1185 rx_ring->lbq_prod_idx);
1186 ql_write_db_reg(rx_ring->lbq_prod_idx,
1187 rx_ring->lbq_prod_idx_db_reg);
1191 /* Process (refill) a small buffer queue. */
1192 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 u32 clean_idx = rx_ring->sbq_clean_idx;
1195 u32 start_idx = clean_idx;
1196 struct bq_desc *sbq_desc;
1197 u64 map;
1198 int i;
1200 while (rx_ring->sbq_free_cnt > 16) {
1201 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1202 sbq_desc = &rx_ring->sbq[clean_idx];
1203 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1204 "sbq: try cleaning clean_idx = %d.\n",
1205 clean_idx);
1206 if (sbq_desc->p.skb == NULL) {
1207 netif_printk(qdev, rx_status, KERN_DEBUG,
1208 qdev->ndev,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
1213 SMALL_BUFFER_SIZE);
1214 if (sbq_desc->p.skb == NULL) {
1215 rx_ring->sbq_clean_idx = clean_idx;
1216 return;
1218 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1219 map = pci_map_single(qdev->pdev,
1220 sbq_desc->p.skb->data,
1221 rx_ring->sbq_buf_size,
1222 PCI_DMA_FROMDEVICE);
1223 if (pci_dma_mapping_error(qdev->pdev, map)) {
1224 netif_err(qdev, ifup, qdev->ndev,
1225 "PCI mapping failed.\n");
1226 rx_ring->sbq_clean_idx = clean_idx;
1227 dev_kfree_skb_any(sbq_desc->p.skb);
1228 sbq_desc->p.skb = NULL;
1229 return;
1231 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1232 dma_unmap_len_set(sbq_desc, maplen,
1233 rx_ring->sbq_buf_size);
1234 *sbq_desc->addr = cpu_to_le64(map);
1237 clean_idx++;
1238 if (clean_idx == rx_ring->sbq_len)
1239 clean_idx = 0;
1241 rx_ring->sbq_clean_idx = clean_idx;
1242 rx_ring->sbq_prod_idx += 16;
1243 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1244 rx_ring->sbq_prod_idx = 0;
1245 rx_ring->sbq_free_cnt -= 16;
1248 if (start_idx != clean_idx) {
1249 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1250 "sbq: updating prod idx = %d.\n",
1251 rx_ring->sbq_prod_idx);
1252 ql_write_db_reg(rx_ring->sbq_prod_idx,
1253 rx_ring->sbq_prod_idx_db_reg);
1257 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1258 struct rx_ring *rx_ring)
1260 ql_update_sbq(qdev, rx_ring);
1261 ql_update_lbq(qdev, rx_ring);
1264 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1265 * fails at some stage, or from the interrupt when a tx completes.
1267 static void ql_unmap_send(struct ql_adapter *qdev,
1268 struct tx_ring_desc *tx_ring_desc, int mapped)
1270 int i;
1271 for (i = 0; i < mapped; i++) {
1272 if (i == 0 || (i == 7 && mapped > 7)) {
1274 * Unmap the skb->data area, or the
1275 * external sglist (AKA the Outbound
1276 * Address List (OAL)).
1277 * If its the zeroeth element, then it's
1278 * the skb->data area. If it's the 7th
1279 * element and there is more than 6 frags,
1280 * then its an OAL.
1282 if (i == 7) {
1283 netif_printk(qdev, tx_done, KERN_DEBUG,
1284 qdev->ndev,
1285 "unmapping OAL area.\n");
1287 pci_unmap_single(qdev->pdev,
1288 dma_unmap_addr(&tx_ring_desc->map[i],
1289 mapaddr),
1290 dma_unmap_len(&tx_ring_desc->map[i],
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
1294 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1295 "unmapping frag %d.\n", i);
1296 pci_unmap_page(qdev->pdev,
1297 dma_unmap_addr(&tx_ring_desc->map[i],
1298 mapaddr),
1299 dma_unmap_len(&tx_ring_desc->map[i],
1300 maplen), PCI_DMA_TODEVICE);
1306 /* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319 if (frag_cnt) {
1320 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1321 "frag_cnt = %d.\n", frag_cnt);
1324 * Map the skb buffer first.
1326 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328 err = pci_dma_mapping_error(qdev->pdev, map);
1329 if (err) {
1330 netif_err(qdev, tx_queued, qdev->ndev,
1331 "PCI mapping failed with error: %d\n", err);
1333 return NETDEV_TX_BUSY;
1336 tbd->len = cpu_to_le32(len);
1337 tbd->addr = cpu_to_le64(map);
1338 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1339 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1340 map_idx++;
1343 * This loop fills the remainder of the 8 address descriptors
1344 * in the IOCB. If there are more than 7 fragments, then the
1345 * eighth address desc will point to an external list (OAL).
1346 * When this happens, the remainder of the frags will be stored
1347 * in this list.
1349 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1351 tbd++;
1352 if (frag_idx == 6 && frag_cnt > 7) {
1353 /* Let's tack on an sglist.
1354 * Our control block will now
1355 * look like this:
1356 * iocb->seg[0] = skb->data
1357 * iocb->seg[1] = frag[0]
1358 * iocb->seg[2] = frag[1]
1359 * iocb->seg[3] = frag[2]
1360 * iocb->seg[4] = frag[3]
1361 * iocb->seg[5] = frag[4]
1362 * iocb->seg[6] = frag[5]
1363 * iocb->seg[7] = ptr to OAL (external sglist)
1364 * oal->seg[0] = frag[6]
1365 * oal->seg[1] = frag[7]
1366 * oal->seg[2] = frag[8]
1367 * oal->seg[3] = frag[9]
1368 * oal->seg[4] = frag[10]
1369 * etc...
1371 /* Tack on the OAL in the eighth segment of IOCB. */
1372 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1373 sizeof(struct oal),
1374 PCI_DMA_TODEVICE);
1375 err = pci_dma_mapping_error(qdev->pdev, map);
1376 if (err) {
1377 netif_err(qdev, tx_queued, qdev->ndev,
1378 "PCI mapping outbound address list with error: %d\n",
1379 err);
1380 goto map_error;
1383 tbd->addr = cpu_to_le64(map);
1385 * The length is the number of fragments
1386 * that remain to be mapped times the length
1387 * of our sglist (OAL).
1389 tbd->len =
1390 cpu_to_le32((sizeof(struct tx_buf_desc) *
1391 (frag_cnt - frag_idx)) | TX_DESC_C);
1392 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1393 map);
1394 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1395 sizeof(struct oal));
1396 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1397 map_idx++;
1400 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1401 DMA_TO_DEVICE);
1403 err = dma_mapping_error(&qdev->pdev->dev, map);
1404 if (err) {
1405 netif_err(qdev, tx_queued, qdev->ndev,
1406 "PCI mapping frags failed with error: %d.\n",
1407 err);
1408 goto map_error;
1411 tbd->addr = cpu_to_le64(map);
1412 tbd->len = cpu_to_le32(skb_frag_size(frag));
1413 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1414 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1415 skb_frag_size(frag));
1418 /* Save the number of segments we've mapped. */
1419 tx_ring_desc->map_cnt = map_idx;
1420 /* Terminate the last segment. */
1421 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1422 return NETDEV_TX_OK;
1424 map_error:
1426 * If the first frag mapping failed, then i will be zero.
1427 * This causes the unmap of the skb->data area. Otherwise
1428 * we pass in the number of frags that mapped successfully
1429 * so they can be umapped.
1431 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1432 return NETDEV_TX_BUSY;
1435 /* Categorizing receive firmware frame errors */
1436 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1437 struct rx_ring *rx_ring)
1439 struct nic_stats *stats = &qdev->nic_stats;
1441 stats->rx_err_count++;
1442 rx_ring->rx_errors++;
1444 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1445 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1446 stats->rx_code_err++;
1447 break;
1448 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1449 stats->rx_oversize_err++;
1450 break;
1451 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1452 stats->rx_undersize_err++;
1453 break;
1454 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1455 stats->rx_preamble_err++;
1456 break;
1457 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1458 stats->rx_frame_len_err++;
1459 break;
1460 case IB_MAC_IOCB_RSP_ERR_CRC:
1461 stats->rx_crc_err++;
1462 default:
1463 break;
1468 * ql_update_mac_hdr_len - helper routine to update the mac header length
1469 * based on vlan tags if present
1471 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1472 struct ib_mac_iocb_rsp *ib_mac_rsp,
1473 void *page, size_t *len)
1475 u16 *tags;
1477 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1478 return;
1479 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1480 tags = (u16 *)page;
1481 /* Look for stacked vlan tags in ethertype field */
1482 if (tags[6] == ETH_P_8021Q &&
1483 tags[8] == ETH_P_8021Q)
1484 *len += 2 * VLAN_HLEN;
1485 else
1486 *len += VLAN_HLEN;
1490 /* Process an inbound completion from an rx ring. */
1491 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1492 struct rx_ring *rx_ring,
1493 struct ib_mac_iocb_rsp *ib_mac_rsp,
1494 u32 length,
1495 u16 vlan_id)
1497 struct sk_buff *skb;
1498 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1499 struct napi_struct *napi = &rx_ring->napi;
1501 /* Frame error, so drop the packet. */
1502 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1503 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1504 put_page(lbq_desc->p.pg_chunk.page);
1505 return;
1507 napi->dev = qdev->ndev;
1509 skb = napi_get_frags(napi);
1510 if (!skb) {
1511 netif_err(qdev, drv, qdev->ndev,
1512 "Couldn't get an skb, exiting.\n");
1513 rx_ring->rx_dropped++;
1514 put_page(lbq_desc->p.pg_chunk.page);
1515 return;
1517 prefetch(lbq_desc->p.pg_chunk.va);
1518 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1519 lbq_desc->p.pg_chunk.page,
1520 lbq_desc->p.pg_chunk.offset,
1521 length);
1523 skb->len += length;
1524 skb->data_len += length;
1525 skb->truesize += length;
1526 skb_shinfo(skb)->nr_frags++;
1528 rx_ring->rx_packets++;
1529 rx_ring->rx_bytes += length;
1530 skb->ip_summed = CHECKSUM_UNNECESSARY;
1531 skb_record_rx_queue(skb, rx_ring->cq_id);
1532 if (vlan_id != 0xffff)
1533 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1534 napi_gro_frags(napi);
1537 /* Process an inbound completion from an rx ring. */
1538 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1539 struct rx_ring *rx_ring,
1540 struct ib_mac_iocb_rsp *ib_mac_rsp,
1541 u32 length,
1542 u16 vlan_id)
1544 struct net_device *ndev = qdev->ndev;
1545 struct sk_buff *skb = NULL;
1546 void *addr;
1547 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1548 struct napi_struct *napi = &rx_ring->napi;
1549 size_t hlen = ETH_HLEN;
1551 skb = netdev_alloc_skb(ndev, length);
1552 if (!skb) {
1553 rx_ring->rx_dropped++;
1554 put_page(lbq_desc->p.pg_chunk.page);
1555 return;
1558 addr = lbq_desc->p.pg_chunk.va;
1559 prefetch(addr);
1561 /* Frame error, so drop the packet. */
1562 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1563 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1564 goto err_out;
1567 /* Update the MAC header length*/
1568 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570 /* The max framesize filter on this chip is set higher than
1571 * MTU since FCoE uses 2k frames.
1573 if (skb->len > ndev->mtu + hlen) {
1574 netif_err(qdev, drv, qdev->ndev,
1575 "Segment too small, dropping.\n");
1576 rx_ring->rx_dropped++;
1577 goto err_out;
1579 skb_put_data(skb, addr, hlen);
1580 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1581 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1582 length);
1583 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1584 lbq_desc->p.pg_chunk.offset + hlen,
1585 length - hlen);
1586 skb->len += length - hlen;
1587 skb->data_len += length - hlen;
1588 skb->truesize += length - hlen;
1590 rx_ring->rx_packets++;
1591 rx_ring->rx_bytes += skb->len;
1592 skb->protocol = eth_type_trans(skb, ndev);
1593 skb_checksum_none_assert(skb);
1595 if ((ndev->features & NETIF_F_RXCSUM) &&
1596 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1597 /* TCP frame. */
1598 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1599 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1600 "TCP checksum done!\n");
1601 skb->ip_summed = CHECKSUM_UNNECESSARY;
1602 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1603 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1604 /* Unfragmented ipv4 UDP frame. */
1605 struct iphdr *iph =
1606 (struct iphdr *)((u8 *)addr + hlen);
1607 if (!(iph->frag_off &
1608 htons(IP_MF|IP_OFFSET))) {
1609 skb->ip_summed = CHECKSUM_UNNECESSARY;
1610 netif_printk(qdev, rx_status, KERN_DEBUG,
1611 qdev->ndev,
1612 "UDP checksum done!\n");
1617 skb_record_rx_queue(skb, rx_ring->cq_id);
1618 if (vlan_id != 0xffff)
1619 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1620 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1621 napi_gro_receive(napi, skb);
1622 else
1623 netif_receive_skb(skb);
1624 return;
1625 err_out:
1626 dev_kfree_skb_any(skb);
1627 put_page(lbq_desc->p.pg_chunk.page);
1630 /* Process an inbound completion from an rx ring. */
1631 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1632 struct rx_ring *rx_ring,
1633 struct ib_mac_iocb_rsp *ib_mac_rsp,
1634 u32 length,
1635 u16 vlan_id)
1637 struct net_device *ndev = qdev->ndev;
1638 struct sk_buff *skb = NULL;
1639 struct sk_buff *new_skb = NULL;
1640 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642 skb = sbq_desc->p.skb;
1643 /* Allocate new_skb and copy */
1644 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1645 if (new_skb == NULL) {
1646 rx_ring->rx_dropped++;
1647 return;
1649 skb_reserve(new_skb, NET_IP_ALIGN);
1651 pci_dma_sync_single_for_cpu(qdev->pdev,
1652 dma_unmap_addr(sbq_desc, mapaddr),
1653 dma_unmap_len(sbq_desc, maplen),
1654 PCI_DMA_FROMDEVICE);
1656 skb_put_data(new_skb, skb->data, length);
1658 pci_dma_sync_single_for_device(qdev->pdev,
1659 dma_unmap_addr(sbq_desc, mapaddr),
1660 dma_unmap_len(sbq_desc, maplen),
1661 PCI_DMA_FROMDEVICE);
1662 skb = new_skb;
1664 /* Frame error, so drop the packet. */
1665 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1666 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1667 dev_kfree_skb_any(skb);
1668 return;
1671 /* loopback self test for ethtool */
1672 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1673 ql_check_lb_frame(qdev, skb);
1674 dev_kfree_skb_any(skb);
1675 return;
1678 /* The max framesize filter on this chip is set higher than
1679 * MTU since FCoE uses 2k frames.
1681 if (skb->len > ndev->mtu + ETH_HLEN) {
1682 dev_kfree_skb_any(skb);
1683 rx_ring->rx_dropped++;
1684 return;
1687 prefetch(skb->data);
1688 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "%s Multicast.\n",
1691 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1692 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1693 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1694 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1695 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1696 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1699 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1700 "Promiscuous Packet.\n");
1702 rx_ring->rx_packets++;
1703 rx_ring->rx_bytes += skb->len;
1704 skb->protocol = eth_type_trans(skb, ndev);
1705 skb_checksum_none_assert(skb);
1707 /* If rx checksum is on, and there are no
1708 * csum or frame errors.
1710 if ((ndev->features & NETIF_F_RXCSUM) &&
1711 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1712 /* TCP frame. */
1713 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1714 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1715 "TCP checksum done!\n");
1716 skb->ip_summed = CHECKSUM_UNNECESSARY;
1717 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1718 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1719 /* Unfragmented ipv4 UDP frame. */
1720 struct iphdr *iph = (struct iphdr *) skb->data;
1721 if (!(iph->frag_off &
1722 htons(IP_MF|IP_OFFSET))) {
1723 skb->ip_summed = CHECKSUM_UNNECESSARY;
1724 netif_printk(qdev, rx_status, KERN_DEBUG,
1725 qdev->ndev,
1726 "UDP checksum done!\n");
1731 skb_record_rx_queue(skb, rx_ring->cq_id);
1732 if (vlan_id != 0xffff)
1733 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1734 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1735 napi_gro_receive(&rx_ring->napi, skb);
1736 else
1737 netif_receive_skb(skb);
1740 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 void *temp_addr = skb->data;
1744 /* Undo the skb_reserve(skb,32) we did before
1745 * giving to hardware, and realign data on
1746 * a 2-byte boundary.
1748 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1749 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 memmove(skb->data, temp_addr, len);
1754 * This function builds an skb for the given inbound
1755 * completion. It will be rewritten for readability in the near
1756 * future, but for not it works well.
1758 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1759 struct rx_ring *rx_ring,
1760 struct ib_mac_iocb_rsp *ib_mac_rsp)
1762 struct bq_desc *lbq_desc;
1763 struct bq_desc *sbq_desc;
1764 struct sk_buff *skb = NULL;
1765 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1766 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1767 size_t hlen = ETH_HLEN;
1770 * Handle the header buffer if present.
1772 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1773 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1774 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1775 "Header of %d bytes in small buffer.\n", hdr_len);
1777 * Headers fit nicely into a small buffer.
1779 sbq_desc = ql_get_curr_sbuf(rx_ring);
1780 pci_unmap_single(qdev->pdev,
1781 dma_unmap_addr(sbq_desc, mapaddr),
1782 dma_unmap_len(sbq_desc, maplen),
1783 PCI_DMA_FROMDEVICE);
1784 skb = sbq_desc->p.skb;
1785 ql_realign_skb(skb, hdr_len);
1786 skb_put(skb, hdr_len);
1787 sbq_desc->p.skb = NULL;
1791 * Handle the data buffer(s).
1793 if (unlikely(!length)) { /* Is there data too? */
1794 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1795 "No Data buffer in this packet.\n");
1796 return skb;
1799 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1800 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1801 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802 "Headers in small, data of %d bytes in small, combine them.\n",
1803 length);
1805 * Data is less than small buffer size so it's
1806 * stuffed in a small buffer.
1807 * For this case we append the data
1808 * from the "data" small buffer to the "header" small
1809 * buffer.
1811 sbq_desc = ql_get_curr_sbuf(rx_ring);
1812 pci_dma_sync_single_for_cpu(qdev->pdev,
1813 dma_unmap_addr
1814 (sbq_desc, mapaddr),
1815 dma_unmap_len
1816 (sbq_desc, maplen),
1817 PCI_DMA_FROMDEVICE);
1818 skb_put_data(skb, sbq_desc->p.skb->data, length);
1819 pci_dma_sync_single_for_device(qdev->pdev,
1820 dma_unmap_addr
1821 (sbq_desc,
1822 mapaddr),
1823 dma_unmap_len
1824 (sbq_desc,
1825 maplen),
1826 PCI_DMA_FROMDEVICE);
1827 } else {
1828 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1829 "%d bytes in a single small buffer.\n",
1830 length);
1831 sbq_desc = ql_get_curr_sbuf(rx_ring);
1832 skb = sbq_desc->p.skb;
1833 ql_realign_skb(skb, length);
1834 skb_put(skb, length);
1835 pci_unmap_single(qdev->pdev,
1836 dma_unmap_addr(sbq_desc,
1837 mapaddr),
1838 dma_unmap_len(sbq_desc,
1839 maplen),
1840 PCI_DMA_FROMDEVICE);
1841 sbq_desc->p.skb = NULL;
1843 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1844 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1845 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1846 "Header in small, %d bytes in large. Chain large to small!\n",
1847 length);
1849 * The data is in a single large buffer. We
1850 * chain it to the header buffer's skb and let
1851 * it rip.
1853 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1854 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1855 "Chaining page at offset = %d, for %d bytes to skb.\n",
1856 lbq_desc->p.pg_chunk.offset, length);
1857 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1858 lbq_desc->p.pg_chunk.offset,
1859 length);
1860 skb->len += length;
1861 skb->data_len += length;
1862 skb->truesize += length;
1863 } else {
1865 * The headers and data are in a single large buffer. We
1866 * copy it to a new skb and let it go. This can happen with
1867 * jumbo mtu on a non-TCP/UDP frame.
1869 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870 skb = netdev_alloc_skb(qdev->ndev, length);
1871 if (skb == NULL) {
1872 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1873 "No skb available, drop the packet.\n");
1874 return NULL;
1876 pci_unmap_page(qdev->pdev,
1877 dma_unmap_addr(lbq_desc,
1878 mapaddr),
1879 dma_unmap_len(lbq_desc, maplen),
1880 PCI_DMA_FROMDEVICE);
1881 skb_reserve(skb, NET_IP_ALIGN);
1882 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1883 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1884 length);
1885 skb_fill_page_desc(skb, 0,
1886 lbq_desc->p.pg_chunk.page,
1887 lbq_desc->p.pg_chunk.offset,
1888 length);
1889 skb->len += length;
1890 skb->data_len += length;
1891 skb->truesize += length;
1892 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1893 lbq_desc->p.pg_chunk.va,
1894 &hlen);
1895 __pskb_pull_tail(skb, hlen);
1897 } else {
1899 * The data is in a chain of large buffers
1900 * pointed to by a small buffer. We loop
1901 * thru and chain them to the our small header
1902 * buffer's skb.
1903 * frags: There are 18 max frags and our small
1904 * buffer will hold 32 of them. The thing is,
1905 * we'll use 3 max for our 9000 byte jumbo
1906 * frames. If the MTU goes up we could
1907 * eventually be in trouble.
1909 int size, i = 0;
1910 sbq_desc = ql_get_curr_sbuf(rx_ring);
1911 pci_unmap_single(qdev->pdev,
1912 dma_unmap_addr(sbq_desc, mapaddr),
1913 dma_unmap_len(sbq_desc, maplen),
1914 PCI_DMA_FROMDEVICE);
1915 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1917 * This is an non TCP/UDP IP frame, so
1918 * the headers aren't split into a small
1919 * buffer. We have to use the small buffer
1920 * that contains our sg list as our skb to
1921 * send upstairs. Copy the sg list here to
1922 * a local buffer and use it to find the
1923 * pages to chain.
1925 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1926 "%d bytes of headers & data in chain of large.\n",
1927 length);
1928 skb = sbq_desc->p.skb;
1929 sbq_desc->p.skb = NULL;
1930 skb_reserve(skb, NET_IP_ALIGN);
1932 do {
1933 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1934 size = (length < rx_ring->lbq_buf_size) ? length :
1935 rx_ring->lbq_buf_size;
1937 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1938 "Adding page %d to skb for %d bytes.\n",
1939 i, size);
1940 skb_fill_page_desc(skb, i,
1941 lbq_desc->p.pg_chunk.page,
1942 lbq_desc->p.pg_chunk.offset,
1943 size);
1944 skb->len += size;
1945 skb->data_len += size;
1946 skb->truesize += size;
1947 length -= size;
1948 i++;
1949 } while (length > 0);
1950 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1951 &hlen);
1952 __pskb_pull_tail(skb, hlen);
1954 return skb;
1957 /* Process an inbound completion from an rx ring. */
1958 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1959 struct rx_ring *rx_ring,
1960 struct ib_mac_iocb_rsp *ib_mac_rsp,
1961 u16 vlan_id)
1963 struct net_device *ndev = qdev->ndev;
1964 struct sk_buff *skb = NULL;
1966 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1968 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1969 if (unlikely(!skb)) {
1970 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1971 "No skb available, drop packet.\n");
1972 rx_ring->rx_dropped++;
1973 return;
1976 /* Frame error, so drop the packet. */
1977 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1978 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1979 dev_kfree_skb_any(skb);
1980 return;
1983 /* The max framesize filter on this chip is set higher than
1984 * MTU since FCoE uses 2k frames.
1986 if (skb->len > ndev->mtu + ETH_HLEN) {
1987 dev_kfree_skb_any(skb);
1988 rx_ring->rx_dropped++;
1989 return;
1992 /* loopback self test for ethtool */
1993 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1994 ql_check_lb_frame(qdev, skb);
1995 dev_kfree_skb_any(skb);
1996 return;
1999 prefetch(skb->data);
2000 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2001 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2002 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2003 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2004 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2005 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2006 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2008 rx_ring->rx_multicast++;
2010 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2011 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2012 "Promiscuous Packet.\n");
2015 skb->protocol = eth_type_trans(skb, ndev);
2016 skb_checksum_none_assert(skb);
2018 /* If rx checksum is on, and there are no
2019 * csum or frame errors.
2021 if ((ndev->features & NETIF_F_RXCSUM) &&
2022 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2023 /* TCP frame. */
2024 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2025 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2026 "TCP checksum done!\n");
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2029 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2030 /* Unfragmented ipv4 UDP frame. */
2031 struct iphdr *iph = (struct iphdr *) skb->data;
2032 if (!(iph->frag_off &
2033 htons(IP_MF|IP_OFFSET))) {
2034 skb->ip_summed = CHECKSUM_UNNECESSARY;
2035 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2036 "TCP checksum done!\n");
2041 rx_ring->rx_packets++;
2042 rx_ring->rx_bytes += skb->len;
2043 skb_record_rx_queue(skb, rx_ring->cq_id);
2044 if (vlan_id != 0xffff)
2045 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2046 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2047 napi_gro_receive(&rx_ring->napi, skb);
2048 else
2049 netif_receive_skb(skb);
2052 /* Process an inbound completion from an rx ring. */
2053 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2054 struct rx_ring *rx_ring,
2055 struct ib_mac_iocb_rsp *ib_mac_rsp)
2057 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2058 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2059 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2060 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2061 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2063 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2065 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2066 /* The data and headers are split into
2067 * separate buffers.
2069 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2070 vlan_id);
2071 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2072 /* The data fit in a single small buffer.
2073 * Allocate a new skb, copy the data and
2074 * return the buffer to the free pool.
2076 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2077 length, vlan_id);
2078 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2079 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2080 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2081 /* TCP packet in a page chunk that's been checksummed.
2082 * Tack it on to our GRO skb and let it go.
2084 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2085 length, vlan_id);
2086 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2087 /* Non-TCP packet in a page chunk. Allocate an
2088 * skb, tack it on frags, and send it up.
2090 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2091 length, vlan_id);
2092 } else {
2093 /* Non-TCP/UDP large frames that span multiple buffers
2094 * can be processed corrrectly by the split frame logic.
2096 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2097 vlan_id);
2100 return (unsigned long)length;
2103 /* Process an outbound completion from an rx ring. */
2104 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2105 struct ob_mac_iocb_rsp *mac_rsp)
2107 struct tx_ring *tx_ring;
2108 struct tx_ring_desc *tx_ring_desc;
2110 QL_DUMP_OB_MAC_RSP(mac_rsp);
2111 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2112 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2113 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2114 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2115 tx_ring->tx_packets++;
2116 dev_kfree_skb(tx_ring_desc->skb);
2117 tx_ring_desc->skb = NULL;
2119 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2120 OB_MAC_IOCB_RSP_S |
2121 OB_MAC_IOCB_RSP_L |
2122 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2123 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2124 netif_warn(qdev, tx_done, qdev->ndev,
2125 "Total descriptor length did not match transfer length.\n");
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "Frame too short to be valid, not sent.\n");
2131 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2132 netif_warn(qdev, tx_done, qdev->ndev,
2133 "Frame too long, but sent anyway.\n");
2135 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2136 netif_warn(qdev, tx_done, qdev->ndev,
2137 "PCI backplane error. Frame not sent.\n");
2140 atomic_inc(&tx_ring->tx_count);
2143 /* Fire up a handler to reset the MPI processor. */
2144 void ql_queue_fw_error(struct ql_adapter *qdev)
2146 ql_link_off(qdev);
2147 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2150 void ql_queue_asic_error(struct ql_adapter *qdev)
2152 ql_link_off(qdev);
2153 ql_disable_interrupts(qdev);
2154 /* Clear adapter up bit to signal the recovery
2155 * process that it shouldn't kill the reset worker
2156 * thread
2158 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2159 /* Set asic recovery bit to indicate reset process that we are
2160 * in fatal error recovery process rather than normal close
2162 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2163 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2166 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2167 struct ib_ae_iocb_rsp *ib_ae_rsp)
2169 switch (ib_ae_rsp->event) {
2170 case MGMT_ERR_EVENT:
2171 netif_err(qdev, rx_err, qdev->ndev,
2172 "Management Processor Fatal Error.\n");
2173 ql_queue_fw_error(qdev);
2174 return;
2176 case CAM_LOOKUP_ERR_EVENT:
2177 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2178 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2179 ql_queue_asic_error(qdev);
2180 return;
2182 case SOFT_ECC_ERROR_EVENT:
2183 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2184 ql_queue_asic_error(qdev);
2185 break;
2187 case PCI_ERR_ANON_BUF_RD:
2188 netdev_err(qdev->ndev, "PCI error occurred when reading "
2189 "anonymous buffers from rx_ring %d.\n",
2190 ib_ae_rsp->q_id);
2191 ql_queue_asic_error(qdev);
2192 break;
2194 default:
2195 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2196 ib_ae_rsp->event);
2197 ql_queue_asic_error(qdev);
2198 break;
2202 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2204 struct ql_adapter *qdev = rx_ring->qdev;
2205 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2206 struct ob_mac_iocb_rsp *net_rsp = NULL;
2207 int count = 0;
2209 struct tx_ring *tx_ring;
2210 /* While there are entries in the completion queue. */
2211 while (prod != rx_ring->cnsmr_idx) {
2213 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2214 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2215 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2217 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2218 rmb();
2219 switch (net_rsp->opcode) {
2221 case OPCODE_OB_MAC_TSO_IOCB:
2222 case OPCODE_OB_MAC_IOCB:
2223 ql_process_mac_tx_intr(qdev, net_rsp);
2224 break;
2225 default:
2226 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2227 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2228 net_rsp->opcode);
2230 count++;
2231 ql_update_cq(rx_ring);
2232 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2234 if (!net_rsp)
2235 return 0;
2236 ql_write_cq_idx(rx_ring);
2237 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2238 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2239 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2241 * The queue got stopped because the tx_ring was full.
2242 * Wake it up, because it's now at least 25% empty.
2244 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2247 return count;
2250 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2252 struct ql_adapter *qdev = rx_ring->qdev;
2253 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2254 struct ql_net_rsp_iocb *net_rsp;
2255 int count = 0;
2257 /* While there are entries in the completion queue. */
2258 while (prod != rx_ring->cnsmr_idx) {
2260 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2261 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2262 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2264 net_rsp = rx_ring->curr_entry;
2265 rmb();
2266 switch (net_rsp->opcode) {
2267 case OPCODE_IB_MAC_IOCB:
2268 ql_process_mac_rx_intr(qdev, rx_ring,
2269 (struct ib_mac_iocb_rsp *)
2270 net_rsp);
2271 break;
2273 case OPCODE_IB_AE_IOCB:
2274 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2275 net_rsp);
2276 break;
2277 default:
2278 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2279 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2280 net_rsp->opcode);
2281 break;
2283 count++;
2284 ql_update_cq(rx_ring);
2285 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2286 if (count == budget)
2287 break;
2289 ql_update_buffer_queues(qdev, rx_ring);
2290 ql_write_cq_idx(rx_ring);
2291 return count;
2294 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2296 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2297 struct ql_adapter *qdev = rx_ring->qdev;
2298 struct rx_ring *trx_ring;
2299 int i, work_done = 0;
2300 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2302 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2303 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2305 /* Service the TX rings first. They start
2306 * right after the RSS rings. */
2307 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2308 trx_ring = &qdev->rx_ring[i];
2309 /* If this TX completion ring belongs to this vector and
2310 * it's not empty then service it.
2312 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2313 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2314 trx_ring->cnsmr_idx)) {
2315 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2316 "%s: Servicing TX completion ring %d.\n",
2317 __func__, trx_ring->cq_id);
2318 ql_clean_outbound_rx_ring(trx_ring);
2323 * Now service the RSS ring if it's active.
2325 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2326 rx_ring->cnsmr_idx) {
2327 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2328 "%s: Servicing RX completion ring %d.\n",
2329 __func__, rx_ring->cq_id);
2330 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2333 if (work_done < budget) {
2334 napi_complete_done(napi, work_done);
2335 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2337 return work_done;
2340 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2342 struct ql_adapter *qdev = netdev_priv(ndev);
2344 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2345 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2346 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2347 } else {
2348 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2354 * based on the features to enable/disable hardware vlan accel
2356 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2357 netdev_features_t features)
2359 struct ql_adapter *qdev = netdev_priv(ndev);
2360 int status = 0;
2361 bool need_restart = netif_running(ndev);
2363 if (need_restart) {
2364 status = ql_adapter_down(qdev);
2365 if (status) {
2366 netif_err(qdev, link, qdev->ndev,
2367 "Failed to bring down the adapter\n");
2368 return status;
2372 /* update the features with resent change */
2373 ndev->features = features;
2375 if (need_restart) {
2376 status = ql_adapter_up(qdev);
2377 if (status) {
2378 netif_err(qdev, link, qdev->ndev,
2379 "Failed to bring up the adapter\n");
2380 return status;
2384 return status;
2387 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2388 netdev_features_t features)
2390 int err;
2392 /* Update the behavior of vlan accel in the adapter */
2393 err = qlge_update_hw_vlan_features(ndev, features);
2394 if (err)
2395 return err;
2397 return features;
2400 static int qlge_set_features(struct net_device *ndev,
2401 netdev_features_t features)
2403 netdev_features_t changed = ndev->features ^ features;
2405 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2406 qlge_vlan_mode(ndev, features);
2408 return 0;
2411 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2413 u32 enable_bit = MAC_ADDR_E;
2414 int err;
2416 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2417 MAC_ADDR_TYPE_VLAN, vid);
2418 if (err)
2419 netif_err(qdev, ifup, qdev->ndev,
2420 "Failed to init vlan address.\n");
2421 return err;
2424 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2426 struct ql_adapter *qdev = netdev_priv(ndev);
2427 int status;
2428 int err;
2430 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2431 if (status)
2432 return status;
2434 err = __qlge_vlan_rx_add_vid(qdev, vid);
2435 set_bit(vid, qdev->active_vlans);
2437 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2439 return err;
2442 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2444 u32 enable_bit = 0;
2445 int err;
2447 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2448 MAC_ADDR_TYPE_VLAN, vid);
2449 if (err)
2450 netif_err(qdev, ifup, qdev->ndev,
2451 "Failed to clear vlan address.\n");
2452 return err;
2455 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2457 struct ql_adapter *qdev = netdev_priv(ndev);
2458 int status;
2459 int err;
2461 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2462 if (status)
2463 return status;
2465 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2466 clear_bit(vid, qdev->active_vlans);
2468 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2470 return err;
2473 static void qlge_restore_vlan(struct ql_adapter *qdev)
2475 int status;
2476 u16 vid;
2478 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2479 if (status)
2480 return;
2482 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2483 __qlge_vlan_rx_add_vid(qdev, vid);
2485 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2488 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2489 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2491 struct rx_ring *rx_ring = dev_id;
2492 napi_schedule(&rx_ring->napi);
2493 return IRQ_HANDLED;
2496 /* This handles a fatal error, MPI activity, and the default
2497 * rx_ring in an MSI-X multiple vector environment.
2498 * In MSI/Legacy environment it also process the rest of
2499 * the rx_rings.
2501 static irqreturn_t qlge_isr(int irq, void *dev_id)
2503 struct rx_ring *rx_ring = dev_id;
2504 struct ql_adapter *qdev = rx_ring->qdev;
2505 struct intr_context *intr_context = &qdev->intr_context[0];
2506 u32 var;
2507 int work_done = 0;
2509 spin_lock(&qdev->hw_lock);
2510 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2511 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2512 "Shared Interrupt, Not ours!\n");
2513 spin_unlock(&qdev->hw_lock);
2514 return IRQ_NONE;
2516 spin_unlock(&qdev->hw_lock);
2518 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2521 * Check for fatal error.
2523 if (var & STS_FE) {
2524 ql_queue_asic_error(qdev);
2525 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2526 var = ql_read32(qdev, ERR_STS);
2527 netdev_err(qdev->ndev, "Resetting chip. "
2528 "Error Status Register = 0x%x\n", var);
2529 return IRQ_HANDLED;
2533 * Check MPI processor activity.
2535 if ((var & STS_PI) &&
2536 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2538 * We've got an async event or mailbox completion.
2539 * Handle it and clear the source of the interrupt.
2541 netif_err(qdev, intr, qdev->ndev,
2542 "Got MPI processor interrupt.\n");
2543 ql_disable_completion_interrupt(qdev, intr_context->intr);
2544 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2545 queue_delayed_work_on(smp_processor_id(),
2546 qdev->workqueue, &qdev->mpi_work, 0);
2547 work_done++;
2551 * Get the bit-mask that shows the active queues for this
2552 * pass. Compare it to the queues that this irq services
2553 * and call napi if there's a match.
2555 var = ql_read32(qdev, ISR1);
2556 if (var & intr_context->irq_mask) {
2557 netif_info(qdev, intr, qdev->ndev,
2558 "Waking handler for rx_ring[0].\n");
2559 ql_disable_completion_interrupt(qdev, intr_context->intr);
2560 napi_schedule(&rx_ring->napi);
2561 work_done++;
2563 ql_enable_completion_interrupt(qdev, intr_context->intr);
2564 return work_done ? IRQ_HANDLED : IRQ_NONE;
2567 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2570 if (skb_is_gso(skb)) {
2571 int err;
2572 __be16 l3_proto = vlan_get_protocol(skb);
2574 err = skb_cow_head(skb, 0);
2575 if (err < 0)
2576 return err;
2578 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2579 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2580 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2581 mac_iocb_ptr->total_hdrs_len =
2582 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2583 mac_iocb_ptr->net_trans_offset =
2584 cpu_to_le16(skb_network_offset(skb) |
2585 skb_transport_offset(skb)
2586 << OB_MAC_TRANSPORT_HDR_SHIFT);
2587 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2588 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2589 if (likely(l3_proto == htons(ETH_P_IP))) {
2590 struct iphdr *iph = ip_hdr(skb);
2591 iph->check = 0;
2592 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2593 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2594 iph->daddr, 0,
2595 IPPROTO_TCP,
2597 } else if (l3_proto == htons(ETH_P_IPV6)) {
2598 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2599 tcp_hdr(skb)->check =
2600 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2601 &ipv6_hdr(skb)->daddr,
2602 0, IPPROTO_TCP, 0);
2604 return 1;
2606 return 0;
2609 static void ql_hw_csum_setup(struct sk_buff *skb,
2610 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2612 int len;
2613 struct iphdr *iph = ip_hdr(skb);
2614 __sum16 *check;
2615 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2616 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2617 mac_iocb_ptr->net_trans_offset =
2618 cpu_to_le16(skb_network_offset(skb) |
2619 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2621 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2622 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2623 if (likely(iph->protocol == IPPROTO_TCP)) {
2624 check = &(tcp_hdr(skb)->check);
2625 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2626 mac_iocb_ptr->total_hdrs_len =
2627 cpu_to_le16(skb_transport_offset(skb) +
2628 (tcp_hdr(skb)->doff << 2));
2629 } else {
2630 check = &(udp_hdr(skb)->check);
2631 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2632 mac_iocb_ptr->total_hdrs_len =
2633 cpu_to_le16(skb_transport_offset(skb) +
2634 sizeof(struct udphdr));
2636 *check = ~csum_tcpudp_magic(iph->saddr,
2637 iph->daddr, len, iph->protocol, 0);
2640 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2642 struct tx_ring_desc *tx_ring_desc;
2643 struct ob_mac_iocb_req *mac_iocb_ptr;
2644 struct ql_adapter *qdev = netdev_priv(ndev);
2645 int tso;
2646 struct tx_ring *tx_ring;
2647 u32 tx_ring_idx = (u32) skb->queue_mapping;
2649 tx_ring = &qdev->tx_ring[tx_ring_idx];
2651 if (skb_padto(skb, ETH_ZLEN))
2652 return NETDEV_TX_OK;
2654 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2655 netif_info(qdev, tx_queued, qdev->ndev,
2656 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2657 __func__, tx_ring_idx);
2658 netif_stop_subqueue(ndev, tx_ring->wq_id);
2659 tx_ring->tx_errors++;
2660 return NETDEV_TX_BUSY;
2662 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2663 mac_iocb_ptr = tx_ring_desc->queue_entry;
2664 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2666 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2667 mac_iocb_ptr->tid = tx_ring_desc->index;
2668 /* We use the upper 32-bits to store the tx queue for this IO.
2669 * When we get the completion we can use it to establish the context.
2671 mac_iocb_ptr->txq_idx = tx_ring_idx;
2672 tx_ring_desc->skb = skb;
2674 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2676 if (skb_vlan_tag_present(skb)) {
2677 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2678 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2679 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2680 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2682 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2683 if (tso < 0) {
2684 dev_kfree_skb_any(skb);
2685 return NETDEV_TX_OK;
2686 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2687 ql_hw_csum_setup(skb,
2688 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2690 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2691 NETDEV_TX_OK) {
2692 netif_err(qdev, tx_queued, qdev->ndev,
2693 "Could not map the segments.\n");
2694 tx_ring->tx_errors++;
2695 return NETDEV_TX_BUSY;
2697 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2698 tx_ring->prod_idx++;
2699 if (tx_ring->prod_idx == tx_ring->wq_len)
2700 tx_ring->prod_idx = 0;
2701 wmb();
2703 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2704 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2705 "tx queued, slot %d, len %d\n",
2706 tx_ring->prod_idx, skb->len);
2708 atomic_dec(&tx_ring->tx_count);
2710 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2711 netif_stop_subqueue(ndev, tx_ring->wq_id);
2712 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2714 * The queue got stopped because the tx_ring was full.
2715 * Wake it up, because it's now at least 25% empty.
2717 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2719 return NETDEV_TX_OK;
2723 static void ql_free_shadow_space(struct ql_adapter *qdev)
2725 if (qdev->rx_ring_shadow_reg_area) {
2726 pci_free_consistent(qdev->pdev,
2727 PAGE_SIZE,
2728 qdev->rx_ring_shadow_reg_area,
2729 qdev->rx_ring_shadow_reg_dma);
2730 qdev->rx_ring_shadow_reg_area = NULL;
2732 if (qdev->tx_ring_shadow_reg_area) {
2733 pci_free_consistent(qdev->pdev,
2734 PAGE_SIZE,
2735 qdev->tx_ring_shadow_reg_area,
2736 qdev->tx_ring_shadow_reg_dma);
2737 qdev->tx_ring_shadow_reg_area = NULL;
2741 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2743 qdev->rx_ring_shadow_reg_area =
2744 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2745 &qdev->rx_ring_shadow_reg_dma);
2746 if (qdev->rx_ring_shadow_reg_area == NULL) {
2747 netif_err(qdev, ifup, qdev->ndev,
2748 "Allocation of RX shadow space failed.\n");
2749 return -ENOMEM;
2752 qdev->tx_ring_shadow_reg_area =
2753 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2754 &qdev->tx_ring_shadow_reg_dma);
2755 if (qdev->tx_ring_shadow_reg_area == NULL) {
2756 netif_err(qdev, ifup, qdev->ndev,
2757 "Allocation of TX shadow space failed.\n");
2758 goto err_wqp_sh_area;
2760 return 0;
2762 err_wqp_sh_area:
2763 pci_free_consistent(qdev->pdev,
2764 PAGE_SIZE,
2765 qdev->rx_ring_shadow_reg_area,
2766 qdev->rx_ring_shadow_reg_dma);
2767 return -ENOMEM;
2770 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2772 struct tx_ring_desc *tx_ring_desc;
2773 int i;
2774 struct ob_mac_iocb_req *mac_iocb_ptr;
2776 mac_iocb_ptr = tx_ring->wq_base;
2777 tx_ring_desc = tx_ring->q;
2778 for (i = 0; i < tx_ring->wq_len; i++) {
2779 tx_ring_desc->index = i;
2780 tx_ring_desc->skb = NULL;
2781 tx_ring_desc->queue_entry = mac_iocb_ptr;
2782 mac_iocb_ptr++;
2783 tx_ring_desc++;
2785 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2788 static void ql_free_tx_resources(struct ql_adapter *qdev,
2789 struct tx_ring *tx_ring)
2791 if (tx_ring->wq_base) {
2792 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2793 tx_ring->wq_base, tx_ring->wq_base_dma);
2794 tx_ring->wq_base = NULL;
2796 kfree(tx_ring->q);
2797 tx_ring->q = NULL;
2800 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2801 struct tx_ring *tx_ring)
2803 tx_ring->wq_base =
2804 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2805 &tx_ring->wq_base_dma);
2807 if ((tx_ring->wq_base == NULL) ||
2808 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2809 goto pci_alloc_err;
2811 tx_ring->q =
2812 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2813 if (tx_ring->q == NULL)
2814 goto err;
2816 return 0;
2817 err:
2818 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2819 tx_ring->wq_base, tx_ring->wq_base_dma);
2820 tx_ring->wq_base = NULL;
2821 pci_alloc_err:
2822 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2823 return -ENOMEM;
2826 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2828 struct bq_desc *lbq_desc;
2830 uint32_t curr_idx, clean_idx;
2832 curr_idx = rx_ring->lbq_curr_idx;
2833 clean_idx = rx_ring->lbq_clean_idx;
2834 while (curr_idx != clean_idx) {
2835 lbq_desc = &rx_ring->lbq[curr_idx];
2837 if (lbq_desc->p.pg_chunk.last_flag) {
2838 pci_unmap_page(qdev->pdev,
2839 lbq_desc->p.pg_chunk.map,
2840 ql_lbq_block_size(qdev),
2841 PCI_DMA_FROMDEVICE);
2842 lbq_desc->p.pg_chunk.last_flag = 0;
2845 put_page(lbq_desc->p.pg_chunk.page);
2846 lbq_desc->p.pg_chunk.page = NULL;
2848 if (++curr_idx == rx_ring->lbq_len)
2849 curr_idx = 0;
2852 if (rx_ring->pg_chunk.page) {
2853 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2854 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2855 put_page(rx_ring->pg_chunk.page);
2856 rx_ring->pg_chunk.page = NULL;
2860 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2862 int i;
2863 struct bq_desc *sbq_desc;
2865 for (i = 0; i < rx_ring->sbq_len; i++) {
2866 sbq_desc = &rx_ring->sbq[i];
2867 if (sbq_desc == NULL) {
2868 netif_err(qdev, ifup, qdev->ndev,
2869 "sbq_desc %d is NULL.\n", i);
2870 return;
2872 if (sbq_desc->p.skb) {
2873 pci_unmap_single(qdev->pdev,
2874 dma_unmap_addr(sbq_desc, mapaddr),
2875 dma_unmap_len(sbq_desc, maplen),
2876 PCI_DMA_FROMDEVICE);
2877 dev_kfree_skb(sbq_desc->p.skb);
2878 sbq_desc->p.skb = NULL;
2883 /* Free all large and small rx buffers associated
2884 * with the completion queues for this device.
2886 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2888 int i;
2889 struct rx_ring *rx_ring;
2891 for (i = 0; i < qdev->rx_ring_count; i++) {
2892 rx_ring = &qdev->rx_ring[i];
2893 if (rx_ring->lbq)
2894 ql_free_lbq_buffers(qdev, rx_ring);
2895 if (rx_ring->sbq)
2896 ql_free_sbq_buffers(qdev, rx_ring);
2900 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2902 struct rx_ring *rx_ring;
2903 int i;
2905 for (i = 0; i < qdev->rx_ring_count; i++) {
2906 rx_ring = &qdev->rx_ring[i];
2907 if (rx_ring->type != TX_Q)
2908 ql_update_buffer_queues(qdev, rx_ring);
2912 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2913 struct rx_ring *rx_ring)
2915 int i;
2916 struct bq_desc *lbq_desc;
2917 __le64 *bq = rx_ring->lbq_base;
2919 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2920 for (i = 0; i < rx_ring->lbq_len; i++) {
2921 lbq_desc = &rx_ring->lbq[i];
2922 memset(lbq_desc, 0, sizeof(*lbq_desc));
2923 lbq_desc->index = i;
2924 lbq_desc->addr = bq;
2925 bq++;
2929 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2930 struct rx_ring *rx_ring)
2932 int i;
2933 struct bq_desc *sbq_desc;
2934 __le64 *bq = rx_ring->sbq_base;
2936 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2937 for (i = 0; i < rx_ring->sbq_len; i++) {
2938 sbq_desc = &rx_ring->sbq[i];
2939 memset(sbq_desc, 0, sizeof(*sbq_desc));
2940 sbq_desc->index = i;
2941 sbq_desc->addr = bq;
2942 bq++;
2946 static void ql_free_rx_resources(struct ql_adapter *qdev,
2947 struct rx_ring *rx_ring)
2949 /* Free the small buffer queue. */
2950 if (rx_ring->sbq_base) {
2951 pci_free_consistent(qdev->pdev,
2952 rx_ring->sbq_size,
2953 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2954 rx_ring->sbq_base = NULL;
2957 /* Free the small buffer queue control blocks. */
2958 kfree(rx_ring->sbq);
2959 rx_ring->sbq = NULL;
2961 /* Free the large buffer queue. */
2962 if (rx_ring->lbq_base) {
2963 pci_free_consistent(qdev->pdev,
2964 rx_ring->lbq_size,
2965 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2966 rx_ring->lbq_base = NULL;
2969 /* Free the large buffer queue control blocks. */
2970 kfree(rx_ring->lbq);
2971 rx_ring->lbq = NULL;
2973 /* Free the rx queue. */
2974 if (rx_ring->cq_base) {
2975 pci_free_consistent(qdev->pdev,
2976 rx_ring->cq_size,
2977 rx_ring->cq_base, rx_ring->cq_base_dma);
2978 rx_ring->cq_base = NULL;
2982 /* Allocate queues and buffers for this completions queue based
2983 * on the values in the parameter structure. */
2984 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2985 struct rx_ring *rx_ring)
2989 * Allocate the completion queue for this rx_ring.
2991 rx_ring->cq_base =
2992 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2993 &rx_ring->cq_base_dma);
2995 if (rx_ring->cq_base == NULL) {
2996 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2997 return -ENOMEM;
3000 if (rx_ring->sbq_len) {
3002 * Allocate small buffer queue.
3004 rx_ring->sbq_base =
3005 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3006 &rx_ring->sbq_base_dma);
3008 if (rx_ring->sbq_base == NULL) {
3009 netif_err(qdev, ifup, qdev->ndev,
3010 "Small buffer queue allocation failed.\n");
3011 goto err_mem;
3015 * Allocate small buffer queue control blocks.
3017 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3018 sizeof(struct bq_desc),
3019 GFP_KERNEL);
3020 if (rx_ring->sbq == NULL)
3021 goto err_mem;
3023 ql_init_sbq_ring(qdev, rx_ring);
3026 if (rx_ring->lbq_len) {
3028 * Allocate large buffer queue.
3030 rx_ring->lbq_base =
3031 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3032 &rx_ring->lbq_base_dma);
3034 if (rx_ring->lbq_base == NULL) {
3035 netif_err(qdev, ifup, qdev->ndev,
3036 "Large buffer queue allocation failed.\n");
3037 goto err_mem;
3040 * Allocate large buffer queue control blocks.
3042 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3043 sizeof(struct bq_desc),
3044 GFP_KERNEL);
3045 if (rx_ring->lbq == NULL)
3046 goto err_mem;
3048 ql_init_lbq_ring(qdev, rx_ring);
3051 return 0;
3053 err_mem:
3054 ql_free_rx_resources(qdev, rx_ring);
3055 return -ENOMEM;
3058 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3060 struct tx_ring *tx_ring;
3061 struct tx_ring_desc *tx_ring_desc;
3062 int i, j;
3065 * Loop through all queues and free
3066 * any resources.
3068 for (j = 0; j < qdev->tx_ring_count; j++) {
3069 tx_ring = &qdev->tx_ring[j];
3070 for (i = 0; i < tx_ring->wq_len; i++) {
3071 tx_ring_desc = &tx_ring->q[i];
3072 if (tx_ring_desc && tx_ring_desc->skb) {
3073 netif_err(qdev, ifdown, qdev->ndev,
3074 "Freeing lost SKB %p, from queue %d, index %d.\n",
3075 tx_ring_desc->skb, j,
3076 tx_ring_desc->index);
3077 ql_unmap_send(qdev, tx_ring_desc,
3078 tx_ring_desc->map_cnt);
3079 dev_kfree_skb(tx_ring_desc->skb);
3080 tx_ring_desc->skb = NULL;
3086 static void ql_free_mem_resources(struct ql_adapter *qdev)
3088 int i;
3090 for (i = 0; i < qdev->tx_ring_count; i++)
3091 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3092 for (i = 0; i < qdev->rx_ring_count; i++)
3093 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3094 ql_free_shadow_space(qdev);
3097 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3099 int i;
3101 /* Allocate space for our shadow registers and such. */
3102 if (ql_alloc_shadow_space(qdev))
3103 return -ENOMEM;
3105 for (i = 0; i < qdev->rx_ring_count; i++) {
3106 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3107 netif_err(qdev, ifup, qdev->ndev,
3108 "RX resource allocation failed.\n");
3109 goto err_mem;
3112 /* Allocate tx queue resources */
3113 for (i = 0; i < qdev->tx_ring_count; i++) {
3114 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3115 netif_err(qdev, ifup, qdev->ndev,
3116 "TX resource allocation failed.\n");
3117 goto err_mem;
3120 return 0;
3122 err_mem:
3123 ql_free_mem_resources(qdev);
3124 return -ENOMEM;
3127 /* Set up the rx ring control block and pass it to the chip.
3128 * The control block is defined as
3129 * "Completion Queue Initialization Control Block", or cqicb.
3131 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3133 struct cqicb *cqicb = &rx_ring->cqicb;
3134 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3135 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3136 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3137 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3138 void __iomem *doorbell_area =
3139 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3140 int err = 0;
3141 u16 bq_len;
3142 u64 tmp;
3143 __le64 *base_indirect_ptr;
3144 int page_entries;
3146 /* Set up the shadow registers for this ring. */
3147 rx_ring->prod_idx_sh_reg = shadow_reg;
3148 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3149 *rx_ring->prod_idx_sh_reg = 0;
3150 shadow_reg += sizeof(u64);
3151 shadow_reg_dma += sizeof(u64);
3152 rx_ring->lbq_base_indirect = shadow_reg;
3153 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3154 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3155 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3156 rx_ring->sbq_base_indirect = shadow_reg;
3157 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3159 /* PCI doorbell mem area + 0x00 for consumer index register */
3160 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3161 rx_ring->cnsmr_idx = 0;
3162 rx_ring->curr_entry = rx_ring->cq_base;
3164 /* PCI doorbell mem area + 0x04 for valid register */
3165 rx_ring->valid_db_reg = doorbell_area + 0x04;
3167 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3168 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3170 /* PCI doorbell mem area + 0x1c */
3171 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3173 memset((void *)cqicb, 0, sizeof(struct cqicb));
3174 cqicb->msix_vect = rx_ring->irq;
3176 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3177 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3179 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3181 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3184 * Set up the control block load flags.
3186 cqicb->flags = FLAGS_LC | /* Load queue base address */
3187 FLAGS_LV | /* Load MSI-X vector */
3188 FLAGS_LI; /* Load irq delay values */
3189 if (rx_ring->lbq_len) {
3190 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3191 tmp = (u64)rx_ring->lbq_base_dma;
3192 base_indirect_ptr = rx_ring->lbq_base_indirect;
3193 page_entries = 0;
3194 do {
3195 *base_indirect_ptr = cpu_to_le64(tmp);
3196 tmp += DB_PAGE_SIZE;
3197 base_indirect_ptr++;
3198 page_entries++;
3199 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3200 cqicb->lbq_addr =
3201 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3202 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3203 (u16) rx_ring->lbq_buf_size;
3204 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3205 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3206 (u16) rx_ring->lbq_len;
3207 cqicb->lbq_len = cpu_to_le16(bq_len);
3208 rx_ring->lbq_prod_idx = 0;
3209 rx_ring->lbq_curr_idx = 0;
3210 rx_ring->lbq_clean_idx = 0;
3211 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3213 if (rx_ring->sbq_len) {
3214 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3215 tmp = (u64)rx_ring->sbq_base_dma;
3216 base_indirect_ptr = rx_ring->sbq_base_indirect;
3217 page_entries = 0;
3218 do {
3219 *base_indirect_ptr = cpu_to_le64(tmp);
3220 tmp += DB_PAGE_SIZE;
3221 base_indirect_ptr++;
3222 page_entries++;
3223 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3224 cqicb->sbq_addr =
3225 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3226 cqicb->sbq_buf_size =
3227 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3228 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3229 (u16) rx_ring->sbq_len;
3230 cqicb->sbq_len = cpu_to_le16(bq_len);
3231 rx_ring->sbq_prod_idx = 0;
3232 rx_ring->sbq_curr_idx = 0;
3233 rx_ring->sbq_clean_idx = 0;
3234 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3236 switch (rx_ring->type) {
3237 case TX_Q:
3238 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3239 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3240 break;
3241 case RX_Q:
3242 /* Inbound completion handling rx_rings run in
3243 * separate NAPI contexts.
3245 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3246 64);
3247 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3248 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3249 break;
3250 default:
3251 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3252 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3254 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3255 CFG_LCQ, rx_ring->cq_id);
3256 if (err) {
3257 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3258 return err;
3260 return err;
3263 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3265 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3266 void __iomem *doorbell_area =
3267 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3268 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3269 (tx_ring->wq_id * sizeof(u64));
3270 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3271 (tx_ring->wq_id * sizeof(u64));
3272 int err = 0;
3275 * Assign doorbell registers for this tx_ring.
3277 /* TX PCI doorbell mem area for tx producer index */
3278 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3279 tx_ring->prod_idx = 0;
3280 /* TX PCI doorbell mem area + 0x04 */
3281 tx_ring->valid_db_reg = doorbell_area + 0x04;
3284 * Assign shadow registers for this tx_ring.
3286 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3287 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3289 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3290 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3291 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3292 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3293 wqicb->rid = 0;
3294 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3296 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3298 ql_init_tx_ring(qdev, tx_ring);
3300 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3301 (u16) tx_ring->wq_id);
3302 if (err) {
3303 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3304 return err;
3306 return err;
3309 static void ql_disable_msix(struct ql_adapter *qdev)
3311 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3312 pci_disable_msix(qdev->pdev);
3313 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3314 kfree(qdev->msi_x_entry);
3315 qdev->msi_x_entry = NULL;
3316 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3317 pci_disable_msi(qdev->pdev);
3318 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3322 /* We start by trying to get the number of vectors
3323 * stored in qdev->intr_count. If we don't get that
3324 * many then we reduce the count and try again.
3326 static void ql_enable_msix(struct ql_adapter *qdev)
3328 int i, err;
3330 /* Get the MSIX vectors. */
3331 if (qlge_irq_type == MSIX_IRQ) {
3332 /* Try to alloc space for the msix struct,
3333 * if it fails then go to MSI/legacy.
3335 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3336 sizeof(struct msix_entry),
3337 GFP_KERNEL);
3338 if (!qdev->msi_x_entry) {
3339 qlge_irq_type = MSI_IRQ;
3340 goto msi;
3343 for (i = 0; i < qdev->intr_count; i++)
3344 qdev->msi_x_entry[i].entry = i;
3346 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3347 1, qdev->intr_count);
3348 if (err < 0) {
3349 kfree(qdev->msi_x_entry);
3350 qdev->msi_x_entry = NULL;
3351 netif_warn(qdev, ifup, qdev->ndev,
3352 "MSI-X Enable failed, trying MSI.\n");
3353 qlge_irq_type = MSI_IRQ;
3354 } else {
3355 qdev->intr_count = err;
3356 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3357 netif_info(qdev, ifup, qdev->ndev,
3358 "MSI-X Enabled, got %d vectors.\n",
3359 qdev->intr_count);
3360 return;
3363 msi:
3364 qdev->intr_count = 1;
3365 if (qlge_irq_type == MSI_IRQ) {
3366 if (!pci_enable_msi(qdev->pdev)) {
3367 set_bit(QL_MSI_ENABLED, &qdev->flags);
3368 netif_info(qdev, ifup, qdev->ndev,
3369 "Running with MSI interrupts.\n");
3370 return;
3373 qlge_irq_type = LEG_IRQ;
3374 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3375 "Running with legacy interrupts.\n");
3378 /* Each vector services 1 RSS ring and and 1 or more
3379 * TX completion rings. This function loops through
3380 * the TX completion rings and assigns the vector that
3381 * will service it. An example would be if there are
3382 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3383 * This would mean that vector 0 would service RSS ring 0
3384 * and TX completion rings 0,1,2 and 3. Vector 1 would
3385 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3387 static void ql_set_tx_vect(struct ql_adapter *qdev)
3389 int i, j, vect;
3390 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3392 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3393 /* Assign irq vectors to TX rx_rings.*/
3394 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3395 i < qdev->rx_ring_count; i++) {
3396 if (j == tx_rings_per_vector) {
3397 vect++;
3398 j = 0;
3400 qdev->rx_ring[i].irq = vect;
3401 j++;
3403 } else {
3404 /* For single vector all rings have an irq
3405 * of zero.
3407 for (i = 0; i < qdev->rx_ring_count; i++)
3408 qdev->rx_ring[i].irq = 0;
3412 /* Set the interrupt mask for this vector. Each vector
3413 * will service 1 RSS ring and 1 or more TX completion
3414 * rings. This function sets up a bit mask per vector
3415 * that indicates which rings it services.
3417 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3419 int j, vect = ctx->intr;
3420 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3422 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3423 /* Add the RSS ring serviced by this vector
3424 * to the mask.
3426 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3427 /* Add the TX ring(s) serviced by this vector
3428 * to the mask. */
3429 for (j = 0; j < tx_rings_per_vector; j++) {
3430 ctx->irq_mask |=
3431 (1 << qdev->rx_ring[qdev->rss_ring_count +
3432 (vect * tx_rings_per_vector) + j].cq_id);
3434 } else {
3435 /* For single vector we just shift each queue's
3436 * ID into the mask.
3438 for (j = 0; j < qdev->rx_ring_count; j++)
3439 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3444 * Here we build the intr_context structures based on
3445 * our rx_ring count and intr vector count.
3446 * The intr_context structure is used to hook each vector
3447 * to possibly different handlers.
3449 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3451 int i = 0;
3452 struct intr_context *intr_context = &qdev->intr_context[0];
3454 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3455 /* Each rx_ring has it's
3456 * own intr_context since we have separate
3457 * vectors for each queue.
3459 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3460 qdev->rx_ring[i].irq = i;
3461 intr_context->intr = i;
3462 intr_context->qdev = qdev;
3463 /* Set up this vector's bit-mask that indicates
3464 * which queues it services.
3466 ql_set_irq_mask(qdev, intr_context);
3468 * We set up each vectors enable/disable/read bits so
3469 * there's no bit/mask calculations in the critical path.
3471 intr_context->intr_en_mask =
3472 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3473 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3474 | i;
3475 intr_context->intr_dis_mask =
3476 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3478 INTR_EN_IHD | i;
3479 intr_context->intr_read_mask =
3480 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3481 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3483 if (i == 0) {
3484 /* The first vector/queue handles
3485 * broadcast/multicast, fatal errors,
3486 * and firmware events. This in addition
3487 * to normal inbound NAPI processing.
3489 intr_context->handler = qlge_isr;
3490 sprintf(intr_context->name, "%s-rx-%d",
3491 qdev->ndev->name, i);
3492 } else {
3494 * Inbound queues handle unicast frames only.
3496 intr_context->handler = qlge_msix_rx_isr;
3497 sprintf(intr_context->name, "%s-rx-%d",
3498 qdev->ndev->name, i);
3501 } else {
3503 * All rx_rings use the same intr_context since
3504 * there is only one vector.
3506 intr_context->intr = 0;
3507 intr_context->qdev = qdev;
3509 * We set up each vectors enable/disable/read bits so
3510 * there's no bit/mask calculations in the critical path.
3512 intr_context->intr_en_mask =
3513 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3514 intr_context->intr_dis_mask =
3515 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3516 INTR_EN_TYPE_DISABLE;
3517 intr_context->intr_read_mask =
3518 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3520 * Single interrupt means one handler for all rings.
3522 intr_context->handler = qlge_isr;
3523 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3524 /* Set up this vector's bit-mask that indicates
3525 * which queues it services. In this case there is
3526 * a single vector so it will service all RSS and
3527 * TX completion rings.
3529 ql_set_irq_mask(qdev, intr_context);
3531 /* Tell the TX completion rings which MSIx vector
3532 * they will be using.
3534 ql_set_tx_vect(qdev);
3537 static void ql_free_irq(struct ql_adapter *qdev)
3539 int i;
3540 struct intr_context *intr_context = &qdev->intr_context[0];
3542 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3543 if (intr_context->hooked) {
3544 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3545 free_irq(qdev->msi_x_entry[i].vector,
3546 &qdev->rx_ring[i]);
3547 } else {
3548 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3552 ql_disable_msix(qdev);
3555 static int ql_request_irq(struct ql_adapter *qdev)
3557 int i;
3558 int status = 0;
3559 struct pci_dev *pdev = qdev->pdev;
3560 struct intr_context *intr_context = &qdev->intr_context[0];
3562 ql_resolve_queues_to_irqs(qdev);
3564 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3565 atomic_set(&intr_context->irq_cnt, 0);
3566 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3567 status = request_irq(qdev->msi_x_entry[i].vector,
3568 intr_context->handler,
3570 intr_context->name,
3571 &qdev->rx_ring[i]);
3572 if (status) {
3573 netif_err(qdev, ifup, qdev->ndev,
3574 "Failed request for MSIX interrupt %d.\n",
3576 goto err_irq;
3578 } else {
3579 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580 "trying msi or legacy interrupts.\n");
3581 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3582 "%s: irq = %d.\n", __func__, pdev->irq);
3583 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584 "%s: context->name = %s.\n", __func__,
3585 intr_context->name);
3586 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3587 "%s: dev_id = 0x%p.\n", __func__,
3588 &qdev->rx_ring[0]);
3589 status =
3590 request_irq(pdev->irq, qlge_isr,
3591 test_bit(QL_MSI_ENABLED,
3592 &qdev->
3593 flags) ? 0 : IRQF_SHARED,
3594 intr_context->name, &qdev->rx_ring[0]);
3595 if (status)
3596 goto err_irq;
3598 netif_err(qdev, ifup, qdev->ndev,
3599 "Hooked intr %d, queue type %s, with name %s.\n",
3601 qdev->rx_ring[0].type == DEFAULT_Q ?
3602 "DEFAULT_Q" :
3603 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3604 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3605 intr_context->name);
3607 intr_context->hooked = 1;
3609 return status;
3610 err_irq:
3611 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3612 ql_free_irq(qdev);
3613 return status;
3616 static int ql_start_rss(struct ql_adapter *qdev)
3618 static const u8 init_hash_seed[] = {
3619 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3620 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3621 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3622 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3623 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3625 struct ricb *ricb = &qdev->ricb;
3626 int status = 0;
3627 int i;
3628 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3630 memset((void *)ricb, 0, sizeof(*ricb));
3632 ricb->base_cq = RSS_L4K;
3633 ricb->flags =
3634 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3635 ricb->mask = cpu_to_le16((u16)(0x3ff));
3638 * Fill out the Indirection Table.
3640 for (i = 0; i < 1024; i++)
3641 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3643 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3644 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3646 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3647 if (status) {
3648 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3649 return status;
3651 return status;
3654 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3656 int i, status = 0;
3658 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3659 if (status)
3660 return status;
3661 /* Clear all the entries in the routing table. */
3662 for (i = 0; i < 16; i++) {
3663 status = ql_set_routing_reg(qdev, i, 0, 0);
3664 if (status) {
3665 netif_err(qdev, ifup, qdev->ndev,
3666 "Failed to init routing register for CAM packets.\n");
3667 break;
3670 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3671 return status;
3674 /* Initialize the frame-to-queue routing. */
3675 static int ql_route_initialize(struct ql_adapter *qdev)
3677 int status = 0;
3679 /* Clear all the entries in the routing table. */
3680 status = ql_clear_routing_entries(qdev);
3681 if (status)
3682 return status;
3684 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3685 if (status)
3686 return status;
3688 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3689 RT_IDX_IP_CSUM_ERR, 1);
3690 if (status) {
3691 netif_err(qdev, ifup, qdev->ndev,
3692 "Failed to init routing register "
3693 "for IP CSUM error packets.\n");
3694 goto exit;
3696 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3697 RT_IDX_TU_CSUM_ERR, 1);
3698 if (status) {
3699 netif_err(qdev, ifup, qdev->ndev,
3700 "Failed to init routing register "
3701 "for TCP/UDP CSUM error packets.\n");
3702 goto exit;
3704 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3705 if (status) {
3706 netif_err(qdev, ifup, qdev->ndev,
3707 "Failed to init routing register for broadcast packets.\n");
3708 goto exit;
3710 /* If we have more than one inbound queue, then turn on RSS in the
3711 * routing block.
3713 if (qdev->rss_ring_count > 1) {
3714 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3715 RT_IDX_RSS_MATCH, 1);
3716 if (status) {
3717 netif_err(qdev, ifup, qdev->ndev,
3718 "Failed to init routing register for MATCH RSS packets.\n");
3719 goto exit;
3723 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3724 RT_IDX_CAM_HIT, 1);
3725 if (status)
3726 netif_err(qdev, ifup, qdev->ndev,
3727 "Failed to init routing register for CAM packets.\n");
3728 exit:
3729 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3730 return status;
3733 int ql_cam_route_initialize(struct ql_adapter *qdev)
3735 int status, set;
3737 /* If check if the link is up and use to
3738 * determine if we are setting or clearing
3739 * the MAC address in the CAM.
3741 set = ql_read32(qdev, STS);
3742 set &= qdev->port_link_up;
3743 status = ql_set_mac_addr(qdev, set);
3744 if (status) {
3745 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3746 return status;
3749 status = ql_route_initialize(qdev);
3750 if (status)
3751 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3753 return status;
3756 static int ql_adapter_initialize(struct ql_adapter *qdev)
3758 u32 value, mask;
3759 int i;
3760 int status = 0;
3763 * Set up the System register to halt on errors.
3765 value = SYS_EFE | SYS_FAE;
3766 mask = value << 16;
3767 ql_write32(qdev, SYS, mask | value);
3769 /* Set the default queue, and VLAN behavior. */
3770 value = NIC_RCV_CFG_DFQ;
3771 mask = NIC_RCV_CFG_DFQ_MASK;
3772 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3773 value |= NIC_RCV_CFG_RV;
3774 mask |= (NIC_RCV_CFG_RV << 16);
3776 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3778 /* Set the MPI interrupt to enabled. */
3779 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3781 /* Enable the function, set pagesize, enable error checking. */
3782 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3783 FSC_EC | FSC_VM_PAGE_4K;
3784 value |= SPLT_SETTING;
3786 /* Set/clear header splitting. */
3787 mask = FSC_VM_PAGESIZE_MASK |
3788 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3789 ql_write32(qdev, FSC, mask | value);
3791 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3793 /* Set RX packet routing to use port/pci function on which the
3794 * packet arrived on in addition to usual frame routing.
3795 * This is helpful on bonding where both interfaces can have
3796 * the same MAC address.
3798 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3799 /* Reroute all packets to our Interface.
3800 * They may have been routed to MPI firmware
3801 * due to WOL.
3803 value = ql_read32(qdev, MGMT_RCV_CFG);
3804 value &= ~MGMT_RCV_CFG_RM;
3805 mask = 0xffff0000;
3807 /* Sticky reg needs clearing due to WOL. */
3808 ql_write32(qdev, MGMT_RCV_CFG, mask);
3809 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3811 /* Default WOL is enable on Mezz cards */
3812 if (qdev->pdev->subsystem_device == 0x0068 ||
3813 qdev->pdev->subsystem_device == 0x0180)
3814 qdev->wol = WAKE_MAGIC;
3816 /* Start up the rx queues. */
3817 for (i = 0; i < qdev->rx_ring_count; i++) {
3818 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3819 if (status) {
3820 netif_err(qdev, ifup, qdev->ndev,
3821 "Failed to start rx ring[%d].\n", i);
3822 return status;
3826 /* If there is more than one inbound completion queue
3827 * then download a RICB to configure RSS.
3829 if (qdev->rss_ring_count > 1) {
3830 status = ql_start_rss(qdev);
3831 if (status) {
3832 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3833 return status;
3837 /* Start up the tx queues. */
3838 for (i = 0; i < qdev->tx_ring_count; i++) {
3839 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3840 if (status) {
3841 netif_err(qdev, ifup, qdev->ndev,
3842 "Failed to start tx ring[%d].\n", i);
3843 return status;
3847 /* Initialize the port and set the max framesize. */
3848 status = qdev->nic_ops->port_initialize(qdev);
3849 if (status)
3850 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3852 /* Set up the MAC address and frame routing filter. */
3853 status = ql_cam_route_initialize(qdev);
3854 if (status) {
3855 netif_err(qdev, ifup, qdev->ndev,
3856 "Failed to init CAM/Routing tables.\n");
3857 return status;
3860 /* Start NAPI for the RSS queues. */
3861 for (i = 0; i < qdev->rss_ring_count; i++)
3862 napi_enable(&qdev->rx_ring[i].napi);
3864 return status;
3867 /* Issue soft reset to chip. */
3868 static int ql_adapter_reset(struct ql_adapter *qdev)
3870 u32 value;
3871 int status = 0;
3872 unsigned long end_jiffies;
3874 /* Clear all the entries in the routing table. */
3875 status = ql_clear_routing_entries(qdev);
3876 if (status) {
3877 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3878 return status;
3881 /* Check if bit is set then skip the mailbox command and
3882 * clear the bit, else we are in normal reset process.
3884 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3885 /* Stop management traffic. */
3886 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3888 /* Wait for the NIC and MGMNT FIFOs to empty. */
3889 ql_wait_fifo_empty(qdev);
3890 } else
3891 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3893 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3895 end_jiffies = jiffies + usecs_to_jiffies(30);
3896 do {
3897 value = ql_read32(qdev, RST_FO);
3898 if ((value & RST_FO_FR) == 0)
3899 break;
3900 cpu_relax();
3901 } while (time_before(jiffies, end_jiffies));
3903 if (value & RST_FO_FR) {
3904 netif_err(qdev, ifdown, qdev->ndev,
3905 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3906 status = -ETIMEDOUT;
3909 /* Resume management traffic. */
3910 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3911 return status;
3914 static void ql_display_dev_info(struct net_device *ndev)
3916 struct ql_adapter *qdev = netdev_priv(ndev);
3918 netif_info(qdev, probe, qdev->ndev,
3919 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3920 "XG Roll = %d, XG Rev = %d.\n",
3921 qdev->func,
3922 qdev->port,
3923 qdev->chip_rev_id & 0x0000000f,
3924 qdev->chip_rev_id >> 4 & 0x0000000f,
3925 qdev->chip_rev_id >> 8 & 0x0000000f,
3926 qdev->chip_rev_id >> 12 & 0x0000000f);
3927 netif_info(qdev, probe, qdev->ndev,
3928 "MAC address %pM\n", ndev->dev_addr);
3931 static int ql_wol(struct ql_adapter *qdev)
3933 int status = 0;
3934 u32 wol = MB_WOL_DISABLE;
3936 /* The CAM is still intact after a reset, but if we
3937 * are doing WOL, then we may need to program the
3938 * routing regs. We would also need to issue the mailbox
3939 * commands to instruct the MPI what to do per the ethtool
3940 * settings.
3943 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3944 WAKE_MCAST | WAKE_BCAST)) {
3945 netif_err(qdev, ifdown, qdev->ndev,
3946 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3947 qdev->wol);
3948 return -EINVAL;
3951 if (qdev->wol & WAKE_MAGIC) {
3952 status = ql_mb_wol_set_magic(qdev, 1);
3953 if (status) {
3954 netif_err(qdev, ifdown, qdev->ndev,
3955 "Failed to set magic packet on %s.\n",
3956 qdev->ndev->name);
3957 return status;
3958 } else
3959 netif_info(qdev, drv, qdev->ndev,
3960 "Enabled magic packet successfully on %s.\n",
3961 qdev->ndev->name);
3963 wol |= MB_WOL_MAGIC_PKT;
3966 if (qdev->wol) {
3967 wol |= MB_WOL_MODE_ON;
3968 status = ql_mb_wol_mode(qdev, wol);
3969 netif_err(qdev, drv, qdev->ndev,
3970 "WOL %s (wol code 0x%x) on %s\n",
3971 (status == 0) ? "Successfully set" : "Failed",
3972 wol, qdev->ndev->name);
3975 return status;
3978 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3981 /* Don't kill the reset worker thread if we
3982 * are in the process of recovery.
3984 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3985 cancel_delayed_work_sync(&qdev->asic_reset_work);
3986 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3987 cancel_delayed_work_sync(&qdev->mpi_work);
3988 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3989 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3990 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3993 static int ql_adapter_down(struct ql_adapter *qdev)
3995 int i, status = 0;
3997 ql_link_off(qdev);
3999 ql_cancel_all_work_sync(qdev);
4001 for (i = 0; i < qdev->rss_ring_count; i++)
4002 napi_disable(&qdev->rx_ring[i].napi);
4004 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4006 ql_disable_interrupts(qdev);
4008 ql_tx_ring_clean(qdev);
4010 /* Call netif_napi_del() from common point.
4012 for (i = 0; i < qdev->rss_ring_count; i++)
4013 netif_napi_del(&qdev->rx_ring[i].napi);
4015 status = ql_adapter_reset(qdev);
4016 if (status)
4017 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4018 qdev->func);
4019 ql_free_rx_buffers(qdev);
4021 return status;
4024 static int ql_adapter_up(struct ql_adapter *qdev)
4026 int err = 0;
4028 err = ql_adapter_initialize(qdev);
4029 if (err) {
4030 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4031 goto err_init;
4033 set_bit(QL_ADAPTER_UP, &qdev->flags);
4034 ql_alloc_rx_buffers(qdev);
4035 /* If the port is initialized and the
4036 * link is up the turn on the carrier.
4038 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4039 (ql_read32(qdev, STS) & qdev->port_link_up))
4040 ql_link_on(qdev);
4041 /* Restore rx mode. */
4042 clear_bit(QL_ALLMULTI, &qdev->flags);
4043 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4044 qlge_set_multicast_list(qdev->ndev);
4046 /* Restore vlan setting. */
4047 qlge_restore_vlan(qdev);
4049 ql_enable_interrupts(qdev);
4050 ql_enable_all_completion_interrupts(qdev);
4051 netif_tx_start_all_queues(qdev->ndev);
4053 return 0;
4054 err_init:
4055 ql_adapter_reset(qdev);
4056 return err;
4059 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4061 ql_free_mem_resources(qdev);
4062 ql_free_irq(qdev);
4065 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4067 int status = 0;
4069 if (ql_alloc_mem_resources(qdev)) {
4070 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4071 return -ENOMEM;
4073 status = ql_request_irq(qdev);
4074 return status;
4077 static int qlge_close(struct net_device *ndev)
4079 struct ql_adapter *qdev = netdev_priv(ndev);
4081 /* If we hit pci_channel_io_perm_failure
4082 * failure condition, then we already
4083 * brought the adapter down.
4085 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4086 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4087 clear_bit(QL_EEH_FATAL, &qdev->flags);
4088 return 0;
4092 * Wait for device to recover from a reset.
4093 * (Rarely happens, but possible.)
4095 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4096 msleep(1);
4097 ql_adapter_down(qdev);
4098 ql_release_adapter_resources(qdev);
4099 return 0;
4102 static int ql_configure_rings(struct ql_adapter *qdev)
4104 int i;
4105 struct rx_ring *rx_ring;
4106 struct tx_ring *tx_ring;
4107 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4108 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4109 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4111 qdev->lbq_buf_order = get_order(lbq_buf_len);
4113 /* In a perfect world we have one RSS ring for each CPU
4114 * and each has it's own vector. To do that we ask for
4115 * cpu_cnt vectors. ql_enable_msix() will adjust the
4116 * vector count to what we actually get. We then
4117 * allocate an RSS ring for each.
4118 * Essentially, we are doing min(cpu_count, msix_vector_count).
4120 qdev->intr_count = cpu_cnt;
4121 ql_enable_msix(qdev);
4122 /* Adjust the RSS ring count to the actual vector count. */
4123 qdev->rss_ring_count = qdev->intr_count;
4124 qdev->tx_ring_count = cpu_cnt;
4125 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4127 for (i = 0; i < qdev->tx_ring_count; i++) {
4128 tx_ring = &qdev->tx_ring[i];
4129 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4130 tx_ring->qdev = qdev;
4131 tx_ring->wq_id = i;
4132 tx_ring->wq_len = qdev->tx_ring_size;
4133 tx_ring->wq_size =
4134 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4137 * The completion queue ID for the tx rings start
4138 * immediately after the rss rings.
4140 tx_ring->cq_id = qdev->rss_ring_count + i;
4143 for (i = 0; i < qdev->rx_ring_count; i++) {
4144 rx_ring = &qdev->rx_ring[i];
4145 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4146 rx_ring->qdev = qdev;
4147 rx_ring->cq_id = i;
4148 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4149 if (i < qdev->rss_ring_count) {
4151 * Inbound (RSS) queues.
4153 rx_ring->cq_len = qdev->rx_ring_size;
4154 rx_ring->cq_size =
4155 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4156 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4157 rx_ring->lbq_size =
4158 rx_ring->lbq_len * sizeof(__le64);
4159 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4160 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4161 rx_ring->sbq_size =
4162 rx_ring->sbq_len * sizeof(__le64);
4163 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4164 rx_ring->type = RX_Q;
4165 } else {
4167 * Outbound queue handles outbound completions only.
4169 /* outbound cq is same size as tx_ring it services. */
4170 rx_ring->cq_len = qdev->tx_ring_size;
4171 rx_ring->cq_size =
4172 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4173 rx_ring->lbq_len = 0;
4174 rx_ring->lbq_size = 0;
4175 rx_ring->lbq_buf_size = 0;
4176 rx_ring->sbq_len = 0;
4177 rx_ring->sbq_size = 0;
4178 rx_ring->sbq_buf_size = 0;
4179 rx_ring->type = TX_Q;
4182 return 0;
4185 static int qlge_open(struct net_device *ndev)
4187 int err = 0;
4188 struct ql_adapter *qdev = netdev_priv(ndev);
4190 err = ql_adapter_reset(qdev);
4191 if (err)
4192 return err;
4194 err = ql_configure_rings(qdev);
4195 if (err)
4196 return err;
4198 err = ql_get_adapter_resources(qdev);
4199 if (err)
4200 goto error_up;
4202 err = ql_adapter_up(qdev);
4203 if (err)
4204 goto error_up;
4206 return err;
4208 error_up:
4209 ql_release_adapter_resources(qdev);
4210 return err;
4213 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4215 struct rx_ring *rx_ring;
4216 int i, status;
4217 u32 lbq_buf_len;
4219 /* Wait for an outstanding reset to complete. */
4220 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4221 int i = 4;
4223 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4224 netif_err(qdev, ifup, qdev->ndev,
4225 "Waiting for adapter UP...\n");
4226 ssleep(1);
4229 if (!i) {
4230 netif_err(qdev, ifup, qdev->ndev,
4231 "Timed out waiting for adapter UP\n");
4232 return -ETIMEDOUT;
4236 status = ql_adapter_down(qdev);
4237 if (status)
4238 goto error;
4240 /* Get the new rx buffer size. */
4241 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4242 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4243 qdev->lbq_buf_order = get_order(lbq_buf_len);
4245 for (i = 0; i < qdev->rss_ring_count; i++) {
4246 rx_ring = &qdev->rx_ring[i];
4247 /* Set the new size. */
4248 rx_ring->lbq_buf_size = lbq_buf_len;
4251 status = ql_adapter_up(qdev);
4252 if (status)
4253 goto error;
4255 return status;
4256 error:
4257 netif_alert(qdev, ifup, qdev->ndev,
4258 "Driver up/down cycle failed, closing device.\n");
4259 set_bit(QL_ADAPTER_UP, &qdev->flags);
4260 dev_close(qdev->ndev);
4261 return status;
4264 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4266 struct ql_adapter *qdev = netdev_priv(ndev);
4267 int status;
4269 if (ndev->mtu == 1500 && new_mtu == 9000) {
4270 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4271 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4272 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4273 } else
4274 return -EINVAL;
4276 queue_delayed_work(qdev->workqueue,
4277 &qdev->mpi_port_cfg_work, 3*HZ);
4279 ndev->mtu = new_mtu;
4281 if (!netif_running(qdev->ndev)) {
4282 return 0;
4285 status = ql_change_rx_buffers(qdev);
4286 if (status) {
4287 netif_err(qdev, ifup, qdev->ndev,
4288 "Changing MTU failed.\n");
4291 return status;
4294 static struct net_device_stats *qlge_get_stats(struct net_device
4295 *ndev)
4297 struct ql_adapter *qdev = netdev_priv(ndev);
4298 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4299 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4300 unsigned long pkts, mcast, dropped, errors, bytes;
4301 int i;
4303 /* Get RX stats. */
4304 pkts = mcast = dropped = errors = bytes = 0;
4305 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4306 pkts += rx_ring->rx_packets;
4307 bytes += rx_ring->rx_bytes;
4308 dropped += rx_ring->rx_dropped;
4309 errors += rx_ring->rx_errors;
4310 mcast += rx_ring->rx_multicast;
4312 ndev->stats.rx_packets = pkts;
4313 ndev->stats.rx_bytes = bytes;
4314 ndev->stats.rx_dropped = dropped;
4315 ndev->stats.rx_errors = errors;
4316 ndev->stats.multicast = mcast;
4318 /* Get TX stats. */
4319 pkts = errors = bytes = 0;
4320 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4321 pkts += tx_ring->tx_packets;
4322 bytes += tx_ring->tx_bytes;
4323 errors += tx_ring->tx_errors;
4325 ndev->stats.tx_packets = pkts;
4326 ndev->stats.tx_bytes = bytes;
4327 ndev->stats.tx_errors = errors;
4328 return &ndev->stats;
4331 static void qlge_set_multicast_list(struct net_device *ndev)
4333 struct ql_adapter *qdev = netdev_priv(ndev);
4334 struct netdev_hw_addr *ha;
4335 int i, status;
4337 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4338 if (status)
4339 return;
4341 * Set or clear promiscuous mode if a
4342 * transition is taking place.
4344 if (ndev->flags & IFF_PROMISC) {
4345 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4346 if (ql_set_routing_reg
4347 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4348 netif_err(qdev, hw, qdev->ndev,
4349 "Failed to set promiscuous mode.\n");
4350 } else {
4351 set_bit(QL_PROMISCUOUS, &qdev->flags);
4354 } else {
4355 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4356 if (ql_set_routing_reg
4357 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4358 netif_err(qdev, hw, qdev->ndev,
4359 "Failed to clear promiscuous mode.\n");
4360 } else {
4361 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4367 * Set or clear all multicast mode if a
4368 * transition is taking place.
4370 if ((ndev->flags & IFF_ALLMULTI) ||
4371 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4372 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4373 if (ql_set_routing_reg
4374 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4375 netif_err(qdev, hw, qdev->ndev,
4376 "Failed to set all-multi mode.\n");
4377 } else {
4378 set_bit(QL_ALLMULTI, &qdev->flags);
4381 } else {
4382 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4383 if (ql_set_routing_reg
4384 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4385 netif_err(qdev, hw, qdev->ndev,
4386 "Failed to clear all-multi mode.\n");
4387 } else {
4388 clear_bit(QL_ALLMULTI, &qdev->flags);
4393 if (!netdev_mc_empty(ndev)) {
4394 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4395 if (status)
4396 goto exit;
4397 i = 0;
4398 netdev_for_each_mc_addr(ha, ndev) {
4399 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4400 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4401 netif_err(qdev, hw, qdev->ndev,
4402 "Failed to loadmulticast address.\n");
4403 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4404 goto exit;
4406 i++;
4408 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4409 if (ql_set_routing_reg
4410 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4411 netif_err(qdev, hw, qdev->ndev,
4412 "Failed to set multicast match mode.\n");
4413 } else {
4414 set_bit(QL_ALLMULTI, &qdev->flags);
4417 exit:
4418 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4421 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4423 struct ql_adapter *qdev = netdev_priv(ndev);
4424 struct sockaddr *addr = p;
4425 int status;
4427 if (!is_valid_ether_addr(addr->sa_data))
4428 return -EADDRNOTAVAIL;
4429 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4430 /* Update local copy of current mac address. */
4431 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4433 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4434 if (status)
4435 return status;
4436 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4437 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4438 if (status)
4439 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4440 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4441 return status;
4444 static void qlge_tx_timeout(struct net_device *ndev)
4446 struct ql_adapter *qdev = netdev_priv(ndev);
4447 ql_queue_asic_error(qdev);
4450 static void ql_asic_reset_work(struct work_struct *work)
4452 struct ql_adapter *qdev =
4453 container_of(work, struct ql_adapter, asic_reset_work.work);
4454 int status;
4455 rtnl_lock();
4456 status = ql_adapter_down(qdev);
4457 if (status)
4458 goto error;
4460 status = ql_adapter_up(qdev);
4461 if (status)
4462 goto error;
4464 /* Restore rx mode. */
4465 clear_bit(QL_ALLMULTI, &qdev->flags);
4466 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4467 qlge_set_multicast_list(qdev->ndev);
4469 rtnl_unlock();
4470 return;
4471 error:
4472 netif_alert(qdev, ifup, qdev->ndev,
4473 "Driver up/down cycle failed, closing device\n");
4475 set_bit(QL_ADAPTER_UP, &qdev->flags);
4476 dev_close(qdev->ndev);
4477 rtnl_unlock();
4480 static const struct nic_operations qla8012_nic_ops = {
4481 .get_flash = ql_get_8012_flash_params,
4482 .port_initialize = ql_8012_port_initialize,
4485 static const struct nic_operations qla8000_nic_ops = {
4486 .get_flash = ql_get_8000_flash_params,
4487 .port_initialize = ql_8000_port_initialize,
4490 /* Find the pcie function number for the other NIC
4491 * on this chip. Since both NIC functions share a
4492 * common firmware we have the lowest enabled function
4493 * do any common work. Examples would be resetting
4494 * after a fatal firmware error, or doing a firmware
4495 * coredump.
4497 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4499 int status = 0;
4500 u32 temp;
4501 u32 nic_func1, nic_func2;
4503 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4504 &temp);
4505 if (status)
4506 return status;
4508 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4509 MPI_TEST_NIC_FUNC_MASK);
4510 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4511 MPI_TEST_NIC_FUNC_MASK);
4513 if (qdev->func == nic_func1)
4514 qdev->alt_func = nic_func2;
4515 else if (qdev->func == nic_func2)
4516 qdev->alt_func = nic_func1;
4517 else
4518 status = -EIO;
4520 return status;
4523 static int ql_get_board_info(struct ql_adapter *qdev)
4525 int status;
4526 qdev->func =
4527 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4528 if (qdev->func > 3)
4529 return -EIO;
4531 status = ql_get_alt_pcie_func(qdev);
4532 if (status)
4533 return status;
4535 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4536 if (qdev->port) {
4537 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4538 qdev->port_link_up = STS_PL1;
4539 qdev->port_init = STS_PI1;
4540 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4541 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4542 } else {
4543 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4544 qdev->port_link_up = STS_PL0;
4545 qdev->port_init = STS_PI0;
4546 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4547 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4549 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4550 qdev->device_id = qdev->pdev->device;
4551 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4552 qdev->nic_ops = &qla8012_nic_ops;
4553 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4554 qdev->nic_ops = &qla8000_nic_ops;
4555 return status;
4558 static void ql_release_all(struct pci_dev *pdev)
4560 struct net_device *ndev = pci_get_drvdata(pdev);
4561 struct ql_adapter *qdev = netdev_priv(ndev);
4563 if (qdev->workqueue) {
4564 destroy_workqueue(qdev->workqueue);
4565 qdev->workqueue = NULL;
4568 if (qdev->reg_base)
4569 iounmap(qdev->reg_base);
4570 if (qdev->doorbell_area)
4571 iounmap(qdev->doorbell_area);
4572 vfree(qdev->mpi_coredump);
4573 pci_release_regions(pdev);
4576 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4577 int cards_found)
4579 struct ql_adapter *qdev = netdev_priv(ndev);
4580 int err = 0;
4582 memset((void *)qdev, 0, sizeof(*qdev));
4583 err = pci_enable_device(pdev);
4584 if (err) {
4585 dev_err(&pdev->dev, "PCI device enable failed.\n");
4586 return err;
4589 qdev->ndev = ndev;
4590 qdev->pdev = pdev;
4591 pci_set_drvdata(pdev, ndev);
4593 /* Set PCIe read request size */
4594 err = pcie_set_readrq(pdev, 4096);
4595 if (err) {
4596 dev_err(&pdev->dev, "Set readrq failed.\n");
4597 goto err_out1;
4600 err = pci_request_regions(pdev, DRV_NAME);
4601 if (err) {
4602 dev_err(&pdev->dev, "PCI region request failed.\n");
4603 return err;
4606 pci_set_master(pdev);
4607 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4608 set_bit(QL_DMA64, &qdev->flags);
4609 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4610 } else {
4611 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4612 if (!err)
4613 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4616 if (err) {
4617 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4618 goto err_out2;
4621 /* Set PCIe reset type for EEH to fundamental. */
4622 pdev->needs_freset = 1;
4623 pci_save_state(pdev);
4624 qdev->reg_base =
4625 ioremap_nocache(pci_resource_start(pdev, 1),
4626 pci_resource_len(pdev, 1));
4627 if (!qdev->reg_base) {
4628 dev_err(&pdev->dev, "Register mapping failed.\n");
4629 err = -ENOMEM;
4630 goto err_out2;
4633 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4634 qdev->doorbell_area =
4635 ioremap_nocache(pci_resource_start(pdev, 3),
4636 pci_resource_len(pdev, 3));
4637 if (!qdev->doorbell_area) {
4638 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4639 err = -ENOMEM;
4640 goto err_out2;
4643 err = ql_get_board_info(qdev);
4644 if (err) {
4645 dev_err(&pdev->dev, "Register access failed.\n");
4646 err = -EIO;
4647 goto err_out2;
4649 qdev->msg_enable = netif_msg_init(debug, default_msg);
4650 spin_lock_init(&qdev->hw_lock);
4651 spin_lock_init(&qdev->stats_lock);
4653 if (qlge_mpi_coredump) {
4654 qdev->mpi_coredump =
4655 vmalloc(sizeof(struct ql_mpi_coredump));
4656 if (qdev->mpi_coredump == NULL) {
4657 err = -ENOMEM;
4658 goto err_out2;
4660 if (qlge_force_coredump)
4661 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4663 /* make sure the EEPROM is good */
4664 err = qdev->nic_ops->get_flash(qdev);
4665 if (err) {
4666 dev_err(&pdev->dev, "Invalid FLASH.\n");
4667 goto err_out2;
4670 /* Keep local copy of current mac address. */
4671 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4673 /* Set up the default ring sizes. */
4674 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4675 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4677 /* Set up the coalescing parameters. */
4678 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4679 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4680 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4681 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4684 * Set up the operating parameters.
4686 qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4687 ndev->name);
4688 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4689 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4690 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4691 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4692 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4693 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4694 init_completion(&qdev->ide_completion);
4695 mutex_init(&qdev->mpi_mutex);
4697 if (!cards_found) {
4698 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4699 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4700 DRV_NAME, DRV_VERSION);
4702 return 0;
4703 err_out2:
4704 ql_release_all(pdev);
4705 err_out1:
4706 pci_disable_device(pdev);
4707 return err;
4710 static const struct net_device_ops qlge_netdev_ops = {
4711 .ndo_open = qlge_open,
4712 .ndo_stop = qlge_close,
4713 .ndo_start_xmit = qlge_send,
4714 .ndo_change_mtu = qlge_change_mtu,
4715 .ndo_get_stats = qlge_get_stats,
4716 .ndo_set_rx_mode = qlge_set_multicast_list,
4717 .ndo_set_mac_address = qlge_set_mac_address,
4718 .ndo_validate_addr = eth_validate_addr,
4719 .ndo_tx_timeout = qlge_tx_timeout,
4720 .ndo_fix_features = qlge_fix_features,
4721 .ndo_set_features = qlge_set_features,
4722 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4723 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4726 static void ql_timer(struct timer_list *t)
4728 struct ql_adapter *qdev = from_timer(qdev, t, timer);
4729 u32 var = 0;
4731 var = ql_read32(qdev, STS);
4732 if (pci_channel_offline(qdev->pdev)) {
4733 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4734 return;
4737 mod_timer(&qdev->timer, jiffies + (5*HZ));
4740 static int qlge_probe(struct pci_dev *pdev,
4741 const struct pci_device_id *pci_entry)
4743 struct net_device *ndev = NULL;
4744 struct ql_adapter *qdev = NULL;
4745 static int cards_found = 0;
4746 int err = 0;
4748 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4749 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4750 if (!ndev)
4751 return -ENOMEM;
4753 err = ql_init_device(pdev, ndev, cards_found);
4754 if (err < 0) {
4755 free_netdev(ndev);
4756 return err;
4759 qdev = netdev_priv(ndev);
4760 SET_NETDEV_DEV(ndev, &pdev->dev);
4761 ndev->hw_features = NETIF_F_SG |
4762 NETIF_F_IP_CSUM |
4763 NETIF_F_TSO |
4764 NETIF_F_TSO_ECN |
4765 NETIF_F_HW_VLAN_CTAG_TX |
4766 NETIF_F_HW_VLAN_CTAG_RX |
4767 NETIF_F_HW_VLAN_CTAG_FILTER |
4768 NETIF_F_RXCSUM;
4769 ndev->features = ndev->hw_features;
4770 ndev->vlan_features = ndev->hw_features;
4771 /* vlan gets same features (except vlan filter) */
4772 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4773 NETIF_F_HW_VLAN_CTAG_TX |
4774 NETIF_F_HW_VLAN_CTAG_RX);
4776 if (test_bit(QL_DMA64, &qdev->flags))
4777 ndev->features |= NETIF_F_HIGHDMA;
4780 * Set up net_device structure.
4782 ndev->tx_queue_len = qdev->tx_ring_size;
4783 ndev->irq = pdev->irq;
4785 ndev->netdev_ops = &qlge_netdev_ops;
4786 ndev->ethtool_ops = &qlge_ethtool_ops;
4787 ndev->watchdog_timeo = 10 * HZ;
4789 /* MTU range: this driver only supports 1500 or 9000, so this only
4790 * filters out values above or below, and we'll rely on
4791 * qlge_change_mtu to make sure only 1500 or 9000 are allowed
4793 ndev->min_mtu = ETH_DATA_LEN;
4794 ndev->max_mtu = 9000;
4796 err = register_netdev(ndev);
4797 if (err) {
4798 dev_err(&pdev->dev, "net device registration failed.\n");
4799 ql_release_all(pdev);
4800 pci_disable_device(pdev);
4801 free_netdev(ndev);
4802 return err;
4804 /* Start up the timer to trigger EEH if
4805 * the bus goes dead
4807 timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
4808 mod_timer(&qdev->timer, jiffies + (5*HZ));
4809 ql_link_off(qdev);
4810 ql_display_dev_info(ndev);
4811 atomic_set(&qdev->lb_count, 0);
4812 cards_found++;
4813 return 0;
4816 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4818 return qlge_send(skb, ndev);
4821 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4823 return ql_clean_inbound_rx_ring(rx_ring, budget);
4826 static void qlge_remove(struct pci_dev *pdev)
4828 struct net_device *ndev = pci_get_drvdata(pdev);
4829 struct ql_adapter *qdev = netdev_priv(ndev);
4830 del_timer_sync(&qdev->timer);
4831 ql_cancel_all_work_sync(qdev);
4832 unregister_netdev(ndev);
4833 ql_release_all(pdev);
4834 pci_disable_device(pdev);
4835 free_netdev(ndev);
4838 /* Clean up resources without touching hardware. */
4839 static void ql_eeh_close(struct net_device *ndev)
4841 int i;
4842 struct ql_adapter *qdev = netdev_priv(ndev);
4844 if (netif_carrier_ok(ndev)) {
4845 netif_carrier_off(ndev);
4846 netif_stop_queue(ndev);
4849 /* Disabling the timer */
4850 ql_cancel_all_work_sync(qdev);
4852 for (i = 0; i < qdev->rss_ring_count; i++)
4853 netif_napi_del(&qdev->rx_ring[i].napi);
4855 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856 ql_tx_ring_clean(qdev);
4857 ql_free_rx_buffers(qdev);
4858 ql_release_adapter_resources(qdev);
4862 * This callback is called by the PCI subsystem whenever
4863 * a PCI bus error is detected.
4865 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866 enum pci_channel_state state)
4868 struct net_device *ndev = pci_get_drvdata(pdev);
4869 struct ql_adapter *qdev = netdev_priv(ndev);
4871 switch (state) {
4872 case pci_channel_io_normal:
4873 return PCI_ERS_RESULT_CAN_RECOVER;
4874 case pci_channel_io_frozen:
4875 netif_device_detach(ndev);
4876 del_timer_sync(&qdev->timer);
4877 if (netif_running(ndev))
4878 ql_eeh_close(ndev);
4879 pci_disable_device(pdev);
4880 return PCI_ERS_RESULT_NEED_RESET;
4881 case pci_channel_io_perm_failure:
4882 dev_err(&pdev->dev,
4883 "%s: pci_channel_io_perm_failure.\n", __func__);
4884 del_timer_sync(&qdev->timer);
4885 ql_eeh_close(ndev);
4886 set_bit(QL_EEH_FATAL, &qdev->flags);
4887 return PCI_ERS_RESULT_DISCONNECT;
4890 /* Request a slot reset. */
4891 return PCI_ERS_RESULT_NEED_RESET;
4895 * This callback is called after the PCI buss has been reset.
4896 * Basically, this tries to restart the card from scratch.
4897 * This is a shortened version of the device probe/discovery code,
4898 * it resembles the first-half of the () routine.
4900 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4902 struct net_device *ndev = pci_get_drvdata(pdev);
4903 struct ql_adapter *qdev = netdev_priv(ndev);
4905 pdev->error_state = pci_channel_io_normal;
4907 pci_restore_state(pdev);
4908 if (pci_enable_device(pdev)) {
4909 netif_err(qdev, ifup, qdev->ndev,
4910 "Cannot re-enable PCI device after reset.\n");
4911 return PCI_ERS_RESULT_DISCONNECT;
4913 pci_set_master(pdev);
4915 if (ql_adapter_reset(qdev)) {
4916 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4917 set_bit(QL_EEH_FATAL, &qdev->flags);
4918 return PCI_ERS_RESULT_DISCONNECT;
4921 return PCI_ERS_RESULT_RECOVERED;
4924 static void qlge_io_resume(struct pci_dev *pdev)
4926 struct net_device *ndev = pci_get_drvdata(pdev);
4927 struct ql_adapter *qdev = netdev_priv(ndev);
4928 int err = 0;
4930 if (netif_running(ndev)) {
4931 err = qlge_open(ndev);
4932 if (err) {
4933 netif_err(qdev, ifup, qdev->ndev,
4934 "Device initialization failed after reset.\n");
4935 return;
4937 } else {
4938 netif_err(qdev, ifup, qdev->ndev,
4939 "Device was not running prior to EEH.\n");
4941 mod_timer(&qdev->timer, jiffies + (5*HZ));
4942 netif_device_attach(ndev);
4945 static const struct pci_error_handlers qlge_err_handler = {
4946 .error_detected = qlge_io_error_detected,
4947 .slot_reset = qlge_io_slot_reset,
4948 .resume = qlge_io_resume,
4951 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4953 struct net_device *ndev = pci_get_drvdata(pdev);
4954 struct ql_adapter *qdev = netdev_priv(ndev);
4955 int err;
4957 netif_device_detach(ndev);
4958 del_timer_sync(&qdev->timer);
4960 if (netif_running(ndev)) {
4961 err = ql_adapter_down(qdev);
4962 if (!err)
4963 return err;
4966 ql_wol(qdev);
4967 err = pci_save_state(pdev);
4968 if (err)
4969 return err;
4971 pci_disable_device(pdev);
4973 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4975 return 0;
4978 #ifdef CONFIG_PM
4979 static int qlge_resume(struct pci_dev *pdev)
4981 struct net_device *ndev = pci_get_drvdata(pdev);
4982 struct ql_adapter *qdev = netdev_priv(ndev);
4983 int err;
4985 pci_set_power_state(pdev, PCI_D0);
4986 pci_restore_state(pdev);
4987 err = pci_enable_device(pdev);
4988 if (err) {
4989 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4990 return err;
4992 pci_set_master(pdev);
4994 pci_enable_wake(pdev, PCI_D3hot, 0);
4995 pci_enable_wake(pdev, PCI_D3cold, 0);
4997 if (netif_running(ndev)) {
4998 err = ql_adapter_up(qdev);
4999 if (err)
5000 return err;
5003 mod_timer(&qdev->timer, jiffies + (5*HZ));
5004 netif_device_attach(ndev);
5006 return 0;
5008 #endif /* CONFIG_PM */
5010 static void qlge_shutdown(struct pci_dev *pdev)
5012 qlge_suspend(pdev, PMSG_SUSPEND);
5015 static struct pci_driver qlge_driver = {
5016 .name = DRV_NAME,
5017 .id_table = qlge_pci_tbl,
5018 .probe = qlge_probe,
5019 .remove = qlge_remove,
5020 #ifdef CONFIG_PM
5021 .suspend = qlge_suspend,
5022 .resume = qlge_resume,
5023 #endif
5024 .shutdown = qlge_shutdown,
5025 .err_handler = &qlge_err_handler
5028 module_pci_driver(qlge_driver);