1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
27 #include <net/udp_tunnel.h>
35 #include "mcdi_pcol.h"
36 #include "workarounds.h"
38 /**************************************************************************
42 **************************************************************************
45 /* Loopback mode names (see LOOPBACK_MODE()) */
46 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
47 const char *const efx_loopback_mode_names
[] = {
48 [LOOPBACK_NONE
] = "NONE",
49 [LOOPBACK_DATA
] = "DATAPATH",
50 [LOOPBACK_GMAC
] = "GMAC",
51 [LOOPBACK_XGMII
] = "XGMII",
52 [LOOPBACK_XGXS
] = "XGXS",
53 [LOOPBACK_XAUI
] = "XAUI",
54 [LOOPBACK_GMII
] = "GMII",
55 [LOOPBACK_SGMII
] = "SGMII",
56 [LOOPBACK_XGBR
] = "XGBR",
57 [LOOPBACK_XFI
] = "XFI",
58 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
59 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
60 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
61 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
62 [LOOPBACK_GPHY
] = "GPHY",
63 [LOOPBACK_PHYXS
] = "PHYXS",
64 [LOOPBACK_PCS
] = "PCS",
65 [LOOPBACK_PMAPMD
] = "PMA/PMD",
66 [LOOPBACK_XPORT
] = "XPORT",
67 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
68 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
69 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
70 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
71 [LOOPBACK_GMII_WS
] = "GMII_WS",
72 [LOOPBACK_XFI_WS
] = "XFI_WS",
73 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
74 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
77 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
78 const char *const efx_reset_type_names
[] = {
79 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
80 [RESET_TYPE_ALL
] = "ALL",
81 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
82 [RESET_TYPE_WORLD
] = "WORLD",
83 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
84 [RESET_TYPE_DATAPATH
] = "DATAPATH",
85 [RESET_TYPE_MC_BIST
] = "MC_BIST",
86 [RESET_TYPE_DISABLE
] = "DISABLE",
87 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
88 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
89 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
90 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
91 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
92 [RESET_TYPE_MCDI_TIMEOUT
] = "MCDI_TIMEOUT (FLR)",
95 /* UDP tunnel type names */
96 static const char *const efx_udp_tunnel_type_names
[] = {
97 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN
] = "vxlan",
98 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE
] = "geneve",
101 void efx_get_udp_tunnel_type_name(u16 type
, char *buf
, size_t buflen
)
103 if (type
< ARRAY_SIZE(efx_udp_tunnel_type_names
) &&
104 efx_udp_tunnel_type_names
[type
] != NULL
)
105 snprintf(buf
, buflen
, "%s", efx_udp_tunnel_type_names
[type
]);
107 snprintf(buf
, buflen
, "type %d", type
);
110 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
111 * queued onto this work queue. This is not a per-nic work queue, because
112 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
114 static struct workqueue_struct
*reset_workqueue
;
116 /* How often and how many times to poll for a reset while waiting for a
117 * BIST that another function started to complete.
119 #define BIST_WAIT_DELAY_MS 100
120 #define BIST_WAIT_DELAY_COUNT 100
122 /**************************************************************************
124 * Configurable values
126 *************************************************************************/
129 * Use separate channels for TX and RX events
131 * Set this to 1 to use separate channels for TX and RX. It allows us
132 * to control interrupt affinity separately for TX and RX.
134 * This is only used in MSI-X interrupt mode
136 bool efx_separate_tx_channels
;
137 module_param(efx_separate_tx_channels
, bool, 0444);
138 MODULE_PARM_DESC(efx_separate_tx_channels
,
139 "Use separate channels for TX and RX");
141 /* This is the weight assigned to each of the (per-channel) virtual
144 static int napi_weight
= 64;
146 /* This is the time (in jiffies) between invocations of the hardware
148 * On Falcon-based NICs, this will:
149 * - Check the on-board hardware monitor;
150 * - Poll the link state and reconfigure the hardware as necessary.
151 * On Siena-based NICs for power systems with EEH support, this will give EEH a
154 static unsigned int efx_monitor_interval
= 1 * HZ
;
156 /* Initial interrupt moderation settings. They can be modified after
157 * module load with ethtool.
159 * The default for RX should strike a balance between increasing the
160 * round-trip latency and reducing overhead.
162 static unsigned int rx_irq_mod_usec
= 60;
164 /* Initial interrupt moderation settings. They can be modified after
165 * module load with ethtool.
167 * This default is chosen to ensure that a 10G link does not go idle
168 * while a TX queue is stopped after it has become full. A queue is
169 * restarted when it drops below half full. The time this takes (assuming
170 * worst case 3 descriptors per packet and 1024 descriptors) is
171 * 512 / 3 * 1.2 = 205 usec.
173 static unsigned int tx_irq_mod_usec
= 150;
175 /* This is the first interrupt mode to try out of:
180 static unsigned int interrupt_mode
;
182 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
183 * i.e. the number of CPUs among which we may distribute simultaneous
184 * interrupt handling.
186 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
187 * The default (0) means to assign an interrupt to each core.
189 static unsigned int rss_cpus
;
190 module_param(rss_cpus
, uint
, 0444);
191 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
193 static bool phy_flash_cfg
;
194 module_param(phy_flash_cfg
, bool, 0644);
195 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
197 static unsigned irq_adapt_low_thresh
= 8000;
198 module_param(irq_adapt_low_thresh
, uint
, 0644);
199 MODULE_PARM_DESC(irq_adapt_low_thresh
,
200 "Threshold score for reducing IRQ moderation");
202 static unsigned irq_adapt_high_thresh
= 16000;
203 module_param(irq_adapt_high_thresh
, uint
, 0644);
204 MODULE_PARM_DESC(irq_adapt_high_thresh
,
205 "Threshold score for increasing IRQ moderation");
207 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
208 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
209 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
210 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
211 module_param(debug
, uint
, 0);
212 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
214 /**************************************************************************
216 * Utility functions and prototypes
218 *************************************************************************/
220 static int efx_soft_enable_interrupts(struct efx_nic
*efx
);
221 static void efx_soft_disable_interrupts(struct efx_nic
*efx
);
222 static void efx_remove_channel(struct efx_channel
*channel
);
223 static void efx_remove_channels(struct efx_nic
*efx
);
224 static const struct efx_channel_type efx_default_channel_type
;
225 static void efx_remove_port(struct efx_nic
*efx
);
226 static void efx_init_napi_channel(struct efx_channel
*channel
);
227 static void efx_fini_napi(struct efx_nic
*efx
);
228 static void efx_fini_napi_channel(struct efx_channel
*channel
);
229 static void efx_fini_struct(struct efx_nic
*efx
);
230 static void efx_start_all(struct efx_nic
*efx
);
231 static void efx_stop_all(struct efx_nic
*efx
);
233 #define EFX_ASSERT_RESET_SERIALISED(efx) \
235 if ((efx->state == STATE_READY) || \
236 (efx->state == STATE_RECOVERY) || \
237 (efx->state == STATE_DISABLED)) \
241 static int efx_check_disabled(struct efx_nic
*efx
)
243 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
244 netif_err(efx
, drv
, efx
->net_dev
,
245 "device is disabled due to earlier errors\n");
251 /**************************************************************************
253 * Event queue processing
255 *************************************************************************/
257 /* Process channel's event queue
259 * This function is responsible for processing the event queue of a
260 * single channel. The caller must guarantee that this function will
261 * never be concurrently called more than once on the same channel,
262 * though different channels may be being processed concurrently.
264 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
266 struct efx_tx_queue
*tx_queue
;
269 if (unlikely(!channel
->enabled
))
272 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
273 tx_queue
->pkts_compl
= 0;
274 tx_queue
->bytes_compl
= 0;
277 spent
= efx_nic_process_eventq(channel
, budget
);
278 if (spent
&& efx_channel_has_rx_queue(channel
)) {
279 struct efx_rx_queue
*rx_queue
=
280 efx_channel_get_rx_queue(channel
);
282 efx_rx_flush_packet(channel
);
283 efx_fast_push_rx_descriptors(rx_queue
, true);
287 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
288 if (tx_queue
->bytes_compl
) {
289 netdev_tx_completed_queue(tx_queue
->core_txq
,
290 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
299 * NAPI guarantees serialisation of polls of the same device, which
300 * provides the guarantee required by efx_process_channel().
302 static void efx_update_irq_mod(struct efx_nic
*efx
, struct efx_channel
*channel
)
304 int step
= efx
->irq_mod_step_us
;
306 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
307 if (channel
->irq_moderation_us
> step
) {
308 channel
->irq_moderation_us
-= step
;
309 efx
->type
->push_irq_moderation(channel
);
311 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
312 if (channel
->irq_moderation_us
<
313 efx
->irq_rx_moderation_us
) {
314 channel
->irq_moderation_us
+= step
;
315 efx
->type
->push_irq_moderation(channel
);
319 channel
->irq_count
= 0;
320 channel
->irq_mod_score
= 0;
323 static int efx_poll(struct napi_struct
*napi
, int budget
)
325 struct efx_channel
*channel
=
326 container_of(napi
, struct efx_channel
, napi_str
);
327 struct efx_nic
*efx
= channel
->efx
;
330 netif_vdbg(efx
, intr
, efx
->net_dev
,
331 "channel %d NAPI poll executing on CPU %d\n",
332 channel
->channel
, raw_smp_processor_id());
334 spent
= efx_process_channel(channel
, budget
);
336 if (spent
< budget
) {
337 if (efx_channel_has_rx_queue(channel
) &&
338 efx
->irq_rx_adaptive
&&
339 unlikely(++channel
->irq_count
== 1000)) {
340 efx_update_irq_mod(efx
, channel
);
343 efx_filter_rfs_expire(channel
);
345 /* There is no race here; although napi_disable() will
346 * only wait for napi_complete(), this isn't a problem
347 * since efx_nic_eventq_read_ack() will have no effect if
348 * interrupts have already been disabled.
350 if (napi_complete_done(napi
, spent
))
351 efx_nic_eventq_read_ack(channel
);
357 /* Create event queue
358 * Event queue memory allocations are done only once. If the channel
359 * is reset, the memory buffer will be reused; this guards against
360 * errors during channel reset and also simplifies interrupt handling.
362 static int efx_probe_eventq(struct efx_channel
*channel
)
364 struct efx_nic
*efx
= channel
->efx
;
365 unsigned long entries
;
367 netif_dbg(efx
, probe
, efx
->net_dev
,
368 "chan %d create event queue\n", channel
->channel
);
370 /* Build an event queue with room for one event per tx and rx buffer,
371 * plus some extra for link state events and MCDI completions. */
372 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
373 EFX_WARN_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
374 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
376 return efx_nic_probe_eventq(channel
);
379 /* Prepare channel's event queue */
380 static int efx_init_eventq(struct efx_channel
*channel
)
382 struct efx_nic
*efx
= channel
->efx
;
385 EFX_WARN_ON_PARANOID(channel
->eventq_init
);
387 netif_dbg(efx
, drv
, efx
->net_dev
,
388 "chan %d init event queue\n", channel
->channel
);
390 rc
= efx_nic_init_eventq(channel
);
392 efx
->type
->push_irq_moderation(channel
);
393 channel
->eventq_read_ptr
= 0;
394 channel
->eventq_init
= true;
399 /* Enable event queue processing and NAPI */
400 void efx_start_eventq(struct efx_channel
*channel
)
402 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
403 "chan %d start event queue\n", channel
->channel
);
405 /* Make sure the NAPI handler sees the enabled flag set */
406 channel
->enabled
= true;
409 napi_enable(&channel
->napi_str
);
410 efx_nic_eventq_read_ack(channel
);
413 /* Disable event queue processing and NAPI */
414 void efx_stop_eventq(struct efx_channel
*channel
)
416 if (!channel
->enabled
)
419 napi_disable(&channel
->napi_str
);
420 channel
->enabled
= false;
423 static void efx_fini_eventq(struct efx_channel
*channel
)
425 if (!channel
->eventq_init
)
428 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
429 "chan %d fini event queue\n", channel
->channel
);
431 efx_nic_fini_eventq(channel
);
432 channel
->eventq_init
= false;
435 static void efx_remove_eventq(struct efx_channel
*channel
)
437 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
438 "chan %d remove event queue\n", channel
->channel
);
440 efx_nic_remove_eventq(channel
);
443 /**************************************************************************
447 *************************************************************************/
449 /* Allocate and initialise a channel structure. */
450 static struct efx_channel
*
451 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
453 struct efx_channel
*channel
;
454 struct efx_rx_queue
*rx_queue
;
455 struct efx_tx_queue
*tx_queue
;
458 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
463 channel
->channel
= i
;
464 channel
->type
= &efx_default_channel_type
;
466 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
467 tx_queue
= &channel
->tx_queue
[j
];
469 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
470 tx_queue
->channel
= channel
;
473 rx_queue
= &channel
->rx_queue
;
475 timer_setup(&rx_queue
->slow_fill
, efx_rx_slow_fill
, 0);
480 /* Allocate and initialise a channel structure, copying parameters
481 * (but not resources) from an old channel structure.
483 static struct efx_channel
*
484 efx_copy_channel(const struct efx_channel
*old_channel
)
486 struct efx_channel
*channel
;
487 struct efx_rx_queue
*rx_queue
;
488 struct efx_tx_queue
*tx_queue
;
491 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
495 *channel
= *old_channel
;
497 channel
->napi_dev
= NULL
;
498 INIT_HLIST_NODE(&channel
->napi_str
.napi_hash_node
);
499 channel
->napi_str
.napi_id
= 0;
500 channel
->napi_str
.state
= 0;
501 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
503 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
504 tx_queue
= &channel
->tx_queue
[j
];
505 if (tx_queue
->channel
)
506 tx_queue
->channel
= channel
;
507 tx_queue
->buffer
= NULL
;
508 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
511 rx_queue
= &channel
->rx_queue
;
512 rx_queue
->buffer
= NULL
;
513 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
514 timer_setup(&rx_queue
->slow_fill
, efx_rx_slow_fill
, 0);
519 static int efx_probe_channel(struct efx_channel
*channel
)
521 struct efx_tx_queue
*tx_queue
;
522 struct efx_rx_queue
*rx_queue
;
525 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
526 "creating channel %d\n", channel
->channel
);
528 rc
= channel
->type
->pre_probe(channel
);
532 rc
= efx_probe_eventq(channel
);
536 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
537 rc
= efx_probe_tx_queue(tx_queue
);
542 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
543 rc
= efx_probe_rx_queue(rx_queue
);
551 efx_remove_channel(channel
);
556 efx_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
558 struct efx_nic
*efx
= channel
->efx
;
562 number
= channel
->channel
;
563 if (efx
->tx_channel_offset
== 0) {
565 } else if (channel
->channel
< efx
->tx_channel_offset
) {
569 number
-= efx
->tx_channel_offset
;
571 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
574 static void efx_set_channel_names(struct efx_nic
*efx
)
576 struct efx_channel
*channel
;
578 efx_for_each_channel(channel
, efx
)
579 channel
->type
->get_name(channel
,
580 efx
->msi_context
[channel
->channel
].name
,
581 sizeof(efx
->msi_context
[0].name
));
584 static int efx_probe_channels(struct efx_nic
*efx
)
586 struct efx_channel
*channel
;
589 /* Restart special buffer allocation */
590 efx
->next_buffer_table
= 0;
592 /* Probe channels in reverse, so that any 'extra' channels
593 * use the start of the buffer table. This allows the traffic
594 * channels to be resized without moving them or wasting the
595 * entries before them.
597 efx_for_each_channel_rev(channel
, efx
) {
598 rc
= efx_probe_channel(channel
);
600 netif_err(efx
, probe
, efx
->net_dev
,
601 "failed to create channel %d\n",
606 efx_set_channel_names(efx
);
611 efx_remove_channels(efx
);
615 /* Channels are shutdown and reinitialised whilst the NIC is running
616 * to propagate configuration changes (mtu, checksum offload), or
617 * to clear hardware error conditions
619 static void efx_start_datapath(struct efx_nic
*efx
)
621 netdev_features_t old_features
= efx
->net_dev
->features
;
622 bool old_rx_scatter
= efx
->rx_scatter
;
623 struct efx_tx_queue
*tx_queue
;
624 struct efx_rx_queue
*rx_queue
;
625 struct efx_channel
*channel
;
628 /* Calculate the rx buffer allocation parameters required to
629 * support the current MTU, including padding for header
630 * alignment and overruns.
632 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
633 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
634 efx
->type
->rx_buffer_padding
);
635 rx_buf_len
= (sizeof(struct efx_rx_page_state
) +
636 efx
->rx_ip_align
+ efx
->rx_dma_len
);
637 if (rx_buf_len
<= PAGE_SIZE
) {
638 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
639 efx
->rx_buffer_order
= 0;
640 } else if (efx
->type
->can_rx_scatter
) {
641 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
642 BUILD_BUG_ON(sizeof(struct efx_rx_page_state
) +
643 2 * ALIGN(NET_IP_ALIGN
+ EFX_RX_USR_BUF_SIZE
,
644 EFX_RX_BUF_ALIGNMENT
) >
646 efx
->rx_scatter
= true;
647 efx
->rx_dma_len
= EFX_RX_USR_BUF_SIZE
;
648 efx
->rx_buffer_order
= 0;
650 efx
->rx_scatter
= false;
651 efx
->rx_buffer_order
= get_order(rx_buf_len
);
654 efx_rx_config_page_split(efx
);
655 if (efx
->rx_buffer_order
)
656 netif_dbg(efx
, drv
, efx
->net_dev
,
657 "RX buf len=%u; page order=%u batch=%u\n",
658 efx
->rx_dma_len
, efx
->rx_buffer_order
,
659 efx
->rx_pages_per_batch
);
661 netif_dbg(efx
, drv
, efx
->net_dev
,
662 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
663 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
664 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
666 /* Restore previously fixed features in hw_features and remove
667 * features which are fixed now
669 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
670 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
671 efx
->net_dev
->features
|= efx
->fixed_features
;
672 if (efx
->net_dev
->features
!= old_features
)
673 netdev_features_change(efx
->net_dev
);
675 /* RX filters may also have scatter-enabled flags */
676 if (efx
->rx_scatter
!= old_rx_scatter
)
677 efx
->type
->filter_update_rx_scatter(efx
);
679 /* We must keep at least one descriptor in a TX ring empty.
680 * We could avoid this when the queue size does not exactly
681 * match the hardware ring size, but it's not that important.
682 * Therefore we stop the queue when one more skb might fill
683 * the ring completely. We wake it when half way back to
686 efx
->txq_stop_thresh
= efx
->txq_entries
- efx_tx_max_skb_descs(efx
);
687 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
689 /* Initialise the channels */
690 efx_for_each_channel(channel
, efx
) {
691 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
692 efx_init_tx_queue(tx_queue
);
693 atomic_inc(&efx
->active_queues
);
696 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
697 efx_init_rx_queue(rx_queue
);
698 atomic_inc(&efx
->active_queues
);
699 efx_stop_eventq(channel
);
700 efx_fast_push_rx_descriptors(rx_queue
, false);
701 efx_start_eventq(channel
);
704 WARN_ON(channel
->rx_pkt_n_frags
);
707 efx_ptp_start_datapath(efx
);
709 if (netif_device_present(efx
->net_dev
))
710 netif_tx_wake_all_queues(efx
->net_dev
);
713 static void efx_stop_datapath(struct efx_nic
*efx
)
715 struct efx_channel
*channel
;
716 struct efx_tx_queue
*tx_queue
;
717 struct efx_rx_queue
*rx_queue
;
720 EFX_ASSERT_RESET_SERIALISED(efx
);
721 BUG_ON(efx
->port_enabled
);
723 efx_ptp_stop_datapath(efx
);
726 efx_for_each_channel(channel
, efx
) {
727 efx_for_each_channel_rx_queue(rx_queue
, channel
)
728 rx_queue
->refill_enabled
= false;
731 efx_for_each_channel(channel
, efx
) {
732 /* RX packet processing is pipelined, so wait for the
733 * NAPI handler to complete. At least event queue 0
734 * might be kept active by non-data events, so don't
735 * use napi_synchronize() but actually disable NAPI
738 if (efx_channel_has_rx_queue(channel
)) {
739 efx_stop_eventq(channel
);
740 efx_start_eventq(channel
);
744 rc
= efx
->type
->fini_dmaq(efx
);
746 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
748 netif_dbg(efx
, drv
, efx
->net_dev
,
749 "successfully flushed all queues\n");
752 efx_for_each_channel(channel
, efx
) {
753 efx_for_each_channel_rx_queue(rx_queue
, channel
)
754 efx_fini_rx_queue(rx_queue
);
755 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
756 efx_fini_tx_queue(tx_queue
);
760 static void efx_remove_channel(struct efx_channel
*channel
)
762 struct efx_tx_queue
*tx_queue
;
763 struct efx_rx_queue
*rx_queue
;
765 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
766 "destroy chan %d\n", channel
->channel
);
768 efx_for_each_channel_rx_queue(rx_queue
, channel
)
769 efx_remove_rx_queue(rx_queue
);
770 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
771 efx_remove_tx_queue(tx_queue
);
772 efx_remove_eventq(channel
);
773 channel
->type
->post_remove(channel
);
776 static void efx_remove_channels(struct efx_nic
*efx
)
778 struct efx_channel
*channel
;
780 efx_for_each_channel(channel
, efx
)
781 efx_remove_channel(channel
);
785 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
787 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
788 u32 old_rxq_entries
, old_txq_entries
;
789 unsigned i
, next_buffer_table
= 0;
792 rc
= efx_check_disabled(efx
);
796 /* Not all channels should be reallocated. We must avoid
797 * reallocating their buffer table entries.
799 efx_for_each_channel(channel
, efx
) {
800 struct efx_rx_queue
*rx_queue
;
801 struct efx_tx_queue
*tx_queue
;
803 if (channel
->type
->copy
)
805 next_buffer_table
= max(next_buffer_table
,
806 channel
->eventq
.index
+
807 channel
->eventq
.entries
);
808 efx_for_each_channel_rx_queue(rx_queue
, channel
)
809 next_buffer_table
= max(next_buffer_table
,
810 rx_queue
->rxd
.index
+
811 rx_queue
->rxd
.entries
);
812 efx_for_each_channel_tx_queue(tx_queue
, channel
)
813 next_buffer_table
= max(next_buffer_table
,
814 tx_queue
->txd
.index
+
815 tx_queue
->txd
.entries
);
818 efx_device_detach_sync(efx
);
820 efx_soft_disable_interrupts(efx
);
822 /* Clone channels (where possible) */
823 memset(other_channel
, 0, sizeof(other_channel
));
824 for (i
= 0; i
< efx
->n_channels
; i
++) {
825 channel
= efx
->channel
[i
];
826 if (channel
->type
->copy
)
827 channel
= channel
->type
->copy(channel
);
832 other_channel
[i
] = channel
;
835 /* Swap entry counts and channel pointers */
836 old_rxq_entries
= efx
->rxq_entries
;
837 old_txq_entries
= efx
->txq_entries
;
838 efx
->rxq_entries
= rxq_entries
;
839 efx
->txq_entries
= txq_entries
;
840 for (i
= 0; i
< efx
->n_channels
; i
++) {
841 channel
= efx
->channel
[i
];
842 efx
->channel
[i
] = other_channel
[i
];
843 other_channel
[i
] = channel
;
846 /* Restart buffer table allocation */
847 efx
->next_buffer_table
= next_buffer_table
;
849 for (i
= 0; i
< efx
->n_channels
; i
++) {
850 channel
= efx
->channel
[i
];
851 if (!channel
->type
->copy
)
853 rc
= efx_probe_channel(channel
);
856 efx_init_napi_channel(efx
->channel
[i
]);
860 /* Destroy unused channel structures */
861 for (i
= 0; i
< efx
->n_channels
; i
++) {
862 channel
= other_channel
[i
];
863 if (channel
&& channel
->type
->copy
) {
864 efx_fini_napi_channel(channel
);
865 efx_remove_channel(channel
);
870 rc2
= efx_soft_enable_interrupts(efx
);
873 netif_err(efx
, drv
, efx
->net_dev
,
874 "unable to restart interrupts on channel reallocation\n");
875 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
878 efx_device_attach_if_not_resetting(efx
);
884 efx
->rxq_entries
= old_rxq_entries
;
885 efx
->txq_entries
= old_txq_entries
;
886 for (i
= 0; i
< efx
->n_channels
; i
++) {
887 channel
= efx
->channel
[i
];
888 efx
->channel
[i
] = other_channel
[i
];
889 other_channel
[i
] = channel
;
894 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
896 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
899 static bool efx_default_channel_want_txqs(struct efx_channel
*channel
)
901 return channel
->channel
- channel
->efx
->tx_channel_offset
<
902 channel
->efx
->n_tx_channels
;
905 static const struct efx_channel_type efx_default_channel_type
= {
906 .pre_probe
= efx_channel_dummy_op_int
,
907 .post_remove
= efx_channel_dummy_op_void
,
908 .get_name
= efx_get_channel_name
,
909 .copy
= efx_copy_channel
,
910 .want_txqs
= efx_default_channel_want_txqs
,
911 .keep_eventq
= false,
915 int efx_channel_dummy_op_int(struct efx_channel
*channel
)
920 void efx_channel_dummy_op_void(struct efx_channel
*channel
)
924 /**************************************************************************
928 **************************************************************************/
930 /* This ensures that the kernel is kept informed (via
931 * netif_carrier_on/off) of the link status, and also maintains the
932 * link status's stop on the port's TX queue.
934 void efx_link_status_changed(struct efx_nic
*efx
)
936 struct efx_link_state
*link_state
= &efx
->link_state
;
938 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
939 * that no events are triggered between unregister_netdev() and the
940 * driver unloading. A more general condition is that NETDEV_CHANGE
941 * can only be generated between NETDEV_UP and NETDEV_DOWN */
942 if (!netif_running(efx
->net_dev
))
945 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
946 efx
->n_link_state_changes
++;
949 netif_carrier_on(efx
->net_dev
);
951 netif_carrier_off(efx
->net_dev
);
954 /* Status message for kernel log */
956 netif_info(efx
, link
, efx
->net_dev
,
957 "link up at %uMbps %s-duplex (MTU %d)\n",
958 link_state
->speed
, link_state
->fd
? "full" : "half",
961 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
964 void efx_link_set_advertising(struct efx_nic
*efx
,
965 const unsigned long *advertising
)
967 memcpy(efx
->link_advertising
, advertising
,
968 sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK()));
970 efx
->link_advertising
[0] |= ADVERTISED_Autoneg
;
971 if (advertising
[0] & ADVERTISED_Pause
)
972 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
974 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
975 if (advertising
[0] & ADVERTISED_Asym_Pause
)
976 efx
->wanted_fc
^= EFX_FC_TX
;
979 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
980 * force the Autoneg bit on.
982 void efx_link_clear_advertising(struct efx_nic
*efx
)
984 bitmap_zero(efx
->link_advertising
, __ETHTOOL_LINK_MODE_MASK_NBITS
);
985 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
988 void efx_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
990 efx
->wanted_fc
= wanted_fc
;
991 if (efx
->link_advertising
[0]) {
992 if (wanted_fc
& EFX_FC_RX
)
993 efx
->link_advertising
[0] |= (ADVERTISED_Pause
|
994 ADVERTISED_Asym_Pause
);
996 efx
->link_advertising
[0] &= ~(ADVERTISED_Pause
|
997 ADVERTISED_Asym_Pause
);
998 if (wanted_fc
& EFX_FC_TX
)
999 efx
->link_advertising
[0] ^= ADVERTISED_Asym_Pause
;
1003 static void efx_fini_port(struct efx_nic
*efx
);
1005 /* We assume that efx->type->reconfigure_mac will always try to sync RX
1006 * filters and therefore needs to read-lock the filter table against freeing
1008 void efx_mac_reconfigure(struct efx_nic
*efx
)
1010 down_read(&efx
->filter_sem
);
1011 efx
->type
->reconfigure_mac(efx
);
1012 up_read(&efx
->filter_sem
);
1015 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
1016 * the MAC appropriately. All other PHY configuration changes are pushed
1017 * through phy_op->set_settings(), and pushed asynchronously to the MAC
1018 * through efx_monitor().
1020 * Callers must hold the mac_lock
1022 int __efx_reconfigure_port(struct efx_nic
*efx
)
1024 enum efx_phy_mode phy_mode
;
1027 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
1029 /* Disable PHY transmit in mac level loopbacks */
1030 phy_mode
= efx
->phy_mode
;
1031 if (LOOPBACK_INTERNAL(efx
))
1032 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
1034 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
1036 rc
= efx
->type
->reconfigure_port(efx
);
1039 efx
->phy_mode
= phy_mode
;
1044 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1046 int efx_reconfigure_port(struct efx_nic
*efx
)
1050 EFX_ASSERT_RESET_SERIALISED(efx
);
1052 mutex_lock(&efx
->mac_lock
);
1053 rc
= __efx_reconfigure_port(efx
);
1054 mutex_unlock(&efx
->mac_lock
);
1059 /* Asynchronous work item for changing MAC promiscuity and multicast
1060 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1062 static void efx_mac_work(struct work_struct
*data
)
1064 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
1066 mutex_lock(&efx
->mac_lock
);
1067 if (efx
->port_enabled
)
1068 efx_mac_reconfigure(efx
);
1069 mutex_unlock(&efx
->mac_lock
);
1072 static int efx_probe_port(struct efx_nic
*efx
)
1076 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1079 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1081 /* Connect up MAC/PHY operations table */
1082 rc
= efx
->type
->probe_port(efx
);
1086 /* Initialise MAC address to permanent address */
1087 ether_addr_copy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
);
1092 static int efx_init_port(struct efx_nic
*efx
)
1096 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1098 mutex_lock(&efx
->mac_lock
);
1100 rc
= efx
->phy_op
->init(efx
);
1104 efx
->port_initialized
= true;
1106 /* Reconfigure the MAC before creating dma queues (required for
1107 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1108 efx_mac_reconfigure(efx
);
1110 /* Ensure the PHY advertises the correct flow control settings */
1111 rc
= efx
->phy_op
->reconfigure(efx
);
1112 if (rc
&& rc
!= -EPERM
)
1115 mutex_unlock(&efx
->mac_lock
);
1119 efx
->phy_op
->fini(efx
);
1121 mutex_unlock(&efx
->mac_lock
);
1125 static void efx_start_port(struct efx_nic
*efx
)
1127 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1128 BUG_ON(efx
->port_enabled
);
1130 mutex_lock(&efx
->mac_lock
);
1131 efx
->port_enabled
= true;
1133 /* Ensure MAC ingress/egress is enabled */
1134 efx_mac_reconfigure(efx
);
1136 mutex_unlock(&efx
->mac_lock
);
1139 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1140 * and the async self-test, wait for them to finish and prevent them
1141 * being scheduled again. This doesn't cover online resets, which
1142 * should only be cancelled when removing the device.
1144 static void efx_stop_port(struct efx_nic
*efx
)
1146 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1148 EFX_ASSERT_RESET_SERIALISED(efx
);
1150 mutex_lock(&efx
->mac_lock
);
1151 efx
->port_enabled
= false;
1152 mutex_unlock(&efx
->mac_lock
);
1154 /* Serialise against efx_set_multicast_list() */
1155 netif_addr_lock_bh(efx
->net_dev
);
1156 netif_addr_unlock_bh(efx
->net_dev
);
1158 cancel_delayed_work_sync(&efx
->monitor_work
);
1159 efx_selftest_async_cancel(efx
);
1160 cancel_work_sync(&efx
->mac_work
);
1163 static void efx_fini_port(struct efx_nic
*efx
)
1165 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1167 if (!efx
->port_initialized
)
1170 efx
->phy_op
->fini(efx
);
1171 efx
->port_initialized
= false;
1173 efx
->link_state
.up
= false;
1174 efx_link_status_changed(efx
);
1177 static void efx_remove_port(struct efx_nic
*efx
)
1179 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1181 efx
->type
->remove_port(efx
);
1184 /**************************************************************************
1188 **************************************************************************/
1190 static LIST_HEAD(efx_primary_list
);
1191 static LIST_HEAD(efx_unassociated_list
);
1193 static bool efx_same_controller(struct efx_nic
*left
, struct efx_nic
*right
)
1195 return left
->type
== right
->type
&&
1196 left
->vpd_sn
&& right
->vpd_sn
&&
1197 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1200 static void efx_associate(struct efx_nic
*efx
)
1202 struct efx_nic
*other
, *next
;
1204 if (efx
->primary
== efx
) {
1205 /* Adding primary function; look for secondaries */
1207 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1208 list_add_tail(&efx
->node
, &efx_primary_list
);
1210 list_for_each_entry_safe(other
, next
, &efx_unassociated_list
,
1212 if (efx_same_controller(efx
, other
)) {
1213 list_del(&other
->node
);
1214 netif_dbg(other
, probe
, other
->net_dev
,
1215 "moving to secondary list of %s %s\n",
1216 pci_name(efx
->pci_dev
),
1217 efx
->net_dev
->name
);
1218 list_add_tail(&other
->node
,
1219 &efx
->secondary_list
);
1220 other
->primary
= efx
;
1224 /* Adding secondary function; look for primary */
1226 list_for_each_entry(other
, &efx_primary_list
, node
) {
1227 if (efx_same_controller(efx
, other
)) {
1228 netif_dbg(efx
, probe
, efx
->net_dev
,
1229 "adding to secondary list of %s %s\n",
1230 pci_name(other
->pci_dev
),
1231 other
->net_dev
->name
);
1232 list_add_tail(&efx
->node
,
1233 &other
->secondary_list
);
1234 efx
->primary
= other
;
1239 netif_dbg(efx
, probe
, efx
->net_dev
,
1240 "adding to unassociated list\n");
1241 list_add_tail(&efx
->node
, &efx_unassociated_list
);
1245 static void efx_dissociate(struct efx_nic
*efx
)
1247 struct efx_nic
*other
, *next
;
1249 list_del(&efx
->node
);
1250 efx
->primary
= NULL
;
1252 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1253 list_del(&other
->node
);
1254 netif_dbg(other
, probe
, other
->net_dev
,
1255 "moving to unassociated list\n");
1256 list_add_tail(&other
->node
, &efx_unassociated_list
);
1257 other
->primary
= NULL
;
1261 /* This configures the PCI device to enable I/O and DMA. */
1262 static int efx_init_io(struct efx_nic
*efx
)
1264 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1265 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1266 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1269 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1271 bar
= efx
->type
->mem_bar(efx
);
1273 rc
= pci_enable_device(pci_dev
);
1275 netif_err(efx
, probe
, efx
->net_dev
,
1276 "failed to enable PCI device\n");
1280 pci_set_master(pci_dev
);
1282 /* Set the PCI DMA mask. Try all possibilities from our
1283 * genuine mask down to 32 bits, because some architectures
1284 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1285 * masks event though they reject 46 bit masks.
1287 while (dma_mask
> 0x7fffffffUL
) {
1288 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1294 netif_err(efx
, probe
, efx
->net_dev
,
1295 "could not find a suitable DMA mask\n");
1298 netif_dbg(efx
, probe
, efx
->net_dev
,
1299 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1301 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1302 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1304 netif_err(efx
, probe
, efx
->net_dev
,
1305 "request for memory BAR failed\n");
1309 efx
->membase
= ioremap_nocache(efx
->membase_phys
, mem_map_size
);
1310 if (!efx
->membase
) {
1311 netif_err(efx
, probe
, efx
->net_dev
,
1312 "could not map memory BAR at %llx+%x\n",
1313 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1317 netif_dbg(efx
, probe
, efx
->net_dev
,
1318 "memory BAR at %llx+%x (virtual %p)\n",
1319 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1325 pci_release_region(efx
->pci_dev
, bar
);
1327 efx
->membase_phys
= 0;
1329 pci_disable_device(efx
->pci_dev
);
1334 static void efx_fini_io(struct efx_nic
*efx
)
1338 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1341 iounmap(efx
->membase
);
1342 efx
->membase
= NULL
;
1345 if (efx
->membase_phys
) {
1346 bar
= efx
->type
->mem_bar(efx
);
1347 pci_release_region(efx
->pci_dev
, bar
);
1348 efx
->membase_phys
= 0;
1351 /* Don't disable bus-mastering if VFs are assigned */
1352 if (!pci_vfs_assigned(efx
->pci_dev
))
1353 pci_disable_device(efx
->pci_dev
);
1356 void efx_set_default_rx_indir_table(struct efx_nic
*efx
)
1360 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1361 efx
->rx_indir_table
[i
] =
1362 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1365 static unsigned int efx_wanted_parallelism(struct efx_nic
*efx
)
1367 cpumask_var_t thread_mask
;
1374 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1375 netif_warn(efx
, probe
, efx
->net_dev
,
1376 "RSS disabled due to allocation failure\n");
1381 for_each_online_cpu(cpu
) {
1382 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1384 cpumask_or(thread_mask
, thread_mask
,
1385 topology_sibling_cpumask(cpu
));
1389 free_cpumask_var(thread_mask
);
1392 if (count
> EFX_MAX_RX_QUEUES
) {
1393 netif_cond_dbg(efx
, probe
, efx
->net_dev
, !rss_cpus
, warn
,
1394 "Reducing number of rx queues from %u to %u.\n",
1395 count
, EFX_MAX_RX_QUEUES
);
1396 count
= EFX_MAX_RX_QUEUES
;
1399 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1400 * table entries that are inaccessible to VFs
1402 #ifdef CONFIG_SFC_SRIOV
1403 if (efx
->type
->sriov_wanted
) {
1404 if (efx
->type
->sriov_wanted(efx
) && efx_vf_size(efx
) > 1 &&
1405 count
> efx_vf_size(efx
)) {
1406 netif_warn(efx
, probe
, efx
->net_dev
,
1407 "Reducing number of RSS channels from %u to %u for "
1408 "VF support. Increase vf-msix-limit to use more "
1409 "channels on the PF.\n",
1410 count
, efx_vf_size(efx
));
1411 count
= efx_vf_size(efx
);
1419 /* Probe the number and type of interrupts we are able to obtain, and
1420 * the resulting numbers of channels and RX queues.
1422 static int efx_probe_interrupts(struct efx_nic
*efx
)
1424 unsigned int extra_channels
= 0;
1428 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++)
1429 if (efx
->extra_channel_type
[i
])
1432 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1433 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1434 unsigned int n_channels
;
1436 n_channels
= efx_wanted_parallelism(efx
);
1437 if (efx_separate_tx_channels
)
1439 n_channels
+= extra_channels
;
1440 n_channels
= min(n_channels
, efx
->max_channels
);
1442 for (i
= 0; i
< n_channels
; i
++)
1443 xentries
[i
].entry
= i
;
1444 rc
= pci_enable_msix_range(efx
->pci_dev
,
1445 xentries
, 1, n_channels
);
1447 /* Fall back to single channel MSI */
1448 netif_err(efx
, drv
, efx
->net_dev
,
1449 "could not enable MSI-X\n");
1450 if (efx
->type
->min_interrupt_mode
>= EFX_INT_MODE_MSI
)
1451 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1454 } else if (rc
< n_channels
) {
1455 netif_err(efx
, drv
, efx
->net_dev
,
1456 "WARNING: Insufficient MSI-X vectors"
1457 " available (%d < %u).\n", rc
, n_channels
);
1458 netif_err(efx
, drv
, efx
->net_dev
,
1459 "WARNING: Performance may be reduced.\n");
1464 efx
->n_channels
= n_channels
;
1465 if (n_channels
> extra_channels
)
1466 n_channels
-= extra_channels
;
1467 if (efx_separate_tx_channels
) {
1468 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1470 efx
->max_tx_channels
);
1471 efx
->n_rx_channels
= max(n_channels
-
1475 efx
->n_tx_channels
= min(n_channels
,
1476 efx
->max_tx_channels
);
1477 efx
->n_rx_channels
= n_channels
;
1479 for (i
= 0; i
< efx
->n_channels
; i
++)
1480 efx_get_channel(efx
, i
)->irq
=
1485 /* Try single interrupt MSI */
1486 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1487 efx
->n_channels
= 1;
1488 efx
->n_rx_channels
= 1;
1489 efx
->n_tx_channels
= 1;
1490 rc
= pci_enable_msi(efx
->pci_dev
);
1492 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1494 netif_err(efx
, drv
, efx
->net_dev
,
1495 "could not enable MSI\n");
1496 if (efx
->type
->min_interrupt_mode
>= EFX_INT_MODE_LEGACY
)
1497 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1503 /* Assume legacy interrupts */
1504 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1505 efx
->n_channels
= 1 + (efx_separate_tx_channels
? 1 : 0);
1506 efx
->n_rx_channels
= 1;
1507 efx
->n_tx_channels
= 1;
1508 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1511 /* Assign extra channels if possible */
1512 efx
->n_extra_tx_channels
= 0;
1513 j
= efx
->n_channels
;
1514 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++) {
1515 if (!efx
->extra_channel_type
[i
])
1517 if (efx
->interrupt_mode
!= EFX_INT_MODE_MSIX
||
1518 efx
->n_channels
<= extra_channels
) {
1519 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1522 efx_get_channel(efx
, j
)->type
=
1523 efx
->extra_channel_type
[i
];
1524 if (efx_channel_has_tx_queues(efx_get_channel(efx
, j
)))
1525 efx
->n_extra_tx_channels
++;
1529 /* RSS might be usable on VFs even if it is disabled on the PF */
1530 #ifdef CONFIG_SFC_SRIOV
1531 if (efx
->type
->sriov_wanted
) {
1532 efx
->rss_spread
= ((efx
->n_rx_channels
> 1 ||
1533 !efx
->type
->sriov_wanted(efx
)) ?
1534 efx
->n_rx_channels
: efx_vf_size(efx
));
1538 efx
->rss_spread
= efx
->n_rx_channels
;
1543 static int efx_soft_enable_interrupts(struct efx_nic
*efx
)
1545 struct efx_channel
*channel
, *end_channel
;
1548 BUG_ON(efx
->state
== STATE_DISABLED
);
1550 efx
->irq_soft_enabled
= true;
1553 efx_for_each_channel(channel
, efx
) {
1554 if (!channel
->type
->keep_eventq
) {
1555 rc
= efx_init_eventq(channel
);
1559 efx_start_eventq(channel
);
1562 efx_mcdi_mode_event(efx
);
1566 end_channel
= channel
;
1567 efx_for_each_channel(channel
, efx
) {
1568 if (channel
== end_channel
)
1570 efx_stop_eventq(channel
);
1571 if (!channel
->type
->keep_eventq
)
1572 efx_fini_eventq(channel
);
1578 static void efx_soft_disable_interrupts(struct efx_nic
*efx
)
1580 struct efx_channel
*channel
;
1582 if (efx
->state
== STATE_DISABLED
)
1585 efx_mcdi_mode_poll(efx
);
1587 efx
->irq_soft_enabled
= false;
1590 if (efx
->legacy_irq
)
1591 synchronize_irq(efx
->legacy_irq
);
1593 efx_for_each_channel(channel
, efx
) {
1595 synchronize_irq(channel
->irq
);
1597 efx_stop_eventq(channel
);
1598 if (!channel
->type
->keep_eventq
)
1599 efx_fini_eventq(channel
);
1602 /* Flush the asynchronous MCDI request queue */
1603 efx_mcdi_flush_async(efx
);
1606 static int efx_enable_interrupts(struct efx_nic
*efx
)
1608 struct efx_channel
*channel
, *end_channel
;
1611 BUG_ON(efx
->state
== STATE_DISABLED
);
1613 if (efx
->eeh_disabled_legacy_irq
) {
1614 enable_irq(efx
->legacy_irq
);
1615 efx
->eeh_disabled_legacy_irq
= false;
1618 efx
->type
->irq_enable_master(efx
);
1620 efx_for_each_channel(channel
, efx
) {
1621 if (channel
->type
->keep_eventq
) {
1622 rc
= efx_init_eventq(channel
);
1628 rc
= efx_soft_enable_interrupts(efx
);
1635 end_channel
= channel
;
1636 efx_for_each_channel(channel
, efx
) {
1637 if (channel
== end_channel
)
1639 if (channel
->type
->keep_eventq
)
1640 efx_fini_eventq(channel
);
1643 efx
->type
->irq_disable_non_ev(efx
);
1648 static void efx_disable_interrupts(struct efx_nic
*efx
)
1650 struct efx_channel
*channel
;
1652 efx_soft_disable_interrupts(efx
);
1654 efx_for_each_channel(channel
, efx
) {
1655 if (channel
->type
->keep_eventq
)
1656 efx_fini_eventq(channel
);
1659 efx
->type
->irq_disable_non_ev(efx
);
1662 static void efx_remove_interrupts(struct efx_nic
*efx
)
1664 struct efx_channel
*channel
;
1666 /* Remove MSI/MSI-X interrupts */
1667 efx_for_each_channel(channel
, efx
)
1669 pci_disable_msi(efx
->pci_dev
);
1670 pci_disable_msix(efx
->pci_dev
);
1672 /* Remove legacy interrupt */
1673 efx
->legacy_irq
= 0;
1676 static void efx_set_channels(struct efx_nic
*efx
)
1678 struct efx_channel
*channel
;
1679 struct efx_tx_queue
*tx_queue
;
1681 efx
->tx_channel_offset
=
1682 efx_separate_tx_channels
?
1683 efx
->n_channels
- efx
->n_tx_channels
: 0;
1685 /* We need to mark which channels really have RX and TX
1686 * queues, and adjust the TX queue numbers if we have separate
1687 * RX-only and TX-only channels.
1689 efx_for_each_channel(channel
, efx
) {
1690 if (channel
->channel
< efx
->n_rx_channels
)
1691 channel
->rx_queue
.core_index
= channel
->channel
;
1693 channel
->rx_queue
.core_index
= -1;
1695 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1696 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1701 static int efx_probe_nic(struct efx_nic
*efx
)
1705 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1707 /* Carry out hardware-type specific initialisation */
1708 rc
= efx
->type
->probe(efx
);
1713 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1714 netif_err(efx
, drv
, efx
->net_dev
,
1715 "Insufficient resources to allocate"
1721 /* Determine the number of channels and queues by trying
1722 * to hook in MSI-X interrupts.
1724 rc
= efx_probe_interrupts(efx
);
1728 efx_set_channels(efx
);
1730 /* dimension_resources can fail with EAGAIN */
1731 rc
= efx
->type
->dimension_resources(efx
);
1732 if (rc
!= 0 && rc
!= -EAGAIN
)
1736 /* try again with new max_channels */
1737 efx_remove_interrupts(efx
);
1739 } while (rc
== -EAGAIN
);
1741 if (efx
->n_channels
> 1)
1742 netdev_rss_key_fill(&efx
->rx_hash_key
,
1743 sizeof(efx
->rx_hash_key
));
1744 efx_set_default_rx_indir_table(efx
);
1746 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1747 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1749 /* Initialise the interrupt moderation settings */
1750 efx
->irq_mod_step_us
= DIV_ROUND_UP(efx
->timer_quantum_ns
, 1000);
1751 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1757 efx_remove_interrupts(efx
);
1759 efx
->type
->remove(efx
);
1763 static void efx_remove_nic(struct efx_nic
*efx
)
1765 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1767 efx_remove_interrupts(efx
);
1768 efx
->type
->remove(efx
);
1771 static int efx_probe_filters(struct efx_nic
*efx
)
1775 spin_lock_init(&efx
->filter_lock
);
1776 init_rwsem(&efx
->filter_sem
);
1777 mutex_lock(&efx
->mac_lock
);
1778 down_write(&efx
->filter_sem
);
1779 rc
= efx
->type
->filter_table_probe(efx
);
1783 #ifdef CONFIG_RFS_ACCEL
1784 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1785 struct efx_channel
*channel
;
1788 efx_for_each_channel(channel
, efx
) {
1789 channel
->rps_flow_id
=
1790 kcalloc(efx
->type
->max_rx_ip_filters
,
1791 sizeof(*channel
->rps_flow_id
),
1793 if (!channel
->rps_flow_id
)
1797 i
< efx
->type
->max_rx_ip_filters
;
1799 channel
->rps_flow_id
[i
] =
1800 RPS_FLOW_ID_INVALID
;
1804 efx_for_each_channel(channel
, efx
)
1805 kfree(channel
->rps_flow_id
);
1806 efx
->type
->filter_table_remove(efx
);
1811 efx
->rps_expire_index
= efx
->rps_expire_channel
= 0;
1815 up_write(&efx
->filter_sem
);
1816 mutex_unlock(&efx
->mac_lock
);
1820 static void efx_remove_filters(struct efx_nic
*efx
)
1822 #ifdef CONFIG_RFS_ACCEL
1823 struct efx_channel
*channel
;
1825 efx_for_each_channel(channel
, efx
)
1826 kfree(channel
->rps_flow_id
);
1828 down_write(&efx
->filter_sem
);
1829 efx
->type
->filter_table_remove(efx
);
1830 up_write(&efx
->filter_sem
);
1833 static void efx_restore_filters(struct efx_nic
*efx
)
1835 down_read(&efx
->filter_sem
);
1836 efx
->type
->filter_table_restore(efx
);
1837 up_read(&efx
->filter_sem
);
1840 /**************************************************************************
1842 * NIC startup/shutdown
1844 *************************************************************************/
1846 static int efx_probe_all(struct efx_nic
*efx
)
1850 rc
= efx_probe_nic(efx
);
1852 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1856 rc
= efx_probe_port(efx
);
1858 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1862 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_RXQ_MIN_ENT
);
1863 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_TXQ_MIN_ENT(efx
))) {
1867 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1869 #ifdef CONFIG_SFC_SRIOV
1870 rc
= efx
->type
->vswitching_probe(efx
);
1871 if (rc
) /* not fatal; the PF will still work fine */
1872 netif_warn(efx
, probe
, efx
->net_dev
,
1873 "failed to setup vswitching rc=%d;"
1874 " VFs may not function\n", rc
);
1877 rc
= efx_probe_filters(efx
);
1879 netif_err(efx
, probe
, efx
->net_dev
,
1880 "failed to create filter tables\n");
1884 rc
= efx_probe_channels(efx
);
1891 efx_remove_filters(efx
);
1893 #ifdef CONFIG_SFC_SRIOV
1894 efx
->type
->vswitching_remove(efx
);
1897 efx_remove_port(efx
);
1899 efx_remove_nic(efx
);
1904 /* If the interface is supposed to be running but is not, start
1905 * the hardware and software data path, regular activity for the port
1906 * (MAC statistics, link polling, etc.) and schedule the port to be
1907 * reconfigured. Interrupts must already be enabled. This function
1908 * is safe to call multiple times, so long as the NIC is not disabled.
1909 * Requires the RTNL lock.
1911 static void efx_start_all(struct efx_nic
*efx
)
1913 EFX_ASSERT_RESET_SERIALISED(efx
);
1914 BUG_ON(efx
->state
== STATE_DISABLED
);
1916 /* Check that it is appropriate to restart the interface. All
1917 * of these flags are safe to read under just the rtnl lock */
1918 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1922 efx_start_port(efx
);
1923 efx_start_datapath(efx
);
1925 /* Start the hardware monitor if there is one */
1926 if (efx
->type
->monitor
!= NULL
)
1927 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1928 efx_monitor_interval
);
1930 /* Link state detection is normally event-driven; we have
1931 * to poll now because we could have missed a change
1933 mutex_lock(&efx
->mac_lock
);
1934 if (efx
->phy_op
->poll(efx
))
1935 efx_link_status_changed(efx
);
1936 mutex_unlock(&efx
->mac_lock
);
1938 efx
->type
->start_stats(efx
);
1939 efx
->type
->pull_stats(efx
);
1940 spin_lock_bh(&efx
->stats_lock
);
1941 efx
->type
->update_stats(efx
, NULL
, NULL
);
1942 spin_unlock_bh(&efx
->stats_lock
);
1945 /* Quiesce the hardware and software data path, and regular activity
1946 * for the port without bringing the link down. Safe to call multiple
1947 * times with the NIC in almost any state, but interrupts should be
1948 * enabled. Requires the RTNL lock.
1950 static void efx_stop_all(struct efx_nic
*efx
)
1952 EFX_ASSERT_RESET_SERIALISED(efx
);
1954 /* port_enabled can be read safely under the rtnl lock */
1955 if (!efx
->port_enabled
)
1958 /* update stats before we go down so we can accurately count
1961 efx
->type
->pull_stats(efx
);
1962 spin_lock_bh(&efx
->stats_lock
);
1963 efx
->type
->update_stats(efx
, NULL
, NULL
);
1964 spin_unlock_bh(&efx
->stats_lock
);
1965 efx
->type
->stop_stats(efx
);
1968 /* Stop the kernel transmit interface. This is only valid if
1969 * the device is stopped or detached; otherwise the watchdog
1970 * may fire immediately.
1972 WARN_ON(netif_running(efx
->net_dev
) &&
1973 netif_device_present(efx
->net_dev
));
1974 netif_tx_disable(efx
->net_dev
);
1976 efx_stop_datapath(efx
);
1979 static void efx_remove_all(struct efx_nic
*efx
)
1981 efx_remove_channels(efx
);
1982 efx_remove_filters(efx
);
1983 #ifdef CONFIG_SFC_SRIOV
1984 efx
->type
->vswitching_remove(efx
);
1986 efx_remove_port(efx
);
1987 efx_remove_nic(efx
);
1990 /**************************************************************************
1992 * Interrupt moderation
1994 **************************************************************************/
1995 unsigned int efx_usecs_to_ticks(struct efx_nic
*efx
, unsigned int usecs
)
1999 if (usecs
* 1000 < efx
->timer_quantum_ns
)
2000 return 1; /* never round down to 0 */
2001 return usecs
* 1000 / efx
->timer_quantum_ns
;
2004 unsigned int efx_ticks_to_usecs(struct efx_nic
*efx
, unsigned int ticks
)
2006 /* We must round up when converting ticks to microseconds
2007 * because we round down when converting the other way.
2009 return DIV_ROUND_UP(ticks
* efx
->timer_quantum_ns
, 1000);
2012 /* Set interrupt moderation parameters */
2013 int efx_init_irq_moderation(struct efx_nic
*efx
, unsigned int tx_usecs
,
2014 unsigned int rx_usecs
, bool rx_adaptive
,
2015 bool rx_may_override_tx
)
2017 struct efx_channel
*channel
;
2018 unsigned int timer_max_us
;
2020 EFX_ASSERT_RESET_SERIALISED(efx
);
2022 timer_max_us
= efx
->timer_max_ns
/ 1000;
2024 if (tx_usecs
> timer_max_us
|| rx_usecs
> timer_max_us
)
2027 if (tx_usecs
!= rx_usecs
&& efx
->tx_channel_offset
== 0 &&
2028 !rx_may_override_tx
) {
2029 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
2030 "RX and TX IRQ moderation must be equal\n");
2034 efx
->irq_rx_adaptive
= rx_adaptive
;
2035 efx
->irq_rx_moderation_us
= rx_usecs
;
2036 efx_for_each_channel(channel
, efx
) {
2037 if (efx_channel_has_rx_queue(channel
))
2038 channel
->irq_moderation_us
= rx_usecs
;
2039 else if (efx_channel_has_tx_queues(channel
))
2040 channel
->irq_moderation_us
= tx_usecs
;
2046 void efx_get_irq_moderation(struct efx_nic
*efx
, unsigned int *tx_usecs
,
2047 unsigned int *rx_usecs
, bool *rx_adaptive
)
2049 *rx_adaptive
= efx
->irq_rx_adaptive
;
2050 *rx_usecs
= efx
->irq_rx_moderation_us
;
2052 /* If channels are shared between RX and TX, so is IRQ
2053 * moderation. Otherwise, IRQ moderation is the same for all
2054 * TX channels and is not adaptive.
2056 if (efx
->tx_channel_offset
== 0) {
2057 *tx_usecs
= *rx_usecs
;
2059 struct efx_channel
*tx_channel
;
2061 tx_channel
= efx
->channel
[efx
->tx_channel_offset
];
2062 *tx_usecs
= tx_channel
->irq_moderation_us
;
2066 /**************************************************************************
2070 **************************************************************************/
2072 /* Run periodically off the general workqueue */
2073 static void efx_monitor(struct work_struct
*data
)
2075 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
2078 netif_vdbg(efx
, timer
, efx
->net_dev
,
2079 "hardware monitor executing on CPU %d\n",
2080 raw_smp_processor_id());
2081 BUG_ON(efx
->type
->monitor
== NULL
);
2083 /* If the mac_lock is already held then it is likely a port
2084 * reconfiguration is already in place, which will likely do
2085 * most of the work of monitor() anyway. */
2086 if (mutex_trylock(&efx
->mac_lock
)) {
2087 if (efx
->port_enabled
)
2088 efx
->type
->monitor(efx
);
2089 mutex_unlock(&efx
->mac_lock
);
2092 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
2093 efx_monitor_interval
);
2096 /**************************************************************************
2100 *************************************************************************/
2103 * Context: process, rtnl_lock() held.
2105 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
2107 struct efx_nic
*efx
= netdev_priv(net_dev
);
2108 struct mii_ioctl_data
*data
= if_mii(ifr
);
2110 if (cmd
== SIOCSHWTSTAMP
)
2111 return efx_ptp_set_ts_config(efx
, ifr
);
2112 if (cmd
== SIOCGHWTSTAMP
)
2113 return efx_ptp_get_ts_config(efx
, ifr
);
2115 /* Convert phy_id from older PRTAD/DEVAD format */
2116 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
2117 (data
->phy_id
& 0xfc00) == 0x0400)
2118 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
2120 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
2123 /**************************************************************************
2127 **************************************************************************/
2129 static void efx_init_napi_channel(struct efx_channel
*channel
)
2131 struct efx_nic
*efx
= channel
->efx
;
2133 channel
->napi_dev
= efx
->net_dev
;
2134 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
2135 efx_poll
, napi_weight
);
2138 static void efx_init_napi(struct efx_nic
*efx
)
2140 struct efx_channel
*channel
;
2142 efx_for_each_channel(channel
, efx
)
2143 efx_init_napi_channel(channel
);
2146 static void efx_fini_napi_channel(struct efx_channel
*channel
)
2148 if (channel
->napi_dev
)
2149 netif_napi_del(&channel
->napi_str
);
2151 channel
->napi_dev
= NULL
;
2154 static void efx_fini_napi(struct efx_nic
*efx
)
2156 struct efx_channel
*channel
;
2158 efx_for_each_channel(channel
, efx
)
2159 efx_fini_napi_channel(channel
);
2162 /**************************************************************************
2164 * Kernel netpoll interface
2166 *************************************************************************/
2168 #ifdef CONFIG_NET_POLL_CONTROLLER
2170 /* Although in the common case interrupts will be disabled, this is not
2171 * guaranteed. However, all our work happens inside the NAPI callback,
2172 * so no locking is required.
2174 static void efx_netpoll(struct net_device
*net_dev
)
2176 struct efx_nic
*efx
= netdev_priv(net_dev
);
2177 struct efx_channel
*channel
;
2179 efx_for_each_channel(channel
, efx
)
2180 efx_schedule_channel(channel
);
2185 /**************************************************************************
2187 * Kernel net device interface
2189 *************************************************************************/
2191 /* Context: process, rtnl_lock() held. */
2192 int efx_net_open(struct net_device
*net_dev
)
2194 struct efx_nic
*efx
= netdev_priv(net_dev
);
2197 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2198 raw_smp_processor_id());
2200 rc
= efx_check_disabled(efx
);
2203 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2205 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
2208 /* Notify the kernel of the link state polled during driver load,
2209 * before the monitor starts running */
2210 efx_link_status_changed(efx
);
2213 if (efx
->state
== STATE_DISABLED
|| efx
->reset_pending
)
2214 netif_device_detach(efx
->net_dev
);
2215 efx_selftest_async_start(efx
);
2219 /* Context: process, rtnl_lock() held.
2220 * Note that the kernel will ignore our return code; this method
2221 * should really be a void.
2223 int efx_net_stop(struct net_device
*net_dev
)
2225 struct efx_nic
*efx
= netdev_priv(net_dev
);
2227 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2228 raw_smp_processor_id());
2230 /* Stop the device and flush all the channels */
2236 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2237 static void efx_net_stats(struct net_device
*net_dev
,
2238 struct rtnl_link_stats64
*stats
)
2240 struct efx_nic
*efx
= netdev_priv(net_dev
);
2242 spin_lock_bh(&efx
->stats_lock
);
2243 efx
->type
->update_stats(efx
, NULL
, stats
);
2244 spin_unlock_bh(&efx
->stats_lock
);
2247 /* Context: netif_tx_lock held, BHs disabled. */
2248 static void efx_watchdog(struct net_device
*net_dev
)
2250 struct efx_nic
*efx
= netdev_priv(net_dev
);
2252 netif_err(efx
, tx_err
, efx
->net_dev
,
2253 "TX stuck with port_enabled=%d: resetting channels\n",
2256 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2260 /* Context: process, rtnl_lock() held. */
2261 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2263 struct efx_nic
*efx
= netdev_priv(net_dev
);
2266 rc
= efx_check_disabled(efx
);
2270 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2272 efx_device_detach_sync(efx
);
2275 mutex_lock(&efx
->mac_lock
);
2276 net_dev
->mtu
= new_mtu
;
2277 efx_mac_reconfigure(efx
);
2278 mutex_unlock(&efx
->mac_lock
);
2281 efx_device_attach_if_not_resetting(efx
);
2285 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
2287 struct efx_nic
*efx
= netdev_priv(net_dev
);
2288 struct sockaddr
*addr
= data
;
2289 u8
*new_addr
= addr
->sa_data
;
2293 if (!is_valid_ether_addr(new_addr
)) {
2294 netif_err(efx
, drv
, efx
->net_dev
,
2295 "invalid ethernet MAC address requested: %pM\n",
2297 return -EADDRNOTAVAIL
;
2300 /* save old address */
2301 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2302 ether_addr_copy(net_dev
->dev_addr
, new_addr
);
2303 if (efx
->type
->set_mac_address
) {
2304 rc
= efx
->type
->set_mac_address(efx
);
2306 ether_addr_copy(net_dev
->dev_addr
, old_addr
);
2311 /* Reconfigure the MAC */
2312 mutex_lock(&efx
->mac_lock
);
2313 efx_mac_reconfigure(efx
);
2314 mutex_unlock(&efx
->mac_lock
);
2319 /* Context: netif_addr_lock held, BHs disabled. */
2320 static void efx_set_rx_mode(struct net_device
*net_dev
)
2322 struct efx_nic
*efx
= netdev_priv(net_dev
);
2324 if (efx
->port_enabled
)
2325 queue_work(efx
->workqueue
, &efx
->mac_work
);
2326 /* Otherwise efx_start_port() will do this */
2329 static int efx_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2331 struct efx_nic
*efx
= netdev_priv(net_dev
);
2334 /* If disabling RX n-tuple filtering, clear existing filters */
2335 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
2336 rc
= efx
->type
->filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
2341 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
2342 * If rx-fcs is changed, mac_reconfigure updates that too.
2344 if ((net_dev
->features
^ data
) & (NETIF_F_HW_VLAN_CTAG_FILTER
|
2346 /* efx_set_rx_mode() will schedule MAC work to update filters
2347 * when a new features are finally set in net_dev.
2349 efx_set_rx_mode(net_dev
);
2355 static int efx_get_phys_port_id(struct net_device
*net_dev
,
2356 struct netdev_phys_item_id
*ppid
)
2358 struct efx_nic
*efx
= netdev_priv(net_dev
);
2360 if (efx
->type
->get_phys_port_id
)
2361 return efx
->type
->get_phys_port_id(efx
, ppid
);
2366 static int efx_get_phys_port_name(struct net_device
*net_dev
,
2367 char *name
, size_t len
)
2369 struct efx_nic
*efx
= netdev_priv(net_dev
);
2371 if (snprintf(name
, len
, "p%u", efx
->port_num
) >= len
)
2376 static int efx_vlan_rx_add_vid(struct net_device
*net_dev
, __be16 proto
, u16 vid
)
2378 struct efx_nic
*efx
= netdev_priv(net_dev
);
2380 if (efx
->type
->vlan_rx_add_vid
)
2381 return efx
->type
->vlan_rx_add_vid(efx
, proto
, vid
);
2386 static int efx_vlan_rx_kill_vid(struct net_device
*net_dev
, __be16 proto
, u16 vid
)
2388 struct efx_nic
*efx
= netdev_priv(net_dev
);
2390 if (efx
->type
->vlan_rx_kill_vid
)
2391 return efx
->type
->vlan_rx_kill_vid(efx
, proto
, vid
);
2396 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in
)
2399 case UDP_TUNNEL_TYPE_VXLAN
:
2400 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN
;
2401 case UDP_TUNNEL_TYPE_GENEVE
:
2402 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE
;
2408 static void efx_udp_tunnel_add(struct net_device
*dev
, struct udp_tunnel_info
*ti
)
2410 struct efx_nic
*efx
= netdev_priv(dev
);
2411 struct efx_udp_tunnel tnl
;
2412 int efx_tunnel_type
;
2414 efx_tunnel_type
= efx_udp_tunnel_type_map(ti
->type
);
2415 if (efx_tunnel_type
< 0)
2418 tnl
.type
= (u16
)efx_tunnel_type
;
2419 tnl
.port
= ti
->port
;
2421 if (efx
->type
->udp_tnl_add_port
)
2422 (void)efx
->type
->udp_tnl_add_port(efx
, tnl
);
2425 static void efx_udp_tunnel_del(struct net_device
*dev
, struct udp_tunnel_info
*ti
)
2427 struct efx_nic
*efx
= netdev_priv(dev
);
2428 struct efx_udp_tunnel tnl
;
2429 int efx_tunnel_type
;
2431 efx_tunnel_type
= efx_udp_tunnel_type_map(ti
->type
);
2432 if (efx_tunnel_type
< 0)
2435 tnl
.type
= (u16
)efx_tunnel_type
;
2436 tnl
.port
= ti
->port
;
2438 if (efx
->type
->udp_tnl_del_port
)
2439 (void)efx
->type
->udp_tnl_del_port(efx
, tnl
);
2442 static const struct net_device_ops efx_netdev_ops
= {
2443 .ndo_open
= efx_net_open
,
2444 .ndo_stop
= efx_net_stop
,
2445 .ndo_get_stats64
= efx_net_stats
,
2446 .ndo_tx_timeout
= efx_watchdog
,
2447 .ndo_start_xmit
= efx_hard_start_xmit
,
2448 .ndo_validate_addr
= eth_validate_addr
,
2449 .ndo_do_ioctl
= efx_ioctl
,
2450 .ndo_change_mtu
= efx_change_mtu
,
2451 .ndo_set_mac_address
= efx_set_mac_address
,
2452 .ndo_set_rx_mode
= efx_set_rx_mode
,
2453 .ndo_set_features
= efx_set_features
,
2454 .ndo_vlan_rx_add_vid
= efx_vlan_rx_add_vid
,
2455 .ndo_vlan_rx_kill_vid
= efx_vlan_rx_kill_vid
,
2456 #ifdef CONFIG_SFC_SRIOV
2457 .ndo_set_vf_mac
= efx_sriov_set_vf_mac
,
2458 .ndo_set_vf_vlan
= efx_sriov_set_vf_vlan
,
2459 .ndo_set_vf_spoofchk
= efx_sriov_set_vf_spoofchk
,
2460 .ndo_get_vf_config
= efx_sriov_get_vf_config
,
2461 .ndo_set_vf_link_state
= efx_sriov_set_vf_link_state
,
2463 .ndo_get_phys_port_id
= efx_get_phys_port_id
,
2464 .ndo_get_phys_port_name
= efx_get_phys_port_name
,
2465 #ifdef CONFIG_NET_POLL_CONTROLLER
2466 .ndo_poll_controller
= efx_netpoll
,
2468 .ndo_setup_tc
= efx_setup_tc
,
2469 #ifdef CONFIG_RFS_ACCEL
2470 .ndo_rx_flow_steer
= efx_filter_rfs
,
2472 .ndo_udp_tunnel_add
= efx_udp_tunnel_add
,
2473 .ndo_udp_tunnel_del
= efx_udp_tunnel_del
,
2476 static void efx_update_name(struct efx_nic
*efx
)
2478 strcpy(efx
->name
, efx
->net_dev
->name
);
2479 efx_mtd_rename(efx
);
2480 efx_set_channel_names(efx
);
2483 static int efx_netdev_event(struct notifier_block
*this,
2484 unsigned long event
, void *ptr
)
2486 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2488 if ((net_dev
->netdev_ops
== &efx_netdev_ops
) &&
2489 event
== NETDEV_CHANGENAME
)
2490 efx_update_name(netdev_priv(net_dev
));
2495 static struct notifier_block efx_netdev_notifier
= {
2496 .notifier_call
= efx_netdev_event
,
2500 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2502 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2503 return sprintf(buf
, "%d\n", efx
->phy_type
);
2505 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2507 #ifdef CONFIG_SFC_MCDI_LOGGING
2508 static ssize_t
show_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
2511 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2512 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
2514 return scnprintf(buf
, PAGE_SIZE
, "%d\n", mcdi
->logging_enabled
);
2516 static ssize_t
set_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
2517 const char *buf
, size_t count
)
2519 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2520 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
2521 bool enable
= count
> 0 && *buf
!= '0';
2523 mcdi
->logging_enabled
= enable
;
2526 static DEVICE_ATTR(mcdi_logging
, 0644, show_mcdi_log
, set_mcdi_log
);
2529 static int efx_register_netdev(struct efx_nic
*efx
)
2531 struct net_device
*net_dev
= efx
->net_dev
;
2532 struct efx_channel
*channel
;
2535 net_dev
->watchdog_timeo
= 5 * HZ
;
2536 net_dev
->irq
= efx
->pci_dev
->irq
;
2537 net_dev
->netdev_ops
= &efx_netdev_ops
;
2538 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
2539 net_dev
->priv_flags
|= IFF_UNICAST_FLT
;
2540 net_dev
->ethtool_ops
= &efx_ethtool_ops
;
2541 net_dev
->gso_max_segs
= EFX_TSO_MAX_SEGS
;
2542 net_dev
->min_mtu
= EFX_MIN_MTU
;
2543 net_dev
->max_mtu
= EFX_MAX_MTU
;
2547 /* Enable resets to be scheduled and check whether any were
2548 * already requested. If so, the NIC is probably hosed so we
2551 efx
->state
= STATE_READY
;
2552 smp_mb(); /* ensure we change state before checking reset_pending */
2553 if (efx
->reset_pending
) {
2554 netif_err(efx
, probe
, efx
->net_dev
,
2555 "aborting probe due to scheduled reset\n");
2560 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2563 efx_update_name(efx
);
2565 /* Always start with carrier off; PHY events will detect the link */
2566 netif_carrier_off(net_dev
);
2568 rc
= register_netdevice(net_dev
);
2572 efx_for_each_channel(channel
, efx
) {
2573 struct efx_tx_queue
*tx_queue
;
2574 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2575 efx_init_tx_queue_core_txq(tx_queue
);
2582 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2584 netif_err(efx
, drv
, efx
->net_dev
,
2585 "failed to init net dev attributes\n");
2586 goto fail_registered
;
2588 #ifdef CONFIG_SFC_MCDI_LOGGING
2589 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
2591 netif_err(efx
, drv
, efx
->net_dev
,
2592 "failed to init net dev attributes\n");
2593 goto fail_attr_mcdi_logging
;
2599 #ifdef CONFIG_SFC_MCDI_LOGGING
2600 fail_attr_mcdi_logging
:
2601 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2605 efx_dissociate(efx
);
2606 unregister_netdevice(net_dev
);
2608 efx
->state
= STATE_UNINIT
;
2610 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2614 static void efx_unregister_netdev(struct efx_nic
*efx
)
2619 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2621 if (efx_dev_registered(efx
)) {
2622 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2623 #ifdef CONFIG_SFC_MCDI_LOGGING
2624 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
2626 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2627 unregister_netdev(efx
->net_dev
);
2631 /**************************************************************************
2633 * Device reset and suspend
2635 **************************************************************************/
2637 /* Tears down the entire software state and most of the hardware state
2639 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2641 EFX_ASSERT_RESET_SERIALISED(efx
);
2643 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
2644 efx
->type
->prepare_flr(efx
);
2647 efx_disable_interrupts(efx
);
2649 mutex_lock(&efx
->mac_lock
);
2650 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2651 method
!= RESET_TYPE_DATAPATH
)
2652 efx
->phy_op
->fini(efx
);
2653 efx
->type
->fini(efx
);
2656 /* This function will always ensure that the locks acquired in
2657 * efx_reset_down() are released. A failure return code indicates
2658 * that we were unable to reinitialise the hardware, and the
2659 * driver should be disabled. If ok is false, then the rx and tx
2660 * engines are not restarted, pending a RESET_DISABLE. */
2661 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2665 EFX_ASSERT_RESET_SERIALISED(efx
);
2667 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
2668 efx
->type
->finish_flr(efx
);
2670 /* Ensure that SRAM is initialised even if we're disabling the device */
2671 rc
= efx
->type
->init(efx
);
2673 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2680 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2681 method
!= RESET_TYPE_DATAPATH
) {
2682 rc
= efx
->phy_op
->init(efx
);
2685 rc
= efx
->phy_op
->reconfigure(efx
);
2686 if (rc
&& rc
!= -EPERM
)
2687 netif_err(efx
, drv
, efx
->net_dev
,
2688 "could not restore PHY settings\n");
2691 rc
= efx_enable_interrupts(efx
);
2695 #ifdef CONFIG_SFC_SRIOV
2696 rc
= efx
->type
->vswitching_restore(efx
);
2697 if (rc
) /* not fatal; the PF will still work fine */
2698 netif_warn(efx
, probe
, efx
->net_dev
,
2699 "failed to restore vswitching rc=%d;"
2700 " VFs may not function\n", rc
);
2703 down_read(&efx
->filter_sem
);
2704 efx_restore_filters(efx
);
2705 up_read(&efx
->filter_sem
);
2706 if (efx
->type
->sriov_reset
)
2707 efx
->type
->sriov_reset(efx
);
2709 mutex_unlock(&efx
->mac_lock
);
2713 if (efx
->type
->udp_tnl_push_ports
)
2714 efx
->type
->udp_tnl_push_ports(efx
);
2719 efx
->port_initialized
= false;
2721 mutex_unlock(&efx
->mac_lock
);
2726 /* Reset the NIC using the specified method. Note that the reset may
2727 * fail, in which case the card will be left in an unusable state.
2729 * Caller must hold the rtnl_lock.
2731 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2736 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2737 RESET_TYPE(method
));
2739 efx_device_detach_sync(efx
);
2740 efx_reset_down(efx
, method
);
2742 rc
= efx
->type
->reset(efx
, method
);
2744 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2748 /* Clear flags for the scopes we covered. We assume the NIC and
2749 * driver are now quiescent so that there is no race here.
2751 if (method
< RESET_TYPE_MAX_METHOD
)
2752 efx
->reset_pending
&= -(1 << (method
+ 1));
2753 else /* it doesn't fit into the well-ordered scope hierarchy */
2754 __clear_bit(method
, &efx
->reset_pending
);
2756 /* Reinitialise bus-mastering, which may have been turned off before
2757 * the reset was scheduled. This is still appropriate, even in the
2758 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2759 * can respond to requests. */
2760 pci_set_master(efx
->pci_dev
);
2763 /* Leave device stopped if necessary */
2765 method
== RESET_TYPE_DISABLE
||
2766 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2767 rc2
= efx_reset_up(efx
, method
, !disabled
);
2775 dev_close(efx
->net_dev
);
2776 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2777 efx
->state
= STATE_DISABLED
;
2779 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2780 efx_device_attach_if_not_resetting(efx
);
2785 /* Try recovery mechanisms.
2786 * For now only EEH is supported.
2787 * Returns 0 if the recovery mechanisms are unsuccessful.
2788 * Returns a non-zero value otherwise.
2790 int efx_try_recovery(struct efx_nic
*efx
)
2793 /* A PCI error can occur and not be seen by EEH because nothing
2794 * happens on the PCI bus. In this case the driver may fail and
2795 * schedule a 'recover or reset', leading to this recovery handler.
2796 * Manually call the eeh failure check function.
2798 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2799 if (eeh_dev_check_failure(eehdev
)) {
2800 /* The EEH mechanisms will handle the error and reset the
2801 * device if necessary.
2809 static void efx_wait_for_bist_end(struct efx_nic
*efx
)
2813 for (i
= 0; i
< BIST_WAIT_DELAY_COUNT
; ++i
) {
2814 if (efx_mcdi_poll_reboot(efx
))
2816 msleep(BIST_WAIT_DELAY_MS
);
2819 netif_err(efx
, drv
, efx
->net_dev
, "Warning: No MC reboot after BIST mode\n");
2821 /* Either way unset the BIST flag. If we found no reboot we probably
2822 * won't recover, but we should try.
2824 efx
->mc_bist_for_other_fn
= false;
2827 /* The worker thread exists so that code that cannot sleep can
2828 * schedule a reset for later.
2830 static void efx_reset_work(struct work_struct
*data
)
2832 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2833 unsigned long pending
;
2834 enum reset_type method
;
2836 pending
= READ_ONCE(efx
->reset_pending
);
2837 method
= fls(pending
) - 1;
2839 if (method
== RESET_TYPE_MC_BIST
)
2840 efx_wait_for_bist_end(efx
);
2842 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2843 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2844 efx_try_recovery(efx
))
2852 /* We checked the state in efx_schedule_reset() but it may
2853 * have changed by now. Now that we have the RTNL lock,
2854 * it cannot change again.
2856 if (efx
->state
== STATE_READY
)
2857 (void)efx_reset(efx
, method
);
2862 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2864 enum reset_type method
;
2866 if (efx
->state
== STATE_RECOVERY
) {
2867 netif_dbg(efx
, drv
, efx
->net_dev
,
2868 "recovering: skip scheduling %s reset\n",
2874 case RESET_TYPE_INVISIBLE
:
2875 case RESET_TYPE_ALL
:
2876 case RESET_TYPE_RECOVER_OR_ALL
:
2877 case RESET_TYPE_WORLD
:
2878 case RESET_TYPE_DISABLE
:
2879 case RESET_TYPE_RECOVER_OR_DISABLE
:
2880 case RESET_TYPE_DATAPATH
:
2881 case RESET_TYPE_MC_BIST
:
2882 case RESET_TYPE_MCDI_TIMEOUT
:
2884 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2885 RESET_TYPE(method
));
2888 method
= efx
->type
->map_reset_reason(type
);
2889 netif_dbg(efx
, drv
, efx
->net_dev
,
2890 "scheduling %s reset for %s\n",
2891 RESET_TYPE(method
), RESET_TYPE(type
));
2895 set_bit(method
, &efx
->reset_pending
);
2896 smp_mb(); /* ensure we change reset_pending before checking state */
2898 /* If we're not READY then just leave the flags set as the cue
2899 * to abort probing or reschedule the reset later.
2901 if (READ_ONCE(efx
->state
) != STATE_READY
)
2904 /* efx_process_channel() will no longer read events once a
2905 * reset is scheduled. So switch back to poll'd MCDI completions. */
2906 efx_mcdi_mode_poll(efx
);
2908 queue_work(reset_workqueue
, &efx
->reset_work
);
2911 /**************************************************************************
2913 * List of NICs we support
2915 **************************************************************************/
2917 /* PCI device ID table */
2918 static const struct pci_device_id efx_pci_table
[] = {
2919 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0803), /* SFC9020 */
2920 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2921 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0813), /* SFL9021 */
2922 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2923 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0903), /* SFC9120 PF */
2924 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2925 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1903), /* SFC9120 VF */
2926 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2927 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0923), /* SFC9140 PF */
2928 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2929 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1923), /* SFC9140 VF */
2930 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2931 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0a03), /* SFC9220 PF */
2932 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2933 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1a03), /* SFC9220 VF */
2934 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2935 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0b03), /* SFC9250 PF */
2936 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2937 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1b03), /* SFC9250 VF */
2938 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2939 {0} /* end of list */
2942 /**************************************************************************
2944 * Dummy PHY/MAC operations
2946 * Can be used for some unimplemented operations
2947 * Needed so all function pointers are valid and do not have to be tested
2950 **************************************************************************/
2951 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2955 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2957 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2962 static const struct efx_phy_operations efx_dummy_phy_operations
= {
2963 .init
= efx_port_dummy_op_int
,
2964 .reconfigure
= efx_port_dummy_op_int
,
2965 .poll
= efx_port_dummy_op_poll
,
2966 .fini
= efx_port_dummy_op_void
,
2969 /**************************************************************************
2973 **************************************************************************/
2975 /* This zeroes out and then fills in the invariants in a struct
2976 * efx_nic (including all sub-structures).
2978 static int efx_init_struct(struct efx_nic
*efx
,
2979 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2981 int rc
= -ENOMEM
, i
;
2983 /* Initialise common structures */
2984 INIT_LIST_HEAD(&efx
->node
);
2985 INIT_LIST_HEAD(&efx
->secondary_list
);
2986 spin_lock_init(&efx
->biu_lock
);
2987 #ifdef CONFIG_SFC_MTD
2988 INIT_LIST_HEAD(&efx
->mtd_list
);
2990 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2991 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2992 INIT_DELAYED_WORK(&efx
->selftest_work
, efx_selftest_async_work
);
2993 efx
->pci_dev
= pci_dev
;
2994 efx
->msg_enable
= debug
;
2995 efx
->state
= STATE_UNINIT
;
2996 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2998 efx
->net_dev
= net_dev
;
2999 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
3001 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
3002 efx
->rx_packet_hash_offset
=
3003 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
3004 efx
->rx_packet_ts_offset
=
3005 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
3006 spin_lock_init(&efx
->stats_lock
);
3007 efx
->vi_stride
= EFX_DEFAULT_VI_STRIDE
;
3008 efx
->num_mac_stats
= MC_CMD_MAC_NSTATS
;
3009 BUILD_BUG_ON(MC_CMD_MAC_NSTATS
- 1 != MC_CMD_MAC_GENERATION_END
);
3010 mutex_init(&efx
->mac_lock
);
3011 efx
->phy_op
= &efx_dummy_phy_operations
;
3012 efx
->mdio
.dev
= net_dev
;
3013 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
3014 init_waitqueue_head(&efx
->flush_wq
);
3016 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
3017 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
3018 if (!efx
->channel
[i
])
3020 efx
->msi_context
[i
].efx
= efx
;
3021 efx
->msi_context
[i
].index
= i
;
3024 /* Higher numbered interrupt modes are less capable! */
3025 if (WARN_ON_ONCE(efx
->type
->max_interrupt_mode
>
3026 efx
->type
->min_interrupt_mode
)) {
3030 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
3032 efx
->interrupt_mode
= min(efx
->type
->min_interrupt_mode
,
3035 /* Would be good to use the net_dev name, but we're too early */
3036 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
3038 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
3039 if (!efx
->workqueue
)
3045 efx_fini_struct(efx
);
3049 static void efx_fini_struct(struct efx_nic
*efx
)
3053 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
3054 kfree(efx
->channel
[i
]);
3058 if (efx
->workqueue
) {
3059 destroy_workqueue(efx
->workqueue
);
3060 efx
->workqueue
= NULL
;
3064 void efx_update_sw_stats(struct efx_nic
*efx
, u64
*stats
)
3066 u64 n_rx_nodesc_trunc
= 0;
3067 struct efx_channel
*channel
;
3069 efx_for_each_channel(channel
, efx
)
3070 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
3071 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
3072 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
3075 /**************************************************************************
3079 **************************************************************************/
3081 /* Main body of final NIC shutdown code
3082 * This is called only at module unload (or hotplug removal).
3084 static void efx_pci_remove_main(struct efx_nic
*efx
)
3086 /* Flush reset_work. It can no longer be scheduled since we
3089 BUG_ON(efx
->state
== STATE_READY
);
3090 cancel_work_sync(&efx
->reset_work
);
3092 efx_disable_interrupts(efx
);
3093 efx_nic_fini_interrupt(efx
);
3095 efx
->type
->fini(efx
);
3097 efx_remove_all(efx
);
3100 /* Final NIC shutdown
3101 * This is called only at module unload (or hotplug removal). A PF can call
3102 * this on its VFs to ensure they are unbound first.
3104 static void efx_pci_remove(struct pci_dev
*pci_dev
)
3106 struct efx_nic
*efx
;
3108 efx
= pci_get_drvdata(pci_dev
);
3112 /* Mark the NIC as fini, then stop the interface */
3114 efx_dissociate(efx
);
3115 dev_close(efx
->net_dev
);
3116 efx_disable_interrupts(efx
);
3117 efx
->state
= STATE_UNINIT
;
3120 if (efx
->type
->sriov_fini
)
3121 efx
->type
->sriov_fini(efx
);
3123 efx_unregister_netdev(efx
);
3125 efx_mtd_remove(efx
);
3127 efx_pci_remove_main(efx
);
3130 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
3132 efx_fini_struct(efx
);
3133 free_netdev(efx
->net_dev
);
3135 pci_disable_pcie_error_reporting(pci_dev
);
3138 /* NIC VPD information
3139 * Called during probe to display the part number of the
3140 * installed NIC. VPD is potentially very large but this should
3141 * always appear within the first 512 bytes.
3143 #define SFC_VPD_LEN 512
3144 static void efx_probe_vpd_strings(struct efx_nic
*efx
)
3146 struct pci_dev
*dev
= efx
->pci_dev
;
3147 char vpd_data
[SFC_VPD_LEN
];
3149 int ro_start
, ro_size
, i
, j
;
3151 /* Get the vpd data from the device */
3152 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
3153 if (vpd_size
<= 0) {
3154 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
3158 /* Get the Read only section */
3159 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
3161 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
3165 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
3167 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
3168 if (i
+ j
> vpd_size
)
3171 /* Get the Part number */
3172 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
3174 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
3178 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
3179 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
3180 if (i
+ j
> vpd_size
) {
3181 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
3185 netif_info(efx
, drv
, efx
->net_dev
,
3186 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
3188 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
3190 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "SN");
3192 netif_err(efx
, drv
, efx
->net_dev
, "Serial number not found\n");
3196 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
3197 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
3198 if (i
+ j
> vpd_size
) {
3199 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete serial number\n");
3203 efx
->vpd_sn
= kmalloc(j
+ 1, GFP_KERNEL
);
3207 snprintf(efx
->vpd_sn
, j
+ 1, "%s", &vpd_data
[i
]);
3211 /* Main body of NIC initialisation
3212 * This is called at module load (or hotplug insertion, theoretically).
3214 static int efx_pci_probe_main(struct efx_nic
*efx
)
3218 /* Do start-of-day initialisation */
3219 rc
= efx_probe_all(efx
);
3225 rc
= efx
->type
->init(efx
);
3227 netif_err(efx
, probe
, efx
->net_dev
,
3228 "failed to initialise NIC\n");
3232 rc
= efx_init_port(efx
);
3234 netif_err(efx
, probe
, efx
->net_dev
,
3235 "failed to initialise port\n");
3239 rc
= efx_nic_init_interrupt(efx
);
3242 rc
= efx_enable_interrupts(efx
);
3249 efx_nic_fini_interrupt(efx
);
3253 efx
->type
->fini(efx
);
3256 efx_remove_all(efx
);
3261 static int efx_pci_probe_post_io(struct efx_nic
*efx
)
3263 struct net_device
*net_dev
= efx
->net_dev
;
3264 int rc
= efx_pci_probe_main(efx
);
3269 if (efx
->type
->sriov_init
) {
3270 rc
= efx
->type
->sriov_init(efx
);
3272 netif_err(efx
, probe
, efx
->net_dev
,
3273 "SR-IOV can't be enabled rc %d\n", rc
);
3276 /* Determine netdevice features */
3277 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
3278 NETIF_F_TSO
| NETIF_F_RXCSUM
| NETIF_F_RXALL
);
3279 if (efx
->type
->offload_features
& (NETIF_F_IPV6_CSUM
| NETIF_F_HW_CSUM
))
3280 net_dev
->features
|= NETIF_F_TSO6
;
3281 /* Check whether device supports TSO */
3282 if (!efx
->type
->tso_versions
|| !efx
->type
->tso_versions(efx
))
3283 net_dev
->features
&= ~NETIF_F_ALL_TSO
;
3284 /* Mask for features that also apply to VLAN devices */
3285 net_dev
->vlan_features
|= (NETIF_F_HW_CSUM
| NETIF_F_SG
|
3286 NETIF_F_HIGHDMA
| NETIF_F_ALL_TSO
|
3289 net_dev
->hw_features
|= net_dev
->features
& ~efx
->fixed_features
;
3291 /* Disable receiving frames with bad FCS, by default. */
3292 net_dev
->features
&= ~NETIF_F_RXALL
;
3294 /* Disable VLAN filtering by default. It may be enforced if
3295 * the feature is fixed (i.e. VLAN filters are required to
3296 * receive VLAN tagged packets due to vPort restrictions).
3298 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
3299 net_dev
->features
|= efx
->fixed_features
;
3301 rc
= efx_register_netdev(efx
);
3305 efx_pci_remove_main(efx
);
3309 /* NIC initialisation
3311 * This is called at module load (or hotplug insertion,
3312 * theoretically). It sets up PCI mappings, resets the NIC,
3313 * sets up and registers the network devices with the kernel and hooks
3314 * the interrupt service routine. It does not prepare the device for
3315 * transmission; this is left to the first time one of the network
3316 * interfaces is brought up (i.e. efx_net_open).
3318 static int efx_pci_probe(struct pci_dev
*pci_dev
,
3319 const struct pci_device_id
*entry
)
3321 struct net_device
*net_dev
;
3322 struct efx_nic
*efx
;
3325 /* Allocate and initialise a struct net_device and struct efx_nic */
3326 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
3330 efx
= netdev_priv(net_dev
);
3331 efx
->type
= (const struct efx_nic_type
*) entry
->driver_data
;
3332 efx
->fixed_features
|= NETIF_F_HIGHDMA
;
3334 pci_set_drvdata(pci_dev
, efx
);
3335 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
3336 rc
= efx_init_struct(efx
, pci_dev
, net_dev
);
3340 netif_info(efx
, probe
, efx
->net_dev
,
3341 "Solarflare NIC detected\n");
3343 if (!efx
->type
->is_vf
)
3344 efx_probe_vpd_strings(efx
);
3346 /* Set up basic I/O (BAR mappings etc) */
3347 rc
= efx_init_io(efx
);
3351 rc
= efx_pci_probe_post_io(efx
);
3353 /* On failure, retry once immediately.
3354 * If we aborted probe due to a scheduled reset, dismiss it.
3356 efx
->reset_pending
= 0;
3357 rc
= efx_pci_probe_post_io(efx
);
3359 /* On another failure, retry once more
3360 * after a 50-305ms delay.
3364 get_random_bytes(&r
, 1);
3365 msleep((unsigned int)r
+ 50);
3366 efx
->reset_pending
= 0;
3367 rc
= efx_pci_probe_post_io(efx
);
3373 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
3375 /* Try to create MTDs, but allow this to fail */
3377 rc
= efx_mtd_probe(efx
);
3379 if (rc
&& rc
!= -EPERM
)
3380 netif_warn(efx
, probe
, efx
->net_dev
,
3381 "failed to create MTDs (%d)\n", rc
);
3383 rc
= pci_enable_pcie_error_reporting(pci_dev
);
3384 if (rc
&& rc
!= -EINVAL
)
3385 netif_notice(efx
, probe
, efx
->net_dev
,
3386 "PCIE error reporting unavailable (%d).\n",
3389 if (efx
->type
->udp_tnl_push_ports
)
3390 efx
->type
->udp_tnl_push_ports(efx
);
3397 efx_fini_struct(efx
);
3400 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
3401 free_netdev(net_dev
);
3405 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3406 * enabled on success
3408 #ifdef CONFIG_SFC_SRIOV
3409 static int efx_pci_sriov_configure(struct pci_dev
*dev
, int num_vfs
)
3412 struct efx_nic
*efx
= pci_get_drvdata(dev
);
3414 if (efx
->type
->sriov_configure
) {
3415 rc
= efx
->type
->sriov_configure(efx
, num_vfs
);
3425 static int efx_pm_freeze(struct device
*dev
)
3427 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3431 if (efx
->state
!= STATE_DISABLED
) {
3432 efx
->state
= STATE_UNINIT
;
3434 efx_device_detach_sync(efx
);
3437 efx_disable_interrupts(efx
);
3445 static int efx_pm_thaw(struct device
*dev
)
3448 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3452 if (efx
->state
!= STATE_DISABLED
) {
3453 rc
= efx_enable_interrupts(efx
);
3457 mutex_lock(&efx
->mac_lock
);
3458 efx
->phy_op
->reconfigure(efx
);
3459 mutex_unlock(&efx
->mac_lock
);
3463 efx_device_attach_if_not_resetting(efx
);
3465 efx
->state
= STATE_READY
;
3467 efx
->type
->resume_wol(efx
);
3472 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3473 queue_work(reset_workqueue
, &efx
->reset_work
);
3483 static int efx_pm_poweroff(struct device
*dev
)
3485 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3486 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
3488 efx
->type
->fini(efx
);
3490 efx
->reset_pending
= 0;
3492 pci_save_state(pci_dev
);
3493 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3496 /* Used for both resume and restore */
3497 static int efx_pm_resume(struct device
*dev
)
3499 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3500 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
3503 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3506 pci_restore_state(pci_dev
);
3507 rc
= pci_enable_device(pci_dev
);
3510 pci_set_master(efx
->pci_dev
);
3511 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3514 rc
= efx
->type
->init(efx
);
3517 rc
= efx_pm_thaw(dev
);
3521 static int efx_pm_suspend(struct device
*dev
)
3526 rc
= efx_pm_poweroff(dev
);
3532 static const struct dev_pm_ops efx_pm_ops
= {
3533 .suspend
= efx_pm_suspend
,
3534 .resume
= efx_pm_resume
,
3535 .freeze
= efx_pm_freeze
,
3536 .thaw
= efx_pm_thaw
,
3537 .poweroff
= efx_pm_poweroff
,
3538 .restore
= efx_pm_resume
,
3541 /* A PCI error affecting this device was detected.
3542 * At this point MMIO and DMA may be disabled.
3543 * Stop the software path and request a slot reset.
3545 static pci_ers_result_t
efx_io_error_detected(struct pci_dev
*pdev
,
3546 enum pci_channel_state state
)
3548 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3549 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3551 if (state
== pci_channel_io_perm_failure
)
3552 return PCI_ERS_RESULT_DISCONNECT
;
3556 if (efx
->state
!= STATE_DISABLED
) {
3557 efx
->state
= STATE_RECOVERY
;
3558 efx
->reset_pending
= 0;
3560 efx_device_detach_sync(efx
);
3563 efx_disable_interrupts(efx
);
3565 status
= PCI_ERS_RESULT_NEED_RESET
;
3567 /* If the interface is disabled we don't want to do anything
3570 status
= PCI_ERS_RESULT_RECOVERED
;
3575 pci_disable_device(pdev
);
3580 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3581 static pci_ers_result_t
efx_io_slot_reset(struct pci_dev
*pdev
)
3583 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3584 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3587 if (pci_enable_device(pdev
)) {
3588 netif_err(efx
, hw
, efx
->net_dev
,
3589 "Cannot re-enable PCI device after reset.\n");
3590 status
= PCI_ERS_RESULT_DISCONNECT
;
3593 rc
= pci_cleanup_aer_uncorrect_error_status(pdev
);
3595 netif_err(efx
, hw
, efx
->net_dev
,
3596 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc
);
3597 /* Non-fatal error. Continue. */
3603 /* Perform the actual reset and resume I/O operations. */
3604 static void efx_io_resume(struct pci_dev
*pdev
)
3606 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3611 if (efx
->state
== STATE_DISABLED
)
3614 rc
= efx_reset(efx
, RESET_TYPE_ALL
);
3616 netif_err(efx
, hw
, efx
->net_dev
,
3617 "efx_reset failed after PCI error (%d)\n", rc
);
3619 efx
->state
= STATE_READY
;
3620 netif_dbg(efx
, hw
, efx
->net_dev
,
3621 "Done resetting and resuming IO after PCI error.\n");
3628 /* For simplicity and reliability, we always require a slot reset and try to
3629 * reset the hardware when a pci error affecting the device is detected.
3630 * We leave both the link_reset and mmio_enabled callback unimplemented:
3631 * with our request for slot reset the mmio_enabled callback will never be
3632 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3634 static const struct pci_error_handlers efx_err_handlers
= {
3635 .error_detected
= efx_io_error_detected
,
3636 .slot_reset
= efx_io_slot_reset
,
3637 .resume
= efx_io_resume
,
3640 static struct pci_driver efx_pci_driver
= {
3641 .name
= KBUILD_MODNAME
,
3642 .id_table
= efx_pci_table
,
3643 .probe
= efx_pci_probe
,
3644 .remove
= efx_pci_remove
,
3645 .driver
.pm
= &efx_pm_ops
,
3646 .err_handler
= &efx_err_handlers
,
3647 #ifdef CONFIG_SFC_SRIOV
3648 .sriov_configure
= efx_pci_sriov_configure
,
3652 /**************************************************************************
3654 * Kernel module interface
3656 *************************************************************************/
3658 module_param(interrupt_mode
, uint
, 0444);
3659 MODULE_PARM_DESC(interrupt_mode
,
3660 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3662 static int __init
efx_init_module(void)
3666 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
3668 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
3672 #ifdef CONFIG_SFC_SRIOV
3673 rc
= efx_init_sriov();
3678 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3679 if (!reset_workqueue
) {
3684 rc
= pci_register_driver(&efx_pci_driver
);
3691 destroy_workqueue(reset_workqueue
);
3693 #ifdef CONFIG_SFC_SRIOV
3697 unregister_netdevice_notifier(&efx_netdev_notifier
);
3702 static void __exit
efx_exit_module(void)
3704 printk(KERN_INFO
"Solarflare NET driver unloading\n");
3706 pci_unregister_driver(&efx_pci_driver
);
3707 destroy_workqueue(reset_workqueue
);
3708 #ifdef CONFIG_SFC_SRIOV
3711 unregister_netdevice_notifier(&efx_netdev_notifier
);
3715 module_init(efx_init_module
);
3716 module_exit(efx_exit_module
);
3718 MODULE_AUTHOR("Solarflare Communications and "
3719 "Michael Brown <mbrown@fensystems.co.uk>");
3720 MODULE_DESCRIPTION("Solarflare network driver");
3721 MODULE_LICENSE("GPL");
3722 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);
3723 MODULE_VERSION(EFX_DRIVER_VERSION
);