1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
30 #include "workarounds.h"
32 /**************************************************************************
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int ef4_loopback_mode_max
= LOOPBACK_MAX
;
41 const char *const ef4_loopback_mode_names
[] = {
42 [LOOPBACK_NONE
] = "NONE",
43 [LOOPBACK_DATA
] = "DATAPATH",
44 [LOOPBACK_GMAC
] = "GMAC",
45 [LOOPBACK_XGMII
] = "XGMII",
46 [LOOPBACK_XGXS
] = "XGXS",
47 [LOOPBACK_XAUI
] = "XAUI",
48 [LOOPBACK_GMII
] = "GMII",
49 [LOOPBACK_SGMII
] = "SGMII",
50 [LOOPBACK_XGBR
] = "XGBR",
51 [LOOPBACK_XFI
] = "XFI",
52 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
56 [LOOPBACK_GPHY
] = "GPHY",
57 [LOOPBACK_PHYXS
] = "PHYXS",
58 [LOOPBACK_PCS
] = "PCS",
59 [LOOPBACK_PMAPMD
] = "PMA/PMD",
60 [LOOPBACK_XPORT
] = "XPORT",
61 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS
] = "GMII_WS",
66 [LOOPBACK_XFI_WS
] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
71 const unsigned int ef4_reset_type_max
= RESET_TYPE_MAX
;
72 const char *const ef4_reset_type_names
[] = {
73 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
74 [RESET_TYPE_ALL
] = "ALL",
75 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
76 [RESET_TYPE_WORLD
] = "WORLD",
77 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
78 [RESET_TYPE_DATAPATH
] = "DATAPATH",
79 [RESET_TYPE_DISABLE
] = "DISABLE",
80 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
81 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
82 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
83 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
84 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
88 * queued onto this work queue. This is not a per-nic work queue, because
89 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 static struct workqueue_struct
*reset_workqueue
;
93 /* How often and how many times to poll for a reset while waiting for a
94 * BIST that another function started to complete.
96 #define BIST_WAIT_DELAY_MS 100
97 #define BIST_WAIT_DELAY_COUNT 100
99 /**************************************************************************
101 * Configurable values
103 *************************************************************************/
106 * Use separate channels for TX and RX events
108 * Set this to 1 to use separate channels for TX and RX. It allows us
109 * to control interrupt affinity separately for TX and RX.
111 * This is only used in MSI-X interrupt mode
113 bool ef4_separate_tx_channels
;
114 module_param(ef4_separate_tx_channels
, bool, 0444);
115 MODULE_PARM_DESC(ef4_separate_tx_channels
,
116 "Use separate channels for TX and RX");
118 /* This is the weight assigned to each of the (per-channel) virtual
121 static int napi_weight
= 64;
123 /* This is the time (in jiffies) between invocations of the hardware
125 * On Falcon-based NICs, this will:
126 * - Check the on-board hardware monitor;
127 * - Poll the link state and reconfigure the hardware as necessary.
128 * On Siena-based NICs for power systems with EEH support, this will give EEH a
131 static unsigned int ef4_monitor_interval
= 1 * HZ
;
133 /* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
136 * The default for RX should strike a balance between increasing the
137 * round-trip latency and reducing overhead.
139 static unsigned int rx_irq_mod_usec
= 60;
141 /* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
144 * This default is chosen to ensure that a 10G link does not go idle
145 * while a TX queue is stopped after it has become full. A queue is
146 * restarted when it drops below half full. The time this takes (assuming
147 * worst case 3 descriptors per packet and 1024 descriptors) is
148 * 512 / 3 * 1.2 = 205 usec.
150 static unsigned int tx_irq_mod_usec
= 150;
152 /* This is the first interrupt mode to try out of:
157 static unsigned int interrupt_mode
;
159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160 * i.e. the number of CPUs among which we may distribute simultaneous
161 * interrupt handling.
163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164 * The default (0) means to assign an interrupt to each core.
166 static unsigned int rss_cpus
;
167 module_param(rss_cpus
, uint
, 0444);
168 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
170 static bool phy_flash_cfg
;
171 module_param(phy_flash_cfg
, bool, 0644);
172 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
174 static unsigned irq_adapt_low_thresh
= 8000;
175 module_param(irq_adapt_low_thresh
, uint
, 0644);
176 MODULE_PARM_DESC(irq_adapt_low_thresh
,
177 "Threshold score for reducing IRQ moderation");
179 static unsigned irq_adapt_high_thresh
= 16000;
180 module_param(irq_adapt_high_thresh
, uint
, 0644);
181 MODULE_PARM_DESC(irq_adapt_high_thresh
,
182 "Threshold score for increasing IRQ moderation");
184 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
185 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
186 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
187 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
188 module_param(debug
, uint
, 0);
189 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
191 /**************************************************************************
193 * Utility functions and prototypes
195 *************************************************************************/
197 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
);
198 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
);
199 static void ef4_remove_channel(struct ef4_channel
*channel
);
200 static void ef4_remove_channels(struct ef4_nic
*efx
);
201 static const struct ef4_channel_type ef4_default_channel_type
;
202 static void ef4_remove_port(struct ef4_nic
*efx
);
203 static void ef4_init_napi_channel(struct ef4_channel
*channel
);
204 static void ef4_fini_napi(struct ef4_nic
*efx
);
205 static void ef4_fini_napi_channel(struct ef4_channel
*channel
);
206 static void ef4_fini_struct(struct ef4_nic
*efx
);
207 static void ef4_start_all(struct ef4_nic
*efx
);
208 static void ef4_stop_all(struct ef4_nic
*efx
);
210 #define EF4_ASSERT_RESET_SERIALISED(efx) \
212 if ((efx->state == STATE_READY) || \
213 (efx->state == STATE_RECOVERY) || \
214 (efx->state == STATE_DISABLED)) \
218 static int ef4_check_disabled(struct ef4_nic
*efx
)
220 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
221 netif_err(efx
, drv
, efx
->net_dev
,
222 "device is disabled due to earlier errors\n");
228 /**************************************************************************
230 * Event queue processing
232 *************************************************************************/
234 /* Process channel's event queue
236 * This function is responsible for processing the event queue of a
237 * single channel. The caller must guarantee that this function will
238 * never be concurrently called more than once on the same channel,
239 * though different channels may be being processed concurrently.
241 static int ef4_process_channel(struct ef4_channel
*channel
, int budget
)
243 struct ef4_tx_queue
*tx_queue
;
246 if (unlikely(!channel
->enabled
))
249 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
250 tx_queue
->pkts_compl
= 0;
251 tx_queue
->bytes_compl
= 0;
254 spent
= ef4_nic_process_eventq(channel
, budget
);
255 if (spent
&& ef4_channel_has_rx_queue(channel
)) {
256 struct ef4_rx_queue
*rx_queue
=
257 ef4_channel_get_rx_queue(channel
);
259 ef4_rx_flush_packet(channel
);
260 ef4_fast_push_rx_descriptors(rx_queue
, true);
264 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
265 if (tx_queue
->bytes_compl
) {
266 netdev_tx_completed_queue(tx_queue
->core_txq
,
267 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
276 * NAPI guarantees serialisation of polls of the same device, which
277 * provides the guarantee required by ef4_process_channel().
279 static void ef4_update_irq_mod(struct ef4_nic
*efx
, struct ef4_channel
*channel
)
281 int step
= efx
->irq_mod_step_us
;
283 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
284 if (channel
->irq_moderation_us
> step
) {
285 channel
->irq_moderation_us
-= step
;
286 efx
->type
->push_irq_moderation(channel
);
288 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
289 if (channel
->irq_moderation_us
<
290 efx
->irq_rx_moderation_us
) {
291 channel
->irq_moderation_us
+= step
;
292 efx
->type
->push_irq_moderation(channel
);
296 channel
->irq_count
= 0;
297 channel
->irq_mod_score
= 0;
300 static int ef4_poll(struct napi_struct
*napi
, int budget
)
302 struct ef4_channel
*channel
=
303 container_of(napi
, struct ef4_channel
, napi_str
);
304 struct ef4_nic
*efx
= channel
->efx
;
307 netif_vdbg(efx
, intr
, efx
->net_dev
,
308 "channel %d NAPI poll executing on CPU %d\n",
309 channel
->channel
, raw_smp_processor_id());
311 spent
= ef4_process_channel(channel
, budget
);
313 if (spent
< budget
) {
314 if (ef4_channel_has_rx_queue(channel
) &&
315 efx
->irq_rx_adaptive
&&
316 unlikely(++channel
->irq_count
== 1000)) {
317 ef4_update_irq_mod(efx
, channel
);
320 ef4_filter_rfs_expire(channel
);
322 /* There is no race here; although napi_disable() will
323 * only wait for napi_complete(), this isn't a problem
324 * since ef4_nic_eventq_read_ack() will have no effect if
325 * interrupts have already been disabled.
327 napi_complete_done(napi
, spent
);
328 ef4_nic_eventq_read_ack(channel
);
334 /* Create event queue
335 * Event queue memory allocations are done only once. If the channel
336 * is reset, the memory buffer will be reused; this guards against
337 * errors during channel reset and also simplifies interrupt handling.
339 static int ef4_probe_eventq(struct ef4_channel
*channel
)
341 struct ef4_nic
*efx
= channel
->efx
;
342 unsigned long entries
;
344 netif_dbg(efx
, probe
, efx
->net_dev
,
345 "chan %d create event queue\n", channel
->channel
);
347 /* Build an event queue with room for one event per tx and rx buffer,
348 * plus some extra for link state events and MCDI completions. */
349 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
350 EF4_BUG_ON_PARANOID(entries
> EF4_MAX_EVQ_SIZE
);
351 channel
->eventq_mask
= max(entries
, EF4_MIN_EVQ_SIZE
) - 1;
353 return ef4_nic_probe_eventq(channel
);
356 /* Prepare channel's event queue */
357 static int ef4_init_eventq(struct ef4_channel
*channel
)
359 struct ef4_nic
*efx
= channel
->efx
;
362 EF4_WARN_ON_PARANOID(channel
->eventq_init
);
364 netif_dbg(efx
, drv
, efx
->net_dev
,
365 "chan %d init event queue\n", channel
->channel
);
367 rc
= ef4_nic_init_eventq(channel
);
369 efx
->type
->push_irq_moderation(channel
);
370 channel
->eventq_read_ptr
= 0;
371 channel
->eventq_init
= true;
376 /* Enable event queue processing and NAPI */
377 void ef4_start_eventq(struct ef4_channel
*channel
)
379 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
380 "chan %d start event queue\n", channel
->channel
);
382 /* Make sure the NAPI handler sees the enabled flag set */
383 channel
->enabled
= true;
386 napi_enable(&channel
->napi_str
);
387 ef4_nic_eventq_read_ack(channel
);
390 /* Disable event queue processing and NAPI */
391 void ef4_stop_eventq(struct ef4_channel
*channel
)
393 if (!channel
->enabled
)
396 napi_disable(&channel
->napi_str
);
397 channel
->enabled
= false;
400 static void ef4_fini_eventq(struct ef4_channel
*channel
)
402 if (!channel
->eventq_init
)
405 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
406 "chan %d fini event queue\n", channel
->channel
);
408 ef4_nic_fini_eventq(channel
);
409 channel
->eventq_init
= false;
412 static void ef4_remove_eventq(struct ef4_channel
*channel
)
414 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
415 "chan %d remove event queue\n", channel
->channel
);
417 ef4_nic_remove_eventq(channel
);
420 /**************************************************************************
424 *************************************************************************/
426 /* Allocate and initialise a channel structure. */
427 static struct ef4_channel
*
428 ef4_alloc_channel(struct ef4_nic
*efx
, int i
, struct ef4_channel
*old_channel
)
430 struct ef4_channel
*channel
;
431 struct ef4_rx_queue
*rx_queue
;
432 struct ef4_tx_queue
*tx_queue
;
435 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
440 channel
->channel
= i
;
441 channel
->type
= &ef4_default_channel_type
;
443 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
444 tx_queue
= &channel
->tx_queue
[j
];
446 tx_queue
->queue
= i
* EF4_TXQ_TYPES
+ j
;
447 tx_queue
->channel
= channel
;
450 rx_queue
= &channel
->rx_queue
;
452 timer_setup(&rx_queue
->slow_fill
, ef4_rx_slow_fill
, 0);
457 /* Allocate and initialise a channel structure, copying parameters
458 * (but not resources) from an old channel structure.
460 static struct ef4_channel
*
461 ef4_copy_channel(const struct ef4_channel
*old_channel
)
463 struct ef4_channel
*channel
;
464 struct ef4_rx_queue
*rx_queue
;
465 struct ef4_tx_queue
*tx_queue
;
468 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
472 *channel
= *old_channel
;
474 channel
->napi_dev
= NULL
;
475 INIT_HLIST_NODE(&channel
->napi_str
.napi_hash_node
);
476 channel
->napi_str
.napi_id
= 0;
477 channel
->napi_str
.state
= 0;
478 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
480 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
481 tx_queue
= &channel
->tx_queue
[j
];
482 if (tx_queue
->channel
)
483 tx_queue
->channel
= channel
;
484 tx_queue
->buffer
= NULL
;
485 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
488 rx_queue
= &channel
->rx_queue
;
489 rx_queue
->buffer
= NULL
;
490 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
491 timer_setup(&rx_queue
->slow_fill
, ef4_rx_slow_fill
, 0);
496 static int ef4_probe_channel(struct ef4_channel
*channel
)
498 struct ef4_tx_queue
*tx_queue
;
499 struct ef4_rx_queue
*rx_queue
;
502 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
503 "creating channel %d\n", channel
->channel
);
505 rc
= channel
->type
->pre_probe(channel
);
509 rc
= ef4_probe_eventq(channel
);
513 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
514 rc
= ef4_probe_tx_queue(tx_queue
);
519 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
520 rc
= ef4_probe_rx_queue(rx_queue
);
528 ef4_remove_channel(channel
);
533 ef4_get_channel_name(struct ef4_channel
*channel
, char *buf
, size_t len
)
535 struct ef4_nic
*efx
= channel
->efx
;
539 number
= channel
->channel
;
540 if (efx
->tx_channel_offset
== 0) {
542 } else if (channel
->channel
< efx
->tx_channel_offset
) {
546 number
-= efx
->tx_channel_offset
;
548 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
551 static void ef4_set_channel_names(struct ef4_nic
*efx
)
553 struct ef4_channel
*channel
;
555 ef4_for_each_channel(channel
, efx
)
556 channel
->type
->get_name(channel
,
557 efx
->msi_context
[channel
->channel
].name
,
558 sizeof(efx
->msi_context
[0].name
));
561 static int ef4_probe_channels(struct ef4_nic
*efx
)
563 struct ef4_channel
*channel
;
566 /* Restart special buffer allocation */
567 efx
->next_buffer_table
= 0;
569 /* Probe channels in reverse, so that any 'extra' channels
570 * use the start of the buffer table. This allows the traffic
571 * channels to be resized without moving them or wasting the
572 * entries before them.
574 ef4_for_each_channel_rev(channel
, efx
) {
575 rc
= ef4_probe_channel(channel
);
577 netif_err(efx
, probe
, efx
->net_dev
,
578 "failed to create channel %d\n",
583 ef4_set_channel_names(efx
);
588 ef4_remove_channels(efx
);
592 /* Channels are shutdown and reinitialised whilst the NIC is running
593 * to propagate configuration changes (mtu, checksum offload), or
594 * to clear hardware error conditions
596 static void ef4_start_datapath(struct ef4_nic
*efx
)
598 netdev_features_t old_features
= efx
->net_dev
->features
;
599 bool old_rx_scatter
= efx
->rx_scatter
;
600 struct ef4_tx_queue
*tx_queue
;
601 struct ef4_rx_queue
*rx_queue
;
602 struct ef4_channel
*channel
;
605 /* Calculate the rx buffer allocation parameters required to
606 * support the current MTU, including padding for header
607 * alignment and overruns.
609 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
610 EF4_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
611 efx
->type
->rx_buffer_padding
);
612 rx_buf_len
= (sizeof(struct ef4_rx_page_state
) +
613 efx
->rx_ip_align
+ efx
->rx_dma_len
);
614 if (rx_buf_len
<= PAGE_SIZE
) {
615 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
616 efx
->rx_buffer_order
= 0;
617 } else if (efx
->type
->can_rx_scatter
) {
618 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
619 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state
) +
620 2 * ALIGN(NET_IP_ALIGN
+ EF4_RX_USR_BUF_SIZE
,
621 EF4_RX_BUF_ALIGNMENT
) >
623 efx
->rx_scatter
= true;
624 efx
->rx_dma_len
= EF4_RX_USR_BUF_SIZE
;
625 efx
->rx_buffer_order
= 0;
627 efx
->rx_scatter
= false;
628 efx
->rx_buffer_order
= get_order(rx_buf_len
);
631 ef4_rx_config_page_split(efx
);
632 if (efx
->rx_buffer_order
)
633 netif_dbg(efx
, drv
, efx
->net_dev
,
634 "RX buf len=%u; page order=%u batch=%u\n",
635 efx
->rx_dma_len
, efx
->rx_buffer_order
,
636 efx
->rx_pages_per_batch
);
638 netif_dbg(efx
, drv
, efx
->net_dev
,
639 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
640 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
641 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
643 /* Restore previously fixed features in hw_features and remove
644 * features which are fixed now
646 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
647 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
648 efx
->net_dev
->features
|= efx
->fixed_features
;
649 if (efx
->net_dev
->features
!= old_features
)
650 netdev_features_change(efx
->net_dev
);
652 /* RX filters may also have scatter-enabled flags */
653 if (efx
->rx_scatter
!= old_rx_scatter
)
654 efx
->type
->filter_update_rx_scatter(efx
);
656 /* We must keep at least one descriptor in a TX ring empty.
657 * We could avoid this when the queue size does not exactly
658 * match the hardware ring size, but it's not that important.
659 * Therefore we stop the queue when one more skb might fill
660 * the ring completely. We wake it when half way back to
663 efx
->txq_stop_thresh
= efx
->txq_entries
- ef4_tx_max_skb_descs(efx
);
664 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
666 /* Initialise the channels */
667 ef4_for_each_channel(channel
, efx
) {
668 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
669 ef4_init_tx_queue(tx_queue
);
670 atomic_inc(&efx
->active_queues
);
673 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
674 ef4_init_rx_queue(rx_queue
);
675 atomic_inc(&efx
->active_queues
);
676 ef4_stop_eventq(channel
);
677 ef4_fast_push_rx_descriptors(rx_queue
, false);
678 ef4_start_eventq(channel
);
681 WARN_ON(channel
->rx_pkt_n_frags
);
684 if (netif_device_present(efx
->net_dev
))
685 netif_tx_wake_all_queues(efx
->net_dev
);
688 static void ef4_stop_datapath(struct ef4_nic
*efx
)
690 struct ef4_channel
*channel
;
691 struct ef4_tx_queue
*tx_queue
;
692 struct ef4_rx_queue
*rx_queue
;
695 EF4_ASSERT_RESET_SERIALISED(efx
);
696 BUG_ON(efx
->port_enabled
);
699 ef4_for_each_channel(channel
, efx
) {
700 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
701 rx_queue
->refill_enabled
= false;
704 ef4_for_each_channel(channel
, efx
) {
705 /* RX packet processing is pipelined, so wait for the
706 * NAPI handler to complete. At least event queue 0
707 * might be kept active by non-data events, so don't
708 * use napi_synchronize() but actually disable NAPI
711 if (ef4_channel_has_rx_queue(channel
)) {
712 ef4_stop_eventq(channel
);
713 ef4_start_eventq(channel
);
717 rc
= efx
->type
->fini_dmaq(efx
);
718 if (rc
&& EF4_WORKAROUND_7803(efx
)) {
719 /* Schedule a reset to recover from the flush failure. The
720 * descriptor caches reference memory we're about to free,
721 * but falcon_reconfigure_mac_wrapper() won't reconnect
722 * the MACs because of the pending reset.
724 netif_err(efx
, drv
, efx
->net_dev
,
725 "Resetting to recover from flush failure\n");
726 ef4_schedule_reset(efx
, RESET_TYPE_ALL
);
728 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
730 netif_dbg(efx
, drv
, efx
->net_dev
,
731 "successfully flushed all queues\n");
734 ef4_for_each_channel(channel
, efx
) {
735 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
736 ef4_fini_rx_queue(rx_queue
);
737 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
738 ef4_fini_tx_queue(tx_queue
);
742 static void ef4_remove_channel(struct ef4_channel
*channel
)
744 struct ef4_tx_queue
*tx_queue
;
745 struct ef4_rx_queue
*rx_queue
;
747 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
748 "destroy chan %d\n", channel
->channel
);
750 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
751 ef4_remove_rx_queue(rx_queue
);
752 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
753 ef4_remove_tx_queue(tx_queue
);
754 ef4_remove_eventq(channel
);
755 channel
->type
->post_remove(channel
);
758 static void ef4_remove_channels(struct ef4_nic
*efx
)
760 struct ef4_channel
*channel
;
762 ef4_for_each_channel(channel
, efx
)
763 ef4_remove_channel(channel
);
767 ef4_realloc_channels(struct ef4_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
769 struct ef4_channel
*other_channel
[EF4_MAX_CHANNELS
], *channel
;
770 u32 old_rxq_entries
, old_txq_entries
;
771 unsigned i
, next_buffer_table
= 0;
774 rc
= ef4_check_disabled(efx
);
778 /* Not all channels should be reallocated. We must avoid
779 * reallocating their buffer table entries.
781 ef4_for_each_channel(channel
, efx
) {
782 struct ef4_rx_queue
*rx_queue
;
783 struct ef4_tx_queue
*tx_queue
;
785 if (channel
->type
->copy
)
787 next_buffer_table
= max(next_buffer_table
,
788 channel
->eventq
.index
+
789 channel
->eventq
.entries
);
790 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
791 next_buffer_table
= max(next_buffer_table
,
792 rx_queue
->rxd
.index
+
793 rx_queue
->rxd
.entries
);
794 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
795 next_buffer_table
= max(next_buffer_table
,
796 tx_queue
->txd
.index
+
797 tx_queue
->txd
.entries
);
800 ef4_device_detach_sync(efx
);
802 ef4_soft_disable_interrupts(efx
);
804 /* Clone channels (where possible) */
805 memset(other_channel
, 0, sizeof(other_channel
));
806 for (i
= 0; i
< efx
->n_channels
; i
++) {
807 channel
= efx
->channel
[i
];
808 if (channel
->type
->copy
)
809 channel
= channel
->type
->copy(channel
);
814 other_channel
[i
] = channel
;
817 /* Swap entry counts and channel pointers */
818 old_rxq_entries
= efx
->rxq_entries
;
819 old_txq_entries
= efx
->txq_entries
;
820 efx
->rxq_entries
= rxq_entries
;
821 efx
->txq_entries
= txq_entries
;
822 for (i
= 0; i
< efx
->n_channels
; i
++) {
823 channel
= efx
->channel
[i
];
824 efx
->channel
[i
] = other_channel
[i
];
825 other_channel
[i
] = channel
;
828 /* Restart buffer table allocation */
829 efx
->next_buffer_table
= next_buffer_table
;
831 for (i
= 0; i
< efx
->n_channels
; i
++) {
832 channel
= efx
->channel
[i
];
833 if (!channel
->type
->copy
)
835 rc
= ef4_probe_channel(channel
);
838 ef4_init_napi_channel(efx
->channel
[i
]);
842 /* Destroy unused channel structures */
843 for (i
= 0; i
< efx
->n_channels
; i
++) {
844 channel
= other_channel
[i
];
845 if (channel
&& channel
->type
->copy
) {
846 ef4_fini_napi_channel(channel
);
847 ef4_remove_channel(channel
);
852 rc2
= ef4_soft_enable_interrupts(efx
);
855 netif_err(efx
, drv
, efx
->net_dev
,
856 "unable to restart interrupts on channel reallocation\n");
857 ef4_schedule_reset(efx
, RESET_TYPE_DISABLE
);
860 netif_device_attach(efx
->net_dev
);
866 efx
->rxq_entries
= old_rxq_entries
;
867 efx
->txq_entries
= old_txq_entries
;
868 for (i
= 0; i
< efx
->n_channels
; i
++) {
869 channel
= efx
->channel
[i
];
870 efx
->channel
[i
] = other_channel
[i
];
871 other_channel
[i
] = channel
;
876 void ef4_schedule_slow_fill(struct ef4_rx_queue
*rx_queue
)
878 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
881 static const struct ef4_channel_type ef4_default_channel_type
= {
882 .pre_probe
= ef4_channel_dummy_op_int
,
883 .post_remove
= ef4_channel_dummy_op_void
,
884 .get_name
= ef4_get_channel_name
,
885 .copy
= ef4_copy_channel
,
886 .keep_eventq
= false,
889 int ef4_channel_dummy_op_int(struct ef4_channel
*channel
)
894 void ef4_channel_dummy_op_void(struct ef4_channel
*channel
)
898 /**************************************************************************
902 **************************************************************************/
904 /* This ensures that the kernel is kept informed (via
905 * netif_carrier_on/off) of the link status, and also maintains the
906 * link status's stop on the port's TX queue.
908 void ef4_link_status_changed(struct ef4_nic
*efx
)
910 struct ef4_link_state
*link_state
= &efx
->link_state
;
912 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
913 * that no events are triggered between unregister_netdev() and the
914 * driver unloading. A more general condition is that NETDEV_CHANGE
915 * can only be generated between NETDEV_UP and NETDEV_DOWN */
916 if (!netif_running(efx
->net_dev
))
919 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
920 efx
->n_link_state_changes
++;
923 netif_carrier_on(efx
->net_dev
);
925 netif_carrier_off(efx
->net_dev
);
928 /* Status message for kernel log */
930 netif_info(efx
, link
, efx
->net_dev
,
931 "link up at %uMbps %s-duplex (MTU %d)\n",
932 link_state
->speed
, link_state
->fd
? "full" : "half",
935 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
938 void ef4_link_set_advertising(struct ef4_nic
*efx
, u32 advertising
)
940 efx
->link_advertising
= advertising
;
942 if (advertising
& ADVERTISED_Pause
)
943 efx
->wanted_fc
|= (EF4_FC_TX
| EF4_FC_RX
);
945 efx
->wanted_fc
&= ~(EF4_FC_TX
| EF4_FC_RX
);
946 if (advertising
& ADVERTISED_Asym_Pause
)
947 efx
->wanted_fc
^= EF4_FC_TX
;
951 void ef4_link_set_wanted_fc(struct ef4_nic
*efx
, u8 wanted_fc
)
953 efx
->wanted_fc
= wanted_fc
;
954 if (efx
->link_advertising
) {
955 if (wanted_fc
& EF4_FC_RX
)
956 efx
->link_advertising
|= (ADVERTISED_Pause
|
957 ADVERTISED_Asym_Pause
);
959 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
960 ADVERTISED_Asym_Pause
);
961 if (wanted_fc
& EF4_FC_TX
)
962 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
966 static void ef4_fini_port(struct ef4_nic
*efx
);
968 /* We assume that efx->type->reconfigure_mac will always try to sync RX
969 * filters and therefore needs to read-lock the filter table against freeing
971 void ef4_mac_reconfigure(struct ef4_nic
*efx
)
973 down_read(&efx
->filter_sem
);
974 efx
->type
->reconfigure_mac(efx
);
975 up_read(&efx
->filter_sem
);
978 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
979 * the MAC appropriately. All other PHY configuration changes are pushed
980 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
981 * through ef4_monitor().
983 * Callers must hold the mac_lock
985 int __ef4_reconfigure_port(struct ef4_nic
*efx
)
987 enum ef4_phy_mode phy_mode
;
990 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
992 /* Disable PHY transmit in mac level loopbacks */
993 phy_mode
= efx
->phy_mode
;
994 if (LOOPBACK_INTERNAL(efx
))
995 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
997 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
999 rc
= efx
->type
->reconfigure_port(efx
);
1002 efx
->phy_mode
= phy_mode
;
1007 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1009 int ef4_reconfigure_port(struct ef4_nic
*efx
)
1013 EF4_ASSERT_RESET_SERIALISED(efx
);
1015 mutex_lock(&efx
->mac_lock
);
1016 rc
= __ef4_reconfigure_port(efx
);
1017 mutex_unlock(&efx
->mac_lock
);
1022 /* Asynchronous work item for changing MAC promiscuity and multicast
1023 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1025 static void ef4_mac_work(struct work_struct
*data
)
1027 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, mac_work
);
1029 mutex_lock(&efx
->mac_lock
);
1030 if (efx
->port_enabled
)
1031 ef4_mac_reconfigure(efx
);
1032 mutex_unlock(&efx
->mac_lock
);
1035 static int ef4_probe_port(struct ef4_nic
*efx
)
1039 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1042 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1044 /* Connect up MAC/PHY operations table */
1045 rc
= efx
->type
->probe_port(efx
);
1049 /* Initialise MAC address to permanent address */
1050 ether_addr_copy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
);
1055 static int ef4_init_port(struct ef4_nic
*efx
)
1059 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1061 mutex_lock(&efx
->mac_lock
);
1063 rc
= efx
->phy_op
->init(efx
);
1067 efx
->port_initialized
= true;
1069 /* Reconfigure the MAC before creating dma queues (required for
1070 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1071 ef4_mac_reconfigure(efx
);
1073 /* Ensure the PHY advertises the correct flow control settings */
1074 rc
= efx
->phy_op
->reconfigure(efx
);
1075 if (rc
&& rc
!= -EPERM
)
1078 mutex_unlock(&efx
->mac_lock
);
1082 efx
->phy_op
->fini(efx
);
1084 mutex_unlock(&efx
->mac_lock
);
1088 static void ef4_start_port(struct ef4_nic
*efx
)
1090 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1091 BUG_ON(efx
->port_enabled
);
1093 mutex_lock(&efx
->mac_lock
);
1094 efx
->port_enabled
= true;
1096 /* Ensure MAC ingress/egress is enabled */
1097 ef4_mac_reconfigure(efx
);
1099 mutex_unlock(&efx
->mac_lock
);
1102 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1103 * and the async self-test, wait for them to finish and prevent them
1104 * being scheduled again. This doesn't cover online resets, which
1105 * should only be cancelled when removing the device.
1107 static void ef4_stop_port(struct ef4_nic
*efx
)
1109 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1111 EF4_ASSERT_RESET_SERIALISED(efx
);
1113 mutex_lock(&efx
->mac_lock
);
1114 efx
->port_enabled
= false;
1115 mutex_unlock(&efx
->mac_lock
);
1117 /* Serialise against ef4_set_multicast_list() */
1118 netif_addr_lock_bh(efx
->net_dev
);
1119 netif_addr_unlock_bh(efx
->net_dev
);
1121 cancel_delayed_work_sync(&efx
->monitor_work
);
1122 ef4_selftest_async_cancel(efx
);
1123 cancel_work_sync(&efx
->mac_work
);
1126 static void ef4_fini_port(struct ef4_nic
*efx
)
1128 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1130 if (!efx
->port_initialized
)
1133 efx
->phy_op
->fini(efx
);
1134 efx
->port_initialized
= false;
1136 efx
->link_state
.up
= false;
1137 ef4_link_status_changed(efx
);
1140 static void ef4_remove_port(struct ef4_nic
*efx
)
1142 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1144 efx
->type
->remove_port(efx
);
1147 /**************************************************************************
1151 **************************************************************************/
1153 static LIST_HEAD(ef4_primary_list
);
1154 static LIST_HEAD(ef4_unassociated_list
);
1156 static bool ef4_same_controller(struct ef4_nic
*left
, struct ef4_nic
*right
)
1158 return left
->type
== right
->type
&&
1159 left
->vpd_sn
&& right
->vpd_sn
&&
1160 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1163 static void ef4_associate(struct ef4_nic
*efx
)
1165 struct ef4_nic
*other
, *next
;
1167 if (efx
->primary
== efx
) {
1168 /* Adding primary function; look for secondaries */
1170 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1171 list_add_tail(&efx
->node
, &ef4_primary_list
);
1173 list_for_each_entry_safe(other
, next
, &ef4_unassociated_list
,
1175 if (ef4_same_controller(efx
, other
)) {
1176 list_del(&other
->node
);
1177 netif_dbg(other
, probe
, other
->net_dev
,
1178 "moving to secondary list of %s %s\n",
1179 pci_name(efx
->pci_dev
),
1180 efx
->net_dev
->name
);
1181 list_add_tail(&other
->node
,
1182 &efx
->secondary_list
);
1183 other
->primary
= efx
;
1187 /* Adding secondary function; look for primary */
1189 list_for_each_entry(other
, &ef4_primary_list
, node
) {
1190 if (ef4_same_controller(efx
, other
)) {
1191 netif_dbg(efx
, probe
, efx
->net_dev
,
1192 "adding to secondary list of %s %s\n",
1193 pci_name(other
->pci_dev
),
1194 other
->net_dev
->name
);
1195 list_add_tail(&efx
->node
,
1196 &other
->secondary_list
);
1197 efx
->primary
= other
;
1202 netif_dbg(efx
, probe
, efx
->net_dev
,
1203 "adding to unassociated list\n");
1204 list_add_tail(&efx
->node
, &ef4_unassociated_list
);
1208 static void ef4_dissociate(struct ef4_nic
*efx
)
1210 struct ef4_nic
*other
, *next
;
1212 list_del(&efx
->node
);
1213 efx
->primary
= NULL
;
1215 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1216 list_del(&other
->node
);
1217 netif_dbg(other
, probe
, other
->net_dev
,
1218 "moving to unassociated list\n");
1219 list_add_tail(&other
->node
, &ef4_unassociated_list
);
1220 other
->primary
= NULL
;
1224 /* This configures the PCI device to enable I/O and DMA. */
1225 static int ef4_init_io(struct ef4_nic
*efx
)
1227 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1228 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1229 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1232 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1234 bar
= efx
->type
->mem_bar
;
1236 rc
= pci_enable_device(pci_dev
);
1238 netif_err(efx
, probe
, efx
->net_dev
,
1239 "failed to enable PCI device\n");
1243 pci_set_master(pci_dev
);
1245 /* Set the PCI DMA mask. Try all possibilities from our
1246 * genuine mask down to 32 bits, because some architectures
1247 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1248 * masks event though they reject 46 bit masks.
1250 while (dma_mask
> 0x7fffffffUL
) {
1251 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1257 netif_err(efx
, probe
, efx
->net_dev
,
1258 "could not find a suitable DMA mask\n");
1261 netif_dbg(efx
, probe
, efx
->net_dev
,
1262 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1264 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1265 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1267 netif_err(efx
, probe
, efx
->net_dev
,
1268 "request for memory BAR failed\n");
1272 efx
->membase
= ioremap_nocache(efx
->membase_phys
, mem_map_size
);
1273 if (!efx
->membase
) {
1274 netif_err(efx
, probe
, efx
->net_dev
,
1275 "could not map memory BAR at %llx+%x\n",
1276 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1280 netif_dbg(efx
, probe
, efx
->net_dev
,
1281 "memory BAR at %llx+%x (virtual %p)\n",
1282 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1288 pci_release_region(efx
->pci_dev
, bar
);
1290 efx
->membase_phys
= 0;
1292 pci_disable_device(efx
->pci_dev
);
1297 static void ef4_fini_io(struct ef4_nic
*efx
)
1301 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1304 iounmap(efx
->membase
);
1305 efx
->membase
= NULL
;
1308 if (efx
->membase_phys
) {
1309 bar
= efx
->type
->mem_bar
;
1310 pci_release_region(efx
->pci_dev
, bar
);
1311 efx
->membase_phys
= 0;
1314 /* Don't disable bus-mastering if VFs are assigned */
1315 if (!pci_vfs_assigned(efx
->pci_dev
))
1316 pci_disable_device(efx
->pci_dev
);
1319 void ef4_set_default_rx_indir_table(struct ef4_nic
*efx
)
1323 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1324 efx
->rx_indir_table
[i
] =
1325 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1328 static unsigned int ef4_wanted_parallelism(struct ef4_nic
*efx
)
1330 cpumask_var_t thread_mask
;
1337 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1338 netif_warn(efx
, probe
, efx
->net_dev
,
1339 "RSS disabled due to allocation failure\n");
1344 for_each_online_cpu(cpu
) {
1345 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1347 cpumask_or(thread_mask
, thread_mask
,
1348 topology_sibling_cpumask(cpu
));
1352 free_cpumask_var(thread_mask
);
1355 if (count
> EF4_MAX_RX_QUEUES
) {
1356 netif_cond_dbg(efx
, probe
, efx
->net_dev
, !rss_cpus
, warn
,
1357 "Reducing number of rx queues from %u to %u.\n",
1358 count
, EF4_MAX_RX_QUEUES
);
1359 count
= EF4_MAX_RX_QUEUES
;
1365 /* Probe the number and type of interrupts we are able to obtain, and
1366 * the resulting numbers of channels and RX queues.
1368 static int ef4_probe_interrupts(struct ef4_nic
*efx
)
1370 unsigned int extra_channels
= 0;
1374 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++)
1375 if (efx
->extra_channel_type
[i
])
1378 if (efx
->interrupt_mode
== EF4_INT_MODE_MSIX
) {
1379 struct msix_entry xentries
[EF4_MAX_CHANNELS
];
1380 unsigned int n_channels
;
1382 n_channels
= ef4_wanted_parallelism(efx
);
1383 if (ef4_separate_tx_channels
)
1385 n_channels
+= extra_channels
;
1386 n_channels
= min(n_channels
, efx
->max_channels
);
1388 for (i
= 0; i
< n_channels
; i
++)
1389 xentries
[i
].entry
= i
;
1390 rc
= pci_enable_msix_range(efx
->pci_dev
,
1391 xentries
, 1, n_channels
);
1393 /* Fall back to single channel MSI */
1394 efx
->interrupt_mode
= EF4_INT_MODE_MSI
;
1395 netif_err(efx
, drv
, efx
->net_dev
,
1396 "could not enable MSI-X\n");
1397 } else if (rc
< n_channels
) {
1398 netif_err(efx
, drv
, efx
->net_dev
,
1399 "WARNING: Insufficient MSI-X vectors"
1400 " available (%d < %u).\n", rc
, n_channels
);
1401 netif_err(efx
, drv
, efx
->net_dev
,
1402 "WARNING: Performance may be reduced.\n");
1407 efx
->n_channels
= n_channels
;
1408 if (n_channels
> extra_channels
)
1409 n_channels
-= extra_channels
;
1410 if (ef4_separate_tx_channels
) {
1411 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1413 efx
->max_tx_channels
);
1414 efx
->n_rx_channels
= max(n_channels
-
1418 efx
->n_tx_channels
= min(n_channels
,
1419 efx
->max_tx_channels
);
1420 efx
->n_rx_channels
= n_channels
;
1422 for (i
= 0; i
< efx
->n_channels
; i
++)
1423 ef4_get_channel(efx
, i
)->irq
=
1428 /* Try single interrupt MSI */
1429 if (efx
->interrupt_mode
== EF4_INT_MODE_MSI
) {
1430 efx
->n_channels
= 1;
1431 efx
->n_rx_channels
= 1;
1432 efx
->n_tx_channels
= 1;
1433 rc
= pci_enable_msi(efx
->pci_dev
);
1435 ef4_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1437 netif_err(efx
, drv
, efx
->net_dev
,
1438 "could not enable MSI\n");
1439 efx
->interrupt_mode
= EF4_INT_MODE_LEGACY
;
1443 /* Assume legacy interrupts */
1444 if (efx
->interrupt_mode
== EF4_INT_MODE_LEGACY
) {
1445 efx
->n_channels
= 1 + (ef4_separate_tx_channels
? 1 : 0);
1446 efx
->n_rx_channels
= 1;
1447 efx
->n_tx_channels
= 1;
1448 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1451 /* Assign extra channels if possible */
1452 j
= efx
->n_channels
;
1453 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++) {
1454 if (!efx
->extra_channel_type
[i
])
1456 if (efx
->interrupt_mode
!= EF4_INT_MODE_MSIX
||
1457 efx
->n_channels
<= extra_channels
) {
1458 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1461 ef4_get_channel(efx
, j
)->type
=
1462 efx
->extra_channel_type
[i
];
1466 efx
->rss_spread
= efx
->n_rx_channels
;
1471 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
)
1473 struct ef4_channel
*channel
, *end_channel
;
1476 BUG_ON(efx
->state
== STATE_DISABLED
);
1478 efx
->irq_soft_enabled
= true;
1481 ef4_for_each_channel(channel
, efx
) {
1482 if (!channel
->type
->keep_eventq
) {
1483 rc
= ef4_init_eventq(channel
);
1487 ef4_start_eventq(channel
);
1492 end_channel
= channel
;
1493 ef4_for_each_channel(channel
, efx
) {
1494 if (channel
== end_channel
)
1496 ef4_stop_eventq(channel
);
1497 if (!channel
->type
->keep_eventq
)
1498 ef4_fini_eventq(channel
);
1504 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
)
1506 struct ef4_channel
*channel
;
1508 if (efx
->state
== STATE_DISABLED
)
1511 efx
->irq_soft_enabled
= false;
1514 if (efx
->legacy_irq
)
1515 synchronize_irq(efx
->legacy_irq
);
1517 ef4_for_each_channel(channel
, efx
) {
1519 synchronize_irq(channel
->irq
);
1521 ef4_stop_eventq(channel
);
1522 if (!channel
->type
->keep_eventq
)
1523 ef4_fini_eventq(channel
);
1527 static int ef4_enable_interrupts(struct ef4_nic
*efx
)
1529 struct ef4_channel
*channel
, *end_channel
;
1532 BUG_ON(efx
->state
== STATE_DISABLED
);
1534 if (efx
->eeh_disabled_legacy_irq
) {
1535 enable_irq(efx
->legacy_irq
);
1536 efx
->eeh_disabled_legacy_irq
= false;
1539 efx
->type
->irq_enable_master(efx
);
1541 ef4_for_each_channel(channel
, efx
) {
1542 if (channel
->type
->keep_eventq
) {
1543 rc
= ef4_init_eventq(channel
);
1549 rc
= ef4_soft_enable_interrupts(efx
);
1556 end_channel
= channel
;
1557 ef4_for_each_channel(channel
, efx
) {
1558 if (channel
== end_channel
)
1560 if (channel
->type
->keep_eventq
)
1561 ef4_fini_eventq(channel
);
1564 efx
->type
->irq_disable_non_ev(efx
);
1569 static void ef4_disable_interrupts(struct ef4_nic
*efx
)
1571 struct ef4_channel
*channel
;
1573 ef4_soft_disable_interrupts(efx
);
1575 ef4_for_each_channel(channel
, efx
) {
1576 if (channel
->type
->keep_eventq
)
1577 ef4_fini_eventq(channel
);
1580 efx
->type
->irq_disable_non_ev(efx
);
1583 static void ef4_remove_interrupts(struct ef4_nic
*efx
)
1585 struct ef4_channel
*channel
;
1587 /* Remove MSI/MSI-X interrupts */
1588 ef4_for_each_channel(channel
, efx
)
1590 pci_disable_msi(efx
->pci_dev
);
1591 pci_disable_msix(efx
->pci_dev
);
1593 /* Remove legacy interrupt */
1594 efx
->legacy_irq
= 0;
1597 static void ef4_set_channels(struct ef4_nic
*efx
)
1599 struct ef4_channel
*channel
;
1600 struct ef4_tx_queue
*tx_queue
;
1602 efx
->tx_channel_offset
=
1603 ef4_separate_tx_channels
?
1604 efx
->n_channels
- efx
->n_tx_channels
: 0;
1606 /* We need to mark which channels really have RX and TX
1607 * queues, and adjust the TX queue numbers if we have separate
1608 * RX-only and TX-only channels.
1610 ef4_for_each_channel(channel
, efx
) {
1611 if (channel
->channel
< efx
->n_rx_channels
)
1612 channel
->rx_queue
.core_index
= channel
->channel
;
1614 channel
->rx_queue
.core_index
= -1;
1616 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
1617 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1622 static int ef4_probe_nic(struct ef4_nic
*efx
)
1626 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1628 /* Carry out hardware-type specific initialisation */
1629 rc
= efx
->type
->probe(efx
);
1634 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1635 netif_err(efx
, drv
, efx
->net_dev
,
1636 "Insufficient resources to allocate"
1642 /* Determine the number of channels and queues by trying
1643 * to hook in MSI-X interrupts.
1645 rc
= ef4_probe_interrupts(efx
);
1649 ef4_set_channels(efx
);
1651 /* dimension_resources can fail with EAGAIN */
1652 rc
= efx
->type
->dimension_resources(efx
);
1653 if (rc
!= 0 && rc
!= -EAGAIN
)
1657 /* try again with new max_channels */
1658 ef4_remove_interrupts(efx
);
1660 } while (rc
== -EAGAIN
);
1662 if (efx
->n_channels
> 1)
1663 netdev_rss_key_fill(&efx
->rx_hash_key
,
1664 sizeof(efx
->rx_hash_key
));
1665 ef4_set_default_rx_indir_table(efx
);
1667 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1668 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1670 /* Initialise the interrupt moderation settings */
1671 efx
->irq_mod_step_us
= DIV_ROUND_UP(efx
->timer_quantum_ns
, 1000);
1672 ef4_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1678 ef4_remove_interrupts(efx
);
1680 efx
->type
->remove(efx
);
1684 static void ef4_remove_nic(struct ef4_nic
*efx
)
1686 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1688 ef4_remove_interrupts(efx
);
1689 efx
->type
->remove(efx
);
1692 static int ef4_probe_filters(struct ef4_nic
*efx
)
1696 spin_lock_init(&efx
->filter_lock
);
1697 init_rwsem(&efx
->filter_sem
);
1698 mutex_lock(&efx
->mac_lock
);
1699 down_write(&efx
->filter_sem
);
1700 rc
= efx
->type
->filter_table_probe(efx
);
1704 #ifdef CONFIG_RFS_ACCEL
1705 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1706 struct ef4_channel
*channel
;
1709 ef4_for_each_channel(channel
, efx
) {
1710 channel
->rps_flow_id
=
1711 kcalloc(efx
->type
->max_rx_ip_filters
,
1712 sizeof(*channel
->rps_flow_id
),
1714 if (!channel
->rps_flow_id
)
1718 i
< efx
->type
->max_rx_ip_filters
;
1720 channel
->rps_flow_id
[i
] =
1721 RPS_FLOW_ID_INVALID
;
1725 ef4_for_each_channel(channel
, efx
)
1726 kfree(channel
->rps_flow_id
);
1727 efx
->type
->filter_table_remove(efx
);
1732 efx
->rps_expire_index
= efx
->rps_expire_channel
= 0;
1736 up_write(&efx
->filter_sem
);
1737 mutex_unlock(&efx
->mac_lock
);
1741 static void ef4_remove_filters(struct ef4_nic
*efx
)
1743 #ifdef CONFIG_RFS_ACCEL
1744 struct ef4_channel
*channel
;
1746 ef4_for_each_channel(channel
, efx
)
1747 kfree(channel
->rps_flow_id
);
1749 down_write(&efx
->filter_sem
);
1750 efx
->type
->filter_table_remove(efx
);
1751 up_write(&efx
->filter_sem
);
1754 static void ef4_restore_filters(struct ef4_nic
*efx
)
1756 down_read(&efx
->filter_sem
);
1757 efx
->type
->filter_table_restore(efx
);
1758 up_read(&efx
->filter_sem
);
1761 /**************************************************************************
1763 * NIC startup/shutdown
1765 *************************************************************************/
1767 static int ef4_probe_all(struct ef4_nic
*efx
)
1771 rc
= ef4_probe_nic(efx
);
1773 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1777 rc
= ef4_probe_port(efx
);
1779 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1783 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_RXQ_MIN_ENT
);
1784 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_TXQ_MIN_ENT(efx
))) {
1788 efx
->rxq_entries
= efx
->txq_entries
= EF4_DEFAULT_DMAQ_SIZE
;
1790 rc
= ef4_probe_filters(efx
);
1792 netif_err(efx
, probe
, efx
->net_dev
,
1793 "failed to create filter tables\n");
1797 rc
= ef4_probe_channels(efx
);
1804 ef4_remove_filters(efx
);
1807 ef4_remove_port(efx
);
1809 ef4_remove_nic(efx
);
1814 /* If the interface is supposed to be running but is not, start
1815 * the hardware and software data path, regular activity for the port
1816 * (MAC statistics, link polling, etc.) and schedule the port to be
1817 * reconfigured. Interrupts must already be enabled. This function
1818 * is safe to call multiple times, so long as the NIC is not disabled.
1819 * Requires the RTNL lock.
1821 static void ef4_start_all(struct ef4_nic
*efx
)
1823 EF4_ASSERT_RESET_SERIALISED(efx
);
1824 BUG_ON(efx
->state
== STATE_DISABLED
);
1826 /* Check that it is appropriate to restart the interface. All
1827 * of these flags are safe to read under just the rtnl lock */
1828 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1832 ef4_start_port(efx
);
1833 ef4_start_datapath(efx
);
1835 /* Start the hardware monitor if there is one */
1836 if (efx
->type
->monitor
!= NULL
)
1837 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1838 ef4_monitor_interval
);
1840 efx
->type
->start_stats(efx
);
1841 efx
->type
->pull_stats(efx
);
1842 spin_lock_bh(&efx
->stats_lock
);
1843 efx
->type
->update_stats(efx
, NULL
, NULL
);
1844 spin_unlock_bh(&efx
->stats_lock
);
1847 /* Quiesce the hardware and software data path, and regular activity
1848 * for the port without bringing the link down. Safe to call multiple
1849 * times with the NIC in almost any state, but interrupts should be
1850 * enabled. Requires the RTNL lock.
1852 static void ef4_stop_all(struct ef4_nic
*efx
)
1854 EF4_ASSERT_RESET_SERIALISED(efx
);
1856 /* port_enabled can be read safely under the rtnl lock */
1857 if (!efx
->port_enabled
)
1860 /* update stats before we go down so we can accurately count
1863 efx
->type
->pull_stats(efx
);
1864 spin_lock_bh(&efx
->stats_lock
);
1865 efx
->type
->update_stats(efx
, NULL
, NULL
);
1866 spin_unlock_bh(&efx
->stats_lock
);
1867 efx
->type
->stop_stats(efx
);
1870 /* Stop the kernel transmit interface. This is only valid if
1871 * the device is stopped or detached; otherwise the watchdog
1872 * may fire immediately.
1874 WARN_ON(netif_running(efx
->net_dev
) &&
1875 netif_device_present(efx
->net_dev
));
1876 netif_tx_disable(efx
->net_dev
);
1878 ef4_stop_datapath(efx
);
1881 static void ef4_remove_all(struct ef4_nic
*efx
)
1883 ef4_remove_channels(efx
);
1884 ef4_remove_filters(efx
);
1885 ef4_remove_port(efx
);
1886 ef4_remove_nic(efx
);
1889 /**************************************************************************
1891 * Interrupt moderation
1893 **************************************************************************/
1894 unsigned int ef4_usecs_to_ticks(struct ef4_nic
*efx
, unsigned int usecs
)
1898 if (usecs
* 1000 < efx
->timer_quantum_ns
)
1899 return 1; /* never round down to 0 */
1900 return usecs
* 1000 / efx
->timer_quantum_ns
;
1903 unsigned int ef4_ticks_to_usecs(struct ef4_nic
*efx
, unsigned int ticks
)
1905 /* We must round up when converting ticks to microseconds
1906 * because we round down when converting the other way.
1908 return DIV_ROUND_UP(ticks
* efx
->timer_quantum_ns
, 1000);
1911 /* Set interrupt moderation parameters */
1912 int ef4_init_irq_moderation(struct ef4_nic
*efx
, unsigned int tx_usecs
,
1913 unsigned int rx_usecs
, bool rx_adaptive
,
1914 bool rx_may_override_tx
)
1916 struct ef4_channel
*channel
;
1917 unsigned int timer_max_us
;
1919 EF4_ASSERT_RESET_SERIALISED(efx
);
1921 timer_max_us
= efx
->timer_max_ns
/ 1000;
1923 if (tx_usecs
> timer_max_us
|| rx_usecs
> timer_max_us
)
1926 if (tx_usecs
!= rx_usecs
&& efx
->tx_channel_offset
== 0 &&
1927 !rx_may_override_tx
) {
1928 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1929 "RX and TX IRQ moderation must be equal\n");
1933 efx
->irq_rx_adaptive
= rx_adaptive
;
1934 efx
->irq_rx_moderation_us
= rx_usecs
;
1935 ef4_for_each_channel(channel
, efx
) {
1936 if (ef4_channel_has_rx_queue(channel
))
1937 channel
->irq_moderation_us
= rx_usecs
;
1938 else if (ef4_channel_has_tx_queues(channel
))
1939 channel
->irq_moderation_us
= tx_usecs
;
1945 void ef4_get_irq_moderation(struct ef4_nic
*efx
, unsigned int *tx_usecs
,
1946 unsigned int *rx_usecs
, bool *rx_adaptive
)
1948 *rx_adaptive
= efx
->irq_rx_adaptive
;
1949 *rx_usecs
= efx
->irq_rx_moderation_us
;
1951 /* If channels are shared between RX and TX, so is IRQ
1952 * moderation. Otherwise, IRQ moderation is the same for all
1953 * TX channels and is not adaptive.
1955 if (efx
->tx_channel_offset
== 0) {
1956 *tx_usecs
= *rx_usecs
;
1958 struct ef4_channel
*tx_channel
;
1960 tx_channel
= efx
->channel
[efx
->tx_channel_offset
];
1961 *tx_usecs
= tx_channel
->irq_moderation_us
;
1965 /**************************************************************************
1969 **************************************************************************/
1971 /* Run periodically off the general workqueue */
1972 static void ef4_monitor(struct work_struct
*data
)
1974 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
,
1977 netif_vdbg(efx
, timer
, efx
->net_dev
,
1978 "hardware monitor executing on CPU %d\n",
1979 raw_smp_processor_id());
1980 BUG_ON(efx
->type
->monitor
== NULL
);
1982 /* If the mac_lock is already held then it is likely a port
1983 * reconfiguration is already in place, which will likely do
1984 * most of the work of monitor() anyway. */
1985 if (mutex_trylock(&efx
->mac_lock
)) {
1986 if (efx
->port_enabled
)
1987 efx
->type
->monitor(efx
);
1988 mutex_unlock(&efx
->mac_lock
);
1991 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1992 ef4_monitor_interval
);
1995 /**************************************************************************
1999 *************************************************************************/
2002 * Context: process, rtnl_lock() held.
2004 static int ef4_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
2006 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2007 struct mii_ioctl_data
*data
= if_mii(ifr
);
2009 /* Convert phy_id from older PRTAD/DEVAD format */
2010 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
2011 (data
->phy_id
& 0xfc00) == 0x0400)
2012 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
2014 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
2017 /**************************************************************************
2021 **************************************************************************/
2023 static void ef4_init_napi_channel(struct ef4_channel
*channel
)
2025 struct ef4_nic
*efx
= channel
->efx
;
2027 channel
->napi_dev
= efx
->net_dev
;
2028 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
2029 ef4_poll
, napi_weight
);
2032 static void ef4_init_napi(struct ef4_nic
*efx
)
2034 struct ef4_channel
*channel
;
2036 ef4_for_each_channel(channel
, efx
)
2037 ef4_init_napi_channel(channel
);
2040 static void ef4_fini_napi_channel(struct ef4_channel
*channel
)
2042 if (channel
->napi_dev
)
2043 netif_napi_del(&channel
->napi_str
);
2045 channel
->napi_dev
= NULL
;
2048 static void ef4_fini_napi(struct ef4_nic
*efx
)
2050 struct ef4_channel
*channel
;
2052 ef4_for_each_channel(channel
, efx
)
2053 ef4_fini_napi_channel(channel
);
2056 /**************************************************************************
2058 * Kernel netpoll interface
2060 *************************************************************************/
2062 #ifdef CONFIG_NET_POLL_CONTROLLER
2064 /* Although in the common case interrupts will be disabled, this is not
2065 * guaranteed. However, all our work happens inside the NAPI callback,
2066 * so no locking is required.
2068 static void ef4_netpoll(struct net_device
*net_dev
)
2070 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2071 struct ef4_channel
*channel
;
2073 ef4_for_each_channel(channel
, efx
)
2074 ef4_schedule_channel(channel
);
2079 /**************************************************************************
2081 * Kernel net device interface
2083 *************************************************************************/
2085 /* Context: process, rtnl_lock() held. */
2086 int ef4_net_open(struct net_device
*net_dev
)
2088 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2091 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2092 raw_smp_processor_id());
2094 rc
= ef4_check_disabled(efx
);
2097 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2100 /* Notify the kernel of the link state polled during driver load,
2101 * before the monitor starts running */
2102 ef4_link_status_changed(efx
);
2105 ef4_selftest_async_start(efx
);
2109 /* Context: process, rtnl_lock() held.
2110 * Note that the kernel will ignore our return code; this method
2111 * should really be a void.
2113 int ef4_net_stop(struct net_device
*net_dev
)
2115 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2117 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2118 raw_smp_processor_id());
2120 /* Stop the device and flush all the channels */
2126 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2127 static void ef4_net_stats(struct net_device
*net_dev
,
2128 struct rtnl_link_stats64
*stats
)
2130 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2132 spin_lock_bh(&efx
->stats_lock
);
2133 efx
->type
->update_stats(efx
, NULL
, stats
);
2134 spin_unlock_bh(&efx
->stats_lock
);
2137 /* Context: netif_tx_lock held, BHs disabled. */
2138 static void ef4_watchdog(struct net_device
*net_dev
)
2140 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2142 netif_err(efx
, tx_err
, efx
->net_dev
,
2143 "TX stuck with port_enabled=%d: resetting channels\n",
2146 ef4_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2150 /* Context: process, rtnl_lock() held. */
2151 static int ef4_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2153 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2156 rc
= ef4_check_disabled(efx
);
2160 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2162 ef4_device_detach_sync(efx
);
2165 mutex_lock(&efx
->mac_lock
);
2166 net_dev
->mtu
= new_mtu
;
2167 ef4_mac_reconfigure(efx
);
2168 mutex_unlock(&efx
->mac_lock
);
2171 netif_device_attach(efx
->net_dev
);
2175 static int ef4_set_mac_address(struct net_device
*net_dev
, void *data
)
2177 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2178 struct sockaddr
*addr
= data
;
2179 u8
*new_addr
= addr
->sa_data
;
2183 if (!is_valid_ether_addr(new_addr
)) {
2184 netif_err(efx
, drv
, efx
->net_dev
,
2185 "invalid ethernet MAC address requested: %pM\n",
2187 return -EADDRNOTAVAIL
;
2190 /* save old address */
2191 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2192 ether_addr_copy(net_dev
->dev_addr
, new_addr
);
2193 if (efx
->type
->set_mac_address
) {
2194 rc
= efx
->type
->set_mac_address(efx
);
2196 ether_addr_copy(net_dev
->dev_addr
, old_addr
);
2201 /* Reconfigure the MAC */
2202 mutex_lock(&efx
->mac_lock
);
2203 ef4_mac_reconfigure(efx
);
2204 mutex_unlock(&efx
->mac_lock
);
2209 /* Context: netif_addr_lock held, BHs disabled. */
2210 static void ef4_set_rx_mode(struct net_device
*net_dev
)
2212 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2214 if (efx
->port_enabled
)
2215 queue_work(efx
->workqueue
, &efx
->mac_work
);
2216 /* Otherwise ef4_start_port() will do this */
2219 static int ef4_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2221 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2224 /* If disabling RX n-tuple filtering, clear existing filters */
2225 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
2226 rc
= efx
->type
->filter_clear_rx(efx
, EF4_FILTER_PRI_MANUAL
);
2231 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2232 if ((net_dev
->features
^ data
) & NETIF_F_HW_VLAN_CTAG_FILTER
) {
2233 /* ef4_set_rx_mode() will schedule MAC work to update filters
2234 * when a new features are finally set in net_dev.
2236 ef4_set_rx_mode(net_dev
);
2242 static const struct net_device_ops ef4_netdev_ops
= {
2243 .ndo_open
= ef4_net_open
,
2244 .ndo_stop
= ef4_net_stop
,
2245 .ndo_get_stats64
= ef4_net_stats
,
2246 .ndo_tx_timeout
= ef4_watchdog
,
2247 .ndo_start_xmit
= ef4_hard_start_xmit
,
2248 .ndo_validate_addr
= eth_validate_addr
,
2249 .ndo_do_ioctl
= ef4_ioctl
,
2250 .ndo_change_mtu
= ef4_change_mtu
,
2251 .ndo_set_mac_address
= ef4_set_mac_address
,
2252 .ndo_set_rx_mode
= ef4_set_rx_mode
,
2253 .ndo_set_features
= ef4_set_features
,
2254 #ifdef CONFIG_NET_POLL_CONTROLLER
2255 .ndo_poll_controller
= ef4_netpoll
,
2257 .ndo_setup_tc
= ef4_setup_tc
,
2258 #ifdef CONFIG_RFS_ACCEL
2259 .ndo_rx_flow_steer
= ef4_filter_rfs
,
2263 static void ef4_update_name(struct ef4_nic
*efx
)
2265 strcpy(efx
->name
, efx
->net_dev
->name
);
2266 ef4_mtd_rename(efx
);
2267 ef4_set_channel_names(efx
);
2270 static int ef4_netdev_event(struct notifier_block
*this,
2271 unsigned long event
, void *ptr
)
2273 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2275 if ((net_dev
->netdev_ops
== &ef4_netdev_ops
) &&
2276 event
== NETDEV_CHANGENAME
)
2277 ef4_update_name(netdev_priv(net_dev
));
2282 static struct notifier_block ef4_netdev_notifier
= {
2283 .notifier_call
= ef4_netdev_event
,
2287 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2289 struct ef4_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2290 return sprintf(buf
, "%d\n", efx
->phy_type
);
2292 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2294 static int ef4_register_netdev(struct ef4_nic
*efx
)
2296 struct net_device
*net_dev
= efx
->net_dev
;
2297 struct ef4_channel
*channel
;
2300 net_dev
->watchdog_timeo
= 5 * HZ
;
2301 net_dev
->irq
= efx
->pci_dev
->irq
;
2302 net_dev
->netdev_ops
= &ef4_netdev_ops
;
2303 net_dev
->ethtool_ops
= &ef4_ethtool_ops
;
2304 net_dev
->gso_max_segs
= EF4_TSO_MAX_SEGS
;
2305 net_dev
->min_mtu
= EF4_MIN_MTU
;
2306 net_dev
->max_mtu
= EF4_MAX_MTU
;
2310 /* Enable resets to be scheduled and check whether any were
2311 * already requested. If so, the NIC is probably hosed so we
2314 efx
->state
= STATE_READY
;
2315 smp_mb(); /* ensure we change state before checking reset_pending */
2316 if (efx
->reset_pending
) {
2317 netif_err(efx
, probe
, efx
->net_dev
,
2318 "aborting probe due to scheduled reset\n");
2323 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2326 ef4_update_name(efx
);
2328 /* Always start with carrier off; PHY events will detect the link */
2329 netif_carrier_off(net_dev
);
2331 rc
= register_netdevice(net_dev
);
2335 ef4_for_each_channel(channel
, efx
) {
2336 struct ef4_tx_queue
*tx_queue
;
2337 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
2338 ef4_init_tx_queue_core_txq(tx_queue
);
2345 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2347 netif_err(efx
, drv
, efx
->net_dev
,
2348 "failed to init net dev attributes\n");
2349 goto fail_registered
;
2355 ef4_dissociate(efx
);
2356 unregister_netdevice(net_dev
);
2358 efx
->state
= STATE_UNINIT
;
2360 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2364 static void ef4_unregister_netdev(struct ef4_nic
*efx
)
2369 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2371 if (ef4_dev_registered(efx
)) {
2372 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2373 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2374 unregister_netdev(efx
->net_dev
);
2378 /**************************************************************************
2380 * Device reset and suspend
2382 **************************************************************************/
2384 /* Tears down the entire software state and most of the hardware state
2386 void ef4_reset_down(struct ef4_nic
*efx
, enum reset_type method
)
2388 EF4_ASSERT_RESET_SERIALISED(efx
);
2391 ef4_disable_interrupts(efx
);
2393 mutex_lock(&efx
->mac_lock
);
2394 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2395 method
!= RESET_TYPE_DATAPATH
)
2396 efx
->phy_op
->fini(efx
);
2397 efx
->type
->fini(efx
);
2400 /* This function will always ensure that the locks acquired in
2401 * ef4_reset_down() are released. A failure return code indicates
2402 * that we were unable to reinitialise the hardware, and the
2403 * driver should be disabled. If ok is false, then the rx and tx
2404 * engines are not restarted, pending a RESET_DISABLE. */
2405 int ef4_reset_up(struct ef4_nic
*efx
, enum reset_type method
, bool ok
)
2409 EF4_ASSERT_RESET_SERIALISED(efx
);
2411 /* Ensure that SRAM is initialised even if we're disabling the device */
2412 rc
= efx
->type
->init(efx
);
2414 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2421 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2422 method
!= RESET_TYPE_DATAPATH
) {
2423 rc
= efx
->phy_op
->init(efx
);
2426 rc
= efx
->phy_op
->reconfigure(efx
);
2427 if (rc
&& rc
!= -EPERM
)
2428 netif_err(efx
, drv
, efx
->net_dev
,
2429 "could not restore PHY settings\n");
2432 rc
= ef4_enable_interrupts(efx
);
2436 down_read(&efx
->filter_sem
);
2437 ef4_restore_filters(efx
);
2438 up_read(&efx
->filter_sem
);
2440 mutex_unlock(&efx
->mac_lock
);
2447 efx
->port_initialized
= false;
2449 mutex_unlock(&efx
->mac_lock
);
2454 /* Reset the NIC using the specified method. Note that the reset may
2455 * fail, in which case the card will be left in an unusable state.
2457 * Caller must hold the rtnl_lock.
2459 int ef4_reset(struct ef4_nic
*efx
, enum reset_type method
)
2464 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2465 RESET_TYPE(method
));
2467 ef4_device_detach_sync(efx
);
2468 ef4_reset_down(efx
, method
);
2470 rc
= efx
->type
->reset(efx
, method
);
2472 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2476 /* Clear flags for the scopes we covered. We assume the NIC and
2477 * driver are now quiescent so that there is no race here.
2479 if (method
< RESET_TYPE_MAX_METHOD
)
2480 efx
->reset_pending
&= -(1 << (method
+ 1));
2481 else /* it doesn't fit into the well-ordered scope hierarchy */
2482 __clear_bit(method
, &efx
->reset_pending
);
2484 /* Reinitialise bus-mastering, which may have been turned off before
2485 * the reset was scheduled. This is still appropriate, even in the
2486 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2487 * can respond to requests. */
2488 pci_set_master(efx
->pci_dev
);
2491 /* Leave device stopped if necessary */
2493 method
== RESET_TYPE_DISABLE
||
2494 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2495 rc2
= ef4_reset_up(efx
, method
, !disabled
);
2503 dev_close(efx
->net_dev
);
2504 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2505 efx
->state
= STATE_DISABLED
;
2507 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2508 netif_device_attach(efx
->net_dev
);
2513 /* Try recovery mechanisms.
2514 * For now only EEH is supported.
2515 * Returns 0 if the recovery mechanisms are unsuccessful.
2516 * Returns a non-zero value otherwise.
2518 int ef4_try_recovery(struct ef4_nic
*efx
)
2521 /* A PCI error can occur and not be seen by EEH because nothing
2522 * happens on the PCI bus. In this case the driver may fail and
2523 * schedule a 'recover or reset', leading to this recovery handler.
2524 * Manually call the eeh failure check function.
2526 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2527 if (eeh_dev_check_failure(eehdev
)) {
2528 /* The EEH mechanisms will handle the error and reset the
2529 * device if necessary.
2537 /* The worker thread exists so that code that cannot sleep can
2538 * schedule a reset for later.
2540 static void ef4_reset_work(struct work_struct
*data
)
2542 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, reset_work
);
2543 unsigned long pending
;
2544 enum reset_type method
;
2546 pending
= READ_ONCE(efx
->reset_pending
);
2547 method
= fls(pending
) - 1;
2549 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2550 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2551 ef4_try_recovery(efx
))
2559 /* We checked the state in ef4_schedule_reset() but it may
2560 * have changed by now. Now that we have the RTNL lock,
2561 * it cannot change again.
2563 if (efx
->state
== STATE_READY
)
2564 (void)ef4_reset(efx
, method
);
2569 void ef4_schedule_reset(struct ef4_nic
*efx
, enum reset_type type
)
2571 enum reset_type method
;
2573 if (efx
->state
== STATE_RECOVERY
) {
2574 netif_dbg(efx
, drv
, efx
->net_dev
,
2575 "recovering: skip scheduling %s reset\n",
2581 case RESET_TYPE_INVISIBLE
:
2582 case RESET_TYPE_ALL
:
2583 case RESET_TYPE_RECOVER_OR_ALL
:
2584 case RESET_TYPE_WORLD
:
2585 case RESET_TYPE_DISABLE
:
2586 case RESET_TYPE_RECOVER_OR_DISABLE
:
2587 case RESET_TYPE_DATAPATH
:
2589 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2590 RESET_TYPE(method
));
2593 method
= efx
->type
->map_reset_reason(type
);
2594 netif_dbg(efx
, drv
, efx
->net_dev
,
2595 "scheduling %s reset for %s\n",
2596 RESET_TYPE(method
), RESET_TYPE(type
));
2600 set_bit(method
, &efx
->reset_pending
);
2601 smp_mb(); /* ensure we change reset_pending before checking state */
2603 /* If we're not READY then just leave the flags set as the cue
2604 * to abort probing or reschedule the reset later.
2606 if (READ_ONCE(efx
->state
) != STATE_READY
)
2609 queue_work(reset_workqueue
, &efx
->reset_work
);
2612 /**************************************************************************
2614 * List of NICs we support
2616 **************************************************************************/
2618 /* PCI device ID table */
2619 static const struct pci_device_id ef4_pci_table
[] = {
2620 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2621 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2622 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2623 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2624 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2625 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2626 {0} /* end of list */
2629 /**************************************************************************
2631 * Dummy PHY/MAC operations
2633 * Can be used for some unimplemented operations
2634 * Needed so all function pointers are valid and do not have to be tested
2637 **************************************************************************/
2638 int ef4_port_dummy_op_int(struct ef4_nic
*efx
)
2642 void ef4_port_dummy_op_void(struct ef4_nic
*efx
) {}
2644 static bool ef4_port_dummy_op_poll(struct ef4_nic
*efx
)
2649 static const struct ef4_phy_operations ef4_dummy_phy_operations
= {
2650 .init
= ef4_port_dummy_op_int
,
2651 .reconfigure
= ef4_port_dummy_op_int
,
2652 .poll
= ef4_port_dummy_op_poll
,
2653 .fini
= ef4_port_dummy_op_void
,
2656 /**************************************************************************
2660 **************************************************************************/
2662 /* This zeroes out and then fills in the invariants in a struct
2663 * ef4_nic (including all sub-structures).
2665 static int ef4_init_struct(struct ef4_nic
*efx
,
2666 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2670 /* Initialise common structures */
2671 INIT_LIST_HEAD(&efx
->node
);
2672 INIT_LIST_HEAD(&efx
->secondary_list
);
2673 spin_lock_init(&efx
->biu_lock
);
2674 #ifdef CONFIG_SFC_FALCON_MTD
2675 INIT_LIST_HEAD(&efx
->mtd_list
);
2677 INIT_WORK(&efx
->reset_work
, ef4_reset_work
);
2678 INIT_DELAYED_WORK(&efx
->monitor_work
, ef4_monitor
);
2679 INIT_DELAYED_WORK(&efx
->selftest_work
, ef4_selftest_async_work
);
2680 efx
->pci_dev
= pci_dev
;
2681 efx
->msg_enable
= debug
;
2682 efx
->state
= STATE_UNINIT
;
2683 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2685 efx
->net_dev
= net_dev
;
2686 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2688 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2689 efx
->rx_packet_hash_offset
=
2690 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2691 efx
->rx_packet_ts_offset
=
2692 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
2693 spin_lock_init(&efx
->stats_lock
);
2694 mutex_init(&efx
->mac_lock
);
2695 efx
->phy_op
= &ef4_dummy_phy_operations
;
2696 efx
->mdio
.dev
= net_dev
;
2697 INIT_WORK(&efx
->mac_work
, ef4_mac_work
);
2698 init_waitqueue_head(&efx
->flush_wq
);
2700 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++) {
2701 efx
->channel
[i
] = ef4_alloc_channel(efx
, i
, NULL
);
2702 if (!efx
->channel
[i
])
2704 efx
->msi_context
[i
].efx
= efx
;
2705 efx
->msi_context
[i
].index
= i
;
2708 /* Higher numbered interrupt modes are less capable! */
2709 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2712 /* Would be good to use the net_dev name, but we're too early */
2713 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2715 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2716 if (!efx
->workqueue
)
2722 ef4_fini_struct(efx
);
2726 static void ef4_fini_struct(struct ef4_nic
*efx
)
2730 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++)
2731 kfree(efx
->channel
[i
]);
2735 if (efx
->workqueue
) {
2736 destroy_workqueue(efx
->workqueue
);
2737 efx
->workqueue
= NULL
;
2741 void ef4_update_sw_stats(struct ef4_nic
*efx
, u64
*stats
)
2743 u64 n_rx_nodesc_trunc
= 0;
2744 struct ef4_channel
*channel
;
2746 ef4_for_each_channel(channel
, efx
)
2747 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
2748 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
2749 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
2752 /**************************************************************************
2756 **************************************************************************/
2758 /* Main body of final NIC shutdown code
2759 * This is called only at module unload (or hotplug removal).
2761 static void ef4_pci_remove_main(struct ef4_nic
*efx
)
2763 /* Flush reset_work. It can no longer be scheduled since we
2766 BUG_ON(efx
->state
== STATE_READY
);
2767 cancel_work_sync(&efx
->reset_work
);
2769 ef4_disable_interrupts(efx
);
2770 ef4_nic_fini_interrupt(efx
);
2772 efx
->type
->fini(efx
);
2774 ef4_remove_all(efx
);
2777 /* Final NIC shutdown
2778 * This is called only at module unload (or hotplug removal). A PF can call
2779 * this on its VFs to ensure they are unbound first.
2781 static void ef4_pci_remove(struct pci_dev
*pci_dev
)
2783 struct ef4_nic
*efx
;
2785 efx
= pci_get_drvdata(pci_dev
);
2789 /* Mark the NIC as fini, then stop the interface */
2791 ef4_dissociate(efx
);
2792 dev_close(efx
->net_dev
);
2793 ef4_disable_interrupts(efx
);
2794 efx
->state
= STATE_UNINIT
;
2797 ef4_unregister_netdev(efx
);
2799 ef4_mtd_remove(efx
);
2801 ef4_pci_remove_main(efx
);
2804 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2806 ef4_fini_struct(efx
);
2807 free_netdev(efx
->net_dev
);
2809 pci_disable_pcie_error_reporting(pci_dev
);
2812 /* NIC VPD information
2813 * Called during probe to display the part number of the
2814 * installed NIC. VPD is potentially very large but this should
2815 * always appear within the first 512 bytes.
2817 #define SFC_VPD_LEN 512
2818 static void ef4_probe_vpd_strings(struct ef4_nic
*efx
)
2820 struct pci_dev
*dev
= efx
->pci_dev
;
2821 char vpd_data
[SFC_VPD_LEN
];
2823 int ro_start
, ro_size
, i
, j
;
2825 /* Get the vpd data from the device */
2826 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
2827 if (vpd_size
<= 0) {
2828 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
2832 /* Get the Read only section */
2833 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
2835 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
2839 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
2841 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
2842 if (i
+ j
> vpd_size
)
2845 /* Get the Part number */
2846 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
2848 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
2852 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2853 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2854 if (i
+ j
> vpd_size
) {
2855 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
2859 netif_info(efx
, drv
, efx
->net_dev
,
2860 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
2862 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
2864 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "SN");
2866 netif_err(efx
, drv
, efx
->net_dev
, "Serial number not found\n");
2870 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2871 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2872 if (i
+ j
> vpd_size
) {
2873 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete serial number\n");
2877 efx
->vpd_sn
= kmalloc(j
+ 1, GFP_KERNEL
);
2881 snprintf(efx
->vpd_sn
, j
+ 1, "%s", &vpd_data
[i
]);
2885 /* Main body of NIC initialisation
2886 * This is called at module load (or hotplug insertion, theoretically).
2888 static int ef4_pci_probe_main(struct ef4_nic
*efx
)
2892 /* Do start-of-day initialisation */
2893 rc
= ef4_probe_all(efx
);
2899 rc
= efx
->type
->init(efx
);
2901 netif_err(efx
, probe
, efx
->net_dev
,
2902 "failed to initialise NIC\n");
2906 rc
= ef4_init_port(efx
);
2908 netif_err(efx
, probe
, efx
->net_dev
,
2909 "failed to initialise port\n");
2913 rc
= ef4_nic_init_interrupt(efx
);
2916 rc
= ef4_enable_interrupts(efx
);
2923 ef4_nic_fini_interrupt(efx
);
2927 efx
->type
->fini(efx
);
2930 ef4_remove_all(efx
);
2935 /* NIC initialisation
2937 * This is called at module load (or hotplug insertion,
2938 * theoretically). It sets up PCI mappings, resets the NIC,
2939 * sets up and registers the network devices with the kernel and hooks
2940 * the interrupt service routine. It does not prepare the device for
2941 * transmission; this is left to the first time one of the network
2942 * interfaces is brought up (i.e. ef4_net_open).
2944 static int ef4_pci_probe(struct pci_dev
*pci_dev
,
2945 const struct pci_device_id
*entry
)
2947 struct net_device
*net_dev
;
2948 struct ef4_nic
*efx
;
2951 /* Allocate and initialise a struct net_device and struct ef4_nic */
2952 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EF4_MAX_CORE_TX_QUEUES
,
2956 efx
= netdev_priv(net_dev
);
2957 efx
->type
= (const struct ef4_nic_type
*) entry
->driver_data
;
2958 efx
->fixed_features
|= NETIF_F_HIGHDMA
;
2960 pci_set_drvdata(pci_dev
, efx
);
2961 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2962 rc
= ef4_init_struct(efx
, pci_dev
, net_dev
);
2966 netif_info(efx
, probe
, efx
->net_dev
,
2967 "Solarflare NIC detected\n");
2969 ef4_probe_vpd_strings(efx
);
2971 /* Set up basic I/O (BAR mappings etc) */
2972 rc
= ef4_init_io(efx
);
2976 rc
= ef4_pci_probe_main(efx
);
2980 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
2982 /* Mask for features that also apply to VLAN devices */
2983 net_dev
->vlan_features
|= (NETIF_F_HW_CSUM
| NETIF_F_SG
|
2984 NETIF_F_HIGHDMA
| NETIF_F_RXCSUM
);
2986 net_dev
->hw_features
= net_dev
->features
& ~efx
->fixed_features
;
2988 /* Disable VLAN filtering by default. It may be enforced if
2989 * the feature is fixed (i.e. VLAN filters are required to
2990 * receive VLAN tagged packets due to vPort restrictions).
2992 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
2993 net_dev
->features
|= efx
->fixed_features
;
2995 rc
= ef4_register_netdev(efx
);
2999 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
3001 /* Try to create MTDs, but allow this to fail */
3003 rc
= ef4_mtd_probe(efx
);
3005 if (rc
&& rc
!= -EPERM
)
3006 netif_warn(efx
, probe
, efx
->net_dev
,
3007 "failed to create MTDs (%d)\n", rc
);
3009 rc
= pci_enable_pcie_error_reporting(pci_dev
);
3010 if (rc
&& rc
!= -EINVAL
)
3011 netif_notice(efx
, probe
, efx
->net_dev
,
3012 "PCIE error reporting unavailable (%d).\n",
3018 ef4_pci_remove_main(efx
);
3022 ef4_fini_struct(efx
);
3025 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
3026 free_netdev(net_dev
);
3030 static int ef4_pm_freeze(struct device
*dev
)
3032 struct ef4_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3036 if (efx
->state
!= STATE_DISABLED
) {
3037 efx
->state
= STATE_UNINIT
;
3039 ef4_device_detach_sync(efx
);
3042 ef4_disable_interrupts(efx
);
3050 static int ef4_pm_thaw(struct device
*dev
)
3053 struct ef4_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3057 if (efx
->state
!= STATE_DISABLED
) {
3058 rc
= ef4_enable_interrupts(efx
);
3062 mutex_lock(&efx
->mac_lock
);
3063 efx
->phy_op
->reconfigure(efx
);
3064 mutex_unlock(&efx
->mac_lock
);
3068 netif_device_attach(efx
->net_dev
);
3070 efx
->state
= STATE_READY
;
3072 efx
->type
->resume_wol(efx
);
3077 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3078 queue_work(reset_workqueue
, &efx
->reset_work
);
3088 static int ef4_pm_poweroff(struct device
*dev
)
3090 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3091 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3093 efx
->type
->fini(efx
);
3095 efx
->reset_pending
= 0;
3097 pci_save_state(pci_dev
);
3098 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3101 /* Used for both resume and restore */
3102 static int ef4_pm_resume(struct device
*dev
)
3104 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3105 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3108 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3111 pci_restore_state(pci_dev
);
3112 rc
= pci_enable_device(pci_dev
);
3115 pci_set_master(efx
->pci_dev
);
3116 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3119 rc
= efx
->type
->init(efx
);
3122 rc
= ef4_pm_thaw(dev
);
3126 static int ef4_pm_suspend(struct device
*dev
)
3131 rc
= ef4_pm_poweroff(dev
);
3137 static const struct dev_pm_ops ef4_pm_ops
= {
3138 .suspend
= ef4_pm_suspend
,
3139 .resume
= ef4_pm_resume
,
3140 .freeze
= ef4_pm_freeze
,
3141 .thaw
= ef4_pm_thaw
,
3142 .poweroff
= ef4_pm_poweroff
,
3143 .restore
= ef4_pm_resume
,
3146 /* A PCI error affecting this device was detected.
3147 * At this point MMIO and DMA may be disabled.
3148 * Stop the software path and request a slot reset.
3150 static pci_ers_result_t
ef4_io_error_detected(struct pci_dev
*pdev
,
3151 enum pci_channel_state state
)
3153 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3154 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3156 if (state
== pci_channel_io_perm_failure
)
3157 return PCI_ERS_RESULT_DISCONNECT
;
3161 if (efx
->state
!= STATE_DISABLED
) {
3162 efx
->state
= STATE_RECOVERY
;
3163 efx
->reset_pending
= 0;
3165 ef4_device_detach_sync(efx
);
3168 ef4_disable_interrupts(efx
);
3170 status
= PCI_ERS_RESULT_NEED_RESET
;
3172 /* If the interface is disabled we don't want to do anything
3175 status
= PCI_ERS_RESULT_RECOVERED
;
3180 pci_disable_device(pdev
);
3185 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3186 static pci_ers_result_t
ef4_io_slot_reset(struct pci_dev
*pdev
)
3188 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3189 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3192 if (pci_enable_device(pdev
)) {
3193 netif_err(efx
, hw
, efx
->net_dev
,
3194 "Cannot re-enable PCI device after reset.\n");
3195 status
= PCI_ERS_RESULT_DISCONNECT
;
3198 rc
= pci_cleanup_aer_uncorrect_error_status(pdev
);
3200 netif_err(efx
, hw
, efx
->net_dev
,
3201 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc
);
3202 /* Non-fatal error. Continue. */
3208 /* Perform the actual reset and resume I/O operations. */
3209 static void ef4_io_resume(struct pci_dev
*pdev
)
3211 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3216 if (efx
->state
== STATE_DISABLED
)
3219 rc
= ef4_reset(efx
, RESET_TYPE_ALL
);
3221 netif_err(efx
, hw
, efx
->net_dev
,
3222 "ef4_reset failed after PCI error (%d)\n", rc
);
3224 efx
->state
= STATE_READY
;
3225 netif_dbg(efx
, hw
, efx
->net_dev
,
3226 "Done resetting and resuming IO after PCI error.\n");
3233 /* For simplicity and reliability, we always require a slot reset and try to
3234 * reset the hardware when a pci error affecting the device is detected.
3235 * We leave both the link_reset and mmio_enabled callback unimplemented:
3236 * with our request for slot reset the mmio_enabled callback will never be
3237 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3239 static const struct pci_error_handlers ef4_err_handlers
= {
3240 .error_detected
= ef4_io_error_detected
,
3241 .slot_reset
= ef4_io_slot_reset
,
3242 .resume
= ef4_io_resume
,
3245 static struct pci_driver ef4_pci_driver
= {
3246 .name
= KBUILD_MODNAME
,
3247 .id_table
= ef4_pci_table
,
3248 .probe
= ef4_pci_probe
,
3249 .remove
= ef4_pci_remove
,
3250 .driver
.pm
= &ef4_pm_ops
,
3251 .err_handler
= &ef4_err_handlers
,
3254 /**************************************************************************
3256 * Kernel module interface
3258 *************************************************************************/
3260 module_param(interrupt_mode
, uint
, 0444);
3261 MODULE_PARM_DESC(interrupt_mode
,
3262 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3264 static int __init
ef4_init_module(void)
3268 printk(KERN_INFO
"Solarflare Falcon driver v" EF4_DRIVER_VERSION
"\n");
3270 rc
= register_netdevice_notifier(&ef4_netdev_notifier
);
3274 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3275 if (!reset_workqueue
) {
3280 rc
= pci_register_driver(&ef4_pci_driver
);
3287 destroy_workqueue(reset_workqueue
);
3289 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3294 static void __exit
ef4_exit_module(void)
3296 printk(KERN_INFO
"Solarflare Falcon driver unloading\n");
3298 pci_unregister_driver(&ef4_pci_driver
);
3299 destroy_workqueue(reset_workqueue
);
3300 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3304 module_init(ef4_init_module
);
3305 module_exit(ef4_exit_module
);
3307 MODULE_AUTHOR("Solarflare Communications and "
3308 "Michael Brown <mbrown@fensystems.co.uk>");
3309 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3310 MODULE_LICENSE("GPL");
3311 MODULE_DEVICE_TABLE(pci
, ef4_pci_table
);
3312 MODULE_VERSION(EF4_DRIVER_VERSION
);