Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / net / ethernet / sfc / falcon / nic.h
blob07c62dc552cb923749edba62c9ac3399cdc04681
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #ifndef EF4_NIC_H
12 #define EF4_NIC_H
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
19 enum {
20 EF4_REV_FALCON_A0 = 0,
21 EF4_REV_FALCON_A1 = 1,
22 EF4_REV_FALCON_B0 = 2,
25 static inline int ef4_nic_rev(struct ef4_nic *efx)
27 return efx->type->revision;
30 u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
32 /* NIC has two interlinked PCI functions for the same port. */
33 static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
35 return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
38 /* Read the current event from the event queue */
39 static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
40 unsigned int index)
42 return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
43 (index & channel->eventq_mask);
46 /* See if an event is present
48 * We check both the high and low dword of the event for all ones. We
49 * wrote all ones when we cleared the event, and no valid event can
50 * have all ones in either its high or low dwords. This approach is
51 * robust against reordering.
53 * Note that using a single 64-bit comparison is incorrect; even
54 * though the CPU read will be atomic, the DMA write may not be.
56 static inline int ef4_event_present(ef4_qword_t *event)
58 return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
59 EF4_DWORD_IS_ALL_ONES(event->dword[1]));
62 /* Returns a pointer to the specified transmit descriptor in the TX
63 * descriptor queue belonging to the specified channel.
65 static inline ef4_qword_t *
66 ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
68 return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
71 /* Get partner of a TX queue, seen as part of the same net core queue */
72 static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
74 if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
75 return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
76 else
77 return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
80 /* Report whether this TX queue would be empty for the given write_count.
81 * May return false negative.
83 static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
84 unsigned int write_count)
86 unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
88 if (empty_read_count == 0)
89 return false;
91 return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
94 /* Decide whether to push a TX descriptor to the NIC vs merely writing
95 * the doorbell. This can reduce latency when we are adding a single
96 * descriptor to an empty queue, but is otherwise pointless. Further,
97 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
98 * triggered if we don't check this.
99 * We use the write_count used for the last doorbell push, to get the
100 * NIC's view of the tx queue.
102 static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
103 unsigned int write_count)
105 bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
107 tx_queue->empty_read_count = 0;
108 return was_empty && tx_queue->write_count - write_count == 1;
111 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
112 static inline ef4_qword_t *
113 ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
115 return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
118 enum {
119 PHY_TYPE_NONE = 0,
120 PHY_TYPE_TXC43128 = 1,
121 PHY_TYPE_88E1111 = 2,
122 PHY_TYPE_SFX7101 = 3,
123 PHY_TYPE_QT2022C2 = 4,
124 PHY_TYPE_PM8358 = 6,
125 PHY_TYPE_SFT9001A = 8,
126 PHY_TYPE_QT2025C = 9,
127 PHY_TYPE_SFT9001B = 10,
130 #define FALCON_XMAC_LOOPBACKS \
131 ((1 << LOOPBACK_XGMII) | \
132 (1 << LOOPBACK_XGXS) | \
133 (1 << LOOPBACK_XAUI))
135 /* Alignment of PCIe DMA boundaries (4KB) */
136 #define EF4_PAGE_SIZE 4096
137 /* Size and alignment of buffer table entries (same) */
138 #define EF4_BUF_SIZE EF4_PAGE_SIZE
140 /* NIC-generic software stats */
141 enum {
142 GENERIC_STAT_rx_noskb_drops,
143 GENERIC_STAT_rx_nodesc_trunc,
144 GENERIC_STAT_COUNT
148 * struct falcon_board_type - board operations and type information
149 * @id: Board type id, as found in NVRAM
150 * @init: Allocate resources and initialise peripheral hardware
151 * @init_phy: Do board-specific PHY initialisation
152 * @fini: Shut down hardware and free resources
153 * @set_id_led: Set state of identifying LED or revert to automatic function
154 * @monitor: Board-specific health check function
156 struct falcon_board_type {
157 u8 id;
158 int (*init) (struct ef4_nic *nic);
159 void (*init_phy) (struct ef4_nic *efx);
160 void (*fini) (struct ef4_nic *nic);
161 void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
162 int (*monitor) (struct ef4_nic *nic);
166 * struct falcon_board - board information
167 * @type: Type of board
168 * @major: Major rev. ('A', 'B' ...)
169 * @minor: Minor rev. (0, 1, ...)
170 * @i2c_adap: I2C adapter for on-board peripherals
171 * @i2c_data: Data for bit-banging algorithm
172 * @hwmon_client: I2C client for hardware monitor
173 * @ioexp_client: I2C client for power/port control
175 struct falcon_board {
176 const struct falcon_board_type *type;
177 int major;
178 int minor;
179 struct i2c_adapter i2c_adap;
180 struct i2c_algo_bit_data i2c_data;
181 struct i2c_client *hwmon_client, *ioexp_client;
185 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
186 * @device_id: Controller's id for the device
187 * @size: Size (in bytes)
188 * @addr_len: Number of address bytes in read/write commands
189 * @munge_address: Flag whether addresses should be munged.
190 * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
191 * use bit 3 of the command byte as address bit A8, rather
192 * than having a two-byte address. If this flag is set, then
193 * commands should be munged in this way.
194 * @erase_command: Erase command (or 0 if sector erase not needed).
195 * @erase_size: Erase sector size (in bytes)
196 * Erase commands affect sectors with this size and alignment.
197 * This must be a power of two.
198 * @block_size: Write block size (in bytes).
199 * Write commands are limited to blocks with this size and alignment.
201 struct falcon_spi_device {
202 int device_id;
203 unsigned int size;
204 unsigned int addr_len;
205 unsigned int munge_address:1;
206 u8 erase_command;
207 unsigned int erase_size;
208 unsigned int block_size;
211 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
213 return spi->size != 0;
216 enum {
217 FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
218 FALCON_STAT_tx_packets,
219 FALCON_STAT_tx_pause,
220 FALCON_STAT_tx_control,
221 FALCON_STAT_tx_unicast,
222 FALCON_STAT_tx_multicast,
223 FALCON_STAT_tx_broadcast,
224 FALCON_STAT_tx_lt64,
225 FALCON_STAT_tx_64,
226 FALCON_STAT_tx_65_to_127,
227 FALCON_STAT_tx_128_to_255,
228 FALCON_STAT_tx_256_to_511,
229 FALCON_STAT_tx_512_to_1023,
230 FALCON_STAT_tx_1024_to_15xx,
231 FALCON_STAT_tx_15xx_to_jumbo,
232 FALCON_STAT_tx_gtjumbo,
233 FALCON_STAT_tx_non_tcpudp,
234 FALCON_STAT_tx_mac_src_error,
235 FALCON_STAT_tx_ip_src_error,
236 FALCON_STAT_rx_bytes,
237 FALCON_STAT_rx_good_bytes,
238 FALCON_STAT_rx_bad_bytes,
239 FALCON_STAT_rx_packets,
240 FALCON_STAT_rx_good,
241 FALCON_STAT_rx_bad,
242 FALCON_STAT_rx_pause,
243 FALCON_STAT_rx_control,
244 FALCON_STAT_rx_unicast,
245 FALCON_STAT_rx_multicast,
246 FALCON_STAT_rx_broadcast,
247 FALCON_STAT_rx_lt64,
248 FALCON_STAT_rx_64,
249 FALCON_STAT_rx_65_to_127,
250 FALCON_STAT_rx_128_to_255,
251 FALCON_STAT_rx_256_to_511,
252 FALCON_STAT_rx_512_to_1023,
253 FALCON_STAT_rx_1024_to_15xx,
254 FALCON_STAT_rx_15xx_to_jumbo,
255 FALCON_STAT_rx_gtjumbo,
256 FALCON_STAT_rx_bad_lt64,
257 FALCON_STAT_rx_bad_gtjumbo,
258 FALCON_STAT_rx_overflow,
259 FALCON_STAT_rx_symbol_error,
260 FALCON_STAT_rx_align_error,
261 FALCON_STAT_rx_length_error,
262 FALCON_STAT_rx_internal_error,
263 FALCON_STAT_rx_nodesc_drop_cnt,
264 FALCON_STAT_COUNT
268 * struct falcon_nic_data - Falcon NIC state
269 * @pci_dev2: Secondary function of Falcon A
270 * @efx: ef4_nic pointer
271 * @board: Board state and functions
272 * @stats: Hardware statistics
273 * @stats_disable_count: Nest count for disabling statistics fetches
274 * @stats_pending: Is there a pending DMA of MAC statistics.
275 * @stats_timer: A timer for regularly fetching MAC statistics.
276 * @spi_flash: SPI flash device
277 * @spi_eeprom: SPI EEPROM device
278 * @spi_lock: SPI bus lock
279 * @mdio_lock: MDIO bus lock
280 * @xmac_poll_required: XMAC link state needs polling
282 struct falcon_nic_data {
283 struct pci_dev *pci_dev2;
284 struct ef4_nic *efx;
285 struct falcon_board board;
286 u64 stats[FALCON_STAT_COUNT];
287 unsigned int stats_disable_count;
288 bool stats_pending;
289 struct timer_list stats_timer;
290 struct falcon_spi_device spi_flash;
291 struct falcon_spi_device spi_eeprom;
292 struct mutex spi_lock;
293 struct mutex mdio_lock;
294 bool xmac_poll_required;
297 static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
299 struct falcon_nic_data *data = efx->nic_data;
300 return &data->board;
303 struct ethtool_ts_info;
305 extern const struct ef4_nic_type falcon_a1_nic_type;
306 extern const struct ef4_nic_type falcon_b0_nic_type;
308 /**************************************************************************
310 * Externs
312 **************************************************************************
315 int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
317 /* TX data path */
318 static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
320 return tx_queue->efx->type->tx_probe(tx_queue);
322 static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
324 tx_queue->efx->type->tx_init(tx_queue);
326 static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
328 tx_queue->efx->type->tx_remove(tx_queue);
330 static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
332 tx_queue->efx->type->tx_write(tx_queue);
335 /* RX data path */
336 static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
338 return rx_queue->efx->type->rx_probe(rx_queue);
340 static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
342 rx_queue->efx->type->rx_init(rx_queue);
344 static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
346 rx_queue->efx->type->rx_remove(rx_queue);
348 static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
350 rx_queue->efx->type->rx_write(rx_queue);
352 static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
354 rx_queue->efx->type->rx_defer_refill(rx_queue);
357 /* Event data path */
358 static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
360 return channel->efx->type->ev_probe(channel);
362 static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
364 return channel->efx->type->ev_init(channel);
366 static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
368 channel->efx->type->ev_fini(channel);
370 static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
372 channel->efx->type->ev_remove(channel);
374 static inline int
375 ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
377 return channel->efx->type->ev_process(channel, quota);
379 static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
381 channel->efx->type->ev_read_ack(channel);
383 void ef4_nic_event_test_start(struct ef4_channel *channel);
385 /* queue operations */
386 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
387 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
388 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
389 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
390 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
391 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
392 dma_addr_t dma_addr, unsigned int len);
393 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
394 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
395 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
396 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
397 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
398 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
399 int ef4_farch_ev_probe(struct ef4_channel *channel);
400 int ef4_farch_ev_init(struct ef4_channel *channel);
401 void ef4_farch_ev_fini(struct ef4_channel *channel);
402 void ef4_farch_ev_remove(struct ef4_channel *channel);
403 int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
404 void ef4_farch_ev_read_ack(struct ef4_channel *channel);
405 void ef4_farch_ev_test_generate(struct ef4_channel *channel);
407 /* filter operations */
408 int ef4_farch_filter_table_probe(struct ef4_nic *efx);
409 void ef4_farch_filter_table_restore(struct ef4_nic *efx);
410 void ef4_farch_filter_table_remove(struct ef4_nic *efx);
411 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
412 s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
413 bool replace);
414 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
415 enum ef4_filter_priority priority,
416 u32 filter_id);
417 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
418 enum ef4_filter_priority priority, u32 filter_id,
419 struct ef4_filter_spec *);
420 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
421 enum ef4_filter_priority priority);
422 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
423 enum ef4_filter_priority priority);
424 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
425 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
426 enum ef4_filter_priority priority, u32 *buf,
427 u32 size);
428 #ifdef CONFIG_RFS_ACCEL
429 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
430 struct ef4_filter_spec *spec);
431 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
432 unsigned int index);
433 #endif
434 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
436 bool ef4_nic_event_present(struct ef4_channel *channel);
438 /* Some statistics are computed as A - B where A and B each increase
439 * linearly with some hardware counter(s) and the counters are read
440 * asynchronously. If the counters contributing to B are always read
441 * after those contributing to A, the computed value may be lower than
442 * the true value by some variable amount, and may decrease between
443 * subsequent computations.
445 * We should never allow statistics to decrease or to exceed the true
446 * value. Since the computed value will never be greater than the
447 * true value, we can achieve this by only storing the computed value
448 * when it increases.
450 static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
452 if ((s64)(diff - *stat) > 0)
453 *stat = diff;
456 /* Interrupts */
457 int ef4_nic_init_interrupt(struct ef4_nic *efx);
458 int ef4_nic_irq_test_start(struct ef4_nic *efx);
459 void ef4_nic_fini_interrupt(struct ef4_nic *efx);
460 void ef4_farch_irq_enable_master(struct ef4_nic *efx);
461 int ef4_farch_irq_test_generate(struct ef4_nic *efx);
462 void ef4_farch_irq_disable_master(struct ef4_nic *efx);
463 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
464 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
465 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
467 static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
469 return READ_ONCE(channel->event_test_cpu);
471 static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
473 return READ_ONCE(efx->last_irq_cpu);
476 /* Global Resources */
477 int ef4_nic_flush_queues(struct ef4_nic *efx);
478 int ef4_farch_fini_dmaq(struct ef4_nic *efx);
479 void ef4_farch_finish_flr(struct ef4_nic *efx);
480 void falcon_start_nic_stats(struct ef4_nic *efx);
481 void falcon_stop_nic_stats(struct ef4_nic *efx);
482 int falcon_reset_xaui(struct ef4_nic *efx);
483 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
484 void ef4_farch_init_common(struct ef4_nic *efx);
485 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
487 int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
488 unsigned int len, gfp_t gfp_flags);
489 void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
491 /* Tests */
492 struct ef4_farch_register_test {
493 unsigned address;
494 ef4_oword_t mask;
496 int ef4_farch_test_registers(struct ef4_nic *efx,
497 const struct ef4_farch_register_test *regs,
498 size_t n_regs);
500 size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
501 void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
503 size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
504 const unsigned long *mask, u8 *names);
505 void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
506 const unsigned long *mask, u64 *stats,
507 const void *dma_buf, bool accumulate);
508 void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
510 #define EF4_MAX_FLUSH_TIME 5000
512 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
513 ef4_qword_t *event);
515 #endif /* EF4_NIC_H */