1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
19 /**************************************************************************
21 * Management-Controller-to-Driver Interface
23 **************************************************************************
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 struct efx_mcdi_async_param
{
41 struct list_head list
;
46 efx_mcdi_async_completer
*complete
;
48 /* followed by request/response buffer */
51 static void efx_mcdi_timeout_async(struct timer_list
*t
);
52 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
53 bool *was_attached_out
);
54 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
55 static void efx_mcdi_abandon(struct efx_nic
*efx
);
57 #ifdef CONFIG_SFC_MCDI_LOGGING
58 static bool mcdi_logging_default
;
59 module_param(mcdi_logging_default
, bool, 0644);
60 MODULE_PARM_DESC(mcdi_logging_default
,
61 "Enable MCDI logging on newly-probed functions");
64 int efx_mcdi_init(struct efx_nic
*efx
)
66 struct efx_mcdi_iface
*mcdi
;
67 bool already_attached
;
70 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
76 #ifdef CONFIG_SFC_MCDI_LOGGING
77 /* consuming code assumes buffer is page-sized */
78 mcdi
->logging_buffer
= (char *)__get_free_page(GFP_KERNEL
);
79 if (!mcdi
->logging_buffer
)
81 mcdi
->logging_enabled
= mcdi_logging_default
;
83 init_waitqueue_head(&mcdi
->wq
);
84 init_waitqueue_head(&mcdi
->proxy_rx_wq
);
85 spin_lock_init(&mcdi
->iface_lock
);
86 mcdi
->state
= MCDI_STATE_QUIESCENT
;
87 mcdi
->mode
= MCDI_MODE_POLL
;
88 spin_lock_init(&mcdi
->async_lock
);
89 INIT_LIST_HEAD(&mcdi
->async_list
);
90 timer_setup(&mcdi
->async_timer
, efx_mcdi_timeout_async
, 0);
92 (void) efx_mcdi_poll_reboot(efx
);
93 mcdi
->new_epoch
= true;
95 /* Recover from a failed assertion before probing */
96 rc
= efx_mcdi_handle_assertion(efx
);
100 /* Let the MC (and BMC, if this is a LOM) know that the driver
101 * is loaded. We should do this before we reset the NIC.
103 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
105 netif_err(efx
, probe
, efx
->net_dev
,
106 "Unable to register driver with MCPU\n");
109 if (already_attached
)
110 /* Not a fatal error */
111 netif_err(efx
, probe
, efx
->net_dev
,
112 "Host already registered with MCPU\n");
114 if (efx
->mcdi
->fn_flags
&
115 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
120 #ifdef CONFIG_SFC_MCDI_LOGGING
121 free_page((unsigned long)mcdi
->logging_buffer
);
130 void efx_mcdi_detach(struct efx_nic
*efx
)
135 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
137 /* Relinquish the device (back to the BMC, if this is a LOM) */
138 efx_mcdi_drv_attach(efx
, false, NULL
);
141 void efx_mcdi_fini(struct efx_nic
*efx
)
146 #ifdef CONFIG_SFC_MCDI_LOGGING
147 free_page((unsigned long)efx
->mcdi
->iface
.logging_buffer
);
153 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
154 const efx_dword_t
*inbuf
, size_t inlen
)
156 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
157 #ifdef CONFIG_SFC_MCDI_LOGGING
158 char *buf
= mcdi
->logging_buffer
; /* page-sized */
164 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
166 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
167 spin_lock_bh(&mcdi
->iface_lock
);
169 spin_unlock_bh(&mcdi
->iface_lock
);
171 seqno
= mcdi
->seqno
& SEQ_MASK
;
173 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
174 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
176 if (efx
->type
->mcdi_max_ver
== 1) {
178 EFX_POPULATE_DWORD_7(hdr
[0],
179 MCDI_HEADER_RESPONSE
, 0,
180 MCDI_HEADER_RESYNC
, 1,
181 MCDI_HEADER_CODE
, cmd
,
182 MCDI_HEADER_DATALEN
, inlen
,
183 MCDI_HEADER_SEQ
, seqno
,
184 MCDI_HEADER_XFLAGS
, xflags
,
185 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
189 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
190 EFX_POPULATE_DWORD_7(hdr
[0],
191 MCDI_HEADER_RESPONSE
, 0,
192 MCDI_HEADER_RESYNC
, 1,
193 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
194 MCDI_HEADER_DATALEN
, 0,
195 MCDI_HEADER_SEQ
, seqno
,
196 MCDI_HEADER_XFLAGS
, xflags
,
197 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
198 EFX_POPULATE_DWORD_2(hdr
[1],
199 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
200 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
204 #ifdef CONFIG_SFC_MCDI_LOGGING
205 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
208 /* Lengths should always be a whole number of dwords, so scream
211 WARN_ON_ONCE(hdr_len
% 4);
212 WARN_ON_ONCE(inlen
% 4);
214 /* We own the logging buffer, as only one MCDI can be in
215 * progress on a NIC at any one time. So no need for locking.
217 for (i
= 0; i
< hdr_len
/ 4 && bytes
< PAGE_SIZE
; i
++)
218 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
219 " %08x", le32_to_cpu(hdr
[i
].u32
[0]));
221 for (i
= 0; i
< inlen
/ 4 && bytes
< PAGE_SIZE
; i
++)
222 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
223 " %08x", le32_to_cpu(inbuf
[i
].u32
[0]));
225 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC REQ:%s\n", buf
);
229 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
231 mcdi
->new_epoch
= false;
234 static int efx_mcdi_errno(unsigned int mcdi_err
)
239 #define TRANSLATE_ERROR(name) \
240 case MC_CMD_ERR_ ## name: \
242 TRANSLATE_ERROR(EPERM
);
243 TRANSLATE_ERROR(ENOENT
);
244 TRANSLATE_ERROR(EINTR
);
245 TRANSLATE_ERROR(EAGAIN
);
246 TRANSLATE_ERROR(EACCES
);
247 TRANSLATE_ERROR(EBUSY
);
248 TRANSLATE_ERROR(EINVAL
);
249 TRANSLATE_ERROR(EDEADLK
);
250 TRANSLATE_ERROR(ENOSYS
);
251 TRANSLATE_ERROR(ETIME
);
252 TRANSLATE_ERROR(EALREADY
);
253 TRANSLATE_ERROR(ENOSPC
);
254 #undef TRANSLATE_ERROR
255 case MC_CMD_ERR_ENOTSUP
:
257 case MC_CMD_ERR_ALLOC_FAIL
:
259 case MC_CMD_ERR_MAC_EXIST
:
266 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
268 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
269 unsigned int respseq
, respcmd
, error
;
270 #ifdef CONFIG_SFC_MCDI_LOGGING
271 char *buf
= mcdi
->logging_buffer
; /* page-sized */
275 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
276 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
277 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
278 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
280 if (respcmd
!= MC_CMD_V2_EXTN
) {
281 mcdi
->resp_hdr_len
= 4;
282 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
284 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
285 mcdi
->resp_hdr_len
= 8;
286 mcdi
->resp_data_len
=
287 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
290 #ifdef CONFIG_SFC_MCDI_LOGGING
291 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
292 size_t hdr_len
, data_len
;
296 WARN_ON_ONCE(mcdi
->resp_hdr_len
% 4);
297 hdr_len
= mcdi
->resp_hdr_len
/ 4;
298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 * to dword size, and the MCDI buffer is always dword size
301 data_len
= DIV_ROUND_UP(mcdi
->resp_data_len
, 4);
303 /* We own the logging buffer, as only one MCDI can be in
304 * progress on a NIC at any one time. So no need for locking.
306 for (i
= 0; i
< hdr_len
&& bytes
< PAGE_SIZE
; i
++) {
307 efx
->type
->mcdi_read_response(efx
, &hdr
, (i
* 4), 4);
308 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
309 " %08x", le32_to_cpu(hdr
.u32
[0]));
312 for (i
= 0; i
< data_len
&& bytes
< PAGE_SIZE
; i
++) {
313 efx
->type
->mcdi_read_response(efx
, &hdr
,
314 mcdi
->resp_hdr_len
+ (i
* 4), 4);
315 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
316 " %08x", le32_to_cpu(hdr
.u32
[0]));
319 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC RESP:%s\n", buf
);
323 mcdi
->resprc_raw
= 0;
324 if (error
&& mcdi
->resp_data_len
== 0) {
325 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
327 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
328 netif_err(efx
, hw
, efx
->net_dev
,
329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 respseq
, mcdi
->seqno
);
333 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
334 mcdi
->resprc_raw
= EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
);
335 mcdi
->resprc
= efx_mcdi_errno(mcdi
->resprc_raw
);
341 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
343 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
346 if (!efx
->type
->mcdi_poll_response(efx
))
349 spin_lock_bh(&mcdi
->iface_lock
);
350 efx_mcdi_read_response_header(efx
);
351 spin_unlock_bh(&mcdi
->iface_lock
);
356 static int efx_mcdi_poll(struct efx_nic
*efx
)
358 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
359 unsigned long time
, finish
;
363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 rc
= efx_mcdi_poll_reboot(efx
);
366 spin_lock_bh(&mcdi
->iface_lock
);
368 mcdi
->resp_hdr_len
= 0;
369 mcdi
->resp_data_len
= 0;
370 spin_unlock_bh(&mcdi
->iface_lock
);
374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 * because generally mcdi responses are fast. After that, back off
376 * and poll once a jiffy (approximately)
379 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
386 schedule_timeout_uninterruptible(1);
391 if (efx_mcdi_poll_once(efx
))
394 if (time_after(time
, finish
))
398 /* Return rc=0 like wait_event_timeout() */
402 /* Test and clear MC-rebooted flag for this port/function; reset
403 * software state as necessary.
405 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
410 return efx
->type
->mcdi_poll_reboot(efx
);
413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
415 return cmpxchg(&mcdi
->state
,
416 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
417 MCDI_STATE_QUIESCENT
;
420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
422 /* Wait until the interface becomes QUIESCENT and we win the race
423 * to mark it RUNNING_SYNC.
426 cmpxchg(&mcdi
->state
,
427 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
428 MCDI_STATE_QUIESCENT
);
431 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
433 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
435 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
436 MCDI_RPC_TIMEOUT
) == 0)
439 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 * completed the request first, then we'll just end up completing the
442 * request again, which is safe.
444 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
445 * wait_event_timeout() implicitly provides.
447 if (mcdi
->mode
== MCDI_MODE_POLL
)
448 return efx_mcdi_poll(efx
);
453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454 * requester. Return whether this was done. Does not take any locks.
456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
458 if (cmpxchg(&mcdi
->state
,
459 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
460 MCDI_STATE_RUNNING_SYNC
) {
468 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
470 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
471 struct efx_mcdi_async_param
*async
;
472 struct efx_nic
*efx
= mcdi
->efx
;
474 /* Process the asynchronous request queue */
475 spin_lock_bh(&mcdi
->async_lock
);
476 async
= list_first_entry_or_null(
477 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
479 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
480 efx_mcdi_send_request(efx
, async
->cmd
,
481 (const efx_dword_t
*)(async
+ 1),
483 mod_timer(&mcdi
->async_timer
,
484 jiffies
+ MCDI_RPC_TIMEOUT
);
486 spin_unlock_bh(&mcdi
->async_lock
);
492 mcdi
->state
= MCDI_STATE_QUIESCENT
;
496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497 * asynchronous completion function, and release the interface.
498 * Return whether this was done. Must be called in bh-disabled
499 * context. Will take iface_lock and async_lock.
501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
503 struct efx_nic
*efx
= mcdi
->efx
;
504 struct efx_mcdi_async_param
*async
;
505 size_t hdr_len
, data_len
, err_len
;
507 MCDI_DECLARE_BUF_ERR(errbuf
);
510 if (cmpxchg(&mcdi
->state
,
511 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
512 MCDI_STATE_RUNNING_ASYNC
)
515 spin_lock(&mcdi
->iface_lock
);
517 /* Ensure that if the completion event arrives later,
518 * the seqno check in efx_mcdi_ev_cpl() will fail
527 hdr_len
= mcdi
->resp_hdr_len
;
528 data_len
= mcdi
->resp_data_len
;
530 spin_unlock(&mcdi
->iface_lock
);
532 /* Stop the timer. In case the timer function is running, we
533 * must wait for it to return so that there is no possibility
534 * of it aborting the next request.
537 del_timer_sync(&mcdi
->async_timer
);
539 spin_lock(&mcdi
->async_lock
);
540 async
= list_first_entry(&mcdi
->async_list
,
541 struct efx_mcdi_async_param
, list
);
542 list_del(&async
->list
);
543 spin_unlock(&mcdi
->async_lock
);
545 outbuf
= (efx_dword_t
*)(async
+ 1);
546 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
547 min(async
->outlen
, data_len
));
548 if (!timeout
&& rc
&& !async
->quiet
) {
549 err_len
= min(sizeof(errbuf
), data_len
);
550 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
552 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
557 async
->complete(efx
, async
->cookie
, rc
, outbuf
,
558 min(async
->outlen
, data_len
));
561 efx_mcdi_release(mcdi
);
566 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
567 unsigned int datalen
, unsigned int mcdi_err
)
569 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
572 spin_lock(&mcdi
->iface_lock
);
574 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
576 /* The request has been cancelled */
579 netif_err(efx
, hw
, efx
->net_dev
,
580 "MC response mismatch tx seq 0x%x rx "
581 "seq 0x%x\n", seqno
, mcdi
->seqno
);
583 if (efx
->type
->mcdi_max_ver
>= 2) {
584 /* MCDI v2 responses don't fit in an event */
585 efx_mcdi_read_response_header(efx
);
587 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
588 mcdi
->resp_hdr_len
= 4;
589 mcdi
->resp_data_len
= datalen
;
595 spin_unlock(&mcdi
->iface_lock
);
598 if (!efx_mcdi_complete_async(mcdi
, false))
599 (void) efx_mcdi_complete_sync(mcdi
);
601 /* If the interface isn't RUNNING_ASYNC or
602 * RUNNING_SYNC then we've received a duplicate
603 * completion after we've already transitioned back to
604 * QUIESCENT. [A subsequent invocation would increment
605 * seqno, so would have failed the seqno check].
610 static void efx_mcdi_timeout_async(struct timer_list
*t
)
612 struct efx_mcdi_iface
*mcdi
= from_timer(mcdi
, t
, async_timer
);
614 efx_mcdi_complete_async(mcdi
, true);
618 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
620 if (efx
->type
->mcdi_max_ver
< 0 ||
621 (efx
->type
->mcdi_max_ver
< 2 &&
622 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
625 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
626 (efx
->type
->mcdi_max_ver
< 2 &&
627 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
633 static bool efx_mcdi_get_proxy_handle(struct efx_nic
*efx
,
634 size_t hdr_len
, size_t data_len
,
637 MCDI_DECLARE_BUF_ERR(testbuf
);
638 const size_t buflen
= sizeof(testbuf
);
640 if (!proxy_handle
|| data_len
< buflen
)
643 efx
->type
->mcdi_read_response(efx
, testbuf
, hdr_len
, buflen
);
644 if (MCDI_DWORD(testbuf
, ERR_CODE
) == MC_CMD_ERR_PROXY_PENDING
) {
645 *proxy_handle
= MCDI_DWORD(testbuf
, ERR_PROXY_PENDING_HANDLE
);
652 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned int cmd
,
654 efx_dword_t
*outbuf
, size_t outlen
,
655 size_t *outlen_actual
, bool quiet
,
656 u32
*proxy_handle
, int *raw_rc
)
658 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
659 MCDI_DECLARE_BUF_ERR(errbuf
);
662 if (mcdi
->mode
== MCDI_MODE_POLL
)
663 rc
= efx_mcdi_poll(efx
);
665 rc
= efx_mcdi_await_completion(efx
);
668 netif_err(efx
, hw
, efx
->net_dev
,
669 "MC command 0x%x inlen %d mode %d timed out\n",
670 cmd
, (int)inlen
, mcdi
->mode
);
672 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
673 netif_err(efx
, hw
, efx
->net_dev
,
674 "MCDI request was completed without an event\n");
678 efx_mcdi_abandon(efx
);
680 /* Close the race with efx_mcdi_ev_cpl() executing just too late
681 * and completing a request we've just cancelled, by ensuring
682 * that the seqno check therein fails.
684 spin_lock_bh(&mcdi
->iface_lock
);
687 spin_unlock_bh(&mcdi
->iface_lock
);
697 size_t hdr_len
, data_len
, err_len
;
699 /* At the very least we need a memory barrier here to ensure
700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 * acquiring the iface_lock. */
703 spin_lock_bh(&mcdi
->iface_lock
);
706 *raw_rc
= mcdi
->resprc_raw
;
707 hdr_len
= mcdi
->resp_hdr_len
;
708 data_len
= mcdi
->resp_data_len
;
709 err_len
= min(sizeof(errbuf
), data_len
);
710 spin_unlock_bh(&mcdi
->iface_lock
);
714 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
715 min(outlen
, data_len
));
717 *outlen_actual
= data_len
;
719 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
721 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
722 /* Don't reset if MC_CMD_REBOOT returns EIO */
723 } else if (rc
== -EIO
|| rc
== -EINTR
) {
724 netif_err(efx
, hw
, efx
->net_dev
, "MC reboot detected\n");
725 netif_dbg(efx
, hw
, efx
->net_dev
, "MC rebooted during command %d rc %d\n",
727 if (efx
->type
->mcdi_reboot_detected
)
728 efx
->type
->mcdi_reboot_detected(efx
);
729 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
730 } else if (proxy_handle
&& (rc
== -EPROTO
) &&
731 efx_mcdi_get_proxy_handle(efx
, hdr_len
, data_len
,
733 mcdi
->proxy_rx_status
= 0;
734 mcdi
->proxy_rx_handle
= 0;
735 mcdi
->state
= MCDI_STATE_PROXY_WAIT
;
736 } else if (rc
&& !quiet
) {
737 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
741 if (rc
== -EIO
|| rc
== -EINTR
) {
742 msleep(MCDI_STATUS_SLEEP_MS
);
743 efx_mcdi_poll_reboot(efx
);
744 mcdi
->new_epoch
= true;
748 if (!proxy_handle
|| !*proxy_handle
)
749 efx_mcdi_release(mcdi
);
753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface
*mcdi
)
755 if (mcdi
->state
== MCDI_STATE_PROXY_WAIT
) {
756 /* Interrupt the proxy wait. */
757 mcdi
->proxy_rx_status
= -EINTR
;
758 wake_up(&mcdi
->proxy_rx_wq
);
762 static void efx_mcdi_ev_proxy_response(struct efx_nic
*efx
,
763 u32 handle
, int status
)
765 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
767 WARN_ON(mcdi
->state
!= MCDI_STATE_PROXY_WAIT
);
769 mcdi
->proxy_rx_status
= efx_mcdi_errno(status
);
770 /* Ensure the status is written before we update the handle, since the
771 * latter is used to check if we've finished.
774 mcdi
->proxy_rx_handle
= handle
;
775 wake_up(&mcdi
->proxy_rx_wq
);
778 static int efx_mcdi_proxy_wait(struct efx_nic
*efx
, u32 handle
, bool quiet
)
780 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
783 /* Wait for a proxy event, or timeout. */
784 rc
= wait_event_timeout(mcdi
->proxy_rx_wq
,
785 mcdi
->proxy_rx_handle
!= 0 ||
786 mcdi
->proxy_rx_status
== -EINTR
,
790 netif_dbg(efx
, hw
, efx
->net_dev
,
791 "MCDI proxy timeout %d\n", handle
);
793 } else if (mcdi
->proxy_rx_handle
!= handle
) {
794 netif_warn(efx
, hw
, efx
->net_dev
,
795 "MCDI proxy unexpected handle %d (expected %d)\n",
796 mcdi
->proxy_rx_handle
, handle
);
800 return mcdi
->proxy_rx_status
;
803 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned int cmd
,
804 const efx_dword_t
*inbuf
, size_t inlen
,
805 efx_dword_t
*outbuf
, size_t outlen
,
806 size_t *outlen_actual
, bool quiet
, int *raw_rc
)
808 u32 proxy_handle
= 0; /* Zero is an invalid proxy handle. */
811 if (inbuf
&& inlen
&& (inbuf
== outbuf
)) {
812 /* The input buffer can't be aliased with the output. */
817 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
821 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
822 outlen_actual
, quiet
, &proxy_handle
, raw_rc
);
825 /* Handle proxy authorisation. This allows approval of MCDI
826 * operations to be delegated to the admin function, allowing
827 * fine control over (eg) multicast subscriptions.
829 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
831 netif_dbg(efx
, hw
, efx
->net_dev
,
832 "MCDI waiting for proxy auth %d\n",
834 rc
= efx_mcdi_proxy_wait(efx
, proxy_handle
, quiet
);
837 netif_dbg(efx
, hw
, efx
->net_dev
,
838 "MCDI proxy retry %d\n", proxy_handle
);
840 /* We now retry the original request. */
841 mcdi
->state
= MCDI_STATE_RUNNING_SYNC
;
842 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
844 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
,
845 outbuf
, outlen
, outlen_actual
,
846 quiet
, NULL
, raw_rc
);
848 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -EPERM
, err
,
849 "MC command 0x%x failed after proxy auth rc=%d\n",
852 if (rc
== -EINTR
|| rc
== -EIO
)
853 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
854 efx_mcdi_release(mcdi
);
861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic
*efx
, unsigned cmd
,
862 const efx_dword_t
*inbuf
, size_t inlen
,
863 efx_dword_t
*outbuf
, size_t outlen
,
864 size_t *outlen_actual
, bool quiet
)
869 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
870 outbuf
, outlen
, outlen_actual
, true, &raw_rc
);
872 if ((rc
== -EPROTO
) && (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
874 /* If the EVB port isn't available within a VF this may
875 * mean the PF is still bringing the switch up. We should
876 * retry our request shortly.
878 unsigned long abort_time
= jiffies
+ MCDI_RPC_TIMEOUT
;
879 unsigned int delay_us
= 10000;
881 netif_dbg(efx
, hw
, efx
->net_dev
,
882 "%s: NO_EVB_PORT; will retry request\n",
886 usleep_range(delay_us
, delay_us
+ 10000);
887 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
888 outbuf
, outlen
, outlen_actual
,
890 if (delay_us
< 100000)
892 } while ((rc
== -EPROTO
) &&
893 (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
894 time_before(jiffies
, abort_time
));
897 if (rc
&& !quiet
&& !(cmd
== MC_CMD_REBOOT
&& rc
== -EIO
))
898 efx_mcdi_display_error(efx
, cmd
, inlen
,
905 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
906 * @efx: NIC through which to issue the command
907 * @cmd: Command type number
908 * @inbuf: Command parameters
909 * @inlen: Length of command parameters, in bytes. Must be a multiple
910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
912 * @outlen: Length of response buffer, in bytes. If the actual
913 * response is longer than @outlen & ~3, it will be truncated
915 * @outlen_actual: Pointer through which to return the actual response
916 * length. May be %NULL if this is not needed.
918 * This function may sleep and therefore must be called in an appropriate
921 * Return: A negative error code, or zero if successful. The error
922 * code may come from the MCDI response or may indicate a failure
923 * to communicate with the MC. In the former case, the response
924 * will still be copied to @outbuf and *@outlen_actual will be
925 * set accordingly. In the latter case, *@outlen_actual will be
928 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
929 const efx_dword_t
*inbuf
, size_t inlen
,
930 efx_dword_t
*outbuf
, size_t outlen
,
931 size_t *outlen_actual
)
933 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
934 outlen_actual
, false);
937 /* Normally, on receiving an error code in the MCDI response,
938 * efx_mcdi_rpc will log an error message containing (among other
939 * things) the raw error code, by means of efx_mcdi_display_error.
940 * This _quiet version suppresses that; if the caller wishes to log
941 * the error conditionally on the return code, it should call this
942 * function and is then responsible for calling efx_mcdi_display_error
945 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
946 const efx_dword_t
*inbuf
, size_t inlen
,
947 efx_dword_t
*outbuf
, size_t outlen
,
948 size_t *outlen_actual
)
950 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
951 outlen_actual
, true);
954 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
955 const efx_dword_t
*inbuf
, size_t inlen
)
957 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
960 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
964 if (efx
->mc_bist_for_other_fn
)
967 if (mcdi
->mode
== MCDI_MODE_FAIL
)
970 efx_mcdi_acquire_sync(mcdi
);
971 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
975 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
976 const efx_dword_t
*inbuf
, size_t inlen
,
978 efx_mcdi_async_completer
*complete
,
979 unsigned long cookie
, bool quiet
)
981 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
982 struct efx_mcdi_async_param
*async
;
985 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
989 if (efx
->mc_bist_for_other_fn
)
992 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
998 async
->inlen
= inlen
;
999 async
->outlen
= outlen
;
1000 async
->quiet
= quiet
;
1001 async
->complete
= complete
;
1002 async
->cookie
= cookie
;
1003 memcpy(async
+ 1, inbuf
, inlen
);
1005 spin_lock_bh(&mcdi
->async_lock
);
1007 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1008 list_add_tail(&async
->list
, &mcdi
->async_list
);
1010 /* If this is at the front of the queue, try to start it
1013 if (mcdi
->async_list
.next
== &async
->list
&&
1014 efx_mcdi_acquire_async(mcdi
)) {
1015 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
1016 mod_timer(&mcdi
->async_timer
,
1017 jiffies
+ MCDI_RPC_TIMEOUT
);
1024 spin_unlock_bh(&mcdi
->async_lock
);
1030 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031 * @efx: NIC through which to issue the command
1032 * @cmd: Command type number
1033 * @inbuf: Command parameters
1034 * @inlen: Length of command parameters, in bytes
1035 * @outlen: Length to allocate for response buffer, in bytes
1036 * @complete: Function to be called on completion or cancellation.
1037 * @cookie: Arbitrary value to be passed to @complete.
1039 * This function does not sleep and therefore may be called in atomic
1040 * context. It will fail if event queues are disabled or if MCDI
1041 * event completions have been disabled due to an error.
1043 * If it succeeds, the @complete function will be called exactly once
1044 * in atomic context, when one of the following occurs:
1045 * (a) the completion event is received (in NAPI context)
1046 * (b) event queues are disabled (in the process that disables them)
1047 * (c) the request times-out (in timer context)
1050 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
1051 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
1052 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
1054 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1058 int efx_mcdi_rpc_async_quiet(struct efx_nic
*efx
, unsigned int cmd
,
1059 const efx_dword_t
*inbuf
, size_t inlen
,
1060 size_t outlen
, efx_mcdi_async_completer
*complete
,
1061 unsigned long cookie
)
1063 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1067 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1068 efx_dword_t
*outbuf
, size_t outlen
,
1069 size_t *outlen_actual
)
1071 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1072 outlen_actual
, false, NULL
, NULL
);
1075 int efx_mcdi_rpc_finish_quiet(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1076 efx_dword_t
*outbuf
, size_t outlen
,
1077 size_t *outlen_actual
)
1079 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1080 outlen_actual
, true, NULL
, NULL
);
1083 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
1084 size_t inlen
, efx_dword_t
*outbuf
,
1085 size_t outlen
, int rc
)
1087 int code
= 0, err_arg
= 0;
1089 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
1090 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
1091 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
1092 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
1093 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -EPERM
, err
,
1094 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1095 cmd
, inlen
, rc
, code
, err_arg
);
1098 /* Switch to polled MCDI completions. This can be called in various
1099 * error conditions with various locks held, so it must be lockless.
1100 * Caller is responsible for flushing asynchronous requests later.
1102 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
1104 struct efx_mcdi_iface
*mcdi
;
1109 mcdi
= efx_mcdi(efx
);
1110 /* If already in polling mode, nothing to do.
1111 * If in fail-fast state, don't switch to polled completion.
1112 * FLR recovery will do that later.
1114 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1117 /* We can switch from event completion to polled completion, because
1118 * mcdi requests are always completed in shared memory. We do this by
1119 * switching the mode to POLL'd then completing the request.
1120 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1122 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1123 * which efx_mcdi_complete_sync() provides for us.
1125 mcdi
->mode
= MCDI_MODE_POLL
;
1127 efx_mcdi_complete_sync(mcdi
);
1130 /* Flush any running or queued asynchronous requests, after event processing
1133 void efx_mcdi_flush_async(struct efx_nic
*efx
)
1135 struct efx_mcdi_async_param
*async
, *next
;
1136 struct efx_mcdi_iface
*mcdi
;
1141 mcdi
= efx_mcdi(efx
);
1143 /* We must be in poll or fail mode so no more requests can be queued */
1144 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
1146 del_timer_sync(&mcdi
->async_timer
);
1148 /* If a request is still running, make sure we give the MC
1149 * time to complete it so that the response won't overwrite our
1152 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
1154 mcdi
->state
= MCDI_STATE_QUIESCENT
;
1157 /* Nothing else will access the async list now, so it is safe
1158 * to walk it without holding async_lock. If we hold it while
1159 * calling a completer then lockdep may warn that we have
1160 * acquired locks in the wrong order.
1162 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
1163 if (async
->complete
)
1164 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
1165 list_del(&async
->list
);
1170 void efx_mcdi_mode_event(struct efx_nic
*efx
)
1172 struct efx_mcdi_iface
*mcdi
;
1177 mcdi
= efx_mcdi(efx
);
1178 /* If already in event completion mode, nothing to do.
1179 * If in fail-fast state, don't switch to event completion. FLR
1180 * recovery will do that later.
1182 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1185 /* We can't switch from polled to event completion in the middle of a
1186 * request, because the completion method is specified in the request.
1187 * So acquire the interface to serialise the requestors. We don't need
1188 * to acquire the iface_lock to change the mode here, but we do need a
1189 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1190 * efx_mcdi_acquire() provides.
1192 efx_mcdi_acquire_sync(mcdi
);
1193 mcdi
->mode
= MCDI_MODE_EVENTS
;
1194 efx_mcdi_release(mcdi
);
1197 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
1199 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1201 /* If there is an outstanding MCDI request, it has been terminated
1202 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1203 * in polled mode, then do nothing because the MC reboot handler will
1204 * set the header correctly. However, if the mcdi interface is waiting
1205 * for a CMDDONE event it won't receive it [and since all MCDI events
1206 * are sent to the same queue, we can't be racing with
1207 * efx_mcdi_ev_cpl()]
1209 * If there is an outstanding asynchronous request, we can't
1210 * complete it now (efx_mcdi_complete() would deadlock). The
1211 * reset process will take care of this.
1213 * There's a race here with efx_mcdi_send_request(), because
1214 * we might receive a REBOOT event *before* the request has
1215 * been copied out. In polled mode (during startup) this is
1216 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1217 * event mode, this condition is just an edge-case of
1218 * receiving a REBOOT event after posting the MCDI
1219 * request. Did the mc reboot before or after the copyout? The
1220 * best we can do always is just return failure.
1222 * If there is an outstanding proxy response expected it is not going
1223 * to arrive. We should thus abort it.
1225 spin_lock(&mcdi
->iface_lock
);
1226 efx_mcdi_proxy_abort(mcdi
);
1228 if (efx_mcdi_complete_sync(mcdi
)) {
1229 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1231 mcdi
->resp_hdr_len
= 0;
1232 mcdi
->resp_data_len
= 0;
1238 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1239 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
1240 rc
= efx_mcdi_poll_reboot(efx
);
1243 udelay(MCDI_STATUS_DELAY_US
);
1246 /* On EF10, a CODE_MC_REBOOT event can be received without the
1247 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1248 * If zero was returned from the final call to
1249 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1250 * MC has definitely rebooted so prepare for the reset.
1252 if (!rc
&& efx
->type
->mcdi_reboot_detected
)
1253 efx
->type
->mcdi_reboot_detected(efx
);
1255 mcdi
->new_epoch
= true;
1257 /* Nobody was waiting for an MCDI request, so trigger a reset */
1258 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
1261 spin_unlock(&mcdi
->iface_lock
);
1264 /* The MC is going down in to BIST mode. set the BIST flag to block
1265 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1266 * (which doesn't actually execute a reset, it waits for the controlling
1267 * function to reset it).
1269 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
1271 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1273 spin_lock(&mcdi
->iface_lock
);
1274 efx
->mc_bist_for_other_fn
= true;
1275 efx_mcdi_proxy_abort(mcdi
);
1277 if (efx_mcdi_complete_sync(mcdi
)) {
1278 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1279 mcdi
->resprc
= -EIO
;
1280 mcdi
->resp_hdr_len
= 0;
1281 mcdi
->resp_data_len
= 0;
1285 mcdi
->new_epoch
= true;
1286 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
1287 spin_unlock(&mcdi
->iface_lock
);
1290 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1293 static void efx_mcdi_abandon(struct efx_nic
*efx
)
1295 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1297 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
1298 return; /* it had already been done */
1299 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
1300 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
1303 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1304 void efx_mcdi_process_event(struct efx_channel
*channel
,
1307 struct efx_nic
*efx
= channel
->efx
;
1308 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
1309 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
1312 case MCDI_EVENT_CODE_BADSSERT
:
1313 netif_err(efx
, hw
, efx
->net_dev
,
1314 "MC watchdog or assertion failure at 0x%x\n", data
);
1315 efx_mcdi_ev_death(efx
, -EINTR
);
1318 case MCDI_EVENT_CODE_PMNOTICE
:
1319 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1322 case MCDI_EVENT_CODE_CMDDONE
:
1323 efx_mcdi_ev_cpl(efx
,
1324 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1325 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1326 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1329 case MCDI_EVENT_CODE_LINKCHANGE
:
1330 efx_mcdi_process_link_change(efx
, event
);
1332 case MCDI_EVENT_CODE_SENSOREVT
:
1333 efx_mcdi_sensor_event(efx
, event
);
1335 case MCDI_EVENT_CODE_SCHEDERR
:
1336 netif_dbg(efx
, hw
, efx
->net_dev
,
1337 "MC Scheduler alert (0x%x)\n", data
);
1339 case MCDI_EVENT_CODE_REBOOT
:
1340 case MCDI_EVENT_CODE_MC_REBOOT
:
1341 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1342 efx_mcdi_ev_death(efx
, -EIO
);
1344 case MCDI_EVENT_CODE_MC_BIST
:
1345 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1346 efx_mcdi_ev_bist(efx
);
1348 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1349 /* MAC stats are gather lazily. We can ignore this. */
1351 case MCDI_EVENT_CODE_FLR
:
1352 if (efx
->type
->sriov_flr
)
1353 efx
->type
->sriov_flr(efx
,
1354 MCDI_EVENT_FIELD(*event
, FLR_VF
));
1356 case MCDI_EVENT_CODE_PTP_RX
:
1357 case MCDI_EVENT_CODE_PTP_FAULT
:
1358 case MCDI_EVENT_CODE_PTP_PPS
:
1359 efx_ptp_event(efx
, event
);
1361 case MCDI_EVENT_CODE_PTP_TIME
:
1362 efx_time_sync_event(channel
, event
);
1364 case MCDI_EVENT_CODE_TX_FLUSH
:
1365 case MCDI_EVENT_CODE_RX_FLUSH
:
1366 /* Two flush events will be sent: one to the same event
1367 * queue as completions, and one to event queue 0.
1368 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1369 * flag will be set, and we should ignore the event
1370 * because we want to wait for all completions.
1372 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1373 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1374 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1375 efx_ef10_handle_drain_event(efx
);
1377 case MCDI_EVENT_CODE_TX_ERR
:
1378 case MCDI_EVENT_CODE_RX_ERR
:
1379 netif_err(efx
, hw
, efx
->net_dev
,
1380 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1381 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1382 EFX_QWORD_VAL(*event
));
1383 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1385 case MCDI_EVENT_CODE_PROXY_RESPONSE
:
1386 efx_mcdi_ev_proxy_response(efx
,
1387 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_HANDLE
),
1388 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_RC
));
1391 netif_err(efx
, hw
, efx
->net_dev
,
1392 "Unknown MCDI event " EFX_QWORD_FMT
"\n",
1393 EFX_QWORD_VAL(*event
));
1397 /**************************************************************************
1399 * Specific request functions
1401 **************************************************************************
1404 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1406 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_VERSION_OUT_LEN
);
1408 const __le16
*ver_words
;
1412 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1413 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1414 outbuf
, sizeof(outbuf
), &outlength
);
1417 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1422 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1423 offset
= snprintf(buf
, len
, "%u.%u.%u.%u",
1424 le16_to_cpu(ver_words
[0]), le16_to_cpu(ver_words
[1]),
1425 le16_to_cpu(ver_words
[2]), le16_to_cpu(ver_words
[3]));
1427 /* EF10 may have multiple datapath firmware variants within a
1428 * single version. Report which variants are running.
1430 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
1431 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1433 offset
+= snprintf(buf
+ offset
, len
- offset
, " rx%x tx%x",
1434 nic_data
->rx_dpcpu_fw_id
,
1435 nic_data
->tx_dpcpu_fw_id
);
1437 /* It's theoretically possible for the string to exceed 31
1438 * characters, though in practice the first three version
1439 * components are short enough that this doesn't happen.
1441 if (WARN_ON(offset
>= len
))
1448 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1452 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1455 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1456 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1460 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1461 driver_operating
? 1 : 0);
1462 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1463 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1465 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1466 outbuf
, sizeof(outbuf
), &outlen
);
1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 * specified will fail with EPERM, and we have to tell the MC we don't
1469 * care what firmware we get.
1472 netif_dbg(efx
, probe
, efx
->net_dev
,
1473 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1474 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
,
1475 MC_CMD_FW_DONT_CARE
);
1476 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
,
1477 sizeof(inbuf
), outbuf
, sizeof(outbuf
),
1481 efx_mcdi_display_error(efx
, MC_CMD_DRV_ATTACH
, sizeof(inbuf
),
1482 outbuf
, outlen
, rc
);
1485 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1490 if (driver_operating
) {
1491 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1492 efx
->mcdi
->fn_flags
=
1494 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1496 /* Synthesise flags for Siena */
1497 efx
->mcdi
->fn_flags
=
1498 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1500 (efx_port_num(efx
) == 0) <<
1501 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1505 /* We currently assume we have control of the external link
1506 * and are completely trusted by firmware. Abort probing
1507 * if that's not true for this function.
1510 if (was_attached
!= NULL
)
1511 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1515 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1519 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1520 u16
*fw_subtype_list
, u32
*capabilities
)
1522 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1524 int port_num
= efx_port_num(efx
);
1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1528 /* we need __aligned(2) for ether_addr_copy */
1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1532 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1533 outbuf
, sizeof(outbuf
), &outlen
);
1537 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1543 ether_addr_copy(mac_address
,
1545 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1546 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1547 if (fw_subtype_list
) {
1549 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1550 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1552 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1553 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1554 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1555 fw_subtype_list
[i
] = 0;
1559 *capabilities
= MCDI_DWORD(outbuf
,
1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1562 *capabilities
= MCDI_DWORD(outbuf
,
1563 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1569 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1570 __func__
, rc
, (int)outlen
);
1575 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1577 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1582 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1584 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1586 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1587 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1589 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1591 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1596 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1598 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1602 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1604 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1605 outbuf
, sizeof(outbuf
), &outlen
);
1608 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1613 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1617 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1622 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1623 size_t *size_out
, size_t *erase_size_out
,
1624 bool *protected_out
)
1626 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1627 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1631 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1633 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1634 outbuf
, sizeof(outbuf
), &outlen
);
1637 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1642 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1643 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1644 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1645 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1649 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1653 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1655 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1656 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1659 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1661 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1662 outbuf
, sizeof(outbuf
), NULL
);
1666 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1667 case MC_CMD_NVRAM_TEST_PASS
:
1668 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1675 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1681 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1686 while (nvram_types
!= 0) {
1687 if (nvram_types
& 1) {
1688 rc
= efx_mcdi_nvram_test(efx
, type
);
1699 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1702 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1706 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1707 * negative on error.
1709 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1711 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1712 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1713 unsigned int flags
, index
;
1719 /* Attempt to read any stored assertion state before we reboot
1720 * the mcfw out of the assertion handler. Retry twice, once
1721 * because a boot-time assertion might cause this command to fail
1722 * with EINTR. And once again because GET_ASSERTS can race with
1723 * MC_CMD_REBOOT running on the other port. */
1726 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1727 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1728 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1729 outbuf
, sizeof(outbuf
), &outlen
);
1732 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1735 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1736 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1740 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1743 /* Print out any recorded assertion state */
1744 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1745 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1748 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1749 ? "system-level assertion"
1750 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1751 ? "thread-level assertion"
1752 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1754 : "unknown assertion";
1755 netif_err(efx
, hw
, efx
->net_dev
,
1756 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1757 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1758 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1760 /* Print out the registers */
1762 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1764 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1766 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1772 static int efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1774 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1777 /* If the MC is running debug firmware, it might now be
1778 * waiting for a debugger to attach, but we just want it to
1779 * reboot. We set a flag that makes the command a no-op if it
1780 * has already done so.
1781 * The MCDI will thus return either 0 or -EIO.
1783 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1784 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1785 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1786 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1791 efx_mcdi_display_error(efx
, MC_CMD_REBOOT
, MC_CMD_REBOOT_IN_LEN
,
1796 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1800 rc
= efx_mcdi_read_assertion(efx
);
1804 return efx_mcdi_exit_assertion(efx
);
1807 void efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1809 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1812 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1813 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1814 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1816 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1818 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1820 rc
= efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
),
1824 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1826 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1829 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1830 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1831 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1832 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1837 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1839 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1842 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1843 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1844 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1846 /* White is black, and up is down */
1854 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1856 return RESET_TYPE_RECOVER_OR_ALL
;
1859 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1863 /* If MCDI is down, we can't handle_assertion */
1864 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1865 rc
= pci_reset_function(efx
->pci_dev
);
1868 /* Re-enable polled MCDI completion */
1870 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1871 mcdi
->mode
= MCDI_MODE_POLL
;
1876 /* Recover from a failed assertion pre-reset */
1877 rc
= efx_mcdi_handle_assertion(efx
);
1881 if (method
== RESET_TYPE_DATAPATH
)
1883 else if (method
== RESET_TYPE_WORLD
)
1884 return efx_mcdi_reset_mc(efx
);
1886 return efx_mcdi_reset_func(efx
);
1889 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1890 const u8
*mac
, int *id_out
)
1892 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1893 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1897 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1898 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1899 MC_CMD_FILTER_MODE_SIMPLE
);
1900 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1902 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1903 outbuf
, sizeof(outbuf
), &outlen
);
1907 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1912 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1918 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1925 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1927 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1931 int efx_mcdi_wol_filter_get_magic(struct efx_nic
*efx
, int *id_out
)
1933 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_GET_OUT_LEN
);
1937 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_GET
, NULL
, 0,
1938 outbuf
, sizeof(outbuf
), &outlen
);
1942 if (outlen
< MC_CMD_WOL_FILTER_GET_OUT_LEN
) {
1947 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_GET_OUT_FILTER_ID
);
1953 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1958 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1960 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1963 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1965 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1970 int efx_mcdi_flush_rxqs(struct efx_nic
*efx
)
1972 struct efx_channel
*channel
;
1973 struct efx_rx_queue
*rx_queue
;
1974 MCDI_DECLARE_BUF(inbuf
,
1975 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS
));
1978 BUILD_BUG_ON(EFX_MAX_CHANNELS
>
1979 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
1982 efx_for_each_channel(channel
, efx
) {
1983 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1984 if (rx_queue
->flush_pending
) {
1985 rx_queue
->flush_pending
= false;
1986 atomic_dec(&efx
->rxq_flush_pending
);
1987 MCDI_SET_ARRAY_DWORD(
1988 inbuf
, FLUSH_RX_QUEUES_IN_QID_OFST
,
1989 count
, efx_rx_queue_index(rx_queue
));
1995 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, inbuf
,
1996 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count
), NULL
, 0, NULL
);
2002 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
2006 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
2010 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
,
2011 unsigned int *flags
)
2013 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
2014 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WORKAROUND_EXT_OUT_LEN
);
2018 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
2019 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
2020 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
2021 rc
= efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
2022 outbuf
, sizeof(outbuf
), &outlen
);
2029 if (outlen
>= MC_CMD_WORKAROUND_EXT_OUT_LEN
)
2030 *flags
= MCDI_DWORD(outbuf
, WORKAROUND_EXT_OUT_FLAGS
);
2037 int efx_mcdi_get_workarounds(struct efx_nic
*efx
, unsigned int *impl_out
,
2038 unsigned int *enabled_out
)
2040 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_WORKAROUNDS_OUT_LEN
);
2044 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_WORKAROUNDS
, NULL
, 0,
2045 outbuf
, sizeof(outbuf
), &outlen
);
2049 if (outlen
< MC_CMD_GET_WORKAROUNDS_OUT_LEN
) {
2055 *impl_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_IMPLEMENTED
);
2058 *enabled_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_ENABLED
);
2063 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2064 * terrifying. The call site will have to deal with it though.
2066 netif_cond_dbg(efx
, hw
, efx
->net_dev
, rc
== -ENOSYS
, err
,
2067 "%s: failed rc=%d\n", __func__
, rc
);
2071 #ifdef CONFIG_SFC_MTD
2073 #define EFX_MCDI_NVRAM_LEN_MAX 128
2075 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
2077 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_IN_LEN
);
2080 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
2084 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
2089 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
2090 loff_t offset
, u8
*buffer
, size_t length
)
2092 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_LEN
);
2093 MCDI_DECLARE_BUF(outbuf
,
2094 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2098 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
2099 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
2100 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
2102 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
2103 outbuf
, sizeof(outbuf
), &outlen
);
2107 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
2111 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
2112 loff_t offset
, const u8
*buffer
, size_t length
)
2114 MCDI_DECLARE_BUF(inbuf
,
2115 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2118 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
2119 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
2120 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
2121 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
2123 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
2125 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
2126 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
2131 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
2132 loff_t offset
, size_t length
)
2134 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
2137 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
2138 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
2139 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
2141 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
2143 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
2148 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
2150 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN
);
2153 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
2155 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN
!= 0);
2157 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
2162 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
2163 size_t len
, size_t *retlen
, u8
*buffer
)
2165 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2166 struct efx_nic
*efx
= mtd
->priv
;
2167 loff_t offset
= start
;
2168 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2172 while (offset
< end
) {
2173 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2174 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
2182 *retlen
= offset
- start
;
2186 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
2188 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2189 struct efx_nic
*efx
= mtd
->priv
;
2190 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
2191 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2192 size_t chunk
= part
->common
.mtd
.erasesize
;
2195 if (!part
->updating
) {
2196 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2199 part
->updating
= true;
2202 /* The MCDI interface can in fact do multiple erase blocks at once;
2203 * but erasing may be slow, so we make multiple calls here to avoid
2204 * tripping the MCDI RPC timeout. */
2205 while (offset
< end
) {
2206 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
2216 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
2217 size_t len
, size_t *retlen
, const u8
*buffer
)
2219 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2220 struct efx_nic
*efx
= mtd
->priv
;
2221 loff_t offset
= start
;
2222 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2226 if (!part
->updating
) {
2227 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2230 part
->updating
= true;
2233 while (offset
< end
) {
2234 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2235 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
2243 *retlen
= offset
- start
;
2247 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
2249 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2250 struct efx_nic
*efx
= mtd
->priv
;
2253 if (part
->updating
) {
2254 part
->updating
= false;
2255 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
2261 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
2263 struct efx_mcdi_mtd_partition
*mcdi_part
=
2264 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
2265 struct efx_nic
*efx
= part
->mtd
.priv
;
2267 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
2268 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
2271 #endif /* CONFIG_SFC_MTD */