Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
blobe74e1e897864181dbaca5ed8cd57c162d1baf89e
1 /*
2 * Xilinx Axi Ethernet device driver
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_address.h>
32 #include <linux/skbuff.h>
33 #include <linux/spinlock.h>
34 #include <linux/phy.h>
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
38 #include "xilinx_axienet.h"
40 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
41 #define TX_BD_NUM 64
42 #define RX_BD_NUM 128
44 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
45 #define DRIVER_NAME "xaxienet"
46 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
47 #define DRIVER_VERSION "1.00a"
49 #define AXIENET_REGS_N 32
51 /* Match table for of_platform binding */
52 static const struct of_device_id axienet_of_match[] = {
53 { .compatible = "xlnx,axi-ethernet-1.00.a", },
54 { .compatible = "xlnx,axi-ethernet-1.01.a", },
55 { .compatible = "xlnx,axi-ethernet-2.01.a", },
56 {},
59 MODULE_DEVICE_TABLE(of, axienet_of_match);
61 /* Option table for setting up Axi Ethernet hardware options */
62 static struct axienet_option axienet_options[] = {
63 /* Turn on jumbo packet support for both Rx and Tx */
65 .opt = XAE_OPTION_JUMBO,
66 .reg = XAE_TC_OFFSET,
67 .m_or = XAE_TC_JUM_MASK,
68 }, {
69 .opt = XAE_OPTION_JUMBO,
70 .reg = XAE_RCW1_OFFSET,
71 .m_or = XAE_RCW1_JUM_MASK,
72 }, { /* Turn on VLAN packet support for both Rx and Tx */
73 .opt = XAE_OPTION_VLAN,
74 .reg = XAE_TC_OFFSET,
75 .m_or = XAE_TC_VLAN_MASK,
76 }, {
77 .opt = XAE_OPTION_VLAN,
78 .reg = XAE_RCW1_OFFSET,
79 .m_or = XAE_RCW1_VLAN_MASK,
80 }, { /* Turn on FCS stripping on receive packets */
81 .opt = XAE_OPTION_FCS_STRIP,
82 .reg = XAE_RCW1_OFFSET,
83 .m_or = XAE_RCW1_FCS_MASK,
84 }, { /* Turn on FCS insertion on transmit packets */
85 .opt = XAE_OPTION_FCS_INSERT,
86 .reg = XAE_TC_OFFSET,
87 .m_or = XAE_TC_FCS_MASK,
88 }, { /* Turn off length/type field checking on receive packets */
89 .opt = XAE_OPTION_LENTYPE_ERR,
90 .reg = XAE_RCW1_OFFSET,
91 .m_or = XAE_RCW1_LT_DIS_MASK,
92 }, { /* Turn on Rx flow control */
93 .opt = XAE_OPTION_FLOW_CONTROL,
94 .reg = XAE_FCC_OFFSET,
95 .m_or = XAE_FCC_FCRX_MASK,
96 }, { /* Turn on Tx flow control */
97 .opt = XAE_OPTION_FLOW_CONTROL,
98 .reg = XAE_FCC_OFFSET,
99 .m_or = XAE_FCC_FCTX_MASK,
100 }, { /* Turn on promiscuous frame filtering */
101 .opt = XAE_OPTION_PROMISC,
102 .reg = XAE_FMI_OFFSET,
103 .m_or = XAE_FMI_PM_MASK,
104 }, { /* Enable transmitter */
105 .opt = XAE_OPTION_TXEN,
106 .reg = XAE_TC_OFFSET,
107 .m_or = XAE_TC_TX_MASK,
108 }, { /* Enable receiver */
109 .opt = XAE_OPTION_RXEN,
110 .reg = XAE_RCW1_OFFSET,
111 .m_or = XAE_RCW1_RX_MASK,
117 * axienet_dma_in32 - Memory mapped Axi DMA register read
118 * @lp: Pointer to axienet local structure
119 * @reg: Address offset from the base address of the Axi DMA core
121 * Return: The contents of the Axi DMA register
123 * This function returns the contents of the corresponding Axi DMA register.
125 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
127 return in_be32(lp->dma_regs + reg);
131 * axienet_dma_out32 - Memory mapped Axi DMA register write.
132 * @lp: Pointer to axienet local structure
133 * @reg: Address offset from the base address of the Axi DMA core
134 * @value: Value to be written into the Axi DMA register
136 * This function writes the desired value into the corresponding Axi DMA
137 * register.
139 static inline void axienet_dma_out32(struct axienet_local *lp,
140 off_t reg, u32 value)
142 out_be32((lp->dma_regs + reg), value);
146 * axienet_dma_bd_release - Release buffer descriptor rings
147 * @ndev: Pointer to the net_device structure
149 * This function is used to release the descriptors allocated in
150 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
151 * driver stop api is called.
153 static void axienet_dma_bd_release(struct net_device *ndev)
155 int i;
156 struct axienet_local *lp = netdev_priv(ndev);
158 for (i = 0; i < RX_BD_NUM; i++) {
159 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
160 lp->max_frm_size, DMA_FROM_DEVICE);
161 dev_kfree_skb((struct sk_buff *)
162 (lp->rx_bd_v[i].sw_id_offset));
165 if (lp->rx_bd_v) {
166 dma_free_coherent(ndev->dev.parent,
167 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
168 lp->rx_bd_v,
169 lp->rx_bd_p);
171 if (lp->tx_bd_v) {
172 dma_free_coherent(ndev->dev.parent,
173 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
174 lp->tx_bd_v,
175 lp->tx_bd_p);
180 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
181 * @ndev: Pointer to the net_device structure
183 * Return: 0, on success -ENOMEM, on failure
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
189 static int axienet_dma_bd_init(struct net_device *ndev)
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
201 /* Allocate the Tx and Rx buffer descriptors. */
202 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
203 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
204 &lp->tx_bd_p, GFP_KERNEL);
205 if (!lp->tx_bd_v)
206 goto out;
208 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
209 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
210 &lp->rx_bd_p, GFP_KERNEL);
211 if (!lp->rx_bd_v)
212 goto out;
214 for (i = 0; i < TX_BD_NUM; i++) {
215 lp->tx_bd_v[i].next = lp->tx_bd_p +
216 sizeof(*lp->tx_bd_v) *
217 ((i + 1) % TX_BD_NUM);
220 for (i = 0; i < RX_BD_NUM; i++) {
221 lp->rx_bd_v[i].next = lp->rx_bd_p +
222 sizeof(*lp->rx_bd_v) *
223 ((i + 1) % RX_BD_NUM);
225 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
226 if (!skb)
227 goto out;
229 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
230 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
231 skb->data,
232 lp->max_frm_size,
233 DMA_FROM_DEVICE);
234 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
237 /* Start updating the Rx channel control register */
238 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
239 /* Update the interrupt coalesce count */
240 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
241 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
242 /* Update the delay timer count */
243 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
244 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
245 /* Enable coalesce, delay timer and error interrupts */
246 cr |= XAXIDMA_IRQ_ALL_MASK;
247 /* Write to the Rx channel control register */
248 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
250 /* Start updating the Tx channel control register */
251 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
252 /* Update the interrupt coalesce count */
253 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
254 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
255 /* Update the delay timer count */
256 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
257 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
258 /* Enable coalesce, delay timer and error interrupts */
259 cr |= XAXIDMA_IRQ_ALL_MASK;
260 /* Write to the Tx channel control register */
261 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
263 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
264 * halted state. This will make the Rx side ready for reception.
266 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
267 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
268 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
269 cr | XAXIDMA_CR_RUNSTOP_MASK);
270 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
271 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
273 /* Write to the RS (Run-stop) bit in the Tx channel control register.
274 * Tx channel is now ready to run. But only after we write to the
275 * tail pointer register that the Tx channel will start transmitting.
277 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 cr | XAXIDMA_CR_RUNSTOP_MASK);
282 return 0;
283 out:
284 axienet_dma_bd_release(ndev);
285 return -ENOMEM;
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev: Pointer to the net_device structure
291 * @address: 6 byte Address to be written as MAC address
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
296 static void axienet_set_mac_address(struct net_device *ndev,
297 const void *address)
299 struct axienet_local *lp = netdev_priv(ndev);
301 if (address)
302 memcpy(ndev->dev_addr, address, ETH_ALEN);
303 if (!is_valid_ether_addr(ndev->dev_addr))
304 eth_hw_addr_random(ndev);
306 /* Set up unicast MAC address filter set its mac address */
307 axienet_iow(lp, XAE_UAW0_OFFSET,
308 (ndev->dev_addr[0]) |
309 (ndev->dev_addr[1] << 8) |
310 (ndev->dev_addr[2] << 16) |
311 (ndev->dev_addr[3] << 24));
312 axienet_iow(lp, XAE_UAW1_OFFSET,
313 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
314 ~XAE_UAW1_UNICASTADDR_MASK) |
315 (ndev->dev_addr[4] |
316 (ndev->dev_addr[5] << 8))));
320 * netdev_set_mac_address - Write the MAC address (from outside the driver)
321 * @ndev: Pointer to the net_device structure
322 * @p: 6 byte Address to be written as MAC address
324 * Return: 0 for all conditions. Presently, there is no failure case.
326 * This function is called to initialize the MAC address of the Axi Ethernet
327 * core. It calls the core specific axienet_set_mac_address. This is the
328 * function that goes into net_device_ops structure entry ndo_set_mac_address.
330 static int netdev_set_mac_address(struct net_device *ndev, void *p)
332 struct sockaddr *addr = p;
333 axienet_set_mac_address(ndev, addr->sa_data);
334 return 0;
338 * axienet_set_multicast_list - Prepare the multicast table
339 * @ndev: Pointer to the net_device structure
341 * This function is called to initialize the multicast table during
342 * initialization. The Axi Ethernet basic multicast support has a four-entry
343 * multicast table which is initialized here. Additionally this function
344 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
345 * means whenever the multicast table entries need to be updated this
346 * function gets called.
348 static void axienet_set_multicast_list(struct net_device *ndev)
350 int i;
351 u32 reg, af0reg, af1reg;
352 struct axienet_local *lp = netdev_priv(ndev);
354 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
355 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
356 /* We must make the kernel realize we had to move into
357 * promiscuous mode. If it was a promiscuous mode request
358 * the flag is already set. If not we set it.
360 ndev->flags |= IFF_PROMISC;
361 reg = axienet_ior(lp, XAE_FMI_OFFSET);
362 reg |= XAE_FMI_PM_MASK;
363 axienet_iow(lp, XAE_FMI_OFFSET, reg);
364 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
365 } else if (!netdev_mc_empty(ndev)) {
366 struct netdev_hw_addr *ha;
368 i = 0;
369 netdev_for_each_mc_addr(ha, ndev) {
370 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
371 break;
373 af0reg = (ha->addr[0]);
374 af0reg |= (ha->addr[1] << 8);
375 af0reg |= (ha->addr[2] << 16);
376 af0reg |= (ha->addr[3] << 24);
378 af1reg = (ha->addr[4]);
379 af1reg |= (ha->addr[5] << 8);
381 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
382 reg |= i;
384 axienet_iow(lp, XAE_FMI_OFFSET, reg);
385 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
386 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
387 i++;
389 } else {
390 reg = axienet_ior(lp, XAE_FMI_OFFSET);
391 reg &= ~XAE_FMI_PM_MASK;
393 axienet_iow(lp, XAE_FMI_OFFSET, reg);
395 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
396 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
397 reg |= i;
399 axienet_iow(lp, XAE_FMI_OFFSET, reg);
400 axienet_iow(lp, XAE_AF0_OFFSET, 0);
401 axienet_iow(lp, XAE_AF1_OFFSET, 0);
404 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
409 * axienet_setoptions - Set an Axi Ethernet option
410 * @ndev: Pointer to the net_device structure
411 * @options: Option to be enabled/disabled
413 * The Axi Ethernet core has multiple features which can be selectively turned
414 * on or off. The typical options could be jumbo frame option, basic VLAN
415 * option, promiscuous mode option etc. This function is used to set or clear
416 * these options in the Axi Ethernet hardware. This is done through
417 * axienet_option structure .
419 static void axienet_setoptions(struct net_device *ndev, u32 options)
421 int reg;
422 struct axienet_local *lp = netdev_priv(ndev);
423 struct axienet_option *tp = &axienet_options[0];
425 while (tp->opt) {
426 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
427 if (options & tp->opt)
428 reg |= tp->m_or;
429 axienet_iow(lp, tp->reg, reg);
430 tp++;
433 lp->options |= options;
436 static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
438 u32 timeout;
439 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
440 * process of Axi DMA takes a while to complete as all pending
441 * commands/transfers will be flushed or completed during this
442 * reset process.
444 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
445 timeout = DELAY_OF_ONE_MILLISEC;
446 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
447 udelay(1);
448 if (--timeout == 0) {
449 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
450 __func__);
451 break;
457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
458 * @ndev: Pointer to the net_device structure
460 * This function is called to reset and initialize the Axi Ethernet core. This
461 * is typically called during initialization. It does a reset of the Axi DMA
462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
465 * core.
467 static void axienet_device_reset(struct net_device *ndev)
469 u32 axienet_status;
470 struct axienet_local *lp = netdev_priv(ndev);
472 __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
473 __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
475 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
476 lp->options |= XAE_OPTION_VLAN;
477 lp->options &= (~XAE_OPTION_JUMBO);
479 if ((ndev->mtu > XAE_MTU) &&
480 (ndev->mtu <= XAE_JUMBO_MTU)) {
481 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
482 XAE_TRL_SIZE;
484 if (lp->max_frm_size <= lp->rxmem)
485 lp->options |= XAE_OPTION_JUMBO;
488 if (axienet_dma_bd_init(ndev)) {
489 netdev_err(ndev, "%s: descriptor allocation failed\n",
490 __func__);
493 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
494 axienet_status &= ~XAE_RCW1_RX_MASK;
495 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
497 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
498 if (axienet_status & XAE_INT_RXRJECT_MASK)
499 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
501 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
503 /* Sync default options with HW but leave receiver and
504 * transmitter disabled.
506 axienet_setoptions(ndev, lp->options &
507 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
508 axienet_set_mac_address(ndev, NULL);
509 axienet_set_multicast_list(ndev);
510 axienet_setoptions(ndev, lp->options);
512 netif_trans_update(ndev);
516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
517 * @ndev: Pointer to the net_device structure
519 * This function is called to change the speed and duplex setting after
520 * auto negotiation is done by the PHY. This is the function that gets
521 * registered with the PHY interface through the "of_phy_connect" call.
523 static void axienet_adjust_link(struct net_device *ndev)
525 u32 emmc_reg;
526 u32 link_state;
527 u32 setspeed = 1;
528 struct axienet_local *lp = netdev_priv(ndev);
529 struct phy_device *phy = ndev->phydev;
531 link_state = phy->speed | (phy->duplex << 1) | phy->link;
532 if (lp->last_link != link_state) {
533 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
534 if (lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX)
535 setspeed = 0;
536 } else {
537 if ((phy->speed == SPEED_1000) &&
538 (lp->phy_mode == PHY_INTERFACE_MODE_MII))
539 setspeed = 0;
542 if (setspeed == 1) {
543 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
544 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
546 switch (phy->speed) {
547 case SPEED_1000:
548 emmc_reg |= XAE_EMMC_LINKSPD_1000;
549 break;
550 case SPEED_100:
551 emmc_reg |= XAE_EMMC_LINKSPD_100;
552 break;
553 case SPEED_10:
554 emmc_reg |= XAE_EMMC_LINKSPD_10;
555 break;
556 default:
557 dev_err(&ndev->dev, "Speed other than 10, 100 "
558 "or 1Gbps is not supported\n");
559 break;
562 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
563 lp->last_link = link_state;
564 phy_print_status(phy);
565 } else {
566 netdev_err(ndev,
567 "Error setting Axi Ethernet mac speed\n");
573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
574 * Axi DMA Tx channel.
575 * @ndev: Pointer to the net_device structure
577 * This function is invoked from the Axi DMA Tx isr to notify the completion
578 * of transmit operation. It clears fields in the corresponding Tx BDs and
579 * unmaps the corresponding buffer so that CPU can regain ownership of the
580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
581 * required.
583 static void axienet_start_xmit_done(struct net_device *ndev)
585 u32 size = 0;
586 u32 packets = 0;
587 struct axienet_local *lp = netdev_priv(ndev);
588 struct axidma_bd *cur_p;
589 unsigned int status = 0;
591 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
592 status = cur_p->status;
593 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
594 dma_unmap_single(ndev->dev.parent, cur_p->phys,
595 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
596 DMA_TO_DEVICE);
597 if (cur_p->app4)
598 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
599 /*cur_p->phys = 0;*/
600 cur_p->app0 = 0;
601 cur_p->app1 = 0;
602 cur_p->app2 = 0;
603 cur_p->app4 = 0;
604 cur_p->status = 0;
606 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
607 packets++;
609 ++lp->tx_bd_ci;
610 lp->tx_bd_ci %= TX_BD_NUM;
611 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
612 status = cur_p->status;
615 ndev->stats.tx_packets += packets;
616 ndev->stats.tx_bytes += size;
617 netif_wake_queue(ndev);
621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
622 * @lp: Pointer to the axienet_local structure
623 * @num_frag: The number of BDs to check for
625 * Return: 0, on success
626 * NETDEV_TX_BUSY, if any of the descriptors are not free
628 * This function is invoked before BDs are allocated and transmission starts.
629 * This function returns 0 if a BD or group of BDs can be allocated for
630 * transmission. If the BD or any of the BDs are not free the function
631 * returns a busy status. This is invoked from axienet_start_xmit.
633 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
634 int num_frag)
636 struct axidma_bd *cur_p;
637 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
638 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
639 return NETDEV_TX_BUSY;
640 return 0;
644 * axienet_start_xmit - Starts the transmission.
645 * @skb: sk_buff pointer that contains data to be Txed.
646 * @ndev: Pointer to net_device structure.
648 * Return: NETDEV_TX_OK, on success
649 * NETDEV_TX_BUSY, if any of the descriptors are not free
651 * This function is invoked from upper layers to initiate transmission. The
652 * function uses the next available free BDs and populates their fields to
653 * start the transmission. Additionally if checksum offloading is supported,
654 * it populates AXI Stream Control fields with appropriate values.
656 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
658 u32 ii;
659 u32 num_frag;
660 u32 csum_start_off;
661 u32 csum_index_off;
662 skb_frag_t *frag;
663 dma_addr_t tail_p;
664 struct axienet_local *lp = netdev_priv(ndev);
665 struct axidma_bd *cur_p;
667 num_frag = skb_shinfo(skb)->nr_frags;
668 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
670 if (axienet_check_tx_bd_space(lp, num_frag)) {
671 if (!netif_queue_stopped(ndev))
672 netif_stop_queue(ndev);
673 return NETDEV_TX_BUSY;
676 if (skb->ip_summed == CHECKSUM_PARTIAL) {
677 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
678 /* Tx Full Checksum Offload Enabled */
679 cur_p->app0 |= 2;
680 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
681 csum_start_off = skb_transport_offset(skb);
682 csum_index_off = csum_start_off + skb->csum_offset;
683 /* Tx Partial Checksum Offload Enabled */
684 cur_p->app0 |= 1;
685 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
687 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
688 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
691 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
692 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
693 skb_headlen(skb), DMA_TO_DEVICE);
695 for (ii = 0; ii < num_frag; ii++) {
696 ++lp->tx_bd_tail;
697 lp->tx_bd_tail %= TX_BD_NUM;
698 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
699 frag = &skb_shinfo(skb)->frags[ii];
700 cur_p->phys = dma_map_single(ndev->dev.parent,
701 skb_frag_address(frag),
702 skb_frag_size(frag),
703 DMA_TO_DEVICE);
704 cur_p->cntrl = skb_frag_size(frag);
707 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
708 cur_p->app4 = (unsigned long)skb;
710 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
711 /* Start the transfer */
712 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
713 ++lp->tx_bd_tail;
714 lp->tx_bd_tail %= TX_BD_NUM;
716 return NETDEV_TX_OK;
720 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
721 * BD processing.
722 * @ndev: Pointer to net_device structure.
724 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
725 * does minimal processing and invokes "netif_rx" to complete further
726 * processing.
728 static void axienet_recv(struct net_device *ndev)
730 u32 length;
731 u32 csumstatus;
732 u32 size = 0;
733 u32 packets = 0;
734 dma_addr_t tail_p = 0;
735 struct axienet_local *lp = netdev_priv(ndev);
736 struct sk_buff *skb, *new_skb;
737 struct axidma_bd *cur_p;
739 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
741 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
742 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
743 skb = (struct sk_buff *) (cur_p->sw_id_offset);
744 length = cur_p->app4 & 0x0000FFFF;
746 dma_unmap_single(ndev->dev.parent, cur_p->phys,
747 lp->max_frm_size,
748 DMA_FROM_DEVICE);
750 skb_put(skb, length);
751 skb->protocol = eth_type_trans(skb, ndev);
752 /*skb_checksum_none_assert(skb);*/
753 skb->ip_summed = CHECKSUM_NONE;
755 /* if we're doing Rx csum offload, set it up */
756 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
757 csumstatus = (cur_p->app2 &
758 XAE_FULL_CSUM_STATUS_MASK) >> 3;
759 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
760 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
761 skb->ip_summed = CHECKSUM_UNNECESSARY;
763 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
764 skb->protocol == htons(ETH_P_IP) &&
765 skb->len > 64) {
766 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
767 skb->ip_summed = CHECKSUM_COMPLETE;
770 netif_rx(skb);
772 size += length;
773 packets++;
775 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
776 if (!new_skb)
777 return;
779 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
780 lp->max_frm_size,
781 DMA_FROM_DEVICE);
782 cur_p->cntrl = lp->max_frm_size;
783 cur_p->status = 0;
784 cur_p->sw_id_offset = (u32) new_skb;
786 ++lp->rx_bd_ci;
787 lp->rx_bd_ci %= RX_BD_NUM;
788 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
791 ndev->stats.rx_packets += packets;
792 ndev->stats.rx_bytes += size;
794 if (tail_p)
795 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
799 * axienet_tx_irq - Tx Done Isr.
800 * @irq: irq number
801 * @_ndev: net_device pointer
803 * Return: IRQ_HANDLED for all cases.
805 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
806 * to complete the BD processing.
808 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
810 u32 cr;
811 unsigned int status;
812 struct net_device *ndev = _ndev;
813 struct axienet_local *lp = netdev_priv(ndev);
815 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
816 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
817 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
818 axienet_start_xmit_done(lp->ndev);
819 goto out;
821 if (!(status & XAXIDMA_IRQ_ALL_MASK))
822 dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
823 if (status & XAXIDMA_IRQ_ERROR_MASK) {
824 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
825 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
826 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
828 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
829 /* Disable coalesce, delay timer and error interrupts */
830 cr &= (~XAXIDMA_IRQ_ALL_MASK);
831 /* Write to the Tx channel control register */
832 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
834 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
835 /* Disable coalesce, delay timer and error interrupts */
836 cr &= (~XAXIDMA_IRQ_ALL_MASK);
837 /* Write to the Rx channel control register */
838 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
840 tasklet_schedule(&lp->dma_err_tasklet);
841 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
843 out:
844 return IRQ_HANDLED;
848 * axienet_rx_irq - Rx Isr.
849 * @irq: irq number
850 * @_ndev: net_device pointer
852 * Return: IRQ_HANDLED for all cases.
854 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
855 * processing.
857 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
859 u32 cr;
860 unsigned int status;
861 struct net_device *ndev = _ndev;
862 struct axienet_local *lp = netdev_priv(ndev);
864 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
865 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
866 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
867 axienet_recv(lp->ndev);
868 goto out;
870 if (!(status & XAXIDMA_IRQ_ALL_MASK))
871 dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
872 if (status & XAXIDMA_IRQ_ERROR_MASK) {
873 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
874 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
875 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
877 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
878 /* Disable coalesce, delay timer and error interrupts */
879 cr &= (~XAXIDMA_IRQ_ALL_MASK);
880 /* Finally write to the Tx channel control register */
881 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
884 /* Disable coalesce, delay timer and error interrupts */
885 cr &= (~XAXIDMA_IRQ_ALL_MASK);
886 /* write to the Rx channel control register */
887 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889 tasklet_schedule(&lp->dma_err_tasklet);
890 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
892 out:
893 return IRQ_HANDLED;
896 static void axienet_dma_err_handler(unsigned long data);
899 * axienet_open - Driver open routine.
900 * @ndev: Pointer to net_device structure
902 * Return: 0, on success.
903 * -ENODEV, if PHY cannot be connected to
904 * non-zero error value on failure
906 * This is the driver open routine. It calls phy_start to start the PHY device.
907 * It also allocates interrupt service routines, enables the interrupt lines
908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
909 * descriptors are initialized.
911 static int axienet_open(struct net_device *ndev)
913 int ret, mdio_mcreg;
914 struct axienet_local *lp = netdev_priv(ndev);
915 struct phy_device *phydev = NULL;
917 dev_dbg(&ndev->dev, "axienet_open()\n");
919 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
920 ret = axienet_mdio_wait_until_ready(lp);
921 if (ret < 0)
922 return ret;
923 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
924 * When we do an Axi Ethernet reset, it resets the complete core
925 * including the MDIO. If MDIO is not disabled when the reset
926 * process is started, MDIO will be broken afterwards.
928 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
929 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
930 axienet_device_reset(ndev);
931 /* Enable the MDIO */
932 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
933 ret = axienet_mdio_wait_until_ready(lp);
934 if (ret < 0)
935 return ret;
937 if (lp->phy_node) {
938 phydev = of_phy_connect(lp->ndev, lp->phy_node,
939 axienet_adjust_link, 0, lp->phy_mode);
941 if (!phydev)
942 dev_err(lp->dev, "of_phy_connect() failed\n");
943 else
944 phy_start(phydev);
947 /* Enable tasklets for Axi DMA error handling */
948 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
949 (unsigned long) lp);
951 /* Enable interrupts for Axi DMA Tx */
952 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
953 if (ret)
954 goto err_tx_irq;
955 /* Enable interrupts for Axi DMA Rx */
956 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
957 if (ret)
958 goto err_rx_irq;
960 return 0;
962 err_rx_irq:
963 free_irq(lp->tx_irq, ndev);
964 err_tx_irq:
965 if (phydev)
966 phy_disconnect(phydev);
967 tasklet_kill(&lp->dma_err_tasklet);
968 dev_err(lp->dev, "request_irq() failed\n");
969 return ret;
973 * axienet_stop - Driver stop routine.
974 * @ndev: Pointer to net_device structure
976 * Return: 0, on success.
978 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
979 * device. It also removes the interrupt handlers and disables the interrupts.
980 * The Axi DMA Tx/Rx BDs are released.
982 static int axienet_stop(struct net_device *ndev)
984 u32 cr;
985 struct axienet_local *lp = netdev_priv(ndev);
987 dev_dbg(&ndev->dev, "axienet_close()\n");
989 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
990 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
991 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
992 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
993 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
994 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
995 axienet_setoptions(ndev, lp->options &
996 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
998 tasklet_kill(&lp->dma_err_tasklet);
1000 free_irq(lp->tx_irq, ndev);
1001 free_irq(lp->rx_irq, ndev);
1003 if (ndev->phydev)
1004 phy_disconnect(ndev->phydev);
1006 axienet_dma_bd_release(ndev);
1007 return 0;
1011 * axienet_change_mtu - Driver change mtu routine.
1012 * @ndev: Pointer to net_device structure
1013 * @new_mtu: New mtu value to be applied
1015 * Return: Always returns 0 (success).
1017 * This is the change mtu driver routine. It checks if the Axi Ethernet
1018 * hardware supports jumbo frames before changing the mtu. This can be
1019 * called only when the device is not up.
1021 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1023 struct axienet_local *lp = netdev_priv(ndev);
1025 if (netif_running(ndev))
1026 return -EBUSY;
1028 if ((new_mtu + VLAN_ETH_HLEN +
1029 XAE_TRL_SIZE) > lp->rxmem)
1030 return -EINVAL;
1032 ndev->mtu = new_mtu;
1034 return 0;
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1039 * axienet_poll_controller - Axi Ethernet poll mechanism.
1040 * @ndev: Pointer to net_device structure
1042 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1043 * to polling the ISRs and are enabled back after the polling is done.
1045 static void axienet_poll_controller(struct net_device *ndev)
1047 struct axienet_local *lp = netdev_priv(ndev);
1048 disable_irq(lp->tx_irq);
1049 disable_irq(lp->rx_irq);
1050 axienet_rx_irq(lp->tx_irq, ndev);
1051 axienet_tx_irq(lp->rx_irq, ndev);
1052 enable_irq(lp->tx_irq);
1053 enable_irq(lp->rx_irq);
1055 #endif
1057 static const struct net_device_ops axienet_netdev_ops = {
1058 .ndo_open = axienet_open,
1059 .ndo_stop = axienet_stop,
1060 .ndo_start_xmit = axienet_start_xmit,
1061 .ndo_change_mtu = axienet_change_mtu,
1062 .ndo_set_mac_address = netdev_set_mac_address,
1063 .ndo_validate_addr = eth_validate_addr,
1064 .ndo_set_rx_mode = axienet_set_multicast_list,
1065 #ifdef CONFIG_NET_POLL_CONTROLLER
1066 .ndo_poll_controller = axienet_poll_controller,
1067 #endif
1071 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1072 * @ndev: Pointer to net_device structure
1073 * @ed: Pointer to ethtool_drvinfo structure
1075 * This implements ethtool command for getting the driver information.
1076 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1078 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1079 struct ethtool_drvinfo *ed)
1081 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1082 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1086 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1087 * AxiEthernet core.
1088 * @ndev: Pointer to net_device structure
1090 * This implements ethtool command for getting the total register length
1091 * information.
1093 * Return: the total regs length
1095 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1097 return sizeof(u32) * AXIENET_REGS_N;
1101 * axienet_ethtools_get_regs - Dump the contents of all registers present
1102 * in AxiEthernet core.
1103 * @ndev: Pointer to net_device structure
1104 * @regs: Pointer to ethtool_regs structure
1105 * @ret: Void pointer used to return the contents of the registers.
1107 * This implements ethtool command for getting the Axi Ethernet register dump.
1108 * Issue "ethtool -d ethX" to execute this function.
1110 static void axienet_ethtools_get_regs(struct net_device *ndev,
1111 struct ethtool_regs *regs, void *ret)
1113 u32 *data = (u32 *) ret;
1114 size_t len = sizeof(u32) * AXIENET_REGS_N;
1115 struct axienet_local *lp = netdev_priv(ndev);
1117 regs->version = 0;
1118 regs->len = len;
1120 memset(data, 0, len);
1121 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1122 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1123 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1124 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1125 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1126 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1127 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1128 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1129 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1130 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1131 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1132 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1133 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1134 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1135 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1136 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1137 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1138 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1139 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1140 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1141 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1142 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1143 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1144 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1145 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1146 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1147 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1148 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1149 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1150 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1151 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1152 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1156 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1157 * Tx and Rx paths.
1158 * @ndev: Pointer to net_device structure
1159 * @epauseparm: Pointer to ethtool_pauseparam structure.
1161 * This implements ethtool command for getting axi ethernet pause frame
1162 * setting. Issue "ethtool -a ethX" to execute this function.
1164 static void
1165 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1166 struct ethtool_pauseparam *epauseparm)
1168 u32 regval;
1169 struct axienet_local *lp = netdev_priv(ndev);
1170 epauseparm->autoneg = 0;
1171 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1172 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1173 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1177 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1178 * settings.
1179 * @ndev: Pointer to net_device structure
1180 * @epauseparm:Pointer to ethtool_pauseparam structure
1182 * This implements ethtool command for enabling flow control on Rx and Tx
1183 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1184 * function.
1186 * Return: 0 on success, -EFAULT if device is running
1188 static int
1189 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1190 struct ethtool_pauseparam *epauseparm)
1192 u32 regval = 0;
1193 struct axienet_local *lp = netdev_priv(ndev);
1195 if (netif_running(ndev)) {
1196 netdev_err(ndev,
1197 "Please stop netif before applying configuration\n");
1198 return -EFAULT;
1201 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1202 if (epauseparm->tx_pause)
1203 regval |= XAE_FCC_FCTX_MASK;
1204 else
1205 regval &= ~XAE_FCC_FCTX_MASK;
1206 if (epauseparm->rx_pause)
1207 regval |= XAE_FCC_FCRX_MASK;
1208 else
1209 regval &= ~XAE_FCC_FCRX_MASK;
1210 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1212 return 0;
1216 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1217 * @ndev: Pointer to net_device structure
1218 * @ecoalesce: Pointer to ethtool_coalesce structure
1220 * This implements ethtool command for getting the DMA interrupt coalescing
1221 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1222 * execute this function.
1224 * Return: 0 always
1226 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1227 struct ethtool_coalesce *ecoalesce)
1229 u32 regval = 0;
1230 struct axienet_local *lp = netdev_priv(ndev);
1231 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1232 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1233 >> XAXIDMA_COALESCE_SHIFT;
1234 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1235 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1236 >> XAXIDMA_COALESCE_SHIFT;
1237 return 0;
1241 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1242 * @ndev: Pointer to net_device structure
1243 * @ecoalesce: Pointer to ethtool_coalesce structure
1245 * This implements ethtool command for setting the DMA interrupt coalescing
1246 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1247 * prompt to execute this function.
1249 * Return: 0, on success, Non-zero error value on failure.
1251 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1252 struct ethtool_coalesce *ecoalesce)
1254 struct axienet_local *lp = netdev_priv(ndev);
1256 if (netif_running(ndev)) {
1257 netdev_err(ndev,
1258 "Please stop netif before applying configuration\n");
1259 return -EFAULT;
1262 if ((ecoalesce->rx_coalesce_usecs) ||
1263 (ecoalesce->rx_coalesce_usecs_irq) ||
1264 (ecoalesce->rx_max_coalesced_frames_irq) ||
1265 (ecoalesce->tx_coalesce_usecs) ||
1266 (ecoalesce->tx_coalesce_usecs_irq) ||
1267 (ecoalesce->tx_max_coalesced_frames_irq) ||
1268 (ecoalesce->stats_block_coalesce_usecs) ||
1269 (ecoalesce->use_adaptive_rx_coalesce) ||
1270 (ecoalesce->use_adaptive_tx_coalesce) ||
1271 (ecoalesce->pkt_rate_low) ||
1272 (ecoalesce->rx_coalesce_usecs_low) ||
1273 (ecoalesce->rx_max_coalesced_frames_low) ||
1274 (ecoalesce->tx_coalesce_usecs_low) ||
1275 (ecoalesce->tx_max_coalesced_frames_low) ||
1276 (ecoalesce->pkt_rate_high) ||
1277 (ecoalesce->rx_coalesce_usecs_high) ||
1278 (ecoalesce->rx_max_coalesced_frames_high) ||
1279 (ecoalesce->tx_coalesce_usecs_high) ||
1280 (ecoalesce->tx_max_coalesced_frames_high) ||
1281 (ecoalesce->rate_sample_interval))
1282 return -EOPNOTSUPP;
1283 if (ecoalesce->rx_max_coalesced_frames)
1284 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1285 if (ecoalesce->tx_max_coalesced_frames)
1286 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1288 return 0;
1291 static const struct ethtool_ops axienet_ethtool_ops = {
1292 .get_drvinfo = axienet_ethtools_get_drvinfo,
1293 .get_regs_len = axienet_ethtools_get_regs_len,
1294 .get_regs = axienet_ethtools_get_regs,
1295 .get_link = ethtool_op_get_link,
1296 .get_pauseparam = axienet_ethtools_get_pauseparam,
1297 .set_pauseparam = axienet_ethtools_set_pauseparam,
1298 .get_coalesce = axienet_ethtools_get_coalesce,
1299 .set_coalesce = axienet_ethtools_set_coalesce,
1300 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1301 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1305 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1306 * @data: Data passed
1308 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1309 * Tx/Rx BDs.
1311 static void axienet_dma_err_handler(unsigned long data)
1313 u32 axienet_status;
1314 u32 cr, i;
1315 int mdio_mcreg;
1316 struct axienet_local *lp = (struct axienet_local *) data;
1317 struct net_device *ndev = lp->ndev;
1318 struct axidma_bd *cur_p;
1320 axienet_setoptions(ndev, lp->options &
1321 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1322 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1323 axienet_mdio_wait_until_ready(lp);
1324 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1325 * When we do an Axi Ethernet reset, it resets the complete core
1326 * including the MDIO. So if MDIO is not disabled when the reset
1327 * process is started, MDIO will be broken afterwards.
1329 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1330 ~XAE_MDIO_MC_MDIOEN_MASK));
1332 __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1333 __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1335 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1336 axienet_mdio_wait_until_ready(lp);
1338 for (i = 0; i < TX_BD_NUM; i++) {
1339 cur_p = &lp->tx_bd_v[i];
1340 if (cur_p->phys)
1341 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1342 (cur_p->cntrl &
1343 XAXIDMA_BD_CTRL_LENGTH_MASK),
1344 DMA_TO_DEVICE);
1345 if (cur_p->app4)
1346 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1347 cur_p->phys = 0;
1348 cur_p->cntrl = 0;
1349 cur_p->status = 0;
1350 cur_p->app0 = 0;
1351 cur_p->app1 = 0;
1352 cur_p->app2 = 0;
1353 cur_p->app3 = 0;
1354 cur_p->app4 = 0;
1355 cur_p->sw_id_offset = 0;
1358 for (i = 0; i < RX_BD_NUM; i++) {
1359 cur_p = &lp->rx_bd_v[i];
1360 cur_p->status = 0;
1361 cur_p->app0 = 0;
1362 cur_p->app1 = 0;
1363 cur_p->app2 = 0;
1364 cur_p->app3 = 0;
1365 cur_p->app4 = 0;
1368 lp->tx_bd_ci = 0;
1369 lp->tx_bd_tail = 0;
1370 lp->rx_bd_ci = 0;
1372 /* Start updating the Rx channel control register */
1373 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1374 /* Update the interrupt coalesce count */
1375 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1376 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1377 /* Update the delay timer count */
1378 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1379 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1380 /* Enable coalesce, delay timer and error interrupts */
1381 cr |= XAXIDMA_IRQ_ALL_MASK;
1382 /* Finally write to the Rx channel control register */
1383 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1385 /* Start updating the Tx channel control register */
1386 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1387 /* Update the interrupt coalesce count */
1388 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1389 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1390 /* Update the delay timer count */
1391 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1392 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1393 /* Enable coalesce, delay timer and error interrupts */
1394 cr |= XAXIDMA_IRQ_ALL_MASK;
1395 /* Finally write to the Tx channel control register */
1396 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1398 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1399 * halted state. This will make the Rx side ready for reception.
1401 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1402 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1404 cr | XAXIDMA_CR_RUNSTOP_MASK);
1405 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1406 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1408 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1409 * Tx channel is now ready to run. But only after we write to the
1410 * tail pointer register that the Tx channel will start transmitting
1412 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1413 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1414 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1415 cr | XAXIDMA_CR_RUNSTOP_MASK);
1417 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1418 axienet_status &= ~XAE_RCW1_RX_MASK;
1419 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1421 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1422 if (axienet_status & XAE_INT_RXRJECT_MASK)
1423 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1424 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1426 /* Sync default options with HW but leave receiver and
1427 * transmitter disabled.
1429 axienet_setoptions(ndev, lp->options &
1430 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1431 axienet_set_mac_address(ndev, NULL);
1432 axienet_set_multicast_list(ndev);
1433 axienet_setoptions(ndev, lp->options);
1437 * axienet_probe - Axi Ethernet probe function.
1438 * @pdev: Pointer to platform device structure.
1440 * Return: 0, on success
1441 * Non-zero error value on failure.
1443 * This is the probe routine for Axi Ethernet driver. This is called before
1444 * any other driver routines are invoked. It allocates and sets up the Ethernet
1445 * device. Parses through device tree and populates fields of
1446 * axienet_local. It registers the Ethernet device.
1448 static int axienet_probe(struct platform_device *pdev)
1450 int ret;
1451 struct device_node *np;
1452 struct axienet_local *lp;
1453 struct net_device *ndev;
1454 const void *mac_addr;
1455 struct resource *ethres, dmares;
1456 u32 value;
1458 ndev = alloc_etherdev(sizeof(*lp));
1459 if (!ndev)
1460 return -ENOMEM;
1462 platform_set_drvdata(pdev, ndev);
1464 SET_NETDEV_DEV(ndev, &pdev->dev);
1465 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1466 ndev->features = NETIF_F_SG;
1467 ndev->netdev_ops = &axienet_netdev_ops;
1468 ndev->ethtool_ops = &axienet_ethtool_ops;
1470 /* MTU range: 64 - 9000 */
1471 ndev->min_mtu = 64;
1472 ndev->max_mtu = XAE_JUMBO_MTU;
1474 lp = netdev_priv(ndev);
1475 lp->ndev = ndev;
1476 lp->dev = &pdev->dev;
1477 lp->options = XAE_OPTION_DEFAULTS;
1478 /* Map device registers */
1479 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1481 if (IS_ERR(lp->regs)) {
1482 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1483 ret = PTR_ERR(lp->regs);
1484 goto free_netdev;
1487 /* Setup checksum offload, but default to off if not specified */
1488 lp->features = 0;
1490 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1491 if (!ret) {
1492 switch (value) {
1493 case 1:
1494 lp->csum_offload_on_tx_path =
1495 XAE_FEATURE_PARTIAL_TX_CSUM;
1496 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1497 /* Can checksum TCP/UDP over IPv4. */
1498 ndev->features |= NETIF_F_IP_CSUM;
1499 break;
1500 case 2:
1501 lp->csum_offload_on_tx_path =
1502 XAE_FEATURE_FULL_TX_CSUM;
1503 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1504 /* Can checksum TCP/UDP over IPv4. */
1505 ndev->features |= NETIF_F_IP_CSUM;
1506 break;
1507 default:
1508 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1511 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1512 if (!ret) {
1513 switch (value) {
1514 case 1:
1515 lp->csum_offload_on_rx_path =
1516 XAE_FEATURE_PARTIAL_RX_CSUM;
1517 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1518 break;
1519 case 2:
1520 lp->csum_offload_on_rx_path =
1521 XAE_FEATURE_FULL_RX_CSUM;
1522 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1523 break;
1524 default:
1525 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1528 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1529 * a larger Rx/Tx Memory. Typically, the size must be large so that
1530 * we can enable jumbo option and start supporting jumbo frames.
1531 * Here we check for memory allocated for Rx/Tx in the hardware from
1532 * the device-tree and accordingly set flags.
1534 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1536 /* Start with the proprietary, and broken phy_type */
1537 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1538 if (!ret) {
1539 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1540 switch (value) {
1541 case XAE_PHY_TYPE_MII:
1542 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1543 break;
1544 case XAE_PHY_TYPE_GMII:
1545 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1546 break;
1547 case XAE_PHY_TYPE_RGMII_2_0:
1548 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1549 break;
1550 case XAE_PHY_TYPE_SGMII:
1551 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1552 break;
1553 case XAE_PHY_TYPE_1000BASE_X:
1554 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1555 break;
1556 default:
1557 ret = -EINVAL;
1558 goto free_netdev;
1560 } else {
1561 lp->phy_mode = of_get_phy_mode(pdev->dev.of_node);
1562 if (lp->phy_mode < 0) {
1563 ret = -EINVAL;
1564 goto free_netdev;
1568 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1569 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1570 if (!np) {
1571 dev_err(&pdev->dev, "could not find DMA node\n");
1572 ret = -ENODEV;
1573 goto free_netdev;
1575 ret = of_address_to_resource(np, 0, &dmares);
1576 if (ret) {
1577 dev_err(&pdev->dev, "unable to get DMA resource\n");
1578 goto free_netdev;
1580 lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1581 if (IS_ERR(lp->dma_regs)) {
1582 dev_err(&pdev->dev, "could not map DMA regs\n");
1583 ret = PTR_ERR(lp->dma_regs);
1584 goto free_netdev;
1586 lp->rx_irq = irq_of_parse_and_map(np, 1);
1587 lp->tx_irq = irq_of_parse_and_map(np, 0);
1588 of_node_put(np);
1589 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1590 dev_err(&pdev->dev, "could not determine irqs\n");
1591 ret = -ENOMEM;
1592 goto free_netdev;
1595 /* Retrieve the MAC address */
1596 mac_addr = of_get_mac_address(pdev->dev.of_node);
1597 if (!mac_addr) {
1598 dev_err(&pdev->dev, "could not find MAC address\n");
1599 goto free_netdev;
1601 axienet_set_mac_address(ndev, mac_addr);
1603 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1604 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1606 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1607 if (lp->phy_node) {
1608 ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1609 if (ret)
1610 dev_warn(&pdev->dev, "error registering MDIO bus\n");
1613 ret = register_netdev(lp->ndev);
1614 if (ret) {
1615 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1616 goto free_netdev;
1619 return 0;
1621 free_netdev:
1622 free_netdev(ndev);
1624 return ret;
1627 static int axienet_remove(struct platform_device *pdev)
1629 struct net_device *ndev = platform_get_drvdata(pdev);
1630 struct axienet_local *lp = netdev_priv(ndev);
1632 axienet_mdio_teardown(lp);
1633 unregister_netdev(ndev);
1635 of_node_put(lp->phy_node);
1636 lp->phy_node = NULL;
1638 free_netdev(ndev);
1640 return 0;
1643 static struct platform_driver axienet_driver = {
1644 .probe = axienet_probe,
1645 .remove = axienet_remove,
1646 .driver = {
1647 .name = "xilinx_axienet",
1648 .of_match_table = axienet_of_match,
1652 module_platform_driver(axienet_driver);
1654 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1655 MODULE_AUTHOR("Xilinx");
1656 MODULE_LICENSE("GPL");