2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
32 #define CREATE_TRACE_POINTS
38 #define NVME_MINORS (1U << MINORBITS)
40 unsigned int admin_timeout
= 60;
41 module_param(admin_timeout
, uint
, 0644);
42 MODULE_PARM_DESC(admin_timeout
, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout
);
45 unsigned int nvme_io_timeout
= 30;
46 module_param_named(io_timeout
, nvme_io_timeout
, uint
, 0644);
47 MODULE_PARM_DESC(io_timeout
, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout
);
50 static unsigned char shutdown_timeout
= 5;
51 module_param(shutdown_timeout
, byte
, 0644);
52 MODULE_PARM_DESC(shutdown_timeout
, "timeout in seconds for controller shutdown");
54 static u8 nvme_max_retries
= 5;
55 module_param_named(max_retries
, nvme_max_retries
, byte
, 0644);
56 MODULE_PARM_DESC(max_retries
, "max number of retries a command may have");
58 static unsigned long default_ps_max_latency_us
= 100000;
59 module_param(default_ps_max_latency_us
, ulong
, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us
,
61 "max power saving latency for new devices; use PM QOS to change per device");
63 static bool force_apst
;
64 module_param(force_apst
, bool, 0644);
65 MODULE_PARM_DESC(force_apst
, "allow APST for newly enumerated devices even if quirked off");
68 module_param(streams
, bool, 0644);
69 MODULE_PARM_DESC(streams
, "turn on support for Streams write directives");
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
82 struct workqueue_struct
*nvme_wq
;
83 EXPORT_SYMBOL_GPL(nvme_wq
);
85 struct workqueue_struct
*nvme_reset_wq
;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq
);
88 struct workqueue_struct
*nvme_delete_wq
;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq
);
91 static DEFINE_IDA(nvme_subsystems_ida
);
92 static LIST_HEAD(nvme_subsystems
);
93 static DEFINE_MUTEX(nvme_subsystems_lock
);
95 static DEFINE_IDA(nvme_instance_ida
);
96 static dev_t nvme_chr_devt
;
97 static struct class *nvme_class
;
98 static struct class *nvme_subsys_class
;
100 static void nvme_ns_remove(struct nvme_ns
*ns
);
101 static int nvme_revalidate_disk(struct gendisk
*disk
);
103 static __le32
nvme_get_log_dw10(u8 lid
, size_t size
)
105 return cpu_to_le32((((size
/ 4) - 1) << 16) | lid
);
108 int nvme_reset_ctrl(struct nvme_ctrl
*ctrl
)
110 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_RESETTING
))
112 if (!queue_work(nvme_reset_wq
, &ctrl
->reset_work
))
116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl
);
118 int nvme_reset_ctrl_sync(struct nvme_ctrl
*ctrl
)
122 ret
= nvme_reset_ctrl(ctrl
);
124 flush_work(&ctrl
->reset_work
);
125 if (ctrl
->state
!= NVME_CTRL_LIVE
)
131 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync
);
133 static void nvme_delete_ctrl_work(struct work_struct
*work
)
135 struct nvme_ctrl
*ctrl
=
136 container_of(work
, struct nvme_ctrl
, delete_work
);
138 flush_work(&ctrl
->reset_work
);
139 nvme_stop_ctrl(ctrl
);
140 nvme_remove_namespaces(ctrl
);
141 ctrl
->ops
->delete_ctrl(ctrl
);
142 nvme_uninit_ctrl(ctrl
);
146 int nvme_delete_ctrl(struct nvme_ctrl
*ctrl
)
148 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_DELETING
))
150 if (!queue_work(nvme_delete_wq
, &ctrl
->delete_work
))
154 EXPORT_SYMBOL_GPL(nvme_delete_ctrl
);
156 int nvme_delete_ctrl_sync(struct nvme_ctrl
*ctrl
)
161 * Keep a reference until the work is flushed since ->delete_ctrl
162 * can free the controller.
165 ret
= nvme_delete_ctrl(ctrl
);
167 flush_work(&ctrl
->delete_work
);
171 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync
);
173 static inline bool nvme_ns_has_pi(struct nvme_ns
*ns
)
175 return ns
->pi_type
&& ns
->ms
== sizeof(struct t10_pi_tuple
);
178 static blk_status_t
nvme_error_status(struct request
*req
)
180 switch (nvme_req(req
)->status
& 0x7ff) {
181 case NVME_SC_SUCCESS
:
183 case NVME_SC_CAP_EXCEEDED
:
184 return BLK_STS_NOSPC
;
185 case NVME_SC_LBA_RANGE
:
186 return BLK_STS_TARGET
;
187 case NVME_SC_BAD_ATTRIBUTES
:
188 case NVME_SC_ONCS_NOT_SUPPORTED
:
189 case NVME_SC_INVALID_OPCODE
:
190 case NVME_SC_INVALID_FIELD
:
191 case NVME_SC_INVALID_NS
:
192 return BLK_STS_NOTSUPP
;
193 case NVME_SC_WRITE_FAULT
:
194 case NVME_SC_READ_ERROR
:
195 case NVME_SC_UNWRITTEN_BLOCK
:
196 case NVME_SC_ACCESS_DENIED
:
197 case NVME_SC_READ_ONLY
:
198 case NVME_SC_COMPARE_FAILED
:
199 return BLK_STS_MEDIUM
;
200 case NVME_SC_GUARD_CHECK
:
201 case NVME_SC_APPTAG_CHECK
:
202 case NVME_SC_REFTAG_CHECK
:
203 case NVME_SC_INVALID_PI
:
204 return BLK_STS_PROTECTION
;
205 case NVME_SC_RESERVATION_CONFLICT
:
206 return BLK_STS_NEXUS
;
208 return BLK_STS_IOERR
;
212 static inline bool nvme_req_needs_retry(struct request
*req
)
214 if (blk_noretry_request(req
))
216 if (nvme_req(req
)->status
& NVME_SC_DNR
)
218 if (nvme_req(req
)->retries
>= nvme_max_retries
)
223 void nvme_complete_rq(struct request
*req
)
225 blk_status_t status
= nvme_error_status(req
);
227 trace_nvme_complete_rq(req
);
229 if (unlikely(status
!= BLK_STS_OK
&& nvme_req_needs_retry(req
))) {
230 if (nvme_req_needs_failover(req
, status
)) {
231 nvme_failover_req(req
);
235 if (!blk_queue_dying(req
->q
)) {
236 nvme_req(req
)->retries
++;
237 blk_mq_requeue_request(req
, true);
241 blk_mq_end_request(req
, status
);
243 EXPORT_SYMBOL_GPL(nvme_complete_rq
);
245 void nvme_cancel_request(struct request
*req
, void *data
, bool reserved
)
247 if (!blk_mq_request_started(req
))
250 dev_dbg_ratelimited(((struct nvme_ctrl
*) data
)->device
,
251 "Cancelling I/O %d", req
->tag
);
253 nvme_req(req
)->status
= NVME_SC_ABORT_REQ
;
254 blk_mq_complete_request(req
);
257 EXPORT_SYMBOL_GPL(nvme_cancel_request
);
259 bool nvme_change_ctrl_state(struct nvme_ctrl
*ctrl
,
260 enum nvme_ctrl_state new_state
)
262 enum nvme_ctrl_state old_state
;
264 bool changed
= false;
266 spin_lock_irqsave(&ctrl
->lock
, flags
);
268 old_state
= ctrl
->state
;
270 case NVME_CTRL_ADMIN_ONLY
:
272 case NVME_CTRL_CONNECTING
:
282 case NVME_CTRL_RESETTING
:
283 case NVME_CTRL_CONNECTING
:
290 case NVME_CTRL_RESETTING
:
294 case NVME_CTRL_ADMIN_ONLY
:
301 case NVME_CTRL_CONNECTING
:
304 case NVME_CTRL_RESETTING
:
311 case NVME_CTRL_DELETING
:
314 case NVME_CTRL_ADMIN_ONLY
:
315 case NVME_CTRL_RESETTING
:
316 case NVME_CTRL_CONNECTING
:
325 case NVME_CTRL_DELETING
:
337 ctrl
->state
= new_state
;
339 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
340 if (changed
&& ctrl
->state
== NVME_CTRL_LIVE
)
341 nvme_kick_requeue_lists(ctrl
);
344 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state
);
346 static void nvme_free_ns_head(struct kref
*ref
)
348 struct nvme_ns_head
*head
=
349 container_of(ref
, struct nvme_ns_head
, ref
);
351 nvme_mpath_remove_disk(head
);
352 ida_simple_remove(&head
->subsys
->ns_ida
, head
->instance
);
353 list_del_init(&head
->entry
);
354 cleanup_srcu_struct(&head
->srcu
);
358 static void nvme_put_ns_head(struct nvme_ns_head
*head
)
360 kref_put(&head
->ref
, nvme_free_ns_head
);
363 static void nvme_free_ns(struct kref
*kref
)
365 struct nvme_ns
*ns
= container_of(kref
, struct nvme_ns
, kref
);
368 nvme_nvm_unregister(ns
);
371 nvme_put_ns_head(ns
->head
);
372 nvme_put_ctrl(ns
->ctrl
);
376 static void nvme_put_ns(struct nvme_ns
*ns
)
378 kref_put(&ns
->kref
, nvme_free_ns
);
381 struct request
*nvme_alloc_request(struct request_queue
*q
,
382 struct nvme_command
*cmd
, blk_mq_req_flags_t flags
, int qid
)
384 unsigned op
= nvme_is_write(cmd
) ? REQ_OP_DRV_OUT
: REQ_OP_DRV_IN
;
387 if (qid
== NVME_QID_ANY
) {
388 req
= blk_mq_alloc_request(q
, op
, flags
);
390 req
= blk_mq_alloc_request_hctx(q
, op
, flags
,
396 req
->cmd_flags
|= REQ_FAILFAST_DRIVER
;
397 nvme_req(req
)->cmd
= cmd
;
401 EXPORT_SYMBOL_GPL(nvme_alloc_request
);
403 static int nvme_toggle_streams(struct nvme_ctrl
*ctrl
, bool enable
)
405 struct nvme_command c
;
407 memset(&c
, 0, sizeof(c
));
409 c
.directive
.opcode
= nvme_admin_directive_send
;
410 c
.directive
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
411 c
.directive
.doper
= NVME_DIR_SND_ID_OP_ENABLE
;
412 c
.directive
.dtype
= NVME_DIR_IDENTIFY
;
413 c
.directive
.tdtype
= NVME_DIR_STREAMS
;
414 c
.directive
.endir
= enable
? NVME_DIR_ENDIR
: 0;
416 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, NULL
, 0);
419 static int nvme_disable_streams(struct nvme_ctrl
*ctrl
)
421 return nvme_toggle_streams(ctrl
, false);
424 static int nvme_enable_streams(struct nvme_ctrl
*ctrl
)
426 return nvme_toggle_streams(ctrl
, true);
429 static int nvme_get_stream_params(struct nvme_ctrl
*ctrl
,
430 struct streams_directive_params
*s
, u32 nsid
)
432 struct nvme_command c
;
434 memset(&c
, 0, sizeof(c
));
435 memset(s
, 0, sizeof(*s
));
437 c
.directive
.opcode
= nvme_admin_directive_recv
;
438 c
.directive
.nsid
= cpu_to_le32(nsid
);
439 c
.directive
.numd
= cpu_to_le32((sizeof(*s
) >> 2) - 1);
440 c
.directive
.doper
= NVME_DIR_RCV_ST_OP_PARAM
;
441 c
.directive
.dtype
= NVME_DIR_STREAMS
;
443 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, s
, sizeof(*s
));
446 static int nvme_configure_directives(struct nvme_ctrl
*ctrl
)
448 struct streams_directive_params s
;
451 if (!(ctrl
->oacs
& NVME_CTRL_OACS_DIRECTIVES
))
456 ret
= nvme_enable_streams(ctrl
);
460 ret
= nvme_get_stream_params(ctrl
, &s
, NVME_NSID_ALL
);
464 ctrl
->nssa
= le16_to_cpu(s
.nssa
);
465 if (ctrl
->nssa
< BLK_MAX_WRITE_HINTS
- 1) {
466 dev_info(ctrl
->device
, "too few streams (%u) available\n",
468 nvme_disable_streams(ctrl
);
472 ctrl
->nr_streams
= min_t(unsigned, ctrl
->nssa
, BLK_MAX_WRITE_HINTS
- 1);
473 dev_info(ctrl
->device
, "Using %u streams\n", ctrl
->nr_streams
);
478 * Check if 'req' has a write hint associated with it. If it does, assign
479 * a valid namespace stream to the write.
481 static void nvme_assign_write_stream(struct nvme_ctrl
*ctrl
,
482 struct request
*req
, u16
*control
,
485 enum rw_hint streamid
= req
->write_hint
;
487 if (streamid
== WRITE_LIFE_NOT_SET
|| streamid
== WRITE_LIFE_NONE
)
491 if (WARN_ON_ONCE(streamid
> ctrl
->nr_streams
))
494 *control
|= NVME_RW_DTYPE_STREAMS
;
495 *dsmgmt
|= streamid
<< 16;
498 if (streamid
< ARRAY_SIZE(req
->q
->write_hints
))
499 req
->q
->write_hints
[streamid
] += blk_rq_bytes(req
) >> 9;
502 static inline void nvme_setup_flush(struct nvme_ns
*ns
,
503 struct nvme_command
*cmnd
)
505 memset(cmnd
, 0, sizeof(*cmnd
));
506 cmnd
->common
.opcode
= nvme_cmd_flush
;
507 cmnd
->common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
510 static blk_status_t
nvme_setup_discard(struct nvme_ns
*ns
, struct request
*req
,
511 struct nvme_command
*cmnd
)
513 unsigned short segments
= blk_rq_nr_discard_segments(req
), n
= 0;
514 struct nvme_dsm_range
*range
;
517 range
= kmalloc_array(segments
, sizeof(*range
), GFP_ATOMIC
);
519 return BLK_STS_RESOURCE
;
521 __rq_for_each_bio(bio
, req
) {
522 u64 slba
= nvme_block_nr(ns
, bio
->bi_iter
.bi_sector
);
523 u32 nlb
= bio
->bi_iter
.bi_size
>> ns
->lba_shift
;
526 range
[n
].cattr
= cpu_to_le32(0);
527 range
[n
].nlb
= cpu_to_le32(nlb
);
528 range
[n
].slba
= cpu_to_le64(slba
);
533 if (WARN_ON_ONCE(n
!= segments
)) {
535 return BLK_STS_IOERR
;
538 memset(cmnd
, 0, sizeof(*cmnd
));
539 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
540 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
541 cmnd
->dsm
.nr
= cpu_to_le32(segments
- 1);
542 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
544 req
->special_vec
.bv_page
= virt_to_page(range
);
545 req
->special_vec
.bv_offset
= offset_in_page(range
);
546 req
->special_vec
.bv_len
= sizeof(*range
) * segments
;
547 req
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
552 static inline blk_status_t
nvme_setup_rw(struct nvme_ns
*ns
,
553 struct request
*req
, struct nvme_command
*cmnd
)
555 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
559 if (req
->cmd_flags
& REQ_FUA
)
560 control
|= NVME_RW_FUA
;
561 if (req
->cmd_flags
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
562 control
|= NVME_RW_LR
;
564 if (req
->cmd_flags
& REQ_RAHEAD
)
565 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
567 memset(cmnd
, 0, sizeof(*cmnd
));
568 cmnd
->rw
.opcode
= (rq_data_dir(req
) ? nvme_cmd_write
: nvme_cmd_read
);
569 cmnd
->rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
570 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
571 cmnd
->rw
.length
= cpu_to_le16((blk_rq_bytes(req
) >> ns
->lba_shift
) - 1);
573 if (req_op(req
) == REQ_OP_WRITE
&& ctrl
->nr_streams
)
574 nvme_assign_write_stream(ctrl
, req
, &control
, &dsmgmt
);
578 * If formated with metadata, the block layer always provides a
579 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
580 * we enable the PRACT bit for protection information or set the
581 * namespace capacity to zero to prevent any I/O.
583 if (!blk_integrity_rq(req
)) {
584 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns
)))
585 return BLK_STS_NOTSUPP
;
586 control
|= NVME_RW_PRINFO_PRACT
;
589 switch (ns
->pi_type
) {
590 case NVME_NS_DPS_PI_TYPE3
:
591 control
|= NVME_RW_PRINFO_PRCHK_GUARD
;
593 case NVME_NS_DPS_PI_TYPE1
:
594 case NVME_NS_DPS_PI_TYPE2
:
595 control
|= NVME_RW_PRINFO_PRCHK_GUARD
|
596 NVME_RW_PRINFO_PRCHK_REF
;
597 cmnd
->rw
.reftag
= cpu_to_le32(
598 nvme_block_nr(ns
, blk_rq_pos(req
)));
603 cmnd
->rw
.control
= cpu_to_le16(control
);
604 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
608 blk_status_t
nvme_setup_cmd(struct nvme_ns
*ns
, struct request
*req
,
609 struct nvme_command
*cmd
)
611 blk_status_t ret
= BLK_STS_OK
;
613 if (!(req
->rq_flags
& RQF_DONTPREP
)) {
614 nvme_req(req
)->retries
= 0;
615 nvme_req(req
)->flags
= 0;
616 req
->rq_flags
|= RQF_DONTPREP
;
619 switch (req_op(req
)) {
622 memcpy(cmd
, nvme_req(req
)->cmd
, sizeof(*cmd
));
625 nvme_setup_flush(ns
, cmd
);
627 case REQ_OP_WRITE_ZEROES
:
628 /* currently only aliased to deallocate for a few ctrls: */
630 ret
= nvme_setup_discard(ns
, req
, cmd
);
634 ret
= nvme_setup_rw(ns
, req
, cmd
);
638 return BLK_STS_IOERR
;
641 cmd
->common
.command_id
= req
->tag
;
643 trace_nvme_setup_nvm_cmd(req
->q
->id
, cmd
);
645 trace_nvme_setup_admin_cmd(cmd
);
648 EXPORT_SYMBOL_GPL(nvme_setup_cmd
);
651 * Returns 0 on success. If the result is negative, it's a Linux error code;
652 * if the result is positive, it's an NVM Express status code
654 int __nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
655 union nvme_result
*result
, void *buffer
, unsigned bufflen
,
656 unsigned timeout
, int qid
, int at_head
,
657 blk_mq_req_flags_t flags
)
662 req
= nvme_alloc_request(q
, cmd
, flags
, qid
);
666 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
668 if (buffer
&& bufflen
) {
669 ret
= blk_rq_map_kern(q
, req
, buffer
, bufflen
, GFP_KERNEL
);
674 blk_execute_rq(req
->q
, NULL
, req
, at_head
);
676 *result
= nvme_req(req
)->result
;
677 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
680 ret
= nvme_req(req
)->status
;
682 blk_mq_free_request(req
);
685 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd
);
687 int nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
688 void *buffer
, unsigned bufflen
)
690 return __nvme_submit_sync_cmd(q
, cmd
, NULL
, buffer
, bufflen
, 0,
693 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd
);
695 static void *nvme_add_user_metadata(struct bio
*bio
, void __user
*ubuf
,
696 unsigned len
, u32 seed
, bool write
)
698 struct bio_integrity_payload
*bip
;
702 buf
= kmalloc(len
, GFP_KERNEL
);
707 if (write
&& copy_from_user(buf
, ubuf
, len
))
710 bip
= bio_integrity_alloc(bio
, GFP_KERNEL
, 1);
716 bip
->bip_iter
.bi_size
= len
;
717 bip
->bip_iter
.bi_sector
= seed
;
718 ret
= bio_integrity_add_page(bio
, virt_to_page(buf
), len
,
719 offset_in_page(buf
));
729 static int nvme_submit_user_cmd(struct request_queue
*q
,
730 struct nvme_command
*cmd
, void __user
*ubuffer
,
731 unsigned bufflen
, void __user
*meta_buffer
, unsigned meta_len
,
732 u32 meta_seed
, u32
*result
, unsigned timeout
)
734 bool write
= nvme_is_write(cmd
);
735 struct nvme_ns
*ns
= q
->queuedata
;
736 struct gendisk
*disk
= ns
? ns
->disk
: NULL
;
738 struct bio
*bio
= NULL
;
742 req
= nvme_alloc_request(q
, cmd
, 0, NVME_QID_ANY
);
746 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
748 if (ubuffer
&& bufflen
) {
749 ret
= blk_rq_map_user(q
, req
, NULL
, ubuffer
, bufflen
,
755 if (disk
&& meta_buffer
&& meta_len
) {
756 meta
= nvme_add_user_metadata(bio
, meta_buffer
, meta_len
,
765 blk_execute_rq(req
->q
, disk
, req
, 0);
766 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
769 ret
= nvme_req(req
)->status
;
771 *result
= le32_to_cpu(nvme_req(req
)->result
.u32
);
772 if (meta
&& !ret
&& !write
) {
773 if (copy_to_user(meta_buffer
, meta
, meta_len
))
779 blk_rq_unmap_user(bio
);
781 blk_mq_free_request(req
);
785 static void nvme_keep_alive_end_io(struct request
*rq
, blk_status_t status
)
787 struct nvme_ctrl
*ctrl
= rq
->end_io_data
;
789 blk_mq_free_request(rq
);
792 dev_err(ctrl
->device
,
793 "failed nvme_keep_alive_end_io error=%d\n",
798 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
801 static int nvme_keep_alive(struct nvme_ctrl
*ctrl
)
805 rq
= nvme_alloc_request(ctrl
->admin_q
, &ctrl
->ka_cmd
, BLK_MQ_REQ_RESERVED
,
810 rq
->timeout
= ctrl
->kato
* HZ
;
811 rq
->end_io_data
= ctrl
;
813 blk_execute_rq_nowait(rq
->q
, NULL
, rq
, 0, nvme_keep_alive_end_io
);
818 static void nvme_keep_alive_work(struct work_struct
*work
)
820 struct nvme_ctrl
*ctrl
= container_of(to_delayed_work(work
),
821 struct nvme_ctrl
, ka_work
);
823 if (nvme_keep_alive(ctrl
)) {
824 /* allocation failure, reset the controller */
825 dev_err(ctrl
->device
, "keep-alive failed\n");
826 nvme_reset_ctrl(ctrl
);
831 void nvme_start_keep_alive(struct nvme_ctrl
*ctrl
)
833 if (unlikely(ctrl
->kato
== 0))
836 INIT_DELAYED_WORK(&ctrl
->ka_work
, nvme_keep_alive_work
);
837 memset(&ctrl
->ka_cmd
, 0, sizeof(ctrl
->ka_cmd
));
838 ctrl
->ka_cmd
.common
.opcode
= nvme_admin_keep_alive
;
839 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
841 EXPORT_SYMBOL_GPL(nvme_start_keep_alive
);
843 void nvme_stop_keep_alive(struct nvme_ctrl
*ctrl
)
845 if (unlikely(ctrl
->kato
== 0))
848 cancel_delayed_work_sync(&ctrl
->ka_work
);
850 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive
);
852 static int nvme_identify_ctrl(struct nvme_ctrl
*dev
, struct nvme_id_ctrl
**id
)
854 struct nvme_command c
= { };
857 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
858 c
.identify
.opcode
= nvme_admin_identify
;
859 c
.identify
.cns
= NVME_ID_CNS_CTRL
;
861 *id
= kmalloc(sizeof(struct nvme_id_ctrl
), GFP_KERNEL
);
865 error
= nvme_submit_sync_cmd(dev
->admin_q
, &c
, *id
,
866 sizeof(struct nvme_id_ctrl
));
872 static int nvme_identify_ns_descs(struct nvme_ctrl
*ctrl
, unsigned nsid
,
873 struct nvme_ns_ids
*ids
)
875 struct nvme_command c
= { };
881 c
.identify
.opcode
= nvme_admin_identify
;
882 c
.identify
.nsid
= cpu_to_le32(nsid
);
883 c
.identify
.cns
= NVME_ID_CNS_NS_DESC_LIST
;
885 data
= kzalloc(NVME_IDENTIFY_DATA_SIZE
, GFP_KERNEL
);
889 status
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, data
,
890 NVME_IDENTIFY_DATA_SIZE
);
894 for (pos
= 0; pos
< NVME_IDENTIFY_DATA_SIZE
; pos
+= len
) {
895 struct nvme_ns_id_desc
*cur
= data
+ pos
;
901 case NVME_NIDT_EUI64
:
902 if (cur
->nidl
!= NVME_NIDT_EUI64_LEN
) {
903 dev_warn(ctrl
->device
,
904 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
908 len
= NVME_NIDT_EUI64_LEN
;
909 memcpy(ids
->eui64
, data
+ pos
+ sizeof(*cur
), len
);
911 case NVME_NIDT_NGUID
:
912 if (cur
->nidl
!= NVME_NIDT_NGUID_LEN
) {
913 dev_warn(ctrl
->device
,
914 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
918 len
= NVME_NIDT_NGUID_LEN
;
919 memcpy(ids
->nguid
, data
+ pos
+ sizeof(*cur
), len
);
922 if (cur
->nidl
!= NVME_NIDT_UUID_LEN
) {
923 dev_warn(ctrl
->device
,
924 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
928 len
= NVME_NIDT_UUID_LEN
;
929 uuid_copy(&ids
->uuid
, data
+ pos
+ sizeof(*cur
));
932 /* Skip unnkown types */
944 static int nvme_identify_ns_list(struct nvme_ctrl
*dev
, unsigned nsid
, __le32
*ns_list
)
946 struct nvme_command c
= { };
948 c
.identify
.opcode
= nvme_admin_identify
;
949 c
.identify
.cns
= NVME_ID_CNS_NS_ACTIVE_LIST
;
950 c
.identify
.nsid
= cpu_to_le32(nsid
);
951 return nvme_submit_sync_cmd(dev
->admin_q
, &c
, ns_list
, 0x1000);
954 static struct nvme_id_ns
*nvme_identify_ns(struct nvme_ctrl
*ctrl
,
957 struct nvme_id_ns
*id
;
958 struct nvme_command c
= { };
961 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
962 c
.identify
.opcode
= nvme_admin_identify
;
963 c
.identify
.nsid
= cpu_to_le32(nsid
);
964 c
.identify
.cns
= NVME_ID_CNS_NS
;
966 id
= kmalloc(sizeof(*id
), GFP_KERNEL
);
970 error
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, id
, sizeof(*id
));
972 dev_warn(ctrl
->device
, "Identify namespace failed\n");
980 static int nvme_set_features(struct nvme_ctrl
*dev
, unsigned fid
, unsigned dword11
,
981 void *buffer
, size_t buflen
, u32
*result
)
983 struct nvme_command c
;
984 union nvme_result res
;
987 memset(&c
, 0, sizeof(c
));
988 c
.features
.opcode
= nvme_admin_set_features
;
989 c
.features
.fid
= cpu_to_le32(fid
);
990 c
.features
.dword11
= cpu_to_le32(dword11
);
992 ret
= __nvme_submit_sync_cmd(dev
->admin_q
, &c
, &res
,
993 buffer
, buflen
, 0, NVME_QID_ANY
, 0, 0);
994 if (ret
>= 0 && result
)
995 *result
= le32_to_cpu(res
.u32
);
999 int nvme_set_queue_count(struct nvme_ctrl
*ctrl
, int *count
)
1001 u32 q_count
= (*count
- 1) | ((*count
- 1) << 16);
1003 int status
, nr_io_queues
;
1005 status
= nvme_set_features(ctrl
, NVME_FEAT_NUM_QUEUES
, q_count
, NULL
, 0,
1011 * Degraded controllers might return an error when setting the queue
1012 * count. We still want to be able to bring them online and offer
1013 * access to the admin queue, as that might be only way to fix them up.
1016 dev_err(ctrl
->device
, "Could not set queue count (%d)\n", status
);
1019 nr_io_queues
= min(result
& 0xffff, result
>> 16) + 1;
1020 *count
= min(*count
, nr_io_queues
);
1025 EXPORT_SYMBOL_GPL(nvme_set_queue_count
);
1027 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
1029 struct nvme_user_io io
;
1030 struct nvme_command c
;
1031 unsigned length
, meta_len
;
1032 void __user
*metadata
;
1034 if (copy_from_user(&io
, uio
, sizeof(io
)))
1039 switch (io
.opcode
) {
1040 case nvme_cmd_write
:
1042 case nvme_cmd_compare
:
1048 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
1049 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1050 metadata
= (void __user
*)(uintptr_t)io
.metadata
;
1055 } else if (meta_len
) {
1056 if ((io
.metadata
& 3) || !io
.metadata
)
1060 memset(&c
, 0, sizeof(c
));
1061 c
.rw
.opcode
= io
.opcode
;
1062 c
.rw
.flags
= io
.flags
;
1063 c
.rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1064 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1065 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1066 c
.rw
.control
= cpu_to_le16(io
.control
);
1067 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1068 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1069 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1070 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1072 return nvme_submit_user_cmd(ns
->queue
, &c
,
1073 (void __user
*)(uintptr_t)io
.addr
, length
,
1074 metadata
, meta_len
, io
.slba
, NULL
, 0);
1077 static u32
nvme_known_admin_effects(u8 opcode
)
1080 case nvme_admin_format_nvm
:
1081 return NVME_CMD_EFFECTS_CSUPP
| NVME_CMD_EFFECTS_LBCC
|
1082 NVME_CMD_EFFECTS_CSE_MASK
;
1083 case nvme_admin_sanitize_nvm
:
1084 return NVME_CMD_EFFECTS_CSE_MASK
;
1091 static u32
nvme_passthru_start(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1098 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1099 if (effects
& ~NVME_CMD_EFFECTS_CSUPP
)
1100 dev_warn(ctrl
->device
,
1101 "IO command:%02x has unhandled effects:%08x\n",
1107 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1109 effects
= nvme_known_admin_effects(opcode
);
1112 * For simplicity, IO to all namespaces is quiesced even if the command
1113 * effects say only one namespace is affected.
1115 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
)) {
1116 nvme_start_freeze(ctrl
);
1117 nvme_wait_freeze(ctrl
);
1122 static void nvme_update_formats(struct nvme_ctrl
*ctrl
)
1124 struct nvme_ns
*ns
, *next
;
1127 mutex_lock(&ctrl
->namespaces_mutex
);
1128 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
1129 if (ns
->disk
&& nvme_revalidate_disk(ns
->disk
)) {
1130 list_move_tail(&ns
->list
, &rm_list
);
1133 mutex_unlock(&ctrl
->namespaces_mutex
);
1135 list_for_each_entry_safe(ns
, next
, &rm_list
, list
)
1139 static void nvme_passthru_end(struct nvme_ctrl
*ctrl
, u32 effects
)
1142 * Revalidate LBA changes prior to unfreezing. This is necessary to
1143 * prevent memory corruption if a logical block size was changed by
1146 if (effects
& NVME_CMD_EFFECTS_LBCC
)
1147 nvme_update_formats(ctrl
);
1148 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
))
1149 nvme_unfreeze(ctrl
);
1150 if (effects
& NVME_CMD_EFFECTS_CCC
)
1151 nvme_init_identify(ctrl
);
1152 if (effects
& (NVME_CMD_EFFECTS_NIC
| NVME_CMD_EFFECTS_NCC
))
1153 nvme_queue_scan(ctrl
);
1156 static int nvme_user_cmd(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1157 struct nvme_passthru_cmd __user
*ucmd
)
1159 struct nvme_passthru_cmd cmd
;
1160 struct nvme_command c
;
1161 unsigned timeout
= 0;
1165 if (!capable(CAP_SYS_ADMIN
))
1167 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1172 memset(&c
, 0, sizeof(c
));
1173 c
.common
.opcode
= cmd
.opcode
;
1174 c
.common
.flags
= cmd
.flags
;
1175 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1176 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1177 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1178 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1179 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1180 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1181 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1182 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1183 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1186 timeout
= msecs_to_jiffies(cmd
.timeout_ms
);
1188 effects
= nvme_passthru_start(ctrl
, ns
, cmd
.opcode
);
1189 status
= nvme_submit_user_cmd(ns
? ns
->queue
: ctrl
->admin_q
, &c
,
1190 (void __user
*)(uintptr_t)cmd
.addr
, cmd
.data_len
,
1191 (void __user
*)(uintptr_t)cmd
.metadata
, cmd
.metadata
,
1192 0, &cmd
.result
, timeout
);
1193 nvme_passthru_end(ctrl
, effects
);
1196 if (put_user(cmd
.result
, &ucmd
->result
))
1204 * Issue ioctl requests on the first available path. Note that unlike normal
1205 * block layer requests we will not retry failed request on another controller.
1207 static struct nvme_ns
*nvme_get_ns_from_disk(struct gendisk
*disk
,
1208 struct nvme_ns_head
**head
, int *srcu_idx
)
1210 #ifdef CONFIG_NVME_MULTIPATH
1211 if (disk
->fops
== &nvme_ns_head_ops
) {
1212 *head
= disk
->private_data
;
1213 *srcu_idx
= srcu_read_lock(&(*head
)->srcu
);
1214 return nvme_find_path(*head
);
1219 return disk
->private_data
;
1222 static void nvme_put_ns_from_disk(struct nvme_ns_head
*head
, int idx
)
1225 srcu_read_unlock(&head
->srcu
, idx
);
1228 static int nvme_ns_ioctl(struct nvme_ns
*ns
, unsigned cmd
, unsigned long arg
)
1232 force_successful_syscall_return();
1233 return ns
->head
->ns_id
;
1234 case NVME_IOCTL_ADMIN_CMD
:
1235 return nvme_user_cmd(ns
->ctrl
, NULL
, (void __user
*)arg
);
1236 case NVME_IOCTL_IO_CMD
:
1237 return nvme_user_cmd(ns
->ctrl
, ns
, (void __user
*)arg
);
1238 case NVME_IOCTL_SUBMIT_IO
:
1239 return nvme_submit_io(ns
, (void __user
*)arg
);
1243 return nvme_nvm_ioctl(ns
, cmd
, arg
);
1245 if (is_sed_ioctl(cmd
))
1246 return sed_ioctl(ns
->ctrl
->opal_dev
, cmd
,
1247 (void __user
*) arg
);
1252 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
,
1253 unsigned int cmd
, unsigned long arg
)
1255 struct nvme_ns_head
*head
= NULL
;
1259 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1263 ret
= nvme_ns_ioctl(ns
, cmd
, arg
);
1264 nvme_put_ns_from_disk(head
, srcu_idx
);
1268 static int nvme_open(struct block_device
*bdev
, fmode_t mode
)
1270 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1272 #ifdef CONFIG_NVME_MULTIPATH
1273 /* should never be called due to GENHD_FL_HIDDEN */
1274 if (WARN_ON_ONCE(ns
->head
->disk
))
1277 if (!kref_get_unless_zero(&ns
->kref
))
1279 if (!try_module_get(ns
->ctrl
->ops
->module
))
1290 static void nvme_release(struct gendisk
*disk
, fmode_t mode
)
1292 struct nvme_ns
*ns
= disk
->private_data
;
1294 module_put(ns
->ctrl
->ops
->module
);
1298 static int nvme_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1300 /* some standard values */
1301 geo
->heads
= 1 << 6;
1302 geo
->sectors
= 1 << 5;
1303 geo
->cylinders
= get_capacity(bdev
->bd_disk
) >> 11;
1307 #ifdef CONFIG_BLK_DEV_INTEGRITY
1308 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1310 struct blk_integrity integrity
;
1312 memset(&integrity
, 0, sizeof(integrity
));
1314 case NVME_NS_DPS_PI_TYPE3
:
1315 integrity
.profile
= &t10_pi_type3_crc
;
1316 integrity
.tag_size
= sizeof(u16
) + sizeof(u32
);
1317 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1319 case NVME_NS_DPS_PI_TYPE1
:
1320 case NVME_NS_DPS_PI_TYPE2
:
1321 integrity
.profile
= &t10_pi_type1_crc
;
1322 integrity
.tag_size
= sizeof(u16
);
1323 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1326 integrity
.profile
= NULL
;
1329 integrity
.tuple_size
= ms
;
1330 blk_integrity_register(disk
, &integrity
);
1331 blk_queue_max_integrity_segments(disk
->queue
, 1);
1334 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1337 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1339 static void nvme_set_chunk_size(struct nvme_ns
*ns
)
1341 u32 chunk_size
= (((u32
)ns
->noiob
) << (ns
->lba_shift
- 9));
1342 blk_queue_chunk_sectors(ns
->queue
, rounddown_pow_of_two(chunk_size
));
1345 static void nvme_config_discard(struct nvme_ctrl
*ctrl
,
1346 unsigned stream_alignment
, struct request_queue
*queue
)
1348 u32 size
= queue_logical_block_size(queue
);
1350 if (stream_alignment
)
1351 size
*= stream_alignment
;
1353 BUILD_BUG_ON(PAGE_SIZE
/ sizeof(struct nvme_dsm_range
) <
1354 NVME_DSM_MAX_RANGES
);
1356 queue
->limits
.discard_alignment
= 0;
1357 queue
->limits
.discard_granularity
= size
;
1359 blk_queue_max_discard_sectors(queue
, UINT_MAX
);
1360 blk_queue_max_discard_segments(queue
, NVME_DSM_MAX_RANGES
);
1361 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, queue
);
1363 if (ctrl
->quirks
& NVME_QUIRK_DEALLOCATE_ZEROES
)
1364 blk_queue_max_write_zeroes_sectors(queue
, UINT_MAX
);
1367 static void nvme_report_ns_ids(struct nvme_ctrl
*ctrl
, unsigned int nsid
,
1368 struct nvme_id_ns
*id
, struct nvme_ns_ids
*ids
)
1370 memset(ids
, 0, sizeof(*ids
));
1372 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
1373 memcpy(ids
->eui64
, id
->eui64
, sizeof(id
->eui64
));
1374 if (ctrl
->vs
>= NVME_VS(1, 2, 0))
1375 memcpy(ids
->nguid
, id
->nguid
, sizeof(id
->nguid
));
1376 if (ctrl
->vs
>= NVME_VS(1, 3, 0)) {
1377 /* Don't treat error as fatal we potentially
1378 * already have a NGUID or EUI-64
1380 if (nvme_identify_ns_descs(ctrl
, nsid
, ids
))
1381 dev_warn(ctrl
->device
,
1382 "%s: Identify Descriptors failed\n", __func__
);
1386 static bool nvme_ns_ids_valid(struct nvme_ns_ids
*ids
)
1388 return !uuid_is_null(&ids
->uuid
) ||
1389 memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)) ||
1390 memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
));
1393 static bool nvme_ns_ids_equal(struct nvme_ns_ids
*a
, struct nvme_ns_ids
*b
)
1395 return uuid_equal(&a
->uuid
, &b
->uuid
) &&
1396 memcmp(&a
->nguid
, &b
->nguid
, sizeof(a
->nguid
)) == 0 &&
1397 memcmp(&a
->eui64
, &b
->eui64
, sizeof(a
->eui64
)) == 0;
1400 static void nvme_update_disk_info(struct gendisk
*disk
,
1401 struct nvme_ns
*ns
, struct nvme_id_ns
*id
)
1403 sector_t capacity
= le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9);
1404 unsigned short bs
= 1 << ns
->lba_shift
;
1405 unsigned stream_alignment
= 0;
1407 if (ns
->ctrl
->nr_streams
&& ns
->sws
&& ns
->sgs
)
1408 stream_alignment
= ns
->sws
* ns
->sgs
;
1410 blk_mq_freeze_queue(disk
->queue
);
1411 blk_integrity_unregister(disk
);
1413 blk_queue_logical_block_size(disk
->queue
, bs
);
1414 blk_queue_physical_block_size(disk
->queue
, bs
);
1415 blk_queue_io_min(disk
->queue
, bs
);
1417 if (ns
->ms
&& !ns
->ext
&&
1418 (ns
->ctrl
->ops
->flags
& NVME_F_METADATA_SUPPORTED
))
1419 nvme_init_integrity(disk
, ns
->ms
, ns
->pi_type
);
1420 if (ns
->ms
&& !nvme_ns_has_pi(ns
) && !blk_get_integrity(disk
))
1422 set_capacity(disk
, capacity
);
1424 if (ns
->ctrl
->oncs
& NVME_CTRL_ONCS_DSM
)
1425 nvme_config_discard(ns
->ctrl
, stream_alignment
, disk
->queue
);
1426 blk_mq_unfreeze_queue(disk
->queue
);
1429 static void __nvme_revalidate_disk(struct gendisk
*disk
, struct nvme_id_ns
*id
)
1431 struct nvme_ns
*ns
= disk
->private_data
;
1434 * If identify namespace failed, use default 512 byte block size so
1435 * block layer can use before failing read/write for 0 capacity.
1437 ns
->lba_shift
= id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ds
;
1438 if (ns
->lba_shift
== 0)
1440 ns
->noiob
= le16_to_cpu(id
->noiob
);
1441 ns
->ext
= ns
->ms
&& (id
->flbas
& NVME_NS_FLBAS_META_EXT
);
1442 ns
->ms
= le16_to_cpu(id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ms
);
1443 /* the PI implementation requires metadata equal t10 pi tuple size */
1444 if (ns
->ms
== sizeof(struct t10_pi_tuple
))
1445 ns
->pi_type
= id
->dps
& NVME_NS_DPS_PI_MASK
;
1450 nvme_set_chunk_size(ns
);
1451 nvme_update_disk_info(disk
, ns
, id
);
1452 #ifdef CONFIG_NVME_MULTIPATH
1454 nvme_update_disk_info(ns
->head
->disk
, ns
, id
);
1458 static int nvme_revalidate_disk(struct gendisk
*disk
)
1460 struct nvme_ns
*ns
= disk
->private_data
;
1461 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
1462 struct nvme_id_ns
*id
;
1463 struct nvme_ns_ids ids
;
1466 if (test_bit(NVME_NS_DEAD
, &ns
->flags
)) {
1467 set_capacity(disk
, 0);
1471 id
= nvme_identify_ns(ctrl
, ns
->head
->ns_id
);
1475 if (id
->ncap
== 0) {
1480 __nvme_revalidate_disk(disk
, id
);
1481 nvme_report_ns_ids(ctrl
, ns
->head
->ns_id
, id
, &ids
);
1482 if (!nvme_ns_ids_equal(&ns
->head
->ids
, &ids
)) {
1483 dev_err(ctrl
->device
,
1484 "identifiers changed for nsid %d\n", ns
->head
->ns_id
);
1493 static char nvme_pr_type(enum pr_type type
)
1496 case PR_WRITE_EXCLUSIVE
:
1498 case PR_EXCLUSIVE_ACCESS
:
1500 case PR_WRITE_EXCLUSIVE_REG_ONLY
:
1502 case PR_EXCLUSIVE_ACCESS_REG_ONLY
:
1504 case PR_WRITE_EXCLUSIVE_ALL_REGS
:
1506 case PR_EXCLUSIVE_ACCESS_ALL_REGS
:
1513 static int nvme_pr_command(struct block_device
*bdev
, u32 cdw10
,
1514 u64 key
, u64 sa_key
, u8 op
)
1516 struct nvme_ns_head
*head
= NULL
;
1518 struct nvme_command c
;
1520 u8 data
[16] = { 0, };
1522 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1524 return -EWOULDBLOCK
;
1526 put_unaligned_le64(key
, &data
[0]);
1527 put_unaligned_le64(sa_key
, &data
[8]);
1529 memset(&c
, 0, sizeof(c
));
1530 c
.common
.opcode
= op
;
1531 c
.common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1532 c
.common
.cdw10
[0] = cpu_to_le32(cdw10
);
1534 ret
= nvme_submit_sync_cmd(ns
->queue
, &c
, data
, 16);
1535 nvme_put_ns_from_disk(head
, srcu_idx
);
1539 static int nvme_pr_register(struct block_device
*bdev
, u64 old
,
1540 u64
new, unsigned flags
)
1544 if (flags
& ~PR_FL_IGNORE_KEY
)
1547 cdw10
= old
? 2 : 0;
1548 cdw10
|= (flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0;
1549 cdw10
|= (1 << 30) | (1 << 31); /* PTPL=1 */
1550 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_register
);
1553 static int nvme_pr_reserve(struct block_device
*bdev
, u64 key
,
1554 enum pr_type type
, unsigned flags
)
1558 if (flags
& ~PR_FL_IGNORE_KEY
)
1561 cdw10
= nvme_pr_type(type
) << 8;
1562 cdw10
|= ((flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0);
1563 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_acquire
);
1566 static int nvme_pr_preempt(struct block_device
*bdev
, u64 old
, u64
new,
1567 enum pr_type type
, bool abort
)
1569 u32 cdw10
= nvme_pr_type(type
) << 8 | abort
? 2 : 1;
1570 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_acquire
);
1573 static int nvme_pr_clear(struct block_device
*bdev
, u64 key
)
1575 u32 cdw10
= 1 | (key
? 1 << 3 : 0);
1576 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_register
);
1579 static int nvme_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
1581 u32 cdw10
= nvme_pr_type(type
) << 8 | key
? 1 << 3 : 0;
1582 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_release
);
1585 static const struct pr_ops nvme_pr_ops
= {
1586 .pr_register
= nvme_pr_register
,
1587 .pr_reserve
= nvme_pr_reserve
,
1588 .pr_release
= nvme_pr_release
,
1589 .pr_preempt
= nvme_pr_preempt
,
1590 .pr_clear
= nvme_pr_clear
,
1593 #ifdef CONFIG_BLK_SED_OPAL
1594 int nvme_sec_submit(void *data
, u16 spsp
, u8 secp
, void *buffer
, size_t len
,
1597 struct nvme_ctrl
*ctrl
= data
;
1598 struct nvme_command cmd
;
1600 memset(&cmd
, 0, sizeof(cmd
));
1602 cmd
.common
.opcode
= nvme_admin_security_send
;
1604 cmd
.common
.opcode
= nvme_admin_security_recv
;
1605 cmd
.common
.nsid
= 0;
1606 cmd
.common
.cdw10
[0] = cpu_to_le32(((u32
)secp
) << 24 | ((u32
)spsp
) << 8);
1607 cmd
.common
.cdw10
[1] = cpu_to_le32(len
);
1609 return __nvme_submit_sync_cmd(ctrl
->admin_q
, &cmd
, NULL
, buffer
, len
,
1610 ADMIN_TIMEOUT
, NVME_QID_ANY
, 1, 0);
1612 EXPORT_SYMBOL_GPL(nvme_sec_submit
);
1613 #endif /* CONFIG_BLK_SED_OPAL */
1615 static const struct block_device_operations nvme_fops
= {
1616 .owner
= THIS_MODULE
,
1617 .ioctl
= nvme_ioctl
,
1618 .compat_ioctl
= nvme_ioctl
,
1620 .release
= nvme_release
,
1621 .getgeo
= nvme_getgeo
,
1622 .revalidate_disk
= nvme_revalidate_disk
,
1623 .pr_ops
= &nvme_pr_ops
,
1626 #ifdef CONFIG_NVME_MULTIPATH
1627 static int nvme_ns_head_open(struct block_device
*bdev
, fmode_t mode
)
1629 struct nvme_ns_head
*head
= bdev
->bd_disk
->private_data
;
1631 if (!kref_get_unless_zero(&head
->ref
))
1636 static void nvme_ns_head_release(struct gendisk
*disk
, fmode_t mode
)
1638 nvme_put_ns_head(disk
->private_data
);
1641 const struct block_device_operations nvme_ns_head_ops
= {
1642 .owner
= THIS_MODULE
,
1643 .open
= nvme_ns_head_open
,
1644 .release
= nvme_ns_head_release
,
1645 .ioctl
= nvme_ioctl
,
1646 .compat_ioctl
= nvme_ioctl
,
1647 .getgeo
= nvme_getgeo
,
1648 .pr_ops
= &nvme_pr_ops
,
1650 #endif /* CONFIG_NVME_MULTIPATH */
1652 static int nvme_wait_ready(struct nvme_ctrl
*ctrl
, u64 cap
, bool enabled
)
1654 unsigned long timeout
=
1655 ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1656 u32 csts
, bit
= enabled
? NVME_CSTS_RDY
: 0;
1659 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1662 if ((csts
& NVME_CSTS_RDY
) == bit
)
1666 if (fatal_signal_pending(current
))
1668 if (time_after(jiffies
, timeout
)) {
1669 dev_err(ctrl
->device
,
1670 "Device not ready; aborting %s\n", enabled
?
1671 "initialisation" : "reset");
1680 * If the device has been passed off to us in an enabled state, just clear
1681 * the enabled bit. The spec says we should set the 'shutdown notification
1682 * bits', but doing so may cause the device to complete commands to the
1683 * admin queue ... and we don't know what memory that might be pointing at!
1685 int nvme_disable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1689 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1690 ctrl
->ctrl_config
&= ~NVME_CC_ENABLE
;
1692 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1696 if (ctrl
->quirks
& NVME_QUIRK_DELAY_BEFORE_CHK_RDY
)
1697 msleep(NVME_QUIRK_DELAY_AMOUNT
);
1699 return nvme_wait_ready(ctrl
, cap
, false);
1701 EXPORT_SYMBOL_GPL(nvme_disable_ctrl
);
1703 int nvme_enable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1706 * Default to a 4K page size, with the intention to update this
1707 * path in the future to accomodate architectures with differing
1708 * kernel and IO page sizes.
1710 unsigned dev_page_min
= NVME_CAP_MPSMIN(cap
) + 12, page_shift
= 12;
1713 if (page_shift
< dev_page_min
) {
1714 dev_err(ctrl
->device
,
1715 "Minimum device page size %u too large for host (%u)\n",
1716 1 << dev_page_min
, 1 << page_shift
);
1720 ctrl
->page_size
= 1 << page_shift
;
1722 ctrl
->ctrl_config
= NVME_CC_CSS_NVM
;
1723 ctrl
->ctrl_config
|= (page_shift
- 12) << NVME_CC_MPS_SHIFT
;
1724 ctrl
->ctrl_config
|= NVME_CC_AMS_RR
| NVME_CC_SHN_NONE
;
1725 ctrl
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1726 ctrl
->ctrl_config
|= NVME_CC_ENABLE
;
1728 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1731 return nvme_wait_ready(ctrl
, cap
, true);
1733 EXPORT_SYMBOL_GPL(nvme_enable_ctrl
);
1735 int nvme_shutdown_ctrl(struct nvme_ctrl
*ctrl
)
1737 unsigned long timeout
= jiffies
+ (ctrl
->shutdown_timeout
* HZ
);
1741 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1742 ctrl
->ctrl_config
|= NVME_CC_SHN_NORMAL
;
1744 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1748 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1749 if ((csts
& NVME_CSTS_SHST_MASK
) == NVME_CSTS_SHST_CMPLT
)
1753 if (fatal_signal_pending(current
))
1755 if (time_after(jiffies
, timeout
)) {
1756 dev_err(ctrl
->device
,
1757 "Device shutdown incomplete; abort shutdown\n");
1764 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl
);
1766 static void nvme_set_queue_limits(struct nvme_ctrl
*ctrl
,
1767 struct request_queue
*q
)
1771 if (ctrl
->max_hw_sectors
) {
1773 (ctrl
->max_hw_sectors
/ (ctrl
->page_size
>> 9)) + 1;
1775 blk_queue_max_hw_sectors(q
, ctrl
->max_hw_sectors
);
1776 blk_queue_max_segments(q
, min_t(u32
, max_segments
, USHRT_MAX
));
1778 if ((ctrl
->quirks
& NVME_QUIRK_STRIPE_SIZE
) &&
1779 is_power_of_2(ctrl
->max_hw_sectors
))
1780 blk_queue_chunk_sectors(q
, ctrl
->max_hw_sectors
);
1781 blk_queue_virt_boundary(q
, ctrl
->page_size
- 1);
1782 if (ctrl
->vwc
& NVME_CTRL_VWC_PRESENT
)
1784 blk_queue_write_cache(q
, vwc
, vwc
);
1787 static int nvme_configure_timestamp(struct nvme_ctrl
*ctrl
)
1792 if (!(ctrl
->oncs
& NVME_CTRL_ONCS_TIMESTAMP
))
1795 ts
= cpu_to_le64(ktime_to_ms(ktime_get_real()));
1796 ret
= nvme_set_features(ctrl
, NVME_FEAT_TIMESTAMP
, 0, &ts
, sizeof(ts
),
1799 dev_warn_once(ctrl
->device
,
1800 "could not set timestamp (%d)\n", ret
);
1804 static int nvme_configure_apst(struct nvme_ctrl
*ctrl
)
1807 * APST (Autonomous Power State Transition) lets us program a
1808 * table of power state transitions that the controller will
1809 * perform automatically. We configure it with a simple
1810 * heuristic: we are willing to spend at most 2% of the time
1811 * transitioning between power states. Therefore, when running
1812 * in any given state, we will enter the next lower-power
1813 * non-operational state after waiting 50 * (enlat + exlat)
1814 * microseconds, as long as that state's exit latency is under
1815 * the requested maximum latency.
1817 * We will not autonomously enter any non-operational state for
1818 * which the total latency exceeds ps_max_latency_us. Users
1819 * can set ps_max_latency_us to zero to turn off APST.
1823 struct nvme_feat_auto_pst
*table
;
1829 * If APST isn't supported or if we haven't been initialized yet,
1830 * then don't do anything.
1835 if (ctrl
->npss
> 31) {
1836 dev_warn(ctrl
->device
, "NPSS is invalid; not using APST\n");
1840 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
1844 if (!ctrl
->apst_enabled
|| ctrl
->ps_max_latency_us
== 0) {
1845 /* Turn off APST. */
1847 dev_dbg(ctrl
->device
, "APST disabled\n");
1849 __le64 target
= cpu_to_le64(0);
1853 * Walk through all states from lowest- to highest-power.
1854 * According to the spec, lower-numbered states use more
1855 * power. NPSS, despite the name, is the index of the
1856 * lowest-power state, not the number of states.
1858 for (state
= (int)ctrl
->npss
; state
>= 0; state
--) {
1859 u64 total_latency_us
, exit_latency_us
, transition_ms
;
1862 table
->entries
[state
] = target
;
1865 * Don't allow transitions to the deepest state
1866 * if it's quirked off.
1868 if (state
== ctrl
->npss
&&
1869 (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
))
1873 * Is this state a useful non-operational state for
1874 * higher-power states to autonomously transition to?
1876 if (!(ctrl
->psd
[state
].flags
&
1877 NVME_PS_FLAGS_NON_OP_STATE
))
1881 (u64
)le32_to_cpu(ctrl
->psd
[state
].exit_lat
);
1882 if (exit_latency_us
> ctrl
->ps_max_latency_us
)
1887 le32_to_cpu(ctrl
->psd
[state
].entry_lat
);
1890 * This state is good. Use it as the APST idle
1891 * target for higher power states.
1893 transition_ms
= total_latency_us
+ 19;
1894 do_div(transition_ms
, 20);
1895 if (transition_ms
> (1 << 24) - 1)
1896 transition_ms
= (1 << 24) - 1;
1898 target
= cpu_to_le64((state
<< 3) |
1899 (transition_ms
<< 8));
1904 if (total_latency_us
> max_lat_us
)
1905 max_lat_us
= total_latency_us
;
1911 dev_dbg(ctrl
->device
, "APST enabled but no non-operational states are available\n");
1913 dev_dbg(ctrl
->device
, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1914 max_ps
, max_lat_us
, (int)sizeof(*table
), table
);
1918 ret
= nvme_set_features(ctrl
, NVME_FEAT_AUTO_PST
, apste
,
1919 table
, sizeof(*table
), NULL
);
1921 dev_err(ctrl
->device
, "failed to set APST feature (%d)\n", ret
);
1927 static void nvme_set_latency_tolerance(struct device
*dev
, s32 val
)
1929 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
1933 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT
:
1934 case PM_QOS_LATENCY_ANY
:
1942 if (ctrl
->ps_max_latency_us
!= latency
) {
1943 ctrl
->ps_max_latency_us
= latency
;
1944 nvme_configure_apst(ctrl
);
1948 struct nvme_core_quirk_entry
{
1950 * NVMe model and firmware strings are padded with spaces. For
1951 * simplicity, strings in the quirk table are padded with NULLs
1957 unsigned long quirks
;
1960 static const struct nvme_core_quirk_entry core_quirks
[] = {
1963 * This Toshiba device seems to die using any APST states. See:
1964 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1967 .mn
= "THNSF5256GPUK TOSHIBA",
1968 .quirks
= NVME_QUIRK_NO_APST
,
1972 /* match is null-terminated but idstr is space-padded. */
1973 static bool string_matches(const char *idstr
, const char *match
, size_t len
)
1980 matchlen
= strlen(match
);
1981 WARN_ON_ONCE(matchlen
> len
);
1983 if (memcmp(idstr
, match
, matchlen
))
1986 for (; matchlen
< len
; matchlen
++)
1987 if (idstr
[matchlen
] != ' ')
1993 static bool quirk_matches(const struct nvme_id_ctrl
*id
,
1994 const struct nvme_core_quirk_entry
*q
)
1996 return q
->vid
== le16_to_cpu(id
->vid
) &&
1997 string_matches(id
->mn
, q
->mn
, sizeof(id
->mn
)) &&
1998 string_matches(id
->fr
, q
->fr
, sizeof(id
->fr
));
2001 static void nvme_init_subnqn(struct nvme_subsystem
*subsys
, struct nvme_ctrl
*ctrl
,
2002 struct nvme_id_ctrl
*id
)
2007 nqnlen
= strnlen(id
->subnqn
, NVMF_NQN_SIZE
);
2008 if (nqnlen
> 0 && nqnlen
< NVMF_NQN_SIZE
) {
2009 strncpy(subsys
->subnqn
, id
->subnqn
, NVMF_NQN_SIZE
);
2013 if (ctrl
->vs
>= NVME_VS(1, 2, 1))
2014 dev_warn(ctrl
->device
, "missing or invalid SUBNQN field.\n");
2016 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2017 off
= snprintf(subsys
->subnqn
, NVMF_NQN_SIZE
,
2018 "nqn.2014.08.org.nvmexpress:%4x%4x",
2019 le16_to_cpu(id
->vid
), le16_to_cpu(id
->ssvid
));
2020 memcpy(subsys
->subnqn
+ off
, id
->sn
, sizeof(id
->sn
));
2021 off
+= sizeof(id
->sn
);
2022 memcpy(subsys
->subnqn
+ off
, id
->mn
, sizeof(id
->mn
));
2023 off
+= sizeof(id
->mn
);
2024 memset(subsys
->subnqn
+ off
, 0, sizeof(subsys
->subnqn
) - off
);
2027 static void __nvme_release_subsystem(struct nvme_subsystem
*subsys
)
2029 ida_simple_remove(&nvme_subsystems_ida
, subsys
->instance
);
2033 static void nvme_release_subsystem(struct device
*dev
)
2035 __nvme_release_subsystem(container_of(dev
, struct nvme_subsystem
, dev
));
2038 static void nvme_destroy_subsystem(struct kref
*ref
)
2040 struct nvme_subsystem
*subsys
=
2041 container_of(ref
, struct nvme_subsystem
, ref
);
2043 mutex_lock(&nvme_subsystems_lock
);
2044 list_del(&subsys
->entry
);
2045 mutex_unlock(&nvme_subsystems_lock
);
2047 ida_destroy(&subsys
->ns_ida
);
2048 device_del(&subsys
->dev
);
2049 put_device(&subsys
->dev
);
2052 static void nvme_put_subsystem(struct nvme_subsystem
*subsys
)
2054 kref_put(&subsys
->ref
, nvme_destroy_subsystem
);
2057 static struct nvme_subsystem
*__nvme_find_get_subsystem(const char *subsysnqn
)
2059 struct nvme_subsystem
*subsys
;
2061 lockdep_assert_held(&nvme_subsystems_lock
);
2063 list_for_each_entry(subsys
, &nvme_subsystems
, entry
) {
2064 if (strcmp(subsys
->subnqn
, subsysnqn
))
2066 if (!kref_get_unless_zero(&subsys
->ref
))
2074 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2075 struct device_attribute subsys_attr_##_name = \
2076 __ATTR(_name, _mode, _show, NULL)
2078 static ssize_t
nvme_subsys_show_nqn(struct device
*dev
,
2079 struct device_attribute
*attr
,
2082 struct nvme_subsystem
*subsys
=
2083 container_of(dev
, struct nvme_subsystem
, dev
);
2085 return snprintf(buf
, PAGE_SIZE
, "%s\n", subsys
->subnqn
);
2087 static SUBSYS_ATTR_RO(subsysnqn
, S_IRUGO
, nvme_subsys_show_nqn
);
2089 #define nvme_subsys_show_str_function(field) \
2090 static ssize_t subsys_##field##_show(struct device *dev, \
2091 struct device_attribute *attr, char *buf) \
2093 struct nvme_subsystem *subsys = \
2094 container_of(dev, struct nvme_subsystem, dev); \
2095 return sprintf(buf, "%.*s\n", \
2096 (int)sizeof(subsys->field), subsys->field); \
2098 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2100 nvme_subsys_show_str_function(model
);
2101 nvme_subsys_show_str_function(serial
);
2102 nvme_subsys_show_str_function(firmware_rev
);
2104 static struct attribute
*nvme_subsys_attrs
[] = {
2105 &subsys_attr_model
.attr
,
2106 &subsys_attr_serial
.attr
,
2107 &subsys_attr_firmware_rev
.attr
,
2108 &subsys_attr_subsysnqn
.attr
,
2112 static struct attribute_group nvme_subsys_attrs_group
= {
2113 .attrs
= nvme_subsys_attrs
,
2116 static const struct attribute_group
*nvme_subsys_attrs_groups
[] = {
2117 &nvme_subsys_attrs_group
,
2121 static int nvme_active_ctrls(struct nvme_subsystem
*subsys
)
2124 struct nvme_ctrl
*ctrl
;
2126 mutex_lock(&subsys
->lock
);
2127 list_for_each_entry(ctrl
, &subsys
->ctrls
, subsys_entry
) {
2128 if (ctrl
->state
!= NVME_CTRL_DELETING
&&
2129 ctrl
->state
!= NVME_CTRL_DEAD
)
2132 mutex_unlock(&subsys
->lock
);
2137 static int nvme_init_subsystem(struct nvme_ctrl
*ctrl
, struct nvme_id_ctrl
*id
)
2139 struct nvme_subsystem
*subsys
, *found
;
2142 subsys
= kzalloc(sizeof(*subsys
), GFP_KERNEL
);
2145 ret
= ida_simple_get(&nvme_subsystems_ida
, 0, 0, GFP_KERNEL
);
2150 subsys
->instance
= ret
;
2151 mutex_init(&subsys
->lock
);
2152 kref_init(&subsys
->ref
);
2153 INIT_LIST_HEAD(&subsys
->ctrls
);
2154 INIT_LIST_HEAD(&subsys
->nsheads
);
2155 nvme_init_subnqn(subsys
, ctrl
, id
);
2156 memcpy(subsys
->serial
, id
->sn
, sizeof(subsys
->serial
));
2157 memcpy(subsys
->model
, id
->mn
, sizeof(subsys
->model
));
2158 memcpy(subsys
->firmware_rev
, id
->fr
, sizeof(subsys
->firmware_rev
));
2159 subsys
->vendor_id
= le16_to_cpu(id
->vid
);
2160 subsys
->cmic
= id
->cmic
;
2162 subsys
->dev
.class = nvme_subsys_class
;
2163 subsys
->dev
.release
= nvme_release_subsystem
;
2164 subsys
->dev
.groups
= nvme_subsys_attrs_groups
;
2165 dev_set_name(&subsys
->dev
, "nvme-subsys%d", subsys
->instance
);
2166 device_initialize(&subsys
->dev
);
2168 mutex_lock(&nvme_subsystems_lock
);
2169 found
= __nvme_find_get_subsystem(subsys
->subnqn
);
2172 * Verify that the subsystem actually supports multiple
2173 * controllers, else bail out.
2175 if (nvme_active_ctrls(found
) && !(id
->cmic
& (1 << 1))) {
2176 dev_err(ctrl
->device
,
2177 "ignoring ctrl due to duplicate subnqn (%s).\n",
2179 nvme_put_subsystem(found
);
2184 __nvme_release_subsystem(subsys
);
2187 ret
= device_add(&subsys
->dev
);
2189 dev_err(ctrl
->device
,
2190 "failed to register subsystem device.\n");
2193 ida_init(&subsys
->ns_ida
);
2194 list_add_tail(&subsys
->entry
, &nvme_subsystems
);
2197 ctrl
->subsys
= subsys
;
2198 mutex_unlock(&nvme_subsystems_lock
);
2200 if (sysfs_create_link(&subsys
->dev
.kobj
, &ctrl
->device
->kobj
,
2201 dev_name(ctrl
->device
))) {
2202 dev_err(ctrl
->device
,
2203 "failed to create sysfs link from subsystem.\n");
2204 /* the transport driver will eventually put the subsystem */
2208 mutex_lock(&subsys
->lock
);
2209 list_add_tail(&ctrl
->subsys_entry
, &subsys
->ctrls
);
2210 mutex_unlock(&subsys
->lock
);
2215 mutex_unlock(&nvme_subsystems_lock
);
2216 put_device(&subsys
->dev
);
2220 static int nvme_get_log(struct nvme_ctrl
*ctrl
, u8 log_page
, void *log
,
2223 struct nvme_command c
= { };
2225 c
.common
.opcode
= nvme_admin_get_log_page
;
2226 c
.common
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
2227 c
.common
.cdw10
[0] = nvme_get_log_dw10(log_page
, size
);
2229 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, log
, size
);
2232 static int nvme_get_effects_log(struct nvme_ctrl
*ctrl
)
2237 ctrl
->effects
= kzalloc(sizeof(*ctrl
->effects
), GFP_KERNEL
);
2242 ret
= nvme_get_log(ctrl
, NVME_LOG_CMD_EFFECTS
, ctrl
->effects
,
2243 sizeof(*ctrl
->effects
));
2245 kfree(ctrl
->effects
);
2246 ctrl
->effects
= NULL
;
2252 * Initialize the cached copies of the Identify data and various controller
2253 * register in our nvme_ctrl structure. This should be called as soon as
2254 * the admin queue is fully up and running.
2256 int nvme_init_identify(struct nvme_ctrl
*ctrl
)
2258 struct nvme_id_ctrl
*id
;
2260 int ret
, page_shift
;
2262 bool prev_apst_enabled
;
2264 ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_VS
, &ctrl
->vs
);
2266 dev_err(ctrl
->device
, "Reading VS failed (%d)\n", ret
);
2270 ret
= ctrl
->ops
->reg_read64(ctrl
, NVME_REG_CAP
, &cap
);
2272 dev_err(ctrl
->device
, "Reading CAP failed (%d)\n", ret
);
2275 page_shift
= NVME_CAP_MPSMIN(cap
) + 12;
2277 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
2278 ctrl
->subsystem
= NVME_CAP_NSSRC(cap
);
2280 ret
= nvme_identify_ctrl(ctrl
, &id
);
2282 dev_err(ctrl
->device
, "Identify Controller failed (%d)\n", ret
);
2286 if (id
->lpa
& NVME_CTRL_LPA_CMD_EFFECTS_LOG
) {
2287 ret
= nvme_get_effects_log(ctrl
);
2292 if (!ctrl
->identified
) {
2295 ret
= nvme_init_subsystem(ctrl
, id
);
2300 * Check for quirks. Quirk can depend on firmware version,
2301 * so, in principle, the set of quirks present can change
2302 * across a reset. As a possible future enhancement, we
2303 * could re-scan for quirks every time we reinitialize
2304 * the device, but we'd have to make sure that the driver
2305 * behaves intelligently if the quirks change.
2307 for (i
= 0; i
< ARRAY_SIZE(core_quirks
); i
++) {
2308 if (quirk_matches(id
, &core_quirks
[i
]))
2309 ctrl
->quirks
|= core_quirks
[i
].quirks
;
2313 if (force_apst
&& (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
)) {
2314 dev_warn(ctrl
->device
, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2315 ctrl
->quirks
&= ~NVME_QUIRK_NO_DEEPEST_PS
;
2318 ctrl
->oacs
= le16_to_cpu(id
->oacs
);
2319 ctrl
->oncs
= le16_to_cpup(&id
->oncs
);
2320 atomic_set(&ctrl
->abort_limit
, id
->acl
+ 1);
2321 ctrl
->vwc
= id
->vwc
;
2322 ctrl
->cntlid
= le16_to_cpup(&id
->cntlid
);
2324 max_hw_sectors
= 1 << (id
->mdts
+ page_shift
- 9);
2326 max_hw_sectors
= UINT_MAX
;
2327 ctrl
->max_hw_sectors
=
2328 min_not_zero(ctrl
->max_hw_sectors
, max_hw_sectors
);
2330 nvme_set_queue_limits(ctrl
, ctrl
->admin_q
);
2331 ctrl
->sgls
= le32_to_cpu(id
->sgls
);
2332 ctrl
->kas
= le16_to_cpu(id
->kas
);
2336 u32 transition_time
= le32_to_cpu(id
->rtd3e
) / 1000000;
2338 ctrl
->shutdown_timeout
= clamp_t(unsigned int, transition_time
,
2339 shutdown_timeout
, 60);
2341 if (ctrl
->shutdown_timeout
!= shutdown_timeout
)
2342 dev_info(ctrl
->device
,
2343 "Shutdown timeout set to %u seconds\n",
2344 ctrl
->shutdown_timeout
);
2346 ctrl
->shutdown_timeout
= shutdown_timeout
;
2348 ctrl
->npss
= id
->npss
;
2349 ctrl
->apsta
= id
->apsta
;
2350 prev_apst_enabled
= ctrl
->apst_enabled
;
2351 if (ctrl
->quirks
& NVME_QUIRK_NO_APST
) {
2352 if (force_apst
&& id
->apsta
) {
2353 dev_warn(ctrl
->device
, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2354 ctrl
->apst_enabled
= true;
2356 ctrl
->apst_enabled
= false;
2359 ctrl
->apst_enabled
= id
->apsta
;
2361 memcpy(ctrl
->psd
, id
->psd
, sizeof(ctrl
->psd
));
2363 if (ctrl
->ops
->flags
& NVME_F_FABRICS
) {
2364 ctrl
->icdoff
= le16_to_cpu(id
->icdoff
);
2365 ctrl
->ioccsz
= le32_to_cpu(id
->ioccsz
);
2366 ctrl
->iorcsz
= le32_to_cpu(id
->iorcsz
);
2367 ctrl
->maxcmd
= le16_to_cpu(id
->maxcmd
);
2370 * In fabrics we need to verify the cntlid matches the
2373 if (ctrl
->cntlid
!= le16_to_cpu(id
->cntlid
)) {
2378 if (!ctrl
->opts
->discovery_nqn
&& !ctrl
->kas
) {
2379 dev_err(ctrl
->device
,
2380 "keep-alive support is mandatory for fabrics\n");
2385 ctrl
->cntlid
= le16_to_cpu(id
->cntlid
);
2386 ctrl
->hmpre
= le32_to_cpu(id
->hmpre
);
2387 ctrl
->hmmin
= le32_to_cpu(id
->hmmin
);
2388 ctrl
->hmminds
= le32_to_cpu(id
->hmminds
);
2389 ctrl
->hmmaxd
= le16_to_cpu(id
->hmmaxd
);
2394 if (ctrl
->apst_enabled
&& !prev_apst_enabled
)
2395 dev_pm_qos_expose_latency_tolerance(ctrl
->device
);
2396 else if (!ctrl
->apst_enabled
&& prev_apst_enabled
)
2397 dev_pm_qos_hide_latency_tolerance(ctrl
->device
);
2399 ret
= nvme_configure_apst(ctrl
);
2403 ret
= nvme_configure_timestamp(ctrl
);
2407 ret
= nvme_configure_directives(ctrl
);
2411 ctrl
->identified
= true;
2419 EXPORT_SYMBOL_GPL(nvme_init_identify
);
2421 static int nvme_dev_open(struct inode
*inode
, struct file
*file
)
2423 struct nvme_ctrl
*ctrl
=
2424 container_of(inode
->i_cdev
, struct nvme_ctrl
, cdev
);
2426 switch (ctrl
->state
) {
2427 case NVME_CTRL_LIVE
:
2428 case NVME_CTRL_ADMIN_ONLY
:
2431 return -EWOULDBLOCK
;
2434 file
->private_data
= ctrl
;
2438 static int nvme_dev_user_cmd(struct nvme_ctrl
*ctrl
, void __user
*argp
)
2443 mutex_lock(&ctrl
->namespaces_mutex
);
2444 if (list_empty(&ctrl
->namespaces
)) {
2449 ns
= list_first_entry(&ctrl
->namespaces
, struct nvme_ns
, list
);
2450 if (ns
!= list_last_entry(&ctrl
->namespaces
, struct nvme_ns
, list
)) {
2451 dev_warn(ctrl
->device
,
2452 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2457 dev_warn(ctrl
->device
,
2458 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2459 kref_get(&ns
->kref
);
2460 mutex_unlock(&ctrl
->namespaces_mutex
);
2462 ret
= nvme_user_cmd(ctrl
, ns
, argp
);
2467 mutex_unlock(&ctrl
->namespaces_mutex
);
2471 static long nvme_dev_ioctl(struct file
*file
, unsigned int cmd
,
2474 struct nvme_ctrl
*ctrl
= file
->private_data
;
2475 void __user
*argp
= (void __user
*)arg
;
2478 case NVME_IOCTL_ADMIN_CMD
:
2479 return nvme_user_cmd(ctrl
, NULL
, argp
);
2480 case NVME_IOCTL_IO_CMD
:
2481 return nvme_dev_user_cmd(ctrl
, argp
);
2482 case NVME_IOCTL_RESET
:
2483 dev_warn(ctrl
->device
, "resetting controller\n");
2484 return nvme_reset_ctrl_sync(ctrl
);
2485 case NVME_IOCTL_SUBSYS_RESET
:
2486 return nvme_reset_subsystem(ctrl
);
2487 case NVME_IOCTL_RESCAN
:
2488 nvme_queue_scan(ctrl
);
2495 static const struct file_operations nvme_dev_fops
= {
2496 .owner
= THIS_MODULE
,
2497 .open
= nvme_dev_open
,
2498 .unlocked_ioctl
= nvme_dev_ioctl
,
2499 .compat_ioctl
= nvme_dev_ioctl
,
2502 static ssize_t
nvme_sysfs_reset(struct device
*dev
,
2503 struct device_attribute
*attr
, const char *buf
,
2506 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2509 ret
= nvme_reset_ctrl_sync(ctrl
);
2514 static DEVICE_ATTR(reset_controller
, S_IWUSR
, NULL
, nvme_sysfs_reset
);
2516 static ssize_t
nvme_sysfs_rescan(struct device
*dev
,
2517 struct device_attribute
*attr
, const char *buf
,
2520 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2522 nvme_queue_scan(ctrl
);
2525 static DEVICE_ATTR(rescan_controller
, S_IWUSR
, NULL
, nvme_sysfs_rescan
);
2527 static inline struct nvme_ns_head
*dev_to_ns_head(struct device
*dev
)
2529 struct gendisk
*disk
= dev_to_disk(dev
);
2531 if (disk
->fops
== &nvme_fops
)
2532 return nvme_get_ns_from_dev(dev
)->head
;
2534 return disk
->private_data
;
2537 static ssize_t
wwid_show(struct device
*dev
, struct device_attribute
*attr
,
2540 struct nvme_ns_head
*head
= dev_to_ns_head(dev
);
2541 struct nvme_ns_ids
*ids
= &head
->ids
;
2542 struct nvme_subsystem
*subsys
= head
->subsys
;
2543 int serial_len
= sizeof(subsys
->serial
);
2544 int model_len
= sizeof(subsys
->model
);
2546 if (!uuid_is_null(&ids
->uuid
))
2547 return sprintf(buf
, "uuid.%pU\n", &ids
->uuid
);
2549 if (memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2550 return sprintf(buf
, "eui.%16phN\n", ids
->nguid
);
2552 if (memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2553 return sprintf(buf
, "eui.%8phN\n", ids
->eui64
);
2555 while (serial_len
> 0 && (subsys
->serial
[serial_len
- 1] == ' ' ||
2556 subsys
->serial
[serial_len
- 1] == '\0'))
2558 while (model_len
> 0 && (subsys
->model
[model_len
- 1] == ' ' ||
2559 subsys
->model
[model_len
- 1] == '\0'))
2562 return sprintf(buf
, "nvme.%04x-%*phN-%*phN-%08x\n", subsys
->vendor_id
,
2563 serial_len
, subsys
->serial
, model_len
, subsys
->model
,
2566 static DEVICE_ATTR_RO(wwid
);
2568 static ssize_t
nguid_show(struct device
*dev
, struct device_attribute
*attr
,
2571 return sprintf(buf
, "%pU\n", dev_to_ns_head(dev
)->ids
.nguid
);
2573 static DEVICE_ATTR_RO(nguid
);
2575 static ssize_t
uuid_show(struct device
*dev
, struct device_attribute
*attr
,
2578 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2580 /* For backward compatibility expose the NGUID to userspace if
2581 * we have no UUID set
2583 if (uuid_is_null(&ids
->uuid
)) {
2584 printk_ratelimited(KERN_WARNING
2585 "No UUID available providing old NGUID\n");
2586 return sprintf(buf
, "%pU\n", ids
->nguid
);
2588 return sprintf(buf
, "%pU\n", &ids
->uuid
);
2590 static DEVICE_ATTR_RO(uuid
);
2592 static ssize_t
eui_show(struct device
*dev
, struct device_attribute
*attr
,
2595 return sprintf(buf
, "%8ph\n", dev_to_ns_head(dev
)->ids
.eui64
);
2597 static DEVICE_ATTR_RO(eui
);
2599 static ssize_t
nsid_show(struct device
*dev
, struct device_attribute
*attr
,
2602 return sprintf(buf
, "%d\n", dev_to_ns_head(dev
)->ns_id
);
2604 static DEVICE_ATTR_RO(nsid
);
2606 static struct attribute
*nvme_ns_id_attrs
[] = {
2607 &dev_attr_wwid
.attr
,
2608 &dev_attr_uuid
.attr
,
2609 &dev_attr_nguid
.attr
,
2611 &dev_attr_nsid
.attr
,
2615 static umode_t
nvme_ns_id_attrs_are_visible(struct kobject
*kobj
,
2616 struct attribute
*a
, int n
)
2618 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2619 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2621 if (a
== &dev_attr_uuid
.attr
) {
2622 if (uuid_is_null(&ids
->uuid
) &&
2623 !memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2626 if (a
== &dev_attr_nguid
.attr
) {
2627 if (!memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2630 if (a
== &dev_attr_eui
.attr
) {
2631 if (!memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2637 const struct attribute_group nvme_ns_id_attr_group
= {
2638 .attrs
= nvme_ns_id_attrs
,
2639 .is_visible
= nvme_ns_id_attrs_are_visible
,
2642 #define nvme_show_str_function(field) \
2643 static ssize_t field##_show(struct device *dev, \
2644 struct device_attribute *attr, char *buf) \
2646 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2647 return sprintf(buf, "%.*s\n", \
2648 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2650 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2652 nvme_show_str_function(model
);
2653 nvme_show_str_function(serial
);
2654 nvme_show_str_function(firmware_rev
);
2656 #define nvme_show_int_function(field) \
2657 static ssize_t field##_show(struct device *dev, \
2658 struct device_attribute *attr, char *buf) \
2660 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2661 return sprintf(buf, "%d\n", ctrl->field); \
2663 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2665 nvme_show_int_function(cntlid
);
2667 static ssize_t
nvme_sysfs_delete(struct device
*dev
,
2668 struct device_attribute
*attr
, const char *buf
,
2671 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2673 if (device_remove_file_self(dev
, attr
))
2674 nvme_delete_ctrl_sync(ctrl
);
2677 static DEVICE_ATTR(delete_controller
, S_IWUSR
, NULL
, nvme_sysfs_delete
);
2679 static ssize_t
nvme_sysfs_show_transport(struct device
*dev
,
2680 struct device_attribute
*attr
,
2683 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2685 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->ops
->name
);
2687 static DEVICE_ATTR(transport
, S_IRUGO
, nvme_sysfs_show_transport
, NULL
);
2689 static ssize_t
nvme_sysfs_show_state(struct device
*dev
,
2690 struct device_attribute
*attr
,
2693 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2694 static const char *const state_name
[] = {
2695 [NVME_CTRL_NEW
] = "new",
2696 [NVME_CTRL_LIVE
] = "live",
2697 [NVME_CTRL_ADMIN_ONLY
] = "only-admin",
2698 [NVME_CTRL_RESETTING
] = "resetting",
2699 [NVME_CTRL_CONNECTING
] = "connecting",
2700 [NVME_CTRL_DELETING
] = "deleting",
2701 [NVME_CTRL_DEAD
] = "dead",
2704 if ((unsigned)ctrl
->state
< ARRAY_SIZE(state_name
) &&
2705 state_name
[ctrl
->state
])
2706 return sprintf(buf
, "%s\n", state_name
[ctrl
->state
]);
2708 return sprintf(buf
, "unknown state\n");
2711 static DEVICE_ATTR(state
, S_IRUGO
, nvme_sysfs_show_state
, NULL
);
2713 static ssize_t
nvme_sysfs_show_subsysnqn(struct device
*dev
,
2714 struct device_attribute
*attr
,
2717 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2719 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->subsys
->subnqn
);
2721 static DEVICE_ATTR(subsysnqn
, S_IRUGO
, nvme_sysfs_show_subsysnqn
, NULL
);
2723 static ssize_t
nvme_sysfs_show_address(struct device
*dev
,
2724 struct device_attribute
*attr
,
2727 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2729 return ctrl
->ops
->get_address(ctrl
, buf
, PAGE_SIZE
);
2731 static DEVICE_ATTR(address
, S_IRUGO
, nvme_sysfs_show_address
, NULL
);
2733 static struct attribute
*nvme_dev_attrs
[] = {
2734 &dev_attr_reset_controller
.attr
,
2735 &dev_attr_rescan_controller
.attr
,
2736 &dev_attr_model
.attr
,
2737 &dev_attr_serial
.attr
,
2738 &dev_attr_firmware_rev
.attr
,
2739 &dev_attr_cntlid
.attr
,
2740 &dev_attr_delete_controller
.attr
,
2741 &dev_attr_transport
.attr
,
2742 &dev_attr_subsysnqn
.attr
,
2743 &dev_attr_address
.attr
,
2744 &dev_attr_state
.attr
,
2748 static umode_t
nvme_dev_attrs_are_visible(struct kobject
*kobj
,
2749 struct attribute
*a
, int n
)
2751 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2752 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2754 if (a
== &dev_attr_delete_controller
.attr
&& !ctrl
->ops
->delete_ctrl
)
2756 if (a
== &dev_attr_address
.attr
&& !ctrl
->ops
->get_address
)
2762 static struct attribute_group nvme_dev_attrs_group
= {
2763 .attrs
= nvme_dev_attrs
,
2764 .is_visible
= nvme_dev_attrs_are_visible
,
2767 static const struct attribute_group
*nvme_dev_attr_groups
[] = {
2768 &nvme_dev_attrs_group
,
2772 static struct nvme_ns_head
*__nvme_find_ns_head(struct nvme_subsystem
*subsys
,
2775 struct nvme_ns_head
*h
;
2777 lockdep_assert_held(&subsys
->lock
);
2779 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2780 if (h
->ns_id
== nsid
&& kref_get_unless_zero(&h
->ref
))
2787 static int __nvme_check_ids(struct nvme_subsystem
*subsys
,
2788 struct nvme_ns_head
*new)
2790 struct nvme_ns_head
*h
;
2792 lockdep_assert_held(&subsys
->lock
);
2794 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2795 if (nvme_ns_ids_valid(&new->ids
) &&
2796 nvme_ns_ids_equal(&new->ids
, &h
->ids
))
2803 static struct nvme_ns_head
*nvme_alloc_ns_head(struct nvme_ctrl
*ctrl
,
2804 unsigned nsid
, struct nvme_id_ns
*id
)
2806 struct nvme_ns_head
*head
;
2809 head
= kzalloc(sizeof(*head
), GFP_KERNEL
);
2812 ret
= ida_simple_get(&ctrl
->subsys
->ns_ida
, 1, 0, GFP_KERNEL
);
2815 head
->instance
= ret
;
2816 INIT_LIST_HEAD(&head
->list
);
2817 init_srcu_struct(&head
->srcu
);
2818 head
->subsys
= ctrl
->subsys
;
2820 kref_init(&head
->ref
);
2822 nvme_report_ns_ids(ctrl
, nsid
, id
, &head
->ids
);
2824 ret
= __nvme_check_ids(ctrl
->subsys
, head
);
2826 dev_err(ctrl
->device
,
2827 "duplicate IDs for nsid %d\n", nsid
);
2828 goto out_cleanup_srcu
;
2831 ret
= nvme_mpath_alloc_disk(ctrl
, head
);
2833 goto out_cleanup_srcu
;
2835 list_add_tail(&head
->entry
, &ctrl
->subsys
->nsheads
);
2838 cleanup_srcu_struct(&head
->srcu
);
2839 ida_simple_remove(&ctrl
->subsys
->ns_ida
, head
->instance
);
2843 return ERR_PTR(ret
);
2846 static int nvme_init_ns_head(struct nvme_ns
*ns
, unsigned nsid
,
2847 struct nvme_id_ns
*id
, bool *new)
2849 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
2850 bool is_shared
= id
->nmic
& (1 << 0);
2851 struct nvme_ns_head
*head
= NULL
;
2854 mutex_lock(&ctrl
->subsys
->lock
);
2856 head
= __nvme_find_ns_head(ctrl
->subsys
, nsid
);
2858 head
= nvme_alloc_ns_head(ctrl
, nsid
, id
);
2860 ret
= PTR_ERR(head
);
2866 struct nvme_ns_ids ids
;
2868 nvme_report_ns_ids(ctrl
, nsid
, id
, &ids
);
2869 if (!nvme_ns_ids_equal(&head
->ids
, &ids
)) {
2870 dev_err(ctrl
->device
,
2871 "IDs don't match for shared namespace %d\n",
2880 list_add_tail(&ns
->siblings
, &head
->list
);
2884 mutex_unlock(&ctrl
->subsys
->lock
);
2888 static int ns_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2890 struct nvme_ns
*nsa
= container_of(a
, struct nvme_ns
, list
);
2891 struct nvme_ns
*nsb
= container_of(b
, struct nvme_ns
, list
);
2893 return nsa
->head
->ns_id
- nsb
->head
->ns_id
;
2896 static struct nvme_ns
*nvme_find_get_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2898 struct nvme_ns
*ns
, *ret
= NULL
;
2900 mutex_lock(&ctrl
->namespaces_mutex
);
2901 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
2902 if (ns
->head
->ns_id
== nsid
) {
2903 if (!kref_get_unless_zero(&ns
->kref
))
2908 if (ns
->head
->ns_id
> nsid
)
2911 mutex_unlock(&ctrl
->namespaces_mutex
);
2915 static int nvme_setup_streams_ns(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
)
2917 struct streams_directive_params s
;
2920 if (!ctrl
->nr_streams
)
2923 ret
= nvme_get_stream_params(ctrl
, &s
, ns
->head
->ns_id
);
2927 ns
->sws
= le32_to_cpu(s
.sws
);
2928 ns
->sgs
= le16_to_cpu(s
.sgs
);
2931 unsigned int bs
= 1 << ns
->lba_shift
;
2933 blk_queue_io_min(ns
->queue
, bs
* ns
->sws
);
2935 blk_queue_io_opt(ns
->queue
, bs
* ns
->sws
* ns
->sgs
);
2941 static void nvme_alloc_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2944 struct gendisk
*disk
;
2945 struct nvme_id_ns
*id
;
2946 char disk_name
[DISK_NAME_LEN
];
2947 int node
= dev_to_node(ctrl
->dev
), flags
= GENHD_FL_EXT_DEVT
;
2950 ns
= kzalloc_node(sizeof(*ns
), GFP_KERNEL
, node
);
2954 ns
->queue
= blk_mq_init_queue(ctrl
->tagset
);
2955 if (IS_ERR(ns
->queue
))
2957 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, ns
->queue
);
2958 ns
->queue
->queuedata
= ns
;
2961 kref_init(&ns
->kref
);
2962 ns
->lba_shift
= 9; /* set to a default value for 512 until disk is validated */
2964 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
2965 nvme_set_queue_limits(ctrl
, ns
->queue
);
2967 id
= nvme_identify_ns(ctrl
, nsid
);
2969 goto out_free_queue
;
2974 if (nvme_init_ns_head(ns
, nsid
, id
, &new))
2976 nvme_setup_streams_ns(ctrl
, ns
);
2978 #ifdef CONFIG_NVME_MULTIPATH
2980 * If multipathing is enabled we need to always use the subsystem
2981 * instance number for numbering our devices to avoid conflicts
2982 * between subsystems that have multiple controllers and thus use
2983 * the multipath-aware subsystem node and those that have a single
2984 * controller and use the controller node directly.
2986 if (ns
->head
->disk
) {
2987 sprintf(disk_name
, "nvme%dc%dn%d", ctrl
->subsys
->instance
,
2988 ctrl
->cntlid
, ns
->head
->instance
);
2989 flags
= GENHD_FL_HIDDEN
;
2991 sprintf(disk_name
, "nvme%dn%d", ctrl
->subsys
->instance
,
2992 ns
->head
->instance
);
2996 * But without the multipath code enabled, multiple controller per
2997 * subsystems are visible as devices and thus we cannot use the
2998 * subsystem instance.
3000 sprintf(disk_name
, "nvme%dn%d", ctrl
->instance
, ns
->head
->instance
);
3003 if ((ctrl
->quirks
& NVME_QUIRK_LIGHTNVM
) && id
->vs
[0] == 0x1) {
3004 if (nvme_nvm_register(ns
, disk_name
, node
)) {
3005 dev_warn(ctrl
->device
, "LightNVM init failure\n");
3010 disk
= alloc_disk_node(0, node
);
3014 disk
->fops
= &nvme_fops
;
3015 disk
->private_data
= ns
;
3016 disk
->queue
= ns
->queue
;
3017 disk
->flags
= flags
;
3018 memcpy(disk
->disk_name
, disk_name
, DISK_NAME_LEN
);
3021 __nvme_revalidate_disk(disk
, id
);
3023 mutex_lock(&ctrl
->namespaces_mutex
);
3024 list_add_tail(&ns
->list
, &ctrl
->namespaces
);
3025 mutex_unlock(&ctrl
->namespaces_mutex
);
3027 nvme_get_ctrl(ctrl
);
3031 device_add_disk(ctrl
->device
, ns
->disk
);
3032 if (sysfs_create_group(&disk_to_dev(ns
->disk
)->kobj
,
3033 &nvme_ns_id_attr_group
))
3034 pr_warn("%s: failed to create sysfs group for identification\n",
3035 ns
->disk
->disk_name
);
3036 if (ns
->ndev
&& nvme_nvm_register_sysfs(ns
))
3037 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3038 ns
->disk
->disk_name
);
3041 nvme_mpath_add_disk(ns
->head
);
3042 nvme_mpath_add_disk_links(ns
);
3045 mutex_lock(&ctrl
->subsys
->lock
);
3046 list_del_rcu(&ns
->siblings
);
3047 mutex_unlock(&ctrl
->subsys
->lock
);
3051 blk_cleanup_queue(ns
->queue
);
3056 static void nvme_ns_remove(struct nvme_ns
*ns
)
3058 if (test_and_set_bit(NVME_NS_REMOVING
, &ns
->flags
))
3061 if (ns
->disk
&& ns
->disk
->flags
& GENHD_FL_UP
) {
3062 nvme_mpath_remove_disk_links(ns
);
3063 sysfs_remove_group(&disk_to_dev(ns
->disk
)->kobj
,
3064 &nvme_ns_id_attr_group
);
3066 nvme_nvm_unregister_sysfs(ns
);
3067 del_gendisk(ns
->disk
);
3068 blk_cleanup_queue(ns
->queue
);
3069 if (blk_get_integrity(ns
->disk
))
3070 blk_integrity_unregister(ns
->disk
);
3073 mutex_lock(&ns
->ctrl
->subsys
->lock
);
3074 nvme_mpath_clear_current_path(ns
);
3075 list_del_rcu(&ns
->siblings
);
3076 mutex_unlock(&ns
->ctrl
->subsys
->lock
);
3078 mutex_lock(&ns
->ctrl
->namespaces_mutex
);
3079 list_del_init(&ns
->list
);
3080 mutex_unlock(&ns
->ctrl
->namespaces_mutex
);
3082 synchronize_srcu(&ns
->head
->srcu
);
3083 nvme_mpath_check_last_path(ns
);
3087 static void nvme_validate_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
3091 ns
= nvme_find_get_ns(ctrl
, nsid
);
3093 if (ns
->disk
&& revalidate_disk(ns
->disk
))
3097 nvme_alloc_ns(ctrl
, nsid
);
3100 static void nvme_remove_invalid_namespaces(struct nvme_ctrl
*ctrl
,
3103 struct nvme_ns
*ns
, *next
;
3105 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
) {
3106 if (ns
->head
->ns_id
> nsid
)
3111 static int nvme_scan_ns_list(struct nvme_ctrl
*ctrl
, unsigned nn
)
3115 unsigned i
, j
, nsid
, prev
= 0, num_lists
= DIV_ROUND_UP(nn
, 1024);
3118 ns_list
= kzalloc(0x1000, GFP_KERNEL
);
3122 for (i
= 0; i
< num_lists
; i
++) {
3123 ret
= nvme_identify_ns_list(ctrl
, prev
, ns_list
);
3127 for (j
= 0; j
< min(nn
, 1024U); j
++) {
3128 nsid
= le32_to_cpu(ns_list
[j
]);
3132 nvme_validate_ns(ctrl
, nsid
);
3134 while (++prev
< nsid
) {
3135 ns
= nvme_find_get_ns(ctrl
, prev
);
3145 nvme_remove_invalid_namespaces(ctrl
, prev
);
3151 static void nvme_scan_ns_sequential(struct nvme_ctrl
*ctrl
, unsigned nn
)
3155 for (i
= 1; i
<= nn
; i
++)
3156 nvme_validate_ns(ctrl
, i
);
3158 nvme_remove_invalid_namespaces(ctrl
, nn
);
3161 static void nvme_scan_work(struct work_struct
*work
)
3163 struct nvme_ctrl
*ctrl
=
3164 container_of(work
, struct nvme_ctrl
, scan_work
);
3165 struct nvme_id_ctrl
*id
;
3168 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3171 WARN_ON_ONCE(!ctrl
->tagset
);
3173 if (nvme_identify_ctrl(ctrl
, &id
))
3176 nn
= le32_to_cpu(id
->nn
);
3177 if (ctrl
->vs
>= NVME_VS(1, 1, 0) &&
3178 !(ctrl
->quirks
& NVME_QUIRK_IDENTIFY_CNS
)) {
3179 if (!nvme_scan_ns_list(ctrl
, nn
))
3182 nvme_scan_ns_sequential(ctrl
, nn
);
3184 mutex_lock(&ctrl
->namespaces_mutex
);
3185 list_sort(NULL
, &ctrl
->namespaces
, ns_cmp
);
3186 mutex_unlock(&ctrl
->namespaces_mutex
);
3190 void nvme_queue_scan(struct nvme_ctrl
*ctrl
)
3193 * Only new queue scan work when admin and IO queues are both alive
3195 if (ctrl
->state
== NVME_CTRL_LIVE
)
3196 queue_work(nvme_wq
, &ctrl
->scan_work
);
3198 EXPORT_SYMBOL_GPL(nvme_queue_scan
);
3201 * This function iterates the namespace list unlocked to allow recovery from
3202 * controller failure. It is up to the caller to ensure the namespace list is
3203 * not modified by scan work while this function is executing.
3205 void nvme_remove_namespaces(struct nvme_ctrl
*ctrl
)
3207 struct nvme_ns
*ns
, *next
;
3210 * The dead states indicates the controller was not gracefully
3211 * disconnected. In that case, we won't be able to flush any data while
3212 * removing the namespaces' disks; fail all the queues now to avoid
3213 * potentially having to clean up the failed sync later.
3215 if (ctrl
->state
== NVME_CTRL_DEAD
)
3216 nvme_kill_queues(ctrl
);
3218 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
)
3221 EXPORT_SYMBOL_GPL(nvme_remove_namespaces
);
3223 static void nvme_aen_uevent(struct nvme_ctrl
*ctrl
)
3225 char *envp
[2] = { NULL
, NULL
};
3226 u32 aen_result
= ctrl
->aen_result
;
3228 ctrl
->aen_result
= 0;
3232 envp
[0] = kasprintf(GFP_KERNEL
, "NVME_AEN=%#08x", aen_result
);
3235 kobject_uevent_env(&ctrl
->device
->kobj
, KOBJ_CHANGE
, envp
);
3239 static void nvme_async_event_work(struct work_struct
*work
)
3241 struct nvme_ctrl
*ctrl
=
3242 container_of(work
, struct nvme_ctrl
, async_event_work
);
3244 nvme_aen_uevent(ctrl
);
3245 ctrl
->ops
->submit_async_event(ctrl
);
3248 static bool nvme_ctrl_pp_status(struct nvme_ctrl
*ctrl
)
3253 if (ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
))
3259 return ((ctrl
->ctrl_config
& NVME_CC_ENABLE
) && (csts
& NVME_CSTS_PP
));
3262 static void nvme_get_fw_slot_info(struct nvme_ctrl
*ctrl
)
3264 struct nvme_fw_slot_info_log
*log
;
3266 log
= kmalloc(sizeof(*log
), GFP_KERNEL
);
3270 if (nvme_get_log(ctrl
, NVME_LOG_FW_SLOT
, log
, sizeof(*log
)))
3271 dev_warn(ctrl
->device
,
3272 "Get FW SLOT INFO log error\n");
3276 static void nvme_fw_act_work(struct work_struct
*work
)
3278 struct nvme_ctrl
*ctrl
= container_of(work
,
3279 struct nvme_ctrl
, fw_act_work
);
3280 unsigned long fw_act_timeout
;
3283 fw_act_timeout
= jiffies
+
3284 msecs_to_jiffies(ctrl
->mtfa
* 100);
3286 fw_act_timeout
= jiffies
+
3287 msecs_to_jiffies(admin_timeout
* 1000);
3289 nvme_stop_queues(ctrl
);
3290 while (nvme_ctrl_pp_status(ctrl
)) {
3291 if (time_after(jiffies
, fw_act_timeout
)) {
3292 dev_warn(ctrl
->device
,
3293 "Fw activation timeout, reset controller\n");
3294 nvme_reset_ctrl(ctrl
);
3300 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3303 nvme_start_queues(ctrl
);
3304 /* read FW slot information to clear the AER */
3305 nvme_get_fw_slot_info(ctrl
);
3308 void nvme_complete_async_event(struct nvme_ctrl
*ctrl
, __le16 status
,
3309 union nvme_result
*res
)
3311 u32 result
= le32_to_cpu(res
->u32
);
3313 if (le16_to_cpu(status
) >> 1 != NVME_SC_SUCCESS
)
3316 switch (result
& 0x7) {
3317 case NVME_AER_ERROR
:
3318 case NVME_AER_SMART
:
3321 ctrl
->aen_result
= result
;
3327 switch (result
& 0xff07) {
3328 case NVME_AER_NOTICE_NS_CHANGED
:
3329 dev_info(ctrl
->device
, "rescanning\n");
3330 nvme_queue_scan(ctrl
);
3332 case NVME_AER_NOTICE_FW_ACT_STARTING
:
3333 queue_work(nvme_wq
, &ctrl
->fw_act_work
);
3336 dev_warn(ctrl
->device
, "async event result %08x\n", result
);
3338 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3340 EXPORT_SYMBOL_GPL(nvme_complete_async_event
);
3342 void nvme_stop_ctrl(struct nvme_ctrl
*ctrl
)
3344 nvme_stop_keep_alive(ctrl
);
3345 flush_work(&ctrl
->async_event_work
);
3346 flush_work(&ctrl
->scan_work
);
3347 cancel_work_sync(&ctrl
->fw_act_work
);
3349 EXPORT_SYMBOL_GPL(nvme_stop_ctrl
);
3351 void nvme_start_ctrl(struct nvme_ctrl
*ctrl
)
3354 nvme_start_keep_alive(ctrl
);
3356 if (ctrl
->queue_count
> 1) {
3357 nvme_queue_scan(ctrl
);
3358 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3359 nvme_start_queues(ctrl
);
3362 EXPORT_SYMBOL_GPL(nvme_start_ctrl
);
3364 void nvme_uninit_ctrl(struct nvme_ctrl
*ctrl
)
3366 cdev_device_del(&ctrl
->cdev
, ctrl
->device
);
3368 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl
);
3370 static void nvme_free_ctrl(struct device
*dev
)
3372 struct nvme_ctrl
*ctrl
=
3373 container_of(dev
, struct nvme_ctrl
, ctrl_device
);
3374 struct nvme_subsystem
*subsys
= ctrl
->subsys
;
3376 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3377 kfree(ctrl
->effects
);
3380 mutex_lock(&subsys
->lock
);
3381 list_del(&ctrl
->subsys_entry
);
3382 mutex_unlock(&subsys
->lock
);
3383 sysfs_remove_link(&subsys
->dev
.kobj
, dev_name(ctrl
->device
));
3386 ctrl
->ops
->free_ctrl(ctrl
);
3389 nvme_put_subsystem(subsys
);
3393 * Initialize a NVMe controller structures. This needs to be called during
3394 * earliest initialization so that we have the initialized structured around
3397 int nvme_init_ctrl(struct nvme_ctrl
*ctrl
, struct device
*dev
,
3398 const struct nvme_ctrl_ops
*ops
, unsigned long quirks
)
3402 ctrl
->state
= NVME_CTRL_NEW
;
3403 spin_lock_init(&ctrl
->lock
);
3404 INIT_LIST_HEAD(&ctrl
->namespaces
);
3405 mutex_init(&ctrl
->namespaces_mutex
);
3408 ctrl
->quirks
= quirks
;
3409 INIT_WORK(&ctrl
->scan_work
, nvme_scan_work
);
3410 INIT_WORK(&ctrl
->async_event_work
, nvme_async_event_work
);
3411 INIT_WORK(&ctrl
->fw_act_work
, nvme_fw_act_work
);
3412 INIT_WORK(&ctrl
->delete_work
, nvme_delete_ctrl_work
);
3414 ret
= ida_simple_get(&nvme_instance_ida
, 0, 0, GFP_KERNEL
);
3417 ctrl
->instance
= ret
;
3419 device_initialize(&ctrl
->ctrl_device
);
3420 ctrl
->device
= &ctrl
->ctrl_device
;
3421 ctrl
->device
->devt
= MKDEV(MAJOR(nvme_chr_devt
), ctrl
->instance
);
3422 ctrl
->device
->class = nvme_class
;
3423 ctrl
->device
->parent
= ctrl
->dev
;
3424 ctrl
->device
->groups
= nvme_dev_attr_groups
;
3425 ctrl
->device
->release
= nvme_free_ctrl
;
3426 dev_set_drvdata(ctrl
->device
, ctrl
);
3427 ret
= dev_set_name(ctrl
->device
, "nvme%d", ctrl
->instance
);
3429 goto out_release_instance
;
3431 cdev_init(&ctrl
->cdev
, &nvme_dev_fops
);
3432 ctrl
->cdev
.owner
= ops
->module
;
3433 ret
= cdev_device_add(&ctrl
->cdev
, ctrl
->device
);
3438 * Initialize latency tolerance controls. The sysfs files won't
3439 * be visible to userspace unless the device actually supports APST.
3441 ctrl
->device
->power
.set_latency_tolerance
= nvme_set_latency_tolerance
;
3442 dev_pm_qos_update_user_latency_tolerance(ctrl
->device
,
3443 min(default_ps_max_latency_us
, (unsigned long)S32_MAX
));
3447 kfree_const(dev
->kobj
.name
);
3448 out_release_instance
:
3449 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3453 EXPORT_SYMBOL_GPL(nvme_init_ctrl
);
3456 * nvme_kill_queues(): Ends all namespace queues
3457 * @ctrl: the dead controller that needs to end
3459 * Call this function when the driver determines it is unable to get the
3460 * controller in a state capable of servicing IO.
3462 void nvme_kill_queues(struct nvme_ctrl
*ctrl
)
3466 mutex_lock(&ctrl
->namespaces_mutex
);
3468 /* Forcibly unquiesce queues to avoid blocking dispatch */
3470 blk_mq_unquiesce_queue(ctrl
->admin_q
);
3472 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3474 * Revalidating a dead namespace sets capacity to 0. This will
3475 * end buffered writers dirtying pages that can't be synced.
3477 if (!ns
->disk
|| test_and_set_bit(NVME_NS_DEAD
, &ns
->flags
))
3479 revalidate_disk(ns
->disk
);
3480 blk_set_queue_dying(ns
->queue
);
3482 /* Forcibly unquiesce queues to avoid blocking dispatch */
3483 blk_mq_unquiesce_queue(ns
->queue
);
3485 mutex_unlock(&ctrl
->namespaces_mutex
);
3487 EXPORT_SYMBOL_GPL(nvme_kill_queues
);
3489 void nvme_unfreeze(struct nvme_ctrl
*ctrl
)
3493 mutex_lock(&ctrl
->namespaces_mutex
);
3494 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3495 blk_mq_unfreeze_queue(ns
->queue
);
3496 mutex_unlock(&ctrl
->namespaces_mutex
);
3498 EXPORT_SYMBOL_GPL(nvme_unfreeze
);
3500 void nvme_wait_freeze_timeout(struct nvme_ctrl
*ctrl
, long timeout
)
3504 mutex_lock(&ctrl
->namespaces_mutex
);
3505 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3506 timeout
= blk_mq_freeze_queue_wait_timeout(ns
->queue
, timeout
);
3510 mutex_unlock(&ctrl
->namespaces_mutex
);
3512 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout
);
3514 void nvme_wait_freeze(struct nvme_ctrl
*ctrl
)
3518 mutex_lock(&ctrl
->namespaces_mutex
);
3519 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3520 blk_mq_freeze_queue_wait(ns
->queue
);
3521 mutex_unlock(&ctrl
->namespaces_mutex
);
3523 EXPORT_SYMBOL_GPL(nvme_wait_freeze
);
3525 void nvme_start_freeze(struct nvme_ctrl
*ctrl
)
3529 mutex_lock(&ctrl
->namespaces_mutex
);
3530 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3531 blk_freeze_queue_start(ns
->queue
);
3532 mutex_unlock(&ctrl
->namespaces_mutex
);
3534 EXPORT_SYMBOL_GPL(nvme_start_freeze
);
3536 void nvme_stop_queues(struct nvme_ctrl
*ctrl
)
3540 mutex_lock(&ctrl
->namespaces_mutex
);
3541 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3542 blk_mq_quiesce_queue(ns
->queue
);
3543 mutex_unlock(&ctrl
->namespaces_mutex
);
3545 EXPORT_SYMBOL_GPL(nvme_stop_queues
);
3547 void nvme_start_queues(struct nvme_ctrl
*ctrl
)
3551 mutex_lock(&ctrl
->namespaces_mutex
);
3552 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3553 blk_mq_unquiesce_queue(ns
->queue
);
3554 mutex_unlock(&ctrl
->namespaces_mutex
);
3556 EXPORT_SYMBOL_GPL(nvme_start_queues
);
3558 int nvme_reinit_tagset(struct nvme_ctrl
*ctrl
, struct blk_mq_tag_set
*set
)
3560 if (!ctrl
->ops
->reinit_request
)
3563 return blk_mq_tagset_iter(set
, set
->driver_data
,
3564 ctrl
->ops
->reinit_request
);
3566 EXPORT_SYMBOL_GPL(nvme_reinit_tagset
);
3568 int __init
nvme_core_init(void)
3570 int result
= -ENOMEM
;
3572 nvme_wq
= alloc_workqueue("nvme-wq",
3573 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3577 nvme_reset_wq
= alloc_workqueue("nvme-reset-wq",
3578 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3582 nvme_delete_wq
= alloc_workqueue("nvme-delete-wq",
3583 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3584 if (!nvme_delete_wq
)
3585 goto destroy_reset_wq
;
3587 result
= alloc_chrdev_region(&nvme_chr_devt
, 0, NVME_MINORS
, "nvme");
3589 goto destroy_delete_wq
;
3591 nvme_class
= class_create(THIS_MODULE
, "nvme");
3592 if (IS_ERR(nvme_class
)) {
3593 result
= PTR_ERR(nvme_class
);
3594 goto unregister_chrdev
;
3597 nvme_subsys_class
= class_create(THIS_MODULE
, "nvme-subsystem");
3598 if (IS_ERR(nvme_subsys_class
)) {
3599 result
= PTR_ERR(nvme_subsys_class
);
3605 class_destroy(nvme_class
);
3607 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3609 destroy_workqueue(nvme_delete_wq
);
3611 destroy_workqueue(nvme_reset_wq
);
3613 destroy_workqueue(nvme_wq
);
3618 void nvme_core_exit(void)
3620 ida_destroy(&nvme_subsystems_ida
);
3621 class_destroy(nvme_subsys_class
);
3622 class_destroy(nvme_class
);
3623 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3624 destroy_workqueue(nvme_delete_wq
);
3625 destroy_workqueue(nvme_reset_wq
);
3626 destroy_workqueue(nvme_wq
);
3629 MODULE_LICENSE("GPL");
3630 MODULE_VERSION("1.0");
3631 module_init(nvme_core_init
);
3632 module_exit(nvme_core_exit
);