2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 static int use_threaded_interrupts
;
41 module_param(use_threaded_interrupts
, int, 0);
43 static bool use_cmb_sqes
= true;
44 module_param(use_cmb_sqes
, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
47 static unsigned int max_host_mem_size_mb
= 128;
48 module_param(max_host_mem_size_mb
, uint
, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb
,
50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52 static unsigned int sgl_threshold
= SZ_32K
;
53 module_param(sgl_threshold
, uint
, 0644);
54 MODULE_PARM_DESC(sgl_threshold
,
55 "Use SGLs when average request segment size is larger or equal to "
56 "this size. Use 0 to disable SGLs.");
58 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
59 static const struct kernel_param_ops io_queue_depth_ops
= {
60 .set
= io_queue_depth_set
,
64 static int io_queue_depth
= 1024;
65 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
66 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2");
71 static void nvme_process_cq(struct nvme_queue
*nvmeq
);
72 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
75 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 struct nvme_queue
*queues
;
79 struct blk_mq_tag_set tagset
;
80 struct blk_mq_tag_set admin_tagset
;
83 struct dma_pool
*prp_page_pool
;
84 struct dma_pool
*prp_small_pool
;
85 unsigned online_queues
;
90 unsigned long bar_mapped_size
;
91 struct work_struct remove_work
;
92 struct mutex shutdown_lock
;
95 pci_bus_addr_t cmb_bus_addr
;
99 struct nvme_ctrl ctrl
;
100 struct completion ioq_wait
;
102 /* shadow doorbell buffer support: */
104 dma_addr_t dbbuf_dbs_dma_addr
;
106 dma_addr_t dbbuf_eis_dma_addr
;
108 /* host memory buffer support: */
110 u32 nr_host_mem_descs
;
111 dma_addr_t host_mem_descs_dma
;
112 struct nvme_host_mem_buf_desc
*host_mem_descs
;
113 void **host_mem_desc_bufs
;
116 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
120 ret
= kstrtoint(val
, 10, &n
);
121 if (ret
!= 0 || n
< 2)
124 return param_set_int(val
, kp
);
127 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
129 return qid
* 2 * stride
;
132 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
134 return (qid
* 2 + 1) * stride
;
137 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
139 return container_of(ctrl
, struct nvme_dev
, ctrl
);
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
147 struct device
*q_dmadev
;
148 struct nvme_dev
*dev
;
150 struct nvme_command
*sq_cmds
;
151 struct nvme_command __iomem
*sq_cmds_io
;
152 volatile struct nvme_completion
*cqes
;
153 struct blk_mq_tags
**tags
;
154 dma_addr_t sq_dma_addr
;
155 dma_addr_t cq_dma_addr
;
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
177 struct nvme_request req
;
178 struct nvme_queue
*nvmeq
;
181 int npages
; /* In the PRP list. 0 means small pool in use */
182 int nents
; /* Used in scatterlist */
183 int length
; /* Of data, in bytes */
184 dma_addr_t first_dma
;
185 struct scatterlist meta_sg
; /* metadata requires single contiguous buffer */
186 struct scatterlist
*sg
;
187 struct scatterlist inline_sg
[0];
191 * Check we didin't inadvertently grow the command struct
193 static inline void _nvme_check_size(void)
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != NVME_IDENTIFY_DATA_SIZE
);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != NVME_IDENTIFY_DATA_SIZE
);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf
) != 64);
210 static inline unsigned int nvme_dbbuf_size(u32 stride
)
212 return ((num_possible_cpus() + 1) * 8 * stride
);
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
217 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
222 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
223 &dev
->dbbuf_dbs_dma_addr
,
227 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
228 &dev
->dbbuf_eis_dma_addr
,
230 if (!dev
->dbbuf_eis
) {
231 dma_free_coherent(dev
->dev
, mem_size
,
232 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
233 dev
->dbbuf_dbs
= NULL
;
240 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
242 unsigned int mem_size
= nvme_dbbuf_size(dev
->db_stride
);
244 if (dev
->dbbuf_dbs
) {
245 dma_free_coherent(dev
->dev
, mem_size
,
246 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
247 dev
->dbbuf_dbs
= NULL
;
249 if (dev
->dbbuf_eis
) {
250 dma_free_coherent(dev
->dev
, mem_size
,
251 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
252 dev
->dbbuf_eis
= NULL
;
256 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
257 struct nvme_queue
*nvmeq
, int qid
)
259 if (!dev
->dbbuf_dbs
|| !qid
)
262 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
263 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
264 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
265 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
268 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
270 struct nvme_command c
;
275 memset(&c
, 0, sizeof(c
));
276 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
277 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
278 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
280 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
281 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev
);
287 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
289 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value
, u32
*dbbuf_db
,
294 volatile u32
*dbbuf_ei
)
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
305 old_value
= *dbbuf_db
;
308 if (!nvme_dbbuf_need_event(*dbbuf_ei
, value
, old_value
))
316 * Max size of iod being embedded in the request payload
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
326 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
328 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
329 dev
->ctrl
.page_size
);
330 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
334 * Calculates the number of pages needed for the SGL segments. For example a 4k
335 * page can accommodate 256 SGL descriptors.
337 static int nvme_pci_npages_sgl(unsigned int num_seg
)
339 return DIV_ROUND_UP(num_seg
* sizeof(struct nvme_sgl_desc
), PAGE_SIZE
);
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev
*dev
,
343 unsigned int size
, unsigned int nseg
, bool use_sgl
)
348 alloc_size
= sizeof(__le64
*) * nvme_pci_npages_sgl(nseg
);
350 alloc_size
= sizeof(__le64
*) * nvme_npages(size
, dev
);
352 return alloc_size
+ sizeof(struct scatterlist
) * nseg
;
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev
*dev
, bool use_sgl
)
357 unsigned int alloc_size
= nvme_pci_iod_alloc_size(dev
,
358 NVME_INT_BYTES(dev
), NVME_INT_PAGES
,
361 return sizeof(struct nvme_iod
) + alloc_size
;
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
365 unsigned int hctx_idx
)
367 struct nvme_dev
*dev
= data
;
368 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
370 WARN_ON(hctx_idx
!= 0);
371 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
372 WARN_ON(nvmeq
->tags
);
374 hctx
->driver_data
= nvmeq
;
375 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
381 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
386 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
387 unsigned int hctx_idx
)
389 struct nvme_dev
*dev
= data
;
390 struct nvme_queue
*nvmeq
= &dev
->queues
[hctx_idx
+ 1];
393 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
395 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
396 hctx
->driver_data
= nvmeq
;
400 static int nvme_init_request(struct blk_mq_tag_set
*set
, struct request
*req
,
401 unsigned int hctx_idx
, unsigned int numa_node
)
403 struct nvme_dev
*dev
= set
->driver_data
;
404 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
405 int queue_idx
= (set
== &dev
->tagset
) ? hctx_idx
+ 1 : 0;
406 struct nvme_queue
*nvmeq
= &dev
->queues
[queue_idx
];
413 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
415 struct nvme_dev
*dev
= set
->driver_data
;
417 return blk_mq_pci_map_queues(set
, to_pci_dev(dev
->dev
));
421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
425 * Safe to use from interrupt context
427 static void __nvme_submit_cmd(struct nvme_queue
*nvmeq
,
428 struct nvme_command
*cmd
)
430 u16 tail
= nvmeq
->sq_tail
;
432 if (nvmeq
->sq_cmds_io
)
433 memcpy_toio(&nvmeq
->sq_cmds_io
[tail
], cmd
, sizeof(*cmd
));
435 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
437 if (++tail
== nvmeq
->q_depth
)
439 if (nvme_dbbuf_update_and_check_event(tail
, nvmeq
->dbbuf_sq_db
,
441 writel(tail
, nvmeq
->q_db
);
442 nvmeq
->sq_tail
= tail
;
445 static void **nvme_pci_iod_list(struct request
*req
)
447 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
448 return (void **)(iod
->sg
+ blk_rq_nr_phys_segments(req
));
451 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
)
453 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
454 int nseg
= blk_rq_nr_phys_segments(req
);
455 unsigned int avg_seg_size
;
460 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
), nseg
);
462 if (!(dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))))
464 if (!iod
->nvmeq
->qid
)
466 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
471 static blk_status_t
nvme_init_iod(struct request
*rq
, struct nvme_dev
*dev
)
473 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(rq
);
474 int nseg
= blk_rq_nr_phys_segments(rq
);
475 unsigned int size
= blk_rq_payload_bytes(rq
);
477 iod
->use_sgl
= nvme_pci_use_sgls(dev
, rq
);
479 if (nseg
> NVME_INT_PAGES
|| size
> NVME_INT_BYTES(dev
)) {
480 size_t alloc_size
= nvme_pci_iod_alloc_size(dev
, size
, nseg
,
483 iod
->sg
= kmalloc(alloc_size
, GFP_ATOMIC
);
485 return BLK_STS_RESOURCE
;
487 iod
->sg
= iod
->inline_sg
;
498 static void nvme_free_iod(struct nvme_dev
*dev
, struct request
*req
)
500 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
501 const int last_prp
= dev
->ctrl
.page_size
/ sizeof(__le64
) - 1;
502 dma_addr_t dma_addr
= iod
->first_dma
, next_dma_addr
;
506 if (iod
->npages
== 0)
507 dma_pool_free(dev
->prp_small_pool
, nvme_pci_iod_list(req
)[0],
510 for (i
= 0; i
< iod
->npages
; i
++) {
511 void *addr
= nvme_pci_iod_list(req
)[i
];
514 struct nvme_sgl_desc
*sg_list
= addr
;
517 le64_to_cpu((sg_list
[SGES_PER_PAGE
- 1]).addr
);
519 __le64
*prp_list
= addr
;
521 next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
524 dma_pool_free(dev
->prp_page_pool
, addr
, dma_addr
);
525 dma_addr
= next_dma_addr
;
528 if (iod
->sg
!= iod
->inline_sg
)
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
535 if (be32_to_cpu(pi
->ref_tag
) == v
)
536 pi
->ref_tag
= cpu_to_be32(p
);
539 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
541 if (be32_to_cpu(pi
->ref_tag
) == p
)
542 pi
->ref_tag
= cpu_to_be32(v
);
546 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548 * The virtual start sector is the one that was originally submitted by the
549 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
550 * start sector may be different. Remap protection information to match the
551 * physical LBA on writes, and back to the original seed on reads.
553 * Type 0 and 3 do not have a ref tag, so no remapping required.
555 static void nvme_dif_remap(struct request
*req
,
556 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
558 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
559 struct bio_integrity_payload
*bip
;
560 struct t10_pi_tuple
*pi
;
562 u32 i
, nlb
, ts
, phys
, virt
;
564 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
567 bip
= bio_integrity(req
->bio
);
571 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
574 virt
= bip_get_seed(bip
);
575 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
576 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
577 ts
= ns
->disk
->queue
->integrity
.tuple_size
;
579 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
580 pi
= (struct t10_pi_tuple
*)p
;
581 dif_swap(phys
, virt
, pi
);
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request
*req
,
588 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
591 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
594 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
599 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
602 struct scatterlist
*sg
;
604 for_each_sg(sgl
, sg
, nents
, i
) {
605 dma_addr_t phys
= sg_phys(sg
);
606 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 "dma_address:%pad dma_length:%d\n",
608 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
613 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
614 struct request
*req
, struct nvme_rw_command
*cmnd
)
616 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
617 struct dma_pool
*pool
;
618 int length
= blk_rq_payload_bytes(req
);
619 struct scatterlist
*sg
= iod
->sg
;
620 int dma_len
= sg_dma_len(sg
);
621 u64 dma_addr
= sg_dma_address(sg
);
622 u32 page_size
= dev
->ctrl
.page_size
;
623 int offset
= dma_addr
& (page_size
- 1);
625 void **list
= nvme_pci_iod_list(req
);
629 length
-= (page_size
- offset
);
635 dma_len
-= (page_size
- offset
);
637 dma_addr
+= (page_size
- offset
);
640 dma_addr
= sg_dma_address(sg
);
641 dma_len
= sg_dma_len(sg
);
644 if (length
<= page_size
) {
645 iod
->first_dma
= dma_addr
;
649 nprps
= DIV_ROUND_UP(length
, page_size
);
650 if (nprps
<= (256 / 8)) {
651 pool
= dev
->prp_small_pool
;
654 pool
= dev
->prp_page_pool
;
658 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
660 iod
->first_dma
= dma_addr
;
662 return BLK_STS_RESOURCE
;
665 iod
->first_dma
= prp_dma
;
668 if (i
== page_size
>> 3) {
669 __le64
*old_prp_list
= prp_list
;
670 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
672 return BLK_STS_RESOURCE
;
673 list
[iod
->npages
++] = prp_list
;
674 prp_list
[0] = old_prp_list
[i
- 1];
675 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
678 prp_list
[i
++] = cpu_to_le64(dma_addr
);
679 dma_len
-= page_size
;
680 dma_addr
+= page_size
;
686 if (unlikely(dma_len
< 0))
689 dma_addr
= sg_dma_address(sg
);
690 dma_len
= sg_dma_len(sg
);
694 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
695 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
700 WARN(DO_ONCE(nvme_print_sgl
, iod
->sg
, iod
->nents
),
701 "Invalid SGL for payload:%d nents:%d\n",
702 blk_rq_payload_bytes(req
), iod
->nents
);
703 return BLK_STS_IOERR
;
706 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
707 struct scatterlist
*sg
)
709 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
710 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
711 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
714 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
715 dma_addr_t dma_addr
, int entries
)
717 sge
->addr
= cpu_to_le64(dma_addr
);
718 if (entries
< SGES_PER_PAGE
) {
719 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
720 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
722 sge
->length
= cpu_to_le32(PAGE_SIZE
);
723 sge
->type
= NVME_SGL_FMT_SEG_DESC
<< 4;
727 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
728 struct request
*req
, struct nvme_rw_command
*cmd
, int entries
)
730 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
731 struct dma_pool
*pool
;
732 struct nvme_sgl_desc
*sg_list
;
733 struct scatterlist
*sg
= iod
->sg
;
737 /* setting the transfer type as SGL */
738 cmd
->flags
= NVME_CMD_SGL_METABUF
;
741 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
745 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
746 pool
= dev
->prp_small_pool
;
749 pool
= dev
->prp_page_pool
;
753 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
756 return BLK_STS_RESOURCE
;
759 nvme_pci_iod_list(req
)[0] = sg_list
;
760 iod
->first_dma
= sgl_dma
;
762 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
765 if (i
== SGES_PER_PAGE
) {
766 struct nvme_sgl_desc
*old_sg_desc
= sg_list
;
767 struct nvme_sgl_desc
*link
= &old_sg_desc
[i
- 1];
769 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
771 return BLK_STS_RESOURCE
;
774 nvme_pci_iod_list(req
)[iod
->npages
++] = sg_list
;
775 sg_list
[i
++] = *link
;
776 nvme_pci_sgl_set_seg(link
, sgl_dma
, entries
);
779 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
781 } while (--entries
> 0);
786 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
787 struct nvme_command
*cmnd
)
789 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
790 struct request_queue
*q
= req
->q
;
791 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
792 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
793 blk_status_t ret
= BLK_STS_IOERR
;
796 sg_init_table(iod
->sg
, blk_rq_nr_phys_segments(req
));
797 iod
->nents
= blk_rq_map_sg(q
, req
, iod
->sg
);
801 ret
= BLK_STS_RESOURCE
;
802 nr_mapped
= dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
,
808 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
, nr_mapped
);
810 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
812 if (ret
!= BLK_STS_OK
)
816 if (blk_integrity_rq(req
)) {
817 if (blk_rq_count_integrity_sg(q
, req
->bio
) != 1)
820 sg_init_table(&iod
->meta_sg
, 1);
821 if (blk_rq_map_integrity_sg(q
, req
->bio
, &iod
->meta_sg
) != 1)
824 if (req_op(req
) == REQ_OP_WRITE
)
825 nvme_dif_remap(req
, nvme_dif_prep
);
827 if (!dma_map_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
))
831 if (blk_integrity_rq(req
))
832 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(&iod
->meta_sg
));
836 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
841 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
843 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
844 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
845 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
848 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
849 if (blk_integrity_rq(req
)) {
850 if (req_op(req
) == REQ_OP_READ
)
851 nvme_dif_remap(req
, nvme_dif_complete
);
852 dma_unmap_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
);
856 nvme_cleanup_cmd(req
);
857 nvme_free_iod(dev
, req
);
861 * NOTE: ns is NULL when called on the admin queue.
863 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
864 const struct blk_mq_queue_data
*bd
)
866 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
867 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
868 struct nvme_dev
*dev
= nvmeq
->dev
;
869 struct request
*req
= bd
->rq
;
870 struct nvme_command cmnd
;
873 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
877 ret
= nvme_init_iod(req
, dev
);
881 if (blk_rq_nr_phys_segments(req
)) {
882 ret
= nvme_map_data(dev
, req
, &cmnd
);
884 goto out_cleanup_iod
;
887 blk_mq_start_request(req
);
889 spin_lock_irq(&nvmeq
->q_lock
);
890 if (unlikely(nvmeq
->cq_vector
< 0)) {
892 spin_unlock_irq(&nvmeq
->q_lock
);
893 goto out_cleanup_iod
;
895 __nvme_submit_cmd(nvmeq
, &cmnd
);
896 nvme_process_cq(nvmeq
);
897 spin_unlock_irq(&nvmeq
->q_lock
);
900 nvme_free_iod(dev
, req
);
902 nvme_cleanup_cmd(req
);
906 static void nvme_pci_complete_rq(struct request
*req
)
908 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
910 nvme_unmap_data(iod
->nvmeq
->dev
, req
);
911 nvme_complete_rq(req
);
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_valid(struct nvme_queue
*nvmeq
, u16 head
,
918 return (le16_to_cpu(nvmeq
->cqes
[head
].status
) & 1) == phase
;
921 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
923 u16 head
= nvmeq
->cq_head
;
925 if (likely(nvmeq
->cq_vector
>= 0)) {
926 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
928 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
932 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
,
933 struct nvme_completion
*cqe
)
937 if (unlikely(cqe
->command_id
>= nvmeq
->q_depth
)) {
938 dev_warn(nvmeq
->dev
->ctrl
.device
,
939 "invalid id %d completed on queue %d\n",
940 cqe
->command_id
, le16_to_cpu(cqe
->sq_id
));
945 * AEN requests are special as they don't time out and can
946 * survive any kind of queue freeze and often don't respond to
947 * aborts. We don't even bother to allocate a struct request
948 * for them but rather special case them here.
950 if (unlikely(nvmeq
->qid
== 0 &&
951 cqe
->command_id
>= NVME_AQ_BLK_MQ_DEPTH
)) {
952 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
953 cqe
->status
, &cqe
->result
);
958 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
->command_id
);
959 nvme_end_request(req
, cqe
->status
, cqe
->result
);
962 static inline bool nvme_read_cqe(struct nvme_queue
*nvmeq
,
963 struct nvme_completion
*cqe
)
965 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
)) {
966 *cqe
= nvmeq
->cqes
[nvmeq
->cq_head
];
968 if (++nvmeq
->cq_head
== nvmeq
->q_depth
) {
970 nvmeq
->cq_phase
= !nvmeq
->cq_phase
;
977 static void nvme_process_cq(struct nvme_queue
*nvmeq
)
979 struct nvme_completion cqe
;
982 while (nvme_read_cqe(nvmeq
, &cqe
)) {
983 nvme_handle_cqe(nvmeq
, &cqe
);
988 nvme_ring_cq_doorbell(nvmeq
);
991 static irqreturn_t
nvme_irq(int irq
, void *data
)
994 struct nvme_queue
*nvmeq
= data
;
995 spin_lock(&nvmeq
->q_lock
);
996 nvme_process_cq(nvmeq
);
997 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
999 spin_unlock(&nvmeq
->q_lock
);
1003 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1005 struct nvme_queue
*nvmeq
= data
;
1006 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
1007 return IRQ_WAKE_THREAD
;
1011 static int __nvme_poll(struct nvme_queue
*nvmeq
, unsigned int tag
)
1013 struct nvme_completion cqe
;
1014 int found
= 0, consumed
= 0;
1016 if (!nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
1019 spin_lock_irq(&nvmeq
->q_lock
);
1020 while (nvme_read_cqe(nvmeq
, &cqe
)) {
1021 nvme_handle_cqe(nvmeq
, &cqe
);
1024 if (tag
== cqe
.command_id
) {
1031 nvme_ring_cq_doorbell(nvmeq
);
1032 spin_unlock_irq(&nvmeq
->q_lock
);
1037 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
1039 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1041 return __nvme_poll(nvmeq
, tag
);
1044 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1046 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1047 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1048 struct nvme_command c
;
1050 memset(&c
, 0, sizeof(c
));
1051 c
.common
.opcode
= nvme_admin_async_event
;
1052 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1054 spin_lock_irq(&nvmeq
->q_lock
);
1055 __nvme_submit_cmd(nvmeq
, &c
);
1056 spin_unlock_irq(&nvmeq
->q_lock
);
1059 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1061 struct nvme_command c
;
1063 memset(&c
, 0, sizeof(c
));
1064 c
.delete_queue
.opcode
= opcode
;
1065 c
.delete_queue
.qid
= cpu_to_le16(id
);
1067 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1070 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1071 struct nvme_queue
*nvmeq
)
1073 struct nvme_command c
;
1074 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
1077 * Note: we (ab)use the fact that the prp fields survive if no data
1078 * is attached to the request.
1080 memset(&c
, 0, sizeof(c
));
1081 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1082 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1083 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1084 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1085 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1086 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
1088 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1091 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1092 struct nvme_queue
*nvmeq
)
1094 struct nvme_command c
;
1095 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1098 * Note: we (ab)use the fact that the prp fields survive if no data
1099 * is attached to the request.
1101 memset(&c
, 0, sizeof(c
));
1102 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1103 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1104 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1105 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1106 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1107 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1109 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1112 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1114 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1117 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1119 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1122 static void abort_endio(struct request
*req
, blk_status_t error
)
1124 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1125 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1127 dev_warn(nvmeq
->dev
->ctrl
.device
,
1128 "Abort status: 0x%x", nvme_req(req
)->status
);
1129 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1130 blk_mq_free_request(req
);
1133 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1136 /* If true, indicates loss of adapter communication, possibly by a
1137 * NVMe Subsystem reset.
1139 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1141 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1142 switch (dev
->ctrl
.state
) {
1143 case NVME_CTRL_RESETTING
:
1144 case NVME_CTRL_CONNECTING
:
1150 /* We shouldn't reset unless the controller is on fatal error state
1151 * _or_ if we lost the communication with it.
1153 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1156 /* If PCI error recovery process is happening, we cannot reset or
1157 * the recovery mechanism will surely fail.
1159 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1165 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1167 /* Read a config register to help see what died. */
1171 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1173 if (result
== PCIBIOS_SUCCESSFUL
)
1174 dev_warn(dev
->ctrl
.device
,
1175 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1178 dev_warn(dev
->ctrl
.device
,
1179 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1183 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1185 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1186 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
1187 struct nvme_dev
*dev
= nvmeq
->dev
;
1188 struct request
*abort_req
;
1189 struct nvme_command cmd
;
1190 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1193 * Reset immediately if the controller is failed
1195 if (nvme_should_reset(dev
, csts
)) {
1196 nvme_warn_reset(dev
, csts
);
1197 nvme_dev_disable(dev
, false);
1198 nvme_reset_ctrl(&dev
->ctrl
);
1199 return BLK_EH_HANDLED
;
1203 * Did we miss an interrupt?
1205 if (__nvme_poll(nvmeq
, req
->tag
)) {
1206 dev_warn(dev
->ctrl
.device
,
1207 "I/O %d QID %d timeout, completion polled\n",
1208 req
->tag
, nvmeq
->qid
);
1209 return BLK_EH_HANDLED
;
1213 * Shutdown immediately if controller times out while starting. The
1214 * reset work will see the pci device disabled when it gets the forced
1215 * cancellation error. All outstanding requests are completed on
1216 * shutdown, so we return BLK_EH_HANDLED.
1218 switch (dev
->ctrl
.state
) {
1219 case NVME_CTRL_CONNECTING
:
1220 case NVME_CTRL_RESETTING
:
1221 dev_warn(dev
->ctrl
.device
,
1222 "I/O %d QID %d timeout, disable controller\n",
1223 req
->tag
, nvmeq
->qid
);
1224 nvme_dev_disable(dev
, false);
1225 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1226 return BLK_EH_HANDLED
;
1232 * Shutdown the controller immediately and schedule a reset if the
1233 * command was already aborted once before and still hasn't been
1234 * returned to the driver, or if this is the admin queue.
1236 if (!nvmeq
->qid
|| iod
->aborted
) {
1237 dev_warn(dev
->ctrl
.device
,
1238 "I/O %d QID %d timeout, reset controller\n",
1239 req
->tag
, nvmeq
->qid
);
1240 nvme_dev_disable(dev
, false);
1241 nvme_reset_ctrl(&dev
->ctrl
);
1244 * Mark the request as handled, since the inline shutdown
1245 * forces all outstanding requests to complete.
1247 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1248 return BLK_EH_HANDLED
;
1251 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1252 atomic_inc(&dev
->ctrl
.abort_limit
);
1253 return BLK_EH_RESET_TIMER
;
1257 memset(&cmd
, 0, sizeof(cmd
));
1258 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1259 cmd
.abort
.cid
= req
->tag
;
1260 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1262 dev_warn(nvmeq
->dev
->ctrl
.device
,
1263 "I/O %d QID %d timeout, aborting\n",
1264 req
->tag
, nvmeq
->qid
);
1266 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
1267 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1268 if (IS_ERR(abort_req
)) {
1269 atomic_inc(&dev
->ctrl
.abort_limit
);
1270 return BLK_EH_RESET_TIMER
;
1273 abort_req
->timeout
= ADMIN_TIMEOUT
;
1274 abort_req
->end_io_data
= NULL
;
1275 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
1278 * The aborted req will be completed on receiving the abort req.
1279 * We enable the timer again. If hit twice, it'll cause a device reset,
1280 * as the device then is in a faulty state.
1282 return BLK_EH_RESET_TIMER
;
1285 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1287 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
1288 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1290 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
1291 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1294 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1298 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1299 dev
->ctrl
.queue_count
--;
1300 nvme_free_queue(&dev
->queues
[i
]);
1305 * nvme_suspend_queue - put queue into suspended state
1306 * @nvmeq - queue to suspend
1308 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1312 spin_lock_irq(&nvmeq
->q_lock
);
1313 if (nvmeq
->cq_vector
== -1) {
1314 spin_unlock_irq(&nvmeq
->q_lock
);
1317 vector
= nvmeq
->cq_vector
;
1318 nvmeq
->dev
->online_queues
--;
1319 nvmeq
->cq_vector
= -1;
1320 spin_unlock_irq(&nvmeq
->q_lock
);
1322 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1323 blk_mq_quiesce_queue(nvmeq
->dev
->ctrl
.admin_q
);
1325 pci_free_irq(to_pci_dev(nvmeq
->dev
->dev
), vector
, nvmeq
);
1330 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
1332 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1335 nvme_shutdown_ctrl(&dev
->ctrl
);
1337 nvme_disable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1339 spin_lock_irq(&nvmeq
->q_lock
);
1340 nvme_process_cq(nvmeq
);
1341 spin_unlock_irq(&nvmeq
->q_lock
);
1344 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1347 int q_depth
= dev
->q_depth
;
1348 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1349 dev
->ctrl
.page_size
);
1351 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1352 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1353 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1354 q_depth
= div_u64(mem_per_q
, entry_size
);
1357 * Ensure the reduced q_depth is above some threshold where it
1358 * would be better to map queues in system memory with the
1368 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1371 /* CMB SQEs will be mapped before creation */
1372 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
))
1375 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(depth
),
1376 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1377 if (!nvmeq
->sq_cmds
)
1382 static int nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1383 int depth
, int node
)
1385 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1387 if (dev
->ctrl
.queue_count
> qid
)
1390 nvmeq
->cqes
= dma_zalloc_coherent(dev
->dev
, CQ_SIZE(depth
),
1391 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1395 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
, depth
))
1398 nvmeq
->q_dmadev
= dev
->dev
;
1400 spin_lock_init(&nvmeq
->q_lock
);
1402 nvmeq
->cq_phase
= 1;
1403 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1404 nvmeq
->q_depth
= depth
;
1406 nvmeq
->cq_vector
= -1;
1407 dev
->ctrl
.queue_count
++;
1412 dma_free_coherent(dev
->dev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1413 nvmeq
->cq_dma_addr
);
1418 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1420 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1421 int nr
= nvmeq
->dev
->ctrl
.instance
;
1423 if (use_threaded_interrupts
) {
1424 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1425 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1427 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1428 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1432 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1434 struct nvme_dev
*dev
= nvmeq
->dev
;
1436 spin_lock_irq(&nvmeq
->q_lock
);
1439 nvmeq
->cq_phase
= 1;
1440 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1441 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1442 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1443 dev
->online_queues
++;
1444 spin_unlock_irq(&nvmeq
->q_lock
);
1447 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1449 struct nvme_dev
*dev
= nvmeq
->dev
;
1452 if (dev
->cmb
&& use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1453 unsigned offset
= (qid
- 1) * roundup(SQ_SIZE(nvmeq
->q_depth
),
1454 dev
->ctrl
.page_size
);
1455 nvmeq
->sq_dma_addr
= dev
->cmb_bus_addr
+ offset
;
1456 nvmeq
->sq_cmds_io
= dev
->cmb
+ offset
;
1459 nvmeq
->cq_vector
= qid
- 1;
1460 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1464 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1468 nvme_init_queue(nvmeq
, qid
);
1469 result
= queue_request_irq(nvmeq
);
1476 adapter_delete_sq(dev
, qid
);
1478 adapter_delete_cq(dev
, qid
);
1482 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1483 .queue_rq
= nvme_queue_rq
,
1484 .complete
= nvme_pci_complete_rq
,
1485 .init_hctx
= nvme_admin_init_hctx
,
1486 .exit_hctx
= nvme_admin_exit_hctx
,
1487 .init_request
= nvme_init_request
,
1488 .timeout
= nvme_timeout
,
1491 static const struct blk_mq_ops nvme_mq_ops
= {
1492 .queue_rq
= nvme_queue_rq
,
1493 .complete
= nvme_pci_complete_rq
,
1494 .init_hctx
= nvme_init_hctx
,
1495 .init_request
= nvme_init_request
,
1496 .map_queues
= nvme_pci_map_queues
,
1497 .timeout
= nvme_timeout
,
1501 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1503 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1505 * If the controller was reset during removal, it's possible
1506 * user requests may be waiting on a stopped queue. Start the
1507 * queue to flush these to completion.
1509 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1510 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1511 blk_mq_free_tag_set(&dev
->admin_tagset
);
1515 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1517 if (!dev
->ctrl
.admin_q
) {
1518 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1519 dev
->admin_tagset
.nr_hw_queues
= 1;
1521 dev
->admin_tagset
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1522 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1523 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1524 dev
->admin_tagset
.cmd_size
= nvme_pci_cmd_size(dev
, false);
1525 dev
->admin_tagset
.flags
= BLK_MQ_F_NO_SCHED
;
1526 dev
->admin_tagset
.driver_data
= dev
;
1528 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1530 dev
->ctrl
.admin_tagset
= &dev
->admin_tagset
;
1532 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1533 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1534 blk_mq_free_tag_set(&dev
->admin_tagset
);
1537 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1538 nvme_dev_remove_admin(dev
);
1539 dev
->ctrl
.admin_q
= NULL
;
1543 blk_mq_unquiesce_queue(dev
->ctrl
.admin_q
);
1548 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1550 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1553 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1555 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1557 if (size
<= dev
->bar_mapped_size
)
1559 if (size
> pci_resource_len(pdev
, 0))
1563 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1565 dev
->bar_mapped_size
= 0;
1568 dev
->bar_mapped_size
= size
;
1569 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1574 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1578 struct nvme_queue
*nvmeq
;
1580 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1584 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1585 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1587 if (dev
->subsystem
&&
1588 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1589 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1591 result
= nvme_disable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1595 result
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
,
1596 dev_to_node(dev
->dev
));
1600 nvmeq
= &dev
->queues
[0];
1601 aqa
= nvmeq
->q_depth
- 1;
1604 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1605 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1606 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1608 result
= nvme_enable_ctrl(&dev
->ctrl
, dev
->ctrl
.cap
);
1612 nvmeq
->cq_vector
= 0;
1613 nvme_init_queue(nvmeq
, 0);
1614 result
= queue_request_irq(nvmeq
);
1616 nvmeq
->cq_vector
= -1;
1623 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1628 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1629 /* vector == qid - 1, match nvme_create_queue */
1630 if (nvme_alloc_queue(dev
, i
, dev
->q_depth
,
1631 pci_irq_get_node(to_pci_dev(dev
->dev
), i
- 1))) {
1637 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1638 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1639 ret
= nvme_create_queue(&dev
->queues
[i
], i
);
1645 * Ignore failing Create SQ/CQ commands, we can continue with less
1646 * than the desired amount of queues, and even a controller without
1647 * I/O queues can still be used to issue admin commands. This might
1648 * be useful to upgrade a buggy firmware for example.
1650 return ret
>= 0 ? 0 : ret
;
1653 static ssize_t
nvme_cmb_show(struct device
*dev
,
1654 struct device_attribute
*attr
,
1657 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1659 return scnprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1660 ndev
->cmbloc
, ndev
->cmbsz
);
1662 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1664 static u64
nvme_cmb_size_unit(struct nvme_dev
*dev
)
1666 u8 szu
= (dev
->cmbsz
>> NVME_CMBSZ_SZU_SHIFT
) & NVME_CMBSZ_SZU_MASK
;
1668 return 1ULL << (12 + 4 * szu
);
1671 static u32
nvme_cmb_size(struct nvme_dev
*dev
)
1673 return (dev
->cmbsz
>> NVME_CMBSZ_SZ_SHIFT
) & NVME_CMBSZ_SZ_MASK
;
1676 static void nvme_map_cmb(struct nvme_dev
*dev
)
1679 resource_size_t bar_size
;
1680 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1683 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1686 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1691 size
= nvme_cmb_size_unit(dev
) * nvme_cmb_size(dev
);
1692 offset
= nvme_cmb_size_unit(dev
) * NVME_CMB_OFST(dev
->cmbloc
);
1693 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1694 bar_size
= pci_resource_len(pdev
, bar
);
1696 if (offset
> bar_size
)
1700 * Controllers may support a CMB size larger than their BAR,
1701 * for example, due to being behind a bridge. Reduce the CMB to
1702 * the reported size of the BAR
1704 if (size
> bar_size
- offset
)
1705 size
= bar_size
- offset
;
1707 dev
->cmb
= ioremap_wc(pci_resource_start(pdev
, bar
) + offset
, size
);
1710 dev
->cmb_bus_addr
= pci_bus_address(pdev
, bar
) + offset
;
1711 dev
->cmb_size
= size
;
1713 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
1714 &dev_attr_cmb
.attr
, NULL
))
1715 dev_warn(dev
->ctrl
.device
,
1716 "failed to add sysfs attribute for CMB\n");
1719 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1724 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1725 &dev_attr_cmb
.attr
, NULL
);
1730 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
1732 u64 dma_addr
= dev
->host_mem_descs_dma
;
1733 struct nvme_command c
;
1736 memset(&c
, 0, sizeof(c
));
1737 c
.features
.opcode
= nvme_admin_set_features
;
1738 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
1739 c
.features
.dword11
= cpu_to_le32(bits
);
1740 c
.features
.dword12
= cpu_to_le32(dev
->host_mem_size
>>
1741 ilog2(dev
->ctrl
.page_size
));
1742 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
1743 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
1744 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
1746 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1748 dev_warn(dev
->ctrl
.device
,
1749 "failed to set host mem (err %d, flags %#x).\n",
1755 static void nvme_free_host_mem(struct nvme_dev
*dev
)
1759 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
1760 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
1761 size_t size
= le32_to_cpu(desc
->size
) * dev
->ctrl
.page_size
;
1763 dma_free_coherent(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
1764 le64_to_cpu(desc
->addr
));
1767 kfree(dev
->host_mem_desc_bufs
);
1768 dev
->host_mem_desc_bufs
= NULL
;
1769 dma_free_coherent(dev
->dev
,
1770 dev
->nr_host_mem_descs
* sizeof(*dev
->host_mem_descs
),
1771 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
1772 dev
->host_mem_descs
= NULL
;
1773 dev
->nr_host_mem_descs
= 0;
1776 static int __nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 preferred
,
1779 struct nvme_host_mem_buf_desc
*descs
;
1780 u32 max_entries
, len
;
1781 dma_addr_t descs_dma
;
1786 tmp
= (preferred
+ chunk_size
- 1);
1787 do_div(tmp
, chunk_size
);
1790 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
1791 max_entries
= dev
->ctrl
.hmmaxd
;
1793 descs
= dma_zalloc_coherent(dev
->dev
, max_entries
* sizeof(*descs
),
1794 &descs_dma
, GFP_KERNEL
);
1798 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
1800 goto out_free_descs
;
1802 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
1803 dma_addr_t dma_addr
;
1805 len
= min_t(u64
, chunk_size
, preferred
- size
);
1806 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
1807 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
1811 descs
[i
].addr
= cpu_to_le64(dma_addr
);
1812 descs
[i
].size
= cpu_to_le32(len
/ dev
->ctrl
.page_size
);
1819 dev
->nr_host_mem_descs
= i
;
1820 dev
->host_mem_size
= size
;
1821 dev
->host_mem_descs
= descs
;
1822 dev
->host_mem_descs_dma
= descs_dma
;
1823 dev
->host_mem_desc_bufs
= bufs
;
1828 size_t size
= le32_to_cpu(descs
[i
].size
) * dev
->ctrl
.page_size
;
1830 dma_free_coherent(dev
->dev
, size
, bufs
[i
],
1831 le64_to_cpu(descs
[i
].addr
));
1836 dma_free_coherent(dev
->dev
, max_entries
* sizeof(*descs
), descs
,
1839 dev
->host_mem_descs
= NULL
;
1843 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
1847 /* start big and work our way down */
1848 for (chunk_size
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
1849 chunk_size
>= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
1851 if (!__nvme_alloc_host_mem(dev
, preferred
, chunk_size
)) {
1852 if (!min
|| dev
->host_mem_size
>= min
)
1854 nvme_free_host_mem(dev
);
1861 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
1863 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
1864 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
1865 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
1866 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
1869 preferred
= min(preferred
, max
);
1871 dev_warn(dev
->ctrl
.device
,
1872 "min host memory (%lld MiB) above limit (%d MiB).\n",
1873 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
1874 nvme_free_host_mem(dev
);
1879 * If we already have a buffer allocated check if we can reuse it.
1881 if (dev
->host_mem_descs
) {
1882 if (dev
->host_mem_size
>= min
)
1883 enable_bits
|= NVME_HOST_MEM_RETURN
;
1885 nvme_free_host_mem(dev
);
1888 if (!dev
->host_mem_descs
) {
1889 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
1890 dev_warn(dev
->ctrl
.device
,
1891 "failed to allocate host memory buffer.\n");
1892 return 0; /* controller must work without HMB */
1895 dev_info(dev
->ctrl
.device
,
1896 "allocated %lld MiB host memory buffer.\n",
1897 dev
->host_mem_size
>> ilog2(SZ_1M
));
1900 ret
= nvme_set_host_mem(dev
, enable_bits
);
1902 nvme_free_host_mem(dev
);
1906 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1908 struct nvme_queue
*adminq
= &dev
->queues
[0];
1909 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1910 int result
, nr_io_queues
;
1913 nr_io_queues
= num_present_cpus();
1914 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
1918 if (nr_io_queues
== 0)
1921 if (dev
->cmb
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1922 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
1923 sizeof(struct nvme_command
));
1925 dev
->q_depth
= result
;
1927 nvme_release_cmb(dev
);
1931 size
= db_bar_size(dev
, nr_io_queues
);
1932 result
= nvme_remap_bar(dev
, size
);
1935 if (!--nr_io_queues
)
1938 adminq
->q_db
= dev
->dbs
;
1940 /* Deregister the admin queue's interrupt */
1941 pci_free_irq(pdev
, 0, adminq
);
1944 * If we enable msix early due to not intx, disable it again before
1945 * setting up the full range we need.
1947 pci_free_irq_vectors(pdev
);
1948 nr_io_queues
= pci_alloc_irq_vectors(pdev
, 1, nr_io_queues
,
1949 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
);
1950 if (nr_io_queues
<= 0)
1952 dev
->max_qid
= nr_io_queues
;
1955 * Should investigate if there's a performance win from allocating
1956 * more queues than interrupt vectors; it might allow the submission
1957 * path to scale better, even if the receive path is limited by the
1958 * number of interrupts.
1961 result
= queue_request_irq(adminq
);
1963 adminq
->cq_vector
= -1;
1966 return nvme_create_io_queues(dev
);
1969 static void nvme_del_queue_end(struct request
*req
, blk_status_t error
)
1971 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1973 blk_mq_free_request(req
);
1974 complete(&nvmeq
->dev
->ioq_wait
);
1977 static void nvme_del_cq_end(struct request
*req
, blk_status_t error
)
1979 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1982 unsigned long flags
;
1985 * We might be called with the AQ q_lock held
1986 * and the I/O queue q_lock should always
1987 * nest inside the AQ one.
1989 spin_lock_irqsave_nested(&nvmeq
->q_lock
, flags
,
1990 SINGLE_DEPTH_NESTING
);
1991 nvme_process_cq(nvmeq
);
1992 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
1995 nvme_del_queue_end(req
, error
);
1998 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
2000 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
2001 struct request
*req
;
2002 struct nvme_command cmd
;
2004 memset(&cmd
, 0, sizeof(cmd
));
2005 cmd
.delete_queue
.opcode
= opcode
;
2006 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2008 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
2010 return PTR_ERR(req
);
2012 req
->timeout
= ADMIN_TIMEOUT
;
2013 req
->end_io_data
= nvmeq
;
2015 blk_execute_rq_nowait(q
, NULL
, req
, false,
2016 opcode
== nvme_admin_delete_cq
?
2017 nvme_del_cq_end
: nvme_del_queue_end
);
2021 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2023 int pass
, queues
= dev
->online_queues
- 1;
2024 unsigned long timeout
;
2025 u8 opcode
= nvme_admin_delete_sq
;
2027 for (pass
= 0; pass
< 2; pass
++) {
2028 int sent
= 0, i
= queues
;
2030 reinit_completion(&dev
->ioq_wait
);
2032 timeout
= ADMIN_TIMEOUT
;
2033 for (; i
> 0; i
--, sent
++)
2034 if (nvme_delete_queue(&dev
->queues
[i
], opcode
))
2038 timeout
= wait_for_completion_io_timeout(&dev
->ioq_wait
, timeout
);
2044 opcode
= nvme_admin_delete_cq
;
2049 * return error value only when tagset allocation failed
2051 static int nvme_dev_add(struct nvme_dev
*dev
)
2055 if (!dev
->ctrl
.tagset
) {
2056 dev
->tagset
.ops
= &nvme_mq_ops
;
2057 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2058 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2059 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
2060 dev
->tagset
.queue_depth
=
2061 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2062 dev
->tagset
.cmd_size
= nvme_pci_cmd_size(dev
, false);
2063 if ((dev
->ctrl
.sgls
& ((1 << 0) | (1 << 1))) && sgl_threshold
) {
2064 dev
->tagset
.cmd_size
= max(dev
->tagset
.cmd_size
,
2065 nvme_pci_cmd_size(dev
, true));
2067 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2068 dev
->tagset
.driver_data
= dev
;
2070 ret
= blk_mq_alloc_tag_set(&dev
->tagset
);
2072 dev_warn(dev
->ctrl
.device
,
2073 "IO queues tagset allocation failed %d\n", ret
);
2076 dev
->ctrl
.tagset
= &dev
->tagset
;
2078 nvme_dbbuf_set(dev
);
2080 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2082 /* Free previously allocated queues that are no longer usable */
2083 nvme_free_queues(dev
, dev
->online_queues
);
2089 static int nvme_pci_enable(struct nvme_dev
*dev
)
2091 int result
= -ENOMEM
;
2092 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2094 if (pci_enable_device_mem(pdev
))
2097 pci_set_master(pdev
);
2099 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)) &&
2100 dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(32)))
2103 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2109 * Some devices and/or platforms don't advertise or work with INTx
2110 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2111 * adjust this later.
2113 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
2117 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2119 dev
->q_depth
= min_t(int, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2121 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2122 dev
->dbs
= dev
->bar
+ 4096;
2125 * Temporary fix for the Apple controller found in the MacBook8,1 and
2126 * some MacBook7,1 to avoid controller resets and data loss.
2128 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
2130 dev_warn(dev
->ctrl
.device
, "detected Apple NVMe controller, "
2131 "set queue depth=%u to work around controller resets\n",
2133 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2134 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2135 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2137 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2138 "set queue depth=%u\n", dev
->q_depth
);
2143 pci_enable_pcie_error_reporting(pdev
);
2144 pci_save_state(pdev
);
2148 pci_disable_device(pdev
);
2152 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2156 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2159 static void nvme_pci_disable(struct nvme_dev
*dev
)
2161 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2163 nvme_release_cmb(dev
);
2164 pci_free_irq_vectors(pdev
);
2166 if (pci_is_enabled(pdev
)) {
2167 pci_disable_pcie_error_reporting(pdev
);
2168 pci_disable_device(pdev
);
2172 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2176 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2178 mutex_lock(&dev
->shutdown_lock
);
2179 if (pci_is_enabled(pdev
)) {
2180 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2182 if (dev
->ctrl
.state
== NVME_CTRL_LIVE
||
2183 dev
->ctrl
.state
== NVME_CTRL_RESETTING
)
2184 nvme_start_freeze(&dev
->ctrl
);
2185 dead
= !!((csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
) ||
2186 pdev
->error_state
!= pci_channel_io_normal
);
2190 * Give the controller a chance to complete all entered requests if
2191 * doing a safe shutdown.
2195 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2198 * If the controller is still alive tell it to stop using the
2199 * host memory buffer. In theory the shutdown / reset should
2200 * make sure that it doesn't access the host memoery anymore,
2201 * but I'd rather be safe than sorry..
2203 if (dev
->host_mem_descs
)
2204 nvme_set_host_mem(dev
, 0);
2207 nvme_stop_queues(&dev
->ctrl
);
2210 nvme_disable_io_queues(dev
);
2211 nvme_disable_admin_queue(dev
, shutdown
);
2213 for (i
= dev
->ctrl
.queue_count
- 1; i
>= 0; i
--)
2214 nvme_suspend_queue(&dev
->queues
[i
]);
2216 nvme_pci_disable(dev
);
2218 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
2219 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
2222 * The driver will not be starting up queues again if shutting down so
2223 * must flush all entered requests to their failed completion to avoid
2224 * deadlocking blk-mq hot-cpu notifier.
2227 nvme_start_queues(&dev
->ctrl
);
2228 mutex_unlock(&dev
->shutdown_lock
);
2231 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2233 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2234 PAGE_SIZE
, PAGE_SIZE
, 0);
2235 if (!dev
->prp_page_pool
)
2238 /* Optimisation for I/Os between 4k and 128k */
2239 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2241 if (!dev
->prp_small_pool
) {
2242 dma_pool_destroy(dev
->prp_page_pool
);
2248 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2250 dma_pool_destroy(dev
->prp_page_pool
);
2251 dma_pool_destroy(dev
->prp_small_pool
);
2254 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2256 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2258 nvme_dbbuf_dma_free(dev
);
2259 put_device(dev
->dev
);
2260 if (dev
->tagset
.tags
)
2261 blk_mq_free_tag_set(&dev
->tagset
);
2262 if (dev
->ctrl
.admin_q
)
2263 blk_put_queue(dev
->ctrl
.admin_q
);
2265 free_opal_dev(dev
->ctrl
.opal_dev
);
2269 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
, int status
)
2271 dev_warn(dev
->ctrl
.device
, "Removing after probe failure status: %d\n", status
);
2273 nvme_get_ctrl(&dev
->ctrl
);
2274 nvme_dev_disable(dev
, false);
2275 if (!queue_work(nvme_wq
, &dev
->remove_work
))
2276 nvme_put_ctrl(&dev
->ctrl
);
2279 static void nvme_reset_work(struct work_struct
*work
)
2281 struct nvme_dev
*dev
=
2282 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2283 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2284 int result
= -ENODEV
;
2285 enum nvme_ctrl_state new_state
= NVME_CTRL_LIVE
;
2287 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
))
2291 * If we're called to reset a live controller first shut it down before
2294 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2295 nvme_dev_disable(dev
, false);
2298 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2299 * initializing procedure here.
2301 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
2302 dev_warn(dev
->ctrl
.device
,
2303 "failed to mark controller CONNECTING\n");
2307 result
= nvme_pci_enable(dev
);
2311 result
= nvme_pci_configure_admin_queue(dev
);
2315 result
= nvme_alloc_admin_tags(dev
);
2319 result
= nvme_init_identify(&dev
->ctrl
);
2323 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_SEC_SUPP
) {
2324 if (!dev
->ctrl
.opal_dev
)
2325 dev
->ctrl
.opal_dev
=
2326 init_opal_dev(&dev
->ctrl
, &nvme_sec_submit
);
2327 else if (was_suspend
)
2328 opal_unlock_from_suspend(dev
->ctrl
.opal_dev
);
2330 free_opal_dev(dev
->ctrl
.opal_dev
);
2331 dev
->ctrl
.opal_dev
= NULL
;
2334 if (dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
) {
2335 result
= nvme_dbbuf_dma_alloc(dev
);
2338 "unable to allocate dma for dbbuf\n");
2341 if (dev
->ctrl
.hmpre
) {
2342 result
= nvme_setup_host_mem(dev
);
2347 result
= nvme_setup_io_queues(dev
);
2352 * Keep the controller around but remove all namespaces if we don't have
2353 * any working I/O queue.
2355 if (dev
->online_queues
< 2) {
2356 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
2357 nvme_kill_queues(&dev
->ctrl
);
2358 nvme_remove_namespaces(&dev
->ctrl
);
2359 new_state
= NVME_CTRL_ADMIN_ONLY
;
2361 nvme_start_queues(&dev
->ctrl
);
2362 nvme_wait_freeze(&dev
->ctrl
);
2363 /* hit this only when allocate tagset fails */
2364 if (nvme_dev_add(dev
))
2365 new_state
= NVME_CTRL_ADMIN_ONLY
;
2366 nvme_unfreeze(&dev
->ctrl
);
2370 * If only admin queue live, keep it to do further investigation or
2373 if (!nvme_change_ctrl_state(&dev
->ctrl
, new_state
)) {
2374 dev_warn(dev
->ctrl
.device
,
2375 "failed to mark controller state %d\n", new_state
);
2379 nvme_start_ctrl(&dev
->ctrl
);
2383 nvme_remove_dead_ctrl(dev
, result
);
2386 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
2388 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
2389 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2391 nvme_kill_queues(&dev
->ctrl
);
2392 if (pci_get_drvdata(pdev
))
2393 device_release_driver(&pdev
->dev
);
2394 nvme_put_ctrl(&dev
->ctrl
);
2397 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
2399 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
2403 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
2405 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
2409 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
2411 *val
= readq(to_nvme_dev(ctrl
)->bar
+ off
);
2415 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
2417 .module
= THIS_MODULE
,
2418 .flags
= NVME_F_METADATA_SUPPORTED
,
2419 .reg_read32
= nvme_pci_reg_read32
,
2420 .reg_write32
= nvme_pci_reg_write32
,
2421 .reg_read64
= nvme_pci_reg_read64
,
2422 .free_ctrl
= nvme_pci_free_ctrl
,
2423 .submit_async_event
= nvme_pci_submit_async_event
,
2426 static int nvme_dev_map(struct nvme_dev
*dev
)
2428 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2430 if (pci_request_mem_regions(pdev
, "nvme"))
2433 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
2438 pci_release_mem_regions(pdev
);
2442 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
2444 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
2446 * Several Samsung devices seem to drop off the PCIe bus
2447 * randomly when APST is on and uses the deepest sleep state.
2448 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2449 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2450 * 950 PRO 256GB", but it seems to be restricted to two Dell
2453 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
2454 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
2455 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
2456 return NVME_QUIRK_NO_DEEPEST_PS
;
2457 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
2459 * Samsung SSD 960 EVO drops off the PCIe bus after system
2460 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2462 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
2463 dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A"))
2464 return NVME_QUIRK_NO_APST
;
2470 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2472 int node
, result
= -ENOMEM
;
2473 struct nvme_dev
*dev
;
2474 unsigned long quirks
= id
->driver_data
;
2476 node
= dev_to_node(&pdev
->dev
);
2477 if (node
== NUMA_NO_NODE
)
2478 set_dev_node(&pdev
->dev
, first_memory_node
);
2480 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2484 dev
->queues
= kcalloc_node(num_possible_cpus() + 1,
2485 sizeof(struct nvme_queue
), GFP_KERNEL
, node
);
2489 dev
->dev
= get_device(&pdev
->dev
);
2490 pci_set_drvdata(pdev
, dev
);
2492 result
= nvme_dev_map(dev
);
2496 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
2497 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
2498 mutex_init(&dev
->shutdown_lock
);
2499 init_completion(&dev
->ioq_wait
);
2501 result
= nvme_setup_prp_pools(dev
);
2505 quirks
|= check_vendor_combination_bug(pdev
);
2507 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
2512 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
2514 nvme_reset_ctrl(&dev
->ctrl
);
2519 nvme_release_prp_pools(dev
);
2521 nvme_dev_unmap(dev
);
2523 put_device(dev
->dev
);
2530 static void nvme_reset_prepare(struct pci_dev
*pdev
)
2532 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2533 nvme_dev_disable(dev
, false);
2536 static void nvme_reset_done(struct pci_dev
*pdev
)
2538 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2539 nvme_reset_ctrl_sync(&dev
->ctrl
);
2542 static void nvme_shutdown(struct pci_dev
*pdev
)
2544 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2545 nvme_dev_disable(dev
, true);
2549 * The driver's remove may be called on a device in a partially initialized
2550 * state. This function must not have any dependencies on the device state in
2553 static void nvme_remove(struct pci_dev
*pdev
)
2555 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2557 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
2559 cancel_work_sync(&dev
->ctrl
.reset_work
);
2560 pci_set_drvdata(pdev
, NULL
);
2562 if (!pci_device_is_present(pdev
)) {
2563 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2564 nvme_dev_disable(dev
, false);
2567 flush_work(&dev
->ctrl
.reset_work
);
2568 nvme_stop_ctrl(&dev
->ctrl
);
2569 nvme_remove_namespaces(&dev
->ctrl
);
2570 nvme_dev_disable(dev
, true);
2571 nvme_free_host_mem(dev
);
2572 nvme_dev_remove_admin(dev
);
2573 nvme_free_queues(dev
, 0);
2574 nvme_uninit_ctrl(&dev
->ctrl
);
2575 nvme_release_prp_pools(dev
);
2576 nvme_dev_unmap(dev
);
2577 nvme_put_ctrl(&dev
->ctrl
);
2580 static int nvme_pci_sriov_configure(struct pci_dev
*pdev
, int numvfs
)
2585 if (pci_vfs_assigned(pdev
)) {
2586 dev_warn(&pdev
->dev
,
2587 "Cannot disable SR-IOV VFs while assigned\n");
2590 pci_disable_sriov(pdev
);
2594 ret
= pci_enable_sriov(pdev
, numvfs
);
2595 return ret
? ret
: numvfs
;
2598 #ifdef CONFIG_PM_SLEEP
2599 static int nvme_suspend(struct device
*dev
)
2601 struct pci_dev
*pdev
= to_pci_dev(dev
);
2602 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2604 nvme_dev_disable(ndev
, true);
2608 static int nvme_resume(struct device
*dev
)
2610 struct pci_dev
*pdev
= to_pci_dev(dev
);
2611 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2613 nvme_reset_ctrl(&ndev
->ctrl
);
2618 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2620 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
2621 pci_channel_state_t state
)
2623 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2626 * A frozen channel requires a reset. When detected, this method will
2627 * shutdown the controller to quiesce. The controller will be restarted
2628 * after the slot reset through driver's slot_reset callback.
2631 case pci_channel_io_normal
:
2632 return PCI_ERS_RESULT_CAN_RECOVER
;
2633 case pci_channel_io_frozen
:
2634 dev_warn(dev
->ctrl
.device
,
2635 "frozen state error detected, reset controller\n");
2636 nvme_dev_disable(dev
, false);
2637 return PCI_ERS_RESULT_NEED_RESET
;
2638 case pci_channel_io_perm_failure
:
2639 dev_warn(dev
->ctrl
.device
,
2640 "failure state error detected, request disconnect\n");
2641 return PCI_ERS_RESULT_DISCONNECT
;
2643 return PCI_ERS_RESULT_NEED_RESET
;
2646 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
2648 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2650 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
2651 pci_restore_state(pdev
);
2652 nvme_reset_ctrl(&dev
->ctrl
);
2653 return PCI_ERS_RESULT_RECOVERED
;
2656 static void nvme_error_resume(struct pci_dev
*pdev
)
2658 pci_cleanup_aer_uncorrect_error_status(pdev
);
2661 static const struct pci_error_handlers nvme_err_handler
= {
2662 .error_detected
= nvme_error_detected
,
2663 .slot_reset
= nvme_slot_reset
,
2664 .resume
= nvme_error_resume
,
2665 .reset_prepare
= nvme_reset_prepare
,
2666 .reset_done
= nvme_reset_done
,
2669 static const struct pci_device_id nvme_id_table
[] = {
2670 { PCI_VDEVICE(INTEL
, 0x0953),
2671 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2672 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2673 { PCI_VDEVICE(INTEL
, 0x0a53),
2674 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2675 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2676 { PCI_VDEVICE(INTEL
, 0x0a54),
2677 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2678 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2679 { PCI_VDEVICE(INTEL
, 0x0a55),
2680 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2681 NVME_QUIRK_DEALLOCATE_ZEROES
, },
2682 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
2683 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
},
2684 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
2685 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
, },
2686 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2687 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2688 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2689 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2690 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2691 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2692 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2693 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2694 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2695 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2696 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2697 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2698 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2699 .driver_data
= NVME_QUIRK_LIGHTNVM
, },
2700 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2701 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
2702 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
2705 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2707 static struct pci_driver nvme_driver
= {
2709 .id_table
= nvme_id_table
,
2710 .probe
= nvme_probe
,
2711 .remove
= nvme_remove
,
2712 .shutdown
= nvme_shutdown
,
2714 .pm
= &nvme_dev_pm_ops
,
2716 .sriov_configure
= nvme_pci_sriov_configure
,
2717 .err_handler
= &nvme_err_handler
,
2720 static int __init
nvme_init(void)
2722 return pci_register_driver(&nvme_driver
);
2725 static void __exit
nvme_exit(void)
2727 pci_unregister_driver(&nvme_driver
);
2728 flush_workqueue(nvme_wq
);
2732 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2733 MODULE_LICENSE("GPL");
2734 MODULE_VERSION("1.0");
2735 module_init(nvme_init
);
2736 module_exit(nvme_exit
);