Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / staging / rtlwifi / efuse.c
blobd74c80d512c9ce6fa3e371af4f309f7519d01601
1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * The full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
17 * Contact Information:
18 * wlanfae <wlanfae@realtek.com>
19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20 * Hsinchu 300, Taiwan.
22 * Larry Finger <Larry.Finger@lwfinger.net>
24 *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
34 #define START_ADDRESS 0x1000
35 #define REG_MCUFWDL 0x0080
37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
38 {0, 0, 0, 2},
39 {0, 1, 0, 2},
40 {0, 2, 0, 2},
41 {1, 0, 0, 1},
42 {1, 0, 1, 1},
43 {1, 1, 0, 1},
44 {1, 1, 1, 3},
45 {1, 3, 0, 17},
46 {3, 3, 1, 48},
47 {10, 0, 0, 6},
48 {10, 3, 0, 1},
49 {10, 3, 1, 1},
50 {11, 0, 0, 28}
53 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
54 u8 *value);
55 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
56 u16 *value);
57 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
58 u32 *value);
59 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
60 u8 value);
61 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
62 u16 value);
63 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
64 u32 value);
65 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
66 u8 data);
67 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
68 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
69 u8 *data);
70 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
71 u8 word_en, u8 *data);
72 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
73 u8 *targetdata);
74 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
75 u16 efuse_addr, u8 word_en, u8 *data);
76 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
77 static u8 efuse_calculate_word_cnts(u8 word_en);
79 void efuse_initialize(struct ieee80211_hw *hw)
81 struct rtl_priv *rtlpriv = rtl_priv(hw);
82 u8 bytetemp;
83 u8 temp;
85 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
86 temp = bytetemp | 0x20;
87 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
89 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
90 temp = bytetemp & 0xFE;
91 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
93 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
94 temp = bytetemp | 0x80;
95 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
97 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
99 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
102 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
104 struct rtl_priv *rtlpriv = rtl_priv(hw);
105 u8 data;
106 u8 bytetemp;
107 u8 temp;
108 u32 k = 0;
109 const u32 efuse_len =
110 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
112 if (address < efuse_len) {
113 temp = address & 0xFF;
114 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
115 temp);
116 bytetemp = rtl_read_byte(rtlpriv,
117 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
118 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
119 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
120 temp);
122 bytetemp = rtl_read_byte(rtlpriv,
123 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
124 temp = bytetemp & 0x7F;
125 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
126 temp);
128 bytetemp = rtl_read_byte(rtlpriv,
129 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130 while (!(bytetemp & 0x80)) {
131 bytetemp =
132 rtl_read_byte(rtlpriv,
133 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
134 k++;
135 if (k == 1000) {
136 k = 0;
137 break;
140 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
141 return data;
143 return 0xFF;
146 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
148 struct rtl_priv *rtlpriv = rtl_priv(hw);
149 u8 bytetemp;
150 u8 temp;
151 u32 k = 0;
152 const u32 efuse_len =
153 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
155 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
156 address, value);
158 if (address < efuse_len) {
159 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
161 temp = address & 0xFF;
162 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
163 temp);
164 bytetemp = rtl_read_byte(rtlpriv,
165 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
167 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
168 rtl_write_byte(rtlpriv,
169 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
171 bytetemp = rtl_read_byte(rtlpriv,
172 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
173 temp = bytetemp | 0x80;
174 rtl_write_byte(rtlpriv,
175 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
177 bytetemp = rtl_read_byte(rtlpriv,
178 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
180 while (bytetemp & 0x80) {
181 bytetemp =
182 rtl_read_byte(rtlpriv,
183 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
184 k++;
185 if (k == 100) {
186 k = 0;
187 break;
193 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
195 struct rtl_priv *rtlpriv = rtl_priv(hw);
196 u32 value32;
197 u8 readbyte;
198 u16 retry;
200 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
201 (_offset & 0xff));
202 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
203 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
204 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
206 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
207 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
208 (readbyte & 0x7f));
210 retry = 0;
211 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
212 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
213 value32 = rtl_read_dword(rtlpriv,
214 rtlpriv->cfg->maps[EFUSE_CTRL]);
215 retry++;
218 udelay(50);
219 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
221 *pbuf = (u8)(value32 & 0xff);
224 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
226 struct rtl_priv *rtlpriv = rtl_priv(hw);
227 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
228 u8 *efuse_tbl;
229 u8 rtemp8[1];
230 u16 efuse_addr = 0;
231 u8 offset, wren;
232 u8 u1temp = 0;
233 u16 i;
234 u16 j;
235 const u16 efuse_max_section =
236 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
237 const u32 efuse_len =
238 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
239 u16 **efuse_word;
240 u16 efuse_utilized = 0;
241 u8 efuse_usage;
243 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
244 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
245 "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
246 __func__, _offset, _size_byte);
247 return;
250 /* allocate memory for efuse_tbl and efuse_word */
251 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
252 sizeof(u8), GFP_ATOMIC);
253 if (!efuse_tbl)
254 return;
255 efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
256 if (!efuse_word)
257 goto out;
258 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
259 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16), GFP_ATOMIC);
260 if (!efuse_word[i])
261 goto done;
264 for (i = 0; i < efuse_max_section; i++)
265 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
266 efuse_word[j][i] = 0xFFFF;
268 read_efuse_byte(hw, efuse_addr, rtemp8);
269 if (*rtemp8 != 0xFF) {
270 efuse_utilized++;
271 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
272 "Addr=%d\n", efuse_addr);
273 efuse_addr++;
276 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
277 /* Check PG header for section num. */
278 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
279 u1temp = ((*rtemp8 & 0xE0) >> 5);
280 read_efuse_byte(hw, efuse_addr, rtemp8);
282 if ((*rtemp8 & 0x0F) == 0x0F) {
283 efuse_addr++;
284 read_efuse_byte(hw, efuse_addr, rtemp8);
286 if (*rtemp8 != 0xFF &&
287 (efuse_addr < efuse_len)) {
288 efuse_addr++;
290 continue;
291 } else {
292 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
293 wren = (*rtemp8 & 0x0F);
294 efuse_addr++;
296 } else {
297 offset = ((*rtemp8 >> 4) & 0x0f);
298 wren = (*rtemp8 & 0x0f);
301 if (offset < efuse_max_section) {
302 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
303 "offset-%d Worden=%x\n", offset, wren);
305 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
306 if (!(wren & 0x01)) {
307 RTPRINT(rtlpriv, FEEPROM,
308 EFUSE_READ_ALL,
309 "Addr=%d\n", efuse_addr);
311 read_efuse_byte(hw, efuse_addr, rtemp8);
312 efuse_addr++;
313 efuse_utilized++;
314 efuse_word[i][offset] =
315 (*rtemp8 & 0xff);
317 if (efuse_addr >= efuse_len)
318 break;
320 RTPRINT(rtlpriv, FEEPROM,
321 EFUSE_READ_ALL,
322 "Addr=%d\n", efuse_addr);
324 read_efuse_byte(hw, efuse_addr, rtemp8);
325 efuse_addr++;
326 efuse_utilized++;
327 efuse_word[i][offset] |=
328 (((u16)*rtemp8 << 8) & 0xff00);
330 if (efuse_addr >= efuse_len)
331 break;
334 wren >>= 1;
338 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
339 "Addr=%d\n", efuse_addr);
340 read_efuse_byte(hw, efuse_addr, rtemp8);
341 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
342 efuse_utilized++;
343 efuse_addr++;
347 for (i = 0; i < efuse_max_section; i++) {
348 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
349 efuse_tbl[(i * 8) + (j * 2)] =
350 (efuse_word[j][i] & 0xff);
351 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
352 ((efuse_word[j][i] >> 8) & 0xff);
356 for (i = 0; i < _size_byte; i++)
357 pbuf[i] = efuse_tbl[_offset + i];
359 rtlefuse->efuse_usedbytes = efuse_utilized;
360 efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
361 rtlefuse->efuse_usedpercentage = efuse_usage;
362 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
363 (u8 *)&efuse_utilized);
364 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
365 &efuse_usage);
366 done:
367 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
368 kfree(efuse_word[i]);
369 kfree(efuse_word);
370 out:
371 kfree(efuse_tbl);
374 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
376 struct rtl_priv *rtlpriv = rtl_priv(hw);
377 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
378 u8 section_idx, i, base;
379 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
380 bool wordchanged, result = true;
382 for (section_idx = 0; section_idx < 16; section_idx++) {
383 base = section_idx * 8;
384 wordchanged = false;
386 for (i = 0; i < 8; i = i + 2) {
387 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
388 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
389 (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
390 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
391 1])) {
392 words_need++;
393 wordchanged = true;
397 if (wordchanged)
398 hdr_num++;
401 totalbytes = hdr_num + words_need * 2;
402 efuse_used = rtlefuse->efuse_usedbytes;
404 if ((totalbytes + efuse_used) >=
405 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
406 result = false;
408 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
409 "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
410 __func__, totalbytes, hdr_num, words_need, efuse_used);
412 return result;
415 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
416 u16 offset, u32 *value)
418 if (type == 1)
419 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
420 else if (type == 2)
421 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
422 else if (type == 4)
423 efuse_shadow_read_4byte(hw, offset, value);
426 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
427 u32 value)
429 if (type == 1)
430 efuse_shadow_write_1byte(hw, offset, (u8)value);
431 else if (type == 2)
432 efuse_shadow_write_2byte(hw, offset, (u16)value);
433 else if (type == 4)
434 efuse_shadow_write_4byte(hw, offset, value);
437 bool efuse_shadow_update(struct ieee80211_hw *hw)
439 struct rtl_priv *rtlpriv = rtl_priv(hw);
440 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
441 u16 i, offset, base;
442 u8 word_en = 0x0F;
443 u8 first_pg = false;
445 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
447 if (!efuse_shadow_update_chk(hw)) {
448 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
449 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
450 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
451 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
453 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
454 "efuse out of capacity!!\n");
455 return false;
457 efuse_power_switch(hw, true, true);
459 for (offset = 0; offset < 16; offset++) {
460 word_en = 0x0F;
461 base = offset * 8;
463 for (i = 0; i < 8; i++) {
464 if (first_pg) {
465 word_en &= ~(BIT(i / 2));
467 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
468 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
469 } else {
470 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
471 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
472 word_en &= ~(BIT(i / 2));
474 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
475 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
479 if (word_en != 0x0F) {
480 u8 tmpdata[8];
482 memcpy(tmpdata,
483 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
485 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
486 "U-efuse\n", tmpdata, 8);
488 if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
489 tmpdata)) {
490 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
491 "PG section(%#x) fail!!\n", offset);
492 break;
497 efuse_power_switch(hw, true, false);
498 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
500 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
501 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
502 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
504 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
505 return true;
508 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
510 struct rtl_priv *rtlpriv = rtl_priv(hw);
511 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
513 if (rtlefuse->autoload_failflag)
514 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
515 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
516 else
517 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
519 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
520 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
521 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
524 void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
526 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
528 efuse_power_switch(hw, true, true);
530 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
532 efuse_power_switch(hw, true, false);
535 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
539 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
540 u16 offset, u8 *value)
542 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
543 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
546 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
547 u16 offset, u16 *value)
549 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
551 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
552 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
555 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
556 u16 offset, u32 *value)
558 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
560 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
561 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
562 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
563 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
566 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
567 u16 offset, u8 value)
569 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
571 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
574 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
575 u16 offset, u16 value)
577 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
579 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
580 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
583 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
584 u16 offset, u32 value)
586 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
588 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
589 (u8)(value & 0x000000FF);
590 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
591 (u8)((value >> 8) & 0x0000FF);
592 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
593 (u8)((value >> 16) & 0x00FF);
594 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
595 (u8)((value >> 24) & 0xFF);
598 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
600 struct rtl_priv *rtlpriv = rtl_priv(hw);
601 u8 tmpidx = 0;
602 int result;
604 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
605 (u8)(addr & 0xff));
606 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
607 ((u8)((addr >> 8) & 0x03)) |
608 (rtl_read_byte(rtlpriv,
609 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
610 0xFC));
612 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
614 while (!(0x80 & rtl_read_byte(rtlpriv,
615 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
616 (tmpidx < 100)) {
617 tmpidx++;
620 if (tmpidx < 100) {
621 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
622 result = true;
623 } else {
624 *data = 0xff;
625 result = false;
627 return result;
630 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
632 struct rtl_priv *rtlpriv = rtl_priv(hw);
633 u8 tmpidx = 0;
635 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
636 "Addr = %x Data=%x\n", addr, data);
638 rtl_write_byte(rtlpriv,
639 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
640 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
641 (rtl_read_byte(rtlpriv,
642 rtlpriv->cfg->maps[EFUSE_CTRL] +
643 2) & 0xFC) | (u8)((addr >> 8) & 0x03));
645 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
646 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
648 while ((0x80 &
649 rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
650 (tmpidx < 100)) {
651 tmpidx++;
654 if (tmpidx < 100)
655 return true;
656 return false;
659 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
661 struct rtl_priv *rtlpriv = rtl_priv(hw);
663 efuse_power_switch(hw, false, true);
664 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
665 efuse_power_switch(hw, false, false);
668 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
669 u8 efuse_data, u8 offset, u8 *tmpdata,
670 u8 *readstate)
672 bool dataempty = true;
673 u8 hoffset;
674 u8 tmpidx;
675 u8 hworden;
676 u8 word_cnts;
678 hoffset = (efuse_data >> 4) & 0x0F;
679 hworden = efuse_data & 0x0F;
680 word_cnts = efuse_calculate_word_cnts(hworden);
682 if (hoffset == offset) {
683 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
684 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
685 &efuse_data)) {
686 tmpdata[tmpidx] = efuse_data;
687 if (efuse_data != 0xff)
688 dataempty = false;
692 if (!dataempty) {
693 *readstate = PG_STATE_DATA;
694 } else {
695 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
696 *readstate = PG_STATE_HEADER;
699 } else {
700 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
701 *readstate = PG_STATE_HEADER;
705 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
707 u8 readstate = PG_STATE_HEADER;
709 bool continual = true;
711 u8 efuse_data, word_cnts = 0;
712 u16 efuse_addr = 0;
713 u8 tmpdata[8];
715 if (!data)
716 return false;
717 if (offset > 15)
718 return false;
720 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
723 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
724 if (readstate & PG_STATE_HEADER) {
725 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
726 (efuse_data != 0xFF))
727 efuse_read_data_case1(hw, &efuse_addr,
728 efuse_data, offset,
729 tmpdata, &readstate);
730 else
731 continual = false;
732 } else if (readstate & PG_STATE_DATA) {
733 efuse_word_enable_data_read(0, tmpdata, data);
734 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
735 readstate = PG_STATE_HEADER;
739 if ((data[0] == 0xff) && (data[1] == 0xff) &&
740 (data[2] == 0xff) && (data[3] == 0xff) &&
741 (data[4] == 0xff) && (data[5] == 0xff) &&
742 (data[6] == 0xff) && (data[7] == 0xff))
743 return false;
744 return true;
747 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
748 u8 efuse_data, u8 offset,
749 int *continual, u8 *write_state,
750 struct pgpkt_struct *target_pkt,
751 int *repeat_times, int *result, u8 word_en)
753 struct rtl_priv *rtlpriv = rtl_priv(hw);
754 struct pgpkt_struct tmp_pkt;
755 int dataempty = true;
756 u8 originaldata[8 * sizeof(u8)];
757 u8 badworden = 0x0F;
758 u8 match_word_en, tmp_word_en;
759 u8 tmpindex;
760 u8 tmp_header = efuse_data;
761 u8 tmp_word_cnts;
763 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
764 tmp_pkt.word_en = tmp_header & 0x0F;
765 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
767 if (tmp_pkt.offset != target_pkt->offset) {
768 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
769 *write_state = PG_STATE_HEADER;
770 } else {
771 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
772 if (efuse_one_byte_read(hw,
773 (*efuse_addr + 1 + tmpindex),
774 &efuse_data) &&
775 (efuse_data != 0xFF))
776 dataempty = false;
779 if (!dataempty) {
780 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
781 *write_state = PG_STATE_HEADER;
782 } else {
783 match_word_en = 0x0F;
784 if (!((target_pkt->word_en & BIT(0)) |
785 (tmp_pkt.word_en & BIT(0))))
786 match_word_en &= (~BIT(0));
788 if (!((target_pkt->word_en & BIT(1)) |
789 (tmp_pkt.word_en & BIT(1))))
790 match_word_en &= (~BIT(1));
792 if (!((target_pkt->word_en & BIT(2)) |
793 (tmp_pkt.word_en & BIT(2))))
794 match_word_en &= (~BIT(2));
796 if (!((target_pkt->word_en & BIT(3)) |
797 (tmp_pkt.word_en & BIT(3))))
798 match_word_en &= (~BIT(3));
800 if ((match_word_en & 0x0F) != 0x0F) {
801 badworden =
802 enable_efuse_data_write(hw,
803 *efuse_addr + 1,
804 tmp_pkt.word_en,
805 target_pkt->data);
807 if (0x0F != (badworden & 0x0F)) {
808 u8 reorg_offset = offset;
809 u8 reorg_worden = badworden;
811 efuse_pg_packet_write(hw, reorg_offset,
812 reorg_worden,
813 originaldata);
816 tmp_word_en = 0x0F;
817 if ((target_pkt->word_en & BIT(0)) ^
818 (match_word_en & BIT(0)))
819 tmp_word_en &= (~BIT(0));
821 if ((target_pkt->word_en & BIT(1)) ^
822 (match_word_en & BIT(1)))
823 tmp_word_en &= (~BIT(1));
825 if ((target_pkt->word_en & BIT(2)) ^
826 (match_word_en & BIT(2)))
827 tmp_word_en &= (~BIT(2));
829 if ((target_pkt->word_en & BIT(3)) ^
830 (match_word_en & BIT(3)))
831 tmp_word_en &= (~BIT(3));
833 if ((tmp_word_en & 0x0F) != 0x0F) {
834 *efuse_addr =
835 efuse_get_current_size(hw);
836 target_pkt->offset = offset;
837 target_pkt->word_en = tmp_word_en;
838 } else {
839 *continual = false;
841 *write_state = PG_STATE_HEADER;
842 *repeat_times += 1;
843 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
844 *continual = false;
845 *result = false;
847 } else {
848 *efuse_addr += (2 * tmp_word_cnts) + 1;
849 target_pkt->offset = offset;
850 target_pkt->word_en = word_en;
851 *write_state = PG_STATE_HEADER;
855 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
858 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
859 int *continual, u8 *write_state,
860 struct pgpkt_struct target_pkt,
861 int *repeat_times, int *result)
863 struct rtl_priv *rtlpriv = rtl_priv(hw);
864 struct pgpkt_struct tmp_pkt;
865 u8 pg_header;
866 u8 tmp_header;
867 u8 originaldata[8 * sizeof(u8)];
868 u8 tmp_word_cnts;
869 u8 badworden = 0x0F;
871 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
872 efuse_one_byte_write(hw, *efuse_addr, pg_header);
873 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
875 if (tmp_header == pg_header) {
876 *write_state = PG_STATE_DATA;
877 } else if (tmp_header == 0xFF) {
878 *write_state = PG_STATE_HEADER;
879 *repeat_times += 1;
880 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
881 *continual = false;
882 *result = false;
884 } else {
885 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
886 tmp_pkt.word_en = tmp_header & 0x0F;
888 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
890 memset(originaldata, 0xff, 8 * sizeof(u8));
892 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
893 badworden = enable_efuse_data_write(hw,
894 *efuse_addr + 1,
895 tmp_pkt.word_en,
896 originaldata);
898 if (0x0F != (badworden & 0x0F)) {
899 u8 reorg_offset = tmp_pkt.offset;
900 u8 reorg_worden = badworden;
902 efuse_pg_packet_write(hw, reorg_offset,
903 reorg_worden,
904 originaldata);
905 *efuse_addr = efuse_get_current_size(hw);
906 } else {
907 *efuse_addr = *efuse_addr +
908 (tmp_word_cnts * 2) + 1;
910 } else {
911 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
914 *write_state = PG_STATE_HEADER;
915 *repeat_times += 1;
916 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
917 *continual = false;
918 *result = false;
921 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
922 "efuse PG_STATE_HEADER-2\n");
926 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
927 u8 offset, u8 word_en, u8 *data)
929 struct rtl_priv *rtlpriv = rtl_priv(hw);
930 struct pgpkt_struct target_pkt;
931 u8 write_state = PG_STATE_HEADER;
932 int continual = true, dataempty = true, result = true;
933 u16 efuse_addr = 0;
934 u8 efuse_data;
935 u8 target_word_cnts = 0;
936 u8 badworden = 0x0F;
937 static int repeat_times;
939 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
940 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
941 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
942 "%s error\n", __func__);
943 return false;
946 target_pkt.offset = offset;
947 target_pkt.word_en = word_en;
949 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
951 efuse_word_enable_data_read(word_en, data, target_pkt.data);
952 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
954 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
956 while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
957 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
958 if (write_state == PG_STATE_HEADER) {
959 dataempty = true;
960 badworden = 0x0F;
961 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
962 "efuse PG_STATE_HEADER\n");
964 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
965 (efuse_data != 0xFF))
966 efuse_write_data_case1(hw, &efuse_addr,
967 efuse_data, offset,
968 &continual,
969 &write_state,
970 &target_pkt,
971 &repeat_times, &result,
972 word_en);
973 else
974 efuse_write_data_case2(hw, &efuse_addr,
975 &continual,
976 &write_state,
977 target_pkt,
978 &repeat_times,
979 &result);
981 } else if (write_state == PG_STATE_DATA) {
982 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
983 "efuse PG_STATE_DATA\n");
984 badworden = 0x0f;
985 badworden =
986 enable_efuse_data_write(hw, efuse_addr + 1,
987 target_pkt.word_en,
988 target_pkt.data);
990 if ((badworden & 0x0F) == 0x0F) {
991 continual = false;
992 } else {
993 efuse_addr =
994 efuse_addr + (2 * target_word_cnts) + 1;
996 target_pkt.offset = offset;
997 target_pkt.word_en = badworden;
998 target_word_cnts =
999 efuse_calculate_word_cnts(target_pkt.word_en);
1000 write_state = PG_STATE_HEADER;
1001 repeat_times++;
1002 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1003 continual = false;
1004 result = false;
1006 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1007 "efuse PG_STATE_HEADER-3\n");
1012 if (efuse_addr >= (EFUSE_MAX_SIZE -
1013 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1014 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1015 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1018 return true;
1021 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1022 u8 *targetdata)
1024 if (!(word_en & BIT(0))) {
1025 targetdata[0] = sourdata[0];
1026 targetdata[1] = sourdata[1];
1029 if (!(word_en & BIT(1))) {
1030 targetdata[2] = sourdata[2];
1031 targetdata[3] = sourdata[3];
1034 if (!(word_en & BIT(2))) {
1035 targetdata[4] = sourdata[4];
1036 targetdata[5] = sourdata[5];
1039 if (!(word_en & BIT(3))) {
1040 targetdata[6] = sourdata[6];
1041 targetdata[7] = sourdata[7];
1045 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1046 u16 efuse_addr, u8 word_en, u8 *data)
1048 struct rtl_priv *rtlpriv = rtl_priv(hw);
1049 u16 tmpaddr;
1050 u16 start_addr = efuse_addr;
1051 u8 badworden = 0x0F;
1052 u8 tmpdata[8];
1054 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1055 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1056 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1058 if (!(word_en & BIT(0))) {
1059 tmpaddr = start_addr;
1060 efuse_one_byte_write(hw, start_addr++, data[0]);
1061 efuse_one_byte_write(hw, start_addr++, data[1]);
1063 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1064 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1065 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1066 badworden &= (~BIT(0));
1069 if (!(word_en & BIT(1))) {
1070 tmpaddr = start_addr;
1071 efuse_one_byte_write(hw, start_addr++, data[2]);
1072 efuse_one_byte_write(hw, start_addr++, data[3]);
1074 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1075 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1076 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1077 badworden &= (~BIT(1));
1080 if (!(word_en & BIT(2))) {
1081 tmpaddr = start_addr;
1082 efuse_one_byte_write(hw, start_addr++, data[4]);
1083 efuse_one_byte_write(hw, start_addr++, data[5]);
1085 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1086 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1087 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1088 badworden &= (~BIT(2));
1091 if (!(word_en & BIT(3))) {
1092 tmpaddr = start_addr;
1093 efuse_one_byte_write(hw, start_addr++, data[6]);
1094 efuse_one_byte_write(hw, start_addr++, data[7]);
1096 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1097 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1098 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1099 badworden &= (~BIT(3));
1102 return badworden;
1105 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1107 struct rtl_priv *rtlpriv = rtl_priv(hw);
1108 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1109 u8 tempval;
1110 u16 tmpv16;
1112 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1113 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1114 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1115 rtl_write_byte(rtlpriv,
1116 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1117 } else {
1118 tmpv16 =
1119 rtl_read_word(rtlpriv,
1120 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1121 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1122 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1123 rtl_write_word(rtlpriv,
1124 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1125 tmpv16);
1128 tmpv16 = rtl_read_word(rtlpriv,
1129 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1130 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1131 tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1132 rtl_write_word(rtlpriv,
1133 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1136 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1137 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1138 (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1139 tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1140 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1141 rtl_write_word(rtlpriv,
1142 rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1146 if (pwrstate) {
1147 if (write) {
1148 tempval = rtl_read_byte(rtlpriv,
1149 rtlpriv->cfg->maps[EFUSE_TEST] +
1152 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1153 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1154 tempval |= (VOLTAGE_V25 << 3);
1155 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1156 tempval &= 0x0F;
1157 tempval |= (VOLTAGE_V25 << 4);
1160 rtl_write_byte(rtlpriv,
1161 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1162 (tempval | 0x80));
1165 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1166 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1167 0x03);
1169 } else {
1170 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1171 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1172 rtl_write_byte(rtlpriv,
1173 rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1175 if (write) {
1176 tempval = rtl_read_byte(rtlpriv,
1177 rtlpriv->cfg->maps[EFUSE_TEST] +
1179 rtl_write_byte(rtlpriv,
1180 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1181 (tempval & 0x7F));
1184 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1185 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1186 0x02);
1191 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1193 int continual = true;
1194 u16 efuse_addr = 0;
1195 u8 hoffset, hworden;
1196 u8 efuse_data, word_cnts;
1198 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1199 (efuse_addr < EFUSE_MAX_SIZE)) {
1200 if (efuse_data != 0xFF) {
1201 hoffset = (efuse_data >> 4) & 0x0F;
1202 hworden = efuse_data & 0x0F;
1203 word_cnts = efuse_calculate_word_cnts(hworden);
1204 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1205 } else {
1206 continual = false;
1210 return efuse_addr;
1213 static u8 efuse_calculate_word_cnts(u8 word_en)
1215 u8 word_cnts = 0;
1217 if (!(word_en & BIT(0)))
1218 word_cnts++;
1219 if (!(word_en & BIT(1)))
1220 word_cnts++;
1221 if (!(word_en & BIT(2)))
1222 word_cnts++;
1223 if (!(word_en & BIT(3)))
1224 word_cnts++;
1225 return word_cnts;
1228 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1229 int max_size, u8 *hwinfo, int *params)
1231 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1232 struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1233 struct device *dev = &rtlpcipriv->dev.pdev->dev;
1234 u16 eeprom_id;
1235 u16 i, usvalue;
1237 switch (rtlefuse->epromtype) {
1238 case EEPROM_BOOT_EFUSE:
1239 rtl_efuse_shadow_map_update(hw);
1240 break;
1242 case EEPROM_93C46:
1243 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1244 return 1;
1246 default:
1247 dev_warn(dev, "no efuse data\n");
1248 return 1;
1251 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1253 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1254 hwinfo, max_size);
1256 eeprom_id = *((u16 *)&hwinfo[0]);
1257 if (eeprom_id != params[0]) {
1258 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1259 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1260 rtlefuse->autoload_failflag = true;
1261 } else {
1262 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1263 rtlefuse->autoload_failflag = false;
1266 if (rtlefuse->autoload_failflag)
1267 return 1;
1269 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1270 rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1271 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1272 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1273 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1274 "EEPROMId = 0x%4x\n", eeprom_id);
1275 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1276 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1277 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1278 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1279 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1280 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1281 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1282 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1284 for (i = 0; i < 6; i += 2) {
1285 usvalue = *(u16 *)&hwinfo[params[5] + i];
1286 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1288 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1290 rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1291 rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1292 rtlefuse->txpwr_fromeprom = true;
1293 rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1295 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1296 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1298 /* set channel plan to world wide 13 */
1299 rtlefuse->channel_plan = params[9];
1301 return 0;
1304 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1306 struct rtl_priv *rtlpriv = rtl_priv(hw);
1307 u8 *pu4byteptr = (u8 *)buffer;
1308 u32 i;
1310 for (i = 0; i < size; i++)
1311 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1314 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1315 u32 size)
1317 struct rtl_priv *rtlpriv = rtl_priv(hw);
1318 u8 value8;
1319 u8 u8page = (u8)(page & 0x07);
1321 value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1323 rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1324 rtl_fw_block_write(hw, buffer, size);
1327 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1329 u32 fwlen = *pfwlen;
1330 u8 remain = (u8)(fwlen % 4);
1332 remain = (remain == 0) ? 0 : (4 - remain);
1334 while (remain > 0) {
1335 pfwbuf[fwlen] = 0;
1336 fwlen++;
1337 remain--;
1340 *pfwlen = fwlen;