Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / target / target_core_transport.c
blob4558f2e1fe1bb5ae3b4907f6ba4b86cb7f1d2e3a
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static void target_complete_ok_work(struct work_struct *work);
72 int init_se_kmem_caches(void)
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
145 return 0;
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
185 * Allocate a new row index for the entry type specified
187 u32 scsi_get_new_index(scsi_index_t type)
189 u32 new_index;
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
197 return new_index;
200 void transport_subsystem_check_init(void)
202 int ret;
203 static int sub_api_initialized;
205 if (sub_api_initialized)
206 return;
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized = 1;
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 struct se_session *se_sess;
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
244 return se_sess;
246 EXPORT_SYMBOL(transport_init_session);
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
251 int rc;
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
272 return 0;
274 EXPORT_SYMBOL(transport_alloc_session_tags);
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
280 struct se_session *se_sess;
281 int rc;
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
304 return se_sess;
306 EXPORT_SYMBOL(transport_init_session_tags);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
328 if (se_nacl) {
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl->nacl_sess = se_sess;
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 EXPORT_SYMBOL(__transport_register_session);
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
379 unsigned long flags;
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 EXPORT_SYMBOL(transport_register_session);
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
395 struct se_session *sess;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
406 if (IS_ERR(sess))
407 return sess;
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
430 EXPORT_SYMBOL(target_alloc_session);
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
434 struct se_session *se_sess;
435 ssize_t len = 0;
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg->session_lock);
452 return len;
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
456 static void target_complete_nacl(struct kref *kref)
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
460 struct se_portal_group *se_tpg = nacl->se_tpg;
462 if (!nacl->dynamic_stop) {
463 complete(&nacl->acl_free_comp);
464 return;
467 mutex_lock(&se_tpg->acl_node_mutex);
468 list_del_init(&nacl->acl_list);
469 mutex_unlock(&se_tpg->acl_node_mutex);
471 core_tpg_wait_for_nacl_pr_ref(nacl);
472 core_free_device_list_for_node(nacl, se_tpg);
473 kfree(nacl);
476 void target_put_nacl(struct se_node_acl *nacl)
478 kref_put(&nacl->acl_kref, target_complete_nacl);
480 EXPORT_SYMBOL(target_put_nacl);
482 void transport_deregister_session_configfs(struct se_session *se_sess)
484 struct se_node_acl *se_nacl;
485 unsigned long flags;
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 se_nacl = se_sess->se_node_acl;
490 if (se_nacl) {
491 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
492 if (!list_empty(&se_sess->sess_acl_list))
493 list_del_init(&se_sess->sess_acl_list);
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
499 if (list_empty(&se_nacl->acl_sess_list))
500 se_nacl->nacl_sess = NULL;
501 else {
502 se_nacl->nacl_sess = container_of(
503 se_nacl->acl_sess_list.prev,
504 struct se_session, sess_acl_list);
506 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
509 EXPORT_SYMBOL(transport_deregister_session_configfs);
511 void transport_free_session(struct se_session *se_sess)
513 struct se_node_acl *se_nacl = se_sess->se_node_acl;
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
519 if (se_nacl) {
520 struct se_portal_group *se_tpg = se_nacl->se_tpg;
521 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
522 unsigned long flags;
524 se_sess->se_node_acl = NULL;
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
531 mutex_lock(&se_tpg->acl_node_mutex);
532 if (se_nacl->dynamic_node_acl &&
533 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 if (list_empty(&se_nacl->acl_sess_list))
536 se_nacl->dynamic_stop = true;
537 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
539 if (se_nacl->dynamic_stop)
540 list_del_init(&se_nacl->acl_list);
542 mutex_unlock(&se_tpg->acl_node_mutex);
544 if (se_nacl->dynamic_stop)
545 target_put_nacl(se_nacl);
547 target_put_nacl(se_nacl);
549 if (se_sess->sess_cmd_map) {
550 percpu_ida_destroy(&se_sess->sess_tag_pool);
551 kvfree(se_sess->sess_cmd_map);
553 kmem_cache_free(se_sess_cache, se_sess);
555 EXPORT_SYMBOL(transport_free_session);
557 void transport_deregister_session(struct se_session *se_sess)
559 struct se_portal_group *se_tpg = se_sess->se_tpg;
560 unsigned long flags;
562 if (!se_tpg) {
563 transport_free_session(se_sess);
564 return;
567 spin_lock_irqsave(&se_tpg->session_lock, flags);
568 list_del(&se_sess->sess_list);
569 se_sess->se_tpg = NULL;
570 se_sess->fabric_sess_ptr = NULL;
571 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg->se_tpg_tfo->get_fabric_name());
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
584 transport_free_session(se_sess);
586 EXPORT_SYMBOL(transport_deregister_session);
588 static void target_remove_from_state_list(struct se_cmd *cmd)
590 struct se_device *dev = cmd->se_dev;
591 unsigned long flags;
593 if (!dev)
594 return;
596 spin_lock_irqsave(&dev->execute_task_lock, flags);
597 if (cmd->state_active) {
598 list_del(&cmd->state_list);
599 cmd->state_active = false;
601 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
604 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 unsigned long flags;
608 target_remove_from_state_list(cmd);
611 * Clear struct se_cmd->se_lun before the handoff to FE.
613 cmd->se_lun = NULL;
615 spin_lock_irqsave(&cmd->t_state_lock, flags);
617 * Determine if frontend context caller is requesting the stopping of
618 * this command for frontend exceptions.
620 if (cmd->transport_state & CMD_T_STOP) {
621 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
622 __func__, __LINE__, cmd->tag);
624 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626 complete_all(&cmd->t_transport_stop_comp);
627 return 1;
629 cmd->transport_state &= ~CMD_T_ACTIVE;
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
633 * Some fabric modules like tcm_loop can release their internally
634 * allocated I/O reference and struct se_cmd now.
636 * Fabric modules are expected to return '1' here if the se_cmd being
637 * passed is released at this point, or zero if not being released.
639 return cmd->se_tfo->check_stop_free(cmd);
642 static void transport_lun_remove_cmd(struct se_cmd *cmd)
644 struct se_lun *lun = cmd->se_lun;
646 if (!lun)
647 return;
649 if (cmpxchg(&cmd->lun_ref_active, true, false))
650 percpu_ref_put(&lun->lun_ref);
653 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
656 int ret = 0;
658 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
659 transport_lun_remove_cmd(cmd);
661 * Allow the fabric driver to unmap any resources before
662 * releasing the descriptor via TFO->release_cmd()
664 if (remove)
665 cmd->se_tfo->aborted_task(cmd);
667 if (transport_cmd_check_stop_to_fabric(cmd))
668 return 1;
669 if (remove && ack_kref)
670 ret = target_put_sess_cmd(cmd);
672 return ret;
675 static void target_complete_failure_work(struct work_struct *work)
677 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
679 transport_generic_request_failure(cmd,
680 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
684 * Used when asking transport to copy Sense Data from the underlying
685 * Linux/SCSI struct scsi_cmnd
687 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
689 struct se_device *dev = cmd->se_dev;
691 WARN_ON(!cmd->se_lun);
693 if (!dev)
694 return NULL;
696 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
697 return NULL;
699 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
701 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
702 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
703 return cmd->sense_buffer;
706 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
708 unsigned char *cmd_sense_buf;
709 unsigned long flags;
711 spin_lock_irqsave(&cmd->t_state_lock, flags);
712 cmd_sense_buf = transport_get_sense_buffer(cmd);
713 if (!cmd_sense_buf) {
714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715 return;
718 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
719 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
720 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
724 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
726 struct se_device *dev = cmd->se_dev;
727 int success;
728 unsigned long flags;
730 cmd->scsi_status = scsi_status;
732 spin_lock_irqsave(&cmd->t_state_lock, flags);
733 switch (cmd->scsi_status) {
734 case SAM_STAT_CHECK_CONDITION:
735 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
736 success = 1;
737 else
738 success = 0;
739 break;
740 default:
741 success = 1;
742 break;
746 * Check for case where an explicit ABORT_TASK has been received
747 * and transport_wait_for_tasks() will be waiting for completion..
749 if (cmd->transport_state & CMD_T_ABORTED ||
750 cmd->transport_state & CMD_T_STOP) {
751 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
753 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
754 * release se_device->caw_sem obtained by sbc_compare_and_write()
755 * since target_complete_ok_work() or target_complete_failure_work()
756 * won't be called to invoke the normal CAW completion callbacks.
758 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
759 up(&dev->caw_sem);
761 complete_all(&cmd->t_transport_stop_comp);
762 return;
763 } else if (!success) {
764 INIT_WORK(&cmd->work, target_complete_failure_work);
765 } else {
766 INIT_WORK(&cmd->work, target_complete_ok_work);
769 cmd->t_state = TRANSPORT_COMPLETE;
770 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
771 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
773 if (cmd->se_cmd_flags & SCF_USE_CPUID)
774 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
775 else
776 queue_work(target_completion_wq, &cmd->work);
778 EXPORT_SYMBOL(target_complete_cmd);
780 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
782 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
783 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
784 cmd->residual_count += cmd->data_length - length;
785 } else {
786 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
787 cmd->residual_count = cmd->data_length - length;
790 cmd->data_length = length;
793 target_complete_cmd(cmd, scsi_status);
795 EXPORT_SYMBOL(target_complete_cmd_with_length);
797 static void target_add_to_state_list(struct se_cmd *cmd)
799 struct se_device *dev = cmd->se_dev;
800 unsigned long flags;
802 spin_lock_irqsave(&dev->execute_task_lock, flags);
803 if (!cmd->state_active) {
804 list_add_tail(&cmd->state_list, &dev->state_list);
805 cmd->state_active = true;
807 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
811 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
813 static void transport_write_pending_qf(struct se_cmd *cmd);
814 static void transport_complete_qf(struct se_cmd *cmd);
816 void target_qf_do_work(struct work_struct *work)
818 struct se_device *dev = container_of(work, struct se_device,
819 qf_work_queue);
820 LIST_HEAD(qf_cmd_list);
821 struct se_cmd *cmd, *cmd_tmp;
823 spin_lock_irq(&dev->qf_cmd_lock);
824 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
825 spin_unlock_irq(&dev->qf_cmd_lock);
827 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
828 list_del(&cmd->se_qf_node);
829 atomic_dec_mb(&dev->dev_qf_count);
831 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
832 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
833 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
834 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
835 : "UNKNOWN");
837 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
838 transport_write_pending_qf(cmd);
839 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
840 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
841 transport_complete_qf(cmd);
845 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
847 switch (cmd->data_direction) {
848 case DMA_NONE:
849 return "NONE";
850 case DMA_FROM_DEVICE:
851 return "READ";
852 case DMA_TO_DEVICE:
853 return "WRITE";
854 case DMA_BIDIRECTIONAL:
855 return "BIDI";
856 default:
857 break;
860 return "UNKNOWN";
863 void transport_dump_dev_state(
864 struct se_device *dev,
865 char *b,
866 int *bl)
868 *bl += sprintf(b + *bl, "Status: ");
869 if (dev->export_count)
870 *bl += sprintf(b + *bl, "ACTIVATED");
871 else
872 *bl += sprintf(b + *bl, "DEACTIVATED");
874 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
875 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
876 dev->dev_attrib.block_size,
877 dev->dev_attrib.hw_max_sectors);
878 *bl += sprintf(b + *bl, " ");
881 void transport_dump_vpd_proto_id(
882 struct t10_vpd *vpd,
883 unsigned char *p_buf,
884 int p_buf_len)
886 unsigned char buf[VPD_TMP_BUF_SIZE];
887 int len;
889 memset(buf, 0, VPD_TMP_BUF_SIZE);
890 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
892 switch (vpd->protocol_identifier) {
893 case 0x00:
894 sprintf(buf+len, "Fibre Channel\n");
895 break;
896 case 0x10:
897 sprintf(buf+len, "Parallel SCSI\n");
898 break;
899 case 0x20:
900 sprintf(buf+len, "SSA\n");
901 break;
902 case 0x30:
903 sprintf(buf+len, "IEEE 1394\n");
904 break;
905 case 0x40:
906 sprintf(buf+len, "SCSI Remote Direct Memory Access"
907 " Protocol\n");
908 break;
909 case 0x50:
910 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
911 break;
912 case 0x60:
913 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
914 break;
915 case 0x70:
916 sprintf(buf+len, "Automation/Drive Interface Transport"
917 " Protocol\n");
918 break;
919 case 0x80:
920 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
921 break;
922 default:
923 sprintf(buf+len, "Unknown 0x%02x\n",
924 vpd->protocol_identifier);
925 break;
928 if (p_buf)
929 strncpy(p_buf, buf, p_buf_len);
930 else
931 pr_debug("%s", buf);
934 void
935 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
938 * Check if the Protocol Identifier Valid (PIV) bit is set..
940 * from spc3r23.pdf section 7.5.1
942 if (page_83[1] & 0x80) {
943 vpd->protocol_identifier = (page_83[0] & 0xf0);
944 vpd->protocol_identifier_set = 1;
945 transport_dump_vpd_proto_id(vpd, NULL, 0);
948 EXPORT_SYMBOL(transport_set_vpd_proto_id);
950 int transport_dump_vpd_assoc(
951 struct t10_vpd *vpd,
952 unsigned char *p_buf,
953 int p_buf_len)
955 unsigned char buf[VPD_TMP_BUF_SIZE];
956 int ret = 0;
957 int len;
959 memset(buf, 0, VPD_TMP_BUF_SIZE);
960 len = sprintf(buf, "T10 VPD Identifier Association: ");
962 switch (vpd->association) {
963 case 0x00:
964 sprintf(buf+len, "addressed logical unit\n");
965 break;
966 case 0x10:
967 sprintf(buf+len, "target port\n");
968 break;
969 case 0x20:
970 sprintf(buf+len, "SCSI target device\n");
971 break;
972 default:
973 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
974 ret = -EINVAL;
975 break;
978 if (p_buf)
979 strncpy(p_buf, buf, p_buf_len);
980 else
981 pr_debug("%s", buf);
983 return ret;
986 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
989 * The VPD identification association..
991 * from spc3r23.pdf Section 7.6.3.1 Table 297
993 vpd->association = (page_83[1] & 0x30);
994 return transport_dump_vpd_assoc(vpd, NULL, 0);
996 EXPORT_SYMBOL(transport_set_vpd_assoc);
998 int transport_dump_vpd_ident_type(
999 struct t10_vpd *vpd,
1000 unsigned char *p_buf,
1001 int p_buf_len)
1003 unsigned char buf[VPD_TMP_BUF_SIZE];
1004 int ret = 0;
1005 int len;
1007 memset(buf, 0, VPD_TMP_BUF_SIZE);
1008 len = sprintf(buf, "T10 VPD Identifier Type: ");
1010 switch (vpd->device_identifier_type) {
1011 case 0x00:
1012 sprintf(buf+len, "Vendor specific\n");
1013 break;
1014 case 0x01:
1015 sprintf(buf+len, "T10 Vendor ID based\n");
1016 break;
1017 case 0x02:
1018 sprintf(buf+len, "EUI-64 based\n");
1019 break;
1020 case 0x03:
1021 sprintf(buf+len, "NAA\n");
1022 break;
1023 case 0x04:
1024 sprintf(buf+len, "Relative target port identifier\n");
1025 break;
1026 case 0x08:
1027 sprintf(buf+len, "SCSI name string\n");
1028 break;
1029 default:
1030 sprintf(buf+len, "Unsupported: 0x%02x\n",
1031 vpd->device_identifier_type);
1032 ret = -EINVAL;
1033 break;
1036 if (p_buf) {
1037 if (p_buf_len < strlen(buf)+1)
1038 return -EINVAL;
1039 strncpy(p_buf, buf, p_buf_len);
1040 } else {
1041 pr_debug("%s", buf);
1044 return ret;
1047 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1050 * The VPD identifier type..
1052 * from spc3r23.pdf Section 7.6.3.1 Table 298
1054 vpd->device_identifier_type = (page_83[1] & 0x0f);
1055 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1057 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1059 int transport_dump_vpd_ident(
1060 struct t10_vpd *vpd,
1061 unsigned char *p_buf,
1062 int p_buf_len)
1064 unsigned char buf[VPD_TMP_BUF_SIZE];
1065 int ret = 0;
1067 memset(buf, 0, VPD_TMP_BUF_SIZE);
1069 switch (vpd->device_identifier_code_set) {
1070 case 0x01: /* Binary */
1071 snprintf(buf, sizeof(buf),
1072 "T10 VPD Binary Device Identifier: %s\n",
1073 &vpd->device_identifier[0]);
1074 break;
1075 case 0x02: /* ASCII */
1076 snprintf(buf, sizeof(buf),
1077 "T10 VPD ASCII Device Identifier: %s\n",
1078 &vpd->device_identifier[0]);
1079 break;
1080 case 0x03: /* UTF-8 */
1081 snprintf(buf, sizeof(buf),
1082 "T10 VPD UTF-8 Device Identifier: %s\n",
1083 &vpd->device_identifier[0]);
1084 break;
1085 default:
1086 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1087 " 0x%02x", vpd->device_identifier_code_set);
1088 ret = -EINVAL;
1089 break;
1092 if (p_buf)
1093 strncpy(p_buf, buf, p_buf_len);
1094 else
1095 pr_debug("%s", buf);
1097 return ret;
1101 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1103 static const char hex_str[] = "0123456789abcdef";
1104 int j = 0, i = 4; /* offset to start of the identifier */
1107 * The VPD Code Set (encoding)
1109 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1112 switch (vpd->device_identifier_code_set) {
1113 case 0x01: /* Binary */
1114 vpd->device_identifier[j++] =
1115 hex_str[vpd->device_identifier_type];
1116 while (i < (4 + page_83[3])) {
1117 vpd->device_identifier[j++] =
1118 hex_str[(page_83[i] & 0xf0) >> 4];
1119 vpd->device_identifier[j++] =
1120 hex_str[page_83[i] & 0x0f];
1121 i++;
1123 break;
1124 case 0x02: /* ASCII */
1125 case 0x03: /* UTF-8 */
1126 while (i < (4 + page_83[3]))
1127 vpd->device_identifier[j++] = page_83[i++];
1128 break;
1129 default:
1130 break;
1133 return transport_dump_vpd_ident(vpd, NULL, 0);
1135 EXPORT_SYMBOL(transport_set_vpd_ident);
1137 static sense_reason_t
1138 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1139 unsigned int size)
1141 u32 mtl;
1143 if (!cmd->se_tfo->max_data_sg_nents)
1144 return TCM_NO_SENSE;
1146 * Check if fabric enforced maximum SGL entries per I/O descriptor
1147 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1148 * residual_count and reduce original cmd->data_length to maximum
1149 * length based on single PAGE_SIZE entry scatter-lists.
1151 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1152 if (cmd->data_length > mtl) {
1154 * If an existing CDB overflow is present, calculate new residual
1155 * based on CDB size minus fabric maximum transfer length.
1157 * If an existing CDB underflow is present, calculate new residual
1158 * based on original cmd->data_length minus fabric maximum transfer
1159 * length.
1161 * Otherwise, set the underflow residual based on cmd->data_length
1162 * minus fabric maximum transfer length.
1164 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1165 cmd->residual_count = (size - mtl);
1166 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1167 u32 orig_dl = size + cmd->residual_count;
1168 cmd->residual_count = (orig_dl - mtl);
1169 } else {
1170 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1171 cmd->residual_count = (cmd->data_length - mtl);
1173 cmd->data_length = mtl;
1175 * Reset sbc_check_prot() calculated protection payload
1176 * length based upon the new smaller MTL.
1178 if (cmd->prot_length) {
1179 u32 sectors = (mtl / dev->dev_attrib.block_size);
1180 cmd->prot_length = dev->prot_length * sectors;
1183 return TCM_NO_SENSE;
1186 sense_reason_t
1187 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1189 struct se_device *dev = cmd->se_dev;
1191 if (cmd->unknown_data_length) {
1192 cmd->data_length = size;
1193 } else if (size != cmd->data_length) {
1194 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1195 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1196 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1197 cmd->data_length, size, cmd->t_task_cdb[0]);
1199 if (cmd->data_direction == DMA_TO_DEVICE) {
1200 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1201 pr_err_ratelimited("Rejecting underflow/overflow"
1202 " for WRITE data CDB\n");
1203 return TCM_INVALID_CDB_FIELD;
1206 * Some fabric drivers like iscsi-target still expect to
1207 * always reject overflow writes. Reject this case until
1208 * full fabric driver level support for overflow writes
1209 * is introduced tree-wide.
1211 if (size > cmd->data_length) {
1212 pr_err_ratelimited("Rejecting overflow for"
1213 " WRITE control CDB\n");
1214 return TCM_INVALID_CDB_FIELD;
1218 * Reject READ_* or WRITE_* with overflow/underflow for
1219 * type SCF_SCSI_DATA_CDB.
1221 if (dev->dev_attrib.block_size != 512) {
1222 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1223 " CDB on non 512-byte sector setup subsystem"
1224 " plugin: %s\n", dev->transport->name);
1225 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1226 return TCM_INVALID_CDB_FIELD;
1229 * For the overflow case keep the existing fabric provided
1230 * ->data_length. Otherwise for the underflow case, reset
1231 * ->data_length to the smaller SCSI expected data transfer
1232 * length.
1234 if (size > cmd->data_length) {
1235 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1236 cmd->residual_count = (size - cmd->data_length);
1237 } else {
1238 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1239 cmd->residual_count = (cmd->data_length - size);
1240 cmd->data_length = size;
1244 return target_check_max_data_sg_nents(cmd, dev, size);
1249 * Used by fabric modules containing a local struct se_cmd within their
1250 * fabric dependent per I/O descriptor.
1252 * Preserves the value of @cmd->tag.
1254 void transport_init_se_cmd(
1255 struct se_cmd *cmd,
1256 const struct target_core_fabric_ops *tfo,
1257 struct se_session *se_sess,
1258 u32 data_length,
1259 int data_direction,
1260 int task_attr,
1261 unsigned char *sense_buffer)
1263 INIT_LIST_HEAD(&cmd->se_delayed_node);
1264 INIT_LIST_HEAD(&cmd->se_qf_node);
1265 INIT_LIST_HEAD(&cmd->se_cmd_list);
1266 INIT_LIST_HEAD(&cmd->state_list);
1267 init_completion(&cmd->t_transport_stop_comp);
1268 init_completion(&cmd->cmd_wait_comp);
1269 spin_lock_init(&cmd->t_state_lock);
1270 INIT_WORK(&cmd->work, NULL);
1271 kref_init(&cmd->cmd_kref);
1273 cmd->se_tfo = tfo;
1274 cmd->se_sess = se_sess;
1275 cmd->data_length = data_length;
1276 cmd->data_direction = data_direction;
1277 cmd->sam_task_attr = task_attr;
1278 cmd->sense_buffer = sense_buffer;
1280 cmd->state_active = false;
1282 EXPORT_SYMBOL(transport_init_se_cmd);
1284 static sense_reason_t
1285 transport_check_alloc_task_attr(struct se_cmd *cmd)
1287 struct se_device *dev = cmd->se_dev;
1290 * Check if SAM Task Attribute emulation is enabled for this
1291 * struct se_device storage object
1293 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1294 return 0;
1296 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1297 pr_debug("SAM Task Attribute ACA"
1298 " emulation is not supported\n");
1299 return TCM_INVALID_CDB_FIELD;
1302 return 0;
1305 sense_reason_t
1306 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1308 struct se_device *dev = cmd->se_dev;
1309 sense_reason_t ret;
1312 * Ensure that the received CDB is less than the max (252 + 8) bytes
1313 * for VARIABLE_LENGTH_CMD
1315 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1316 pr_err("Received SCSI CDB with command_size: %d that"
1317 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1318 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1319 return TCM_INVALID_CDB_FIELD;
1322 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1323 * allocate the additional extended CDB buffer now.. Otherwise
1324 * setup the pointer from __t_task_cdb to t_task_cdb.
1326 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1327 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1328 GFP_KERNEL);
1329 if (!cmd->t_task_cdb) {
1330 pr_err("Unable to allocate cmd->t_task_cdb"
1331 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1332 scsi_command_size(cdb),
1333 (unsigned long)sizeof(cmd->__t_task_cdb));
1334 return TCM_OUT_OF_RESOURCES;
1336 } else
1337 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1339 * Copy the original CDB into cmd->
1341 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1343 trace_target_sequencer_start(cmd);
1345 ret = dev->transport->parse_cdb(cmd);
1346 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1347 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1348 cmd->se_tfo->get_fabric_name(),
1349 cmd->se_sess->se_node_acl->initiatorname,
1350 cmd->t_task_cdb[0]);
1351 if (ret)
1352 return ret;
1354 ret = transport_check_alloc_task_attr(cmd);
1355 if (ret)
1356 return ret;
1358 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1359 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1360 return 0;
1362 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365 * Used by fabric module frontends to queue tasks directly.
1366 * May only be used from process context.
1368 int transport_handle_cdb_direct(
1369 struct se_cmd *cmd)
1371 sense_reason_t ret;
1373 if (!cmd->se_lun) {
1374 dump_stack();
1375 pr_err("cmd->se_lun is NULL\n");
1376 return -EINVAL;
1378 if (in_interrupt()) {
1379 dump_stack();
1380 pr_err("transport_generic_handle_cdb cannot be called"
1381 " from interrupt context\n");
1382 return -EINVAL;
1385 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1386 * outstanding descriptors are handled correctly during shutdown via
1387 * transport_wait_for_tasks()
1389 * Also, we don't take cmd->t_state_lock here as we only expect
1390 * this to be called for initial descriptor submission.
1392 cmd->t_state = TRANSPORT_NEW_CMD;
1393 cmd->transport_state |= CMD_T_ACTIVE;
1396 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1397 * so follow TRANSPORT_NEW_CMD processing thread context usage
1398 * and call transport_generic_request_failure() if necessary..
1400 ret = transport_generic_new_cmd(cmd);
1401 if (ret)
1402 transport_generic_request_failure(cmd, ret);
1403 return 0;
1405 EXPORT_SYMBOL(transport_handle_cdb_direct);
1407 sense_reason_t
1408 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1409 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1411 if (!sgl || !sgl_count)
1412 return 0;
1415 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1416 * scatterlists already have been set to follow what the fabric
1417 * passes for the original expected data transfer length.
1419 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1420 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1421 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1422 return TCM_INVALID_CDB_FIELD;
1425 cmd->t_data_sg = sgl;
1426 cmd->t_data_nents = sgl_count;
1427 cmd->t_bidi_data_sg = sgl_bidi;
1428 cmd->t_bidi_data_nents = sgl_bidi_count;
1430 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1431 return 0;
1435 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1436 * se_cmd + use pre-allocated SGL memory.
1438 * @se_cmd: command descriptor to submit
1439 * @se_sess: associated se_sess for endpoint
1440 * @cdb: pointer to SCSI CDB
1441 * @sense: pointer to SCSI sense buffer
1442 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1443 * @data_length: fabric expected data transfer length
1444 * @task_addr: SAM task attribute
1445 * @data_dir: DMA data direction
1446 * @flags: flags for command submission from target_sc_flags_tables
1447 * @sgl: struct scatterlist memory for unidirectional mapping
1448 * @sgl_count: scatterlist count for unidirectional mapping
1449 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1450 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1451 * @sgl_prot: struct scatterlist memory protection information
1452 * @sgl_prot_count: scatterlist count for protection information
1454 * Task tags are supported if the caller has set @se_cmd->tag.
1456 * Returns non zero to signal active I/O shutdown failure. All other
1457 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458 * but still return zero here.
1460 * This may only be called from process context, and also currently
1461 * assumes internal allocation of fabric payload buffer by target-core.
1463 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1464 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1465 u32 data_length, int task_attr, int data_dir, int flags,
1466 struct scatterlist *sgl, u32 sgl_count,
1467 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1468 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1470 struct se_portal_group *se_tpg;
1471 sense_reason_t rc;
1472 int ret;
1474 se_tpg = se_sess->se_tpg;
1475 BUG_ON(!se_tpg);
1476 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1477 BUG_ON(in_interrupt());
1479 * Initialize se_cmd for target operation. From this point
1480 * exceptions are handled by sending exception status via
1481 * target_core_fabric_ops->queue_status() callback
1483 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1484 data_length, data_dir, task_attr, sense);
1486 if (flags & TARGET_SCF_USE_CPUID)
1487 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1488 else
1489 se_cmd->cpuid = WORK_CPU_UNBOUND;
1491 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1492 se_cmd->unknown_data_length = 1;
1494 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1495 * se_sess->sess_cmd_list. A second kref_get here is necessary
1496 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1497 * kref_put() to happen during fabric packet acknowledgement.
1499 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1500 if (ret)
1501 return ret;
1503 * Signal bidirectional data payloads to target-core
1505 if (flags & TARGET_SCF_BIDI_OP)
1506 se_cmd->se_cmd_flags |= SCF_BIDI;
1508 * Locate se_lun pointer and attach it to struct se_cmd
1510 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1511 if (rc) {
1512 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1513 target_put_sess_cmd(se_cmd);
1514 return 0;
1517 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1518 if (rc != 0) {
1519 transport_generic_request_failure(se_cmd, rc);
1520 return 0;
1524 * Save pointers for SGLs containing protection information,
1525 * if present.
1527 if (sgl_prot_count) {
1528 se_cmd->t_prot_sg = sgl_prot;
1529 se_cmd->t_prot_nents = sgl_prot_count;
1530 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1534 * When a non zero sgl_count has been passed perform SGL passthrough
1535 * mapping for pre-allocated fabric memory instead of having target
1536 * core perform an internal SGL allocation..
1538 if (sgl_count != 0) {
1539 BUG_ON(!sgl);
1542 * A work-around for tcm_loop as some userspace code via
1543 * scsi-generic do not memset their associated read buffers,
1544 * so go ahead and do that here for type non-data CDBs. Also
1545 * note that this is currently guaranteed to be a single SGL
1546 * for this case by target core in target_setup_cmd_from_cdb()
1547 * -> transport_generic_cmd_sequencer().
1549 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1550 se_cmd->data_direction == DMA_FROM_DEVICE) {
1551 unsigned char *buf = NULL;
1553 if (sgl)
1554 buf = kmap(sg_page(sgl)) + sgl->offset;
1556 if (buf) {
1557 memset(buf, 0, sgl->length);
1558 kunmap(sg_page(sgl));
1562 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1563 sgl_bidi, sgl_bidi_count);
1564 if (rc != 0) {
1565 transport_generic_request_failure(se_cmd, rc);
1566 return 0;
1571 * Check if we need to delay processing because of ALUA
1572 * Active/NonOptimized primary access state..
1574 core_alua_check_nonop_delay(se_cmd);
1576 transport_handle_cdb_direct(se_cmd);
1577 return 0;
1579 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1582 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1584 * @se_cmd: command descriptor to submit
1585 * @se_sess: associated se_sess for endpoint
1586 * @cdb: pointer to SCSI CDB
1587 * @sense: pointer to SCSI sense buffer
1588 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1589 * @data_length: fabric expected data transfer length
1590 * @task_addr: SAM task attribute
1591 * @data_dir: DMA data direction
1592 * @flags: flags for command submission from target_sc_flags_tables
1594 * Task tags are supported if the caller has set @se_cmd->tag.
1596 * Returns non zero to signal active I/O shutdown failure. All other
1597 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1598 * but still return zero here.
1600 * This may only be called from process context, and also currently
1601 * assumes internal allocation of fabric payload buffer by target-core.
1603 * It also assumes interal target core SGL memory allocation.
1605 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1606 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1607 u32 data_length, int task_attr, int data_dir, int flags)
1609 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1610 unpacked_lun, data_length, task_attr, data_dir,
1611 flags, NULL, 0, NULL, 0, NULL, 0);
1613 EXPORT_SYMBOL(target_submit_cmd);
1615 static void target_complete_tmr_failure(struct work_struct *work)
1617 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1619 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1620 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1622 transport_lun_remove_cmd(se_cmd);
1623 transport_cmd_check_stop_to_fabric(se_cmd);
1626 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1627 u64 *unpacked_lun)
1629 struct se_cmd *se_cmd;
1630 unsigned long flags;
1631 bool ret = false;
1633 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1634 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1635 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1636 continue;
1638 if (se_cmd->tag == tag) {
1639 *unpacked_lun = se_cmd->orig_fe_lun;
1640 ret = true;
1641 break;
1644 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1646 return ret;
1650 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1651 * for TMR CDBs
1653 * @se_cmd: command descriptor to submit
1654 * @se_sess: associated se_sess for endpoint
1655 * @sense: pointer to SCSI sense buffer
1656 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1657 * @fabric_context: fabric context for TMR req
1658 * @tm_type: Type of TM request
1659 * @gfp: gfp type for caller
1660 * @tag: referenced task tag for TMR_ABORT_TASK
1661 * @flags: submit cmd flags
1663 * Callable from all contexts.
1666 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1667 unsigned char *sense, u64 unpacked_lun,
1668 void *fabric_tmr_ptr, unsigned char tm_type,
1669 gfp_t gfp, u64 tag, int flags)
1671 struct se_portal_group *se_tpg;
1672 int ret;
1674 se_tpg = se_sess->se_tpg;
1675 BUG_ON(!se_tpg);
1677 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1678 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1680 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1681 * allocation failure.
1683 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1684 if (ret < 0)
1685 return -ENOMEM;
1687 if (tm_type == TMR_ABORT_TASK)
1688 se_cmd->se_tmr_req->ref_task_tag = tag;
1690 /* See target_submit_cmd for commentary */
1691 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1692 if (ret) {
1693 core_tmr_release_req(se_cmd->se_tmr_req);
1694 return ret;
1697 * If this is ABORT_TASK with no explicit fabric provided LUN,
1698 * go ahead and search active session tags for a match to figure
1699 * out unpacked_lun for the original se_cmd.
1701 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1702 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1703 goto failure;
1706 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1707 if (ret)
1708 goto failure;
1710 transport_generic_handle_tmr(se_cmd);
1711 return 0;
1714 * For callback during failure handling, push this work off
1715 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1717 failure:
1718 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1719 schedule_work(&se_cmd->work);
1720 return 0;
1722 EXPORT_SYMBOL(target_submit_tmr);
1725 * Handle SAM-esque emulation for generic transport request failures.
1727 void transport_generic_request_failure(struct se_cmd *cmd,
1728 sense_reason_t sense_reason)
1730 int ret = 0, post_ret = 0;
1732 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1733 sense_reason);
1734 target_show_cmd("-----[ ", cmd);
1737 * For SAM Task Attribute emulation for failed struct se_cmd
1739 transport_complete_task_attr(cmd);
1742 * Handle special case for COMPARE_AND_WRITE failure, where the
1743 * callback is expected to drop the per device ->caw_sem.
1745 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1746 cmd->transport_complete_callback)
1747 cmd->transport_complete_callback(cmd, false, &post_ret);
1749 if (transport_check_aborted_status(cmd, 1))
1750 return;
1752 switch (sense_reason) {
1753 case TCM_NON_EXISTENT_LUN:
1754 case TCM_UNSUPPORTED_SCSI_OPCODE:
1755 case TCM_INVALID_CDB_FIELD:
1756 case TCM_INVALID_PARAMETER_LIST:
1757 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1758 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1759 case TCM_UNKNOWN_MODE_PAGE:
1760 case TCM_WRITE_PROTECTED:
1761 case TCM_ADDRESS_OUT_OF_RANGE:
1762 case TCM_CHECK_CONDITION_ABORT_CMD:
1763 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1764 case TCM_CHECK_CONDITION_NOT_READY:
1765 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1766 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1767 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1768 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1769 case TCM_TOO_MANY_TARGET_DESCS:
1770 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1771 case TCM_TOO_MANY_SEGMENT_DESCS:
1772 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1773 break;
1774 case TCM_OUT_OF_RESOURCES:
1775 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1776 goto queue_status;
1777 case TCM_LUN_BUSY:
1778 cmd->scsi_status = SAM_STAT_BUSY;
1779 goto queue_status;
1780 case TCM_RESERVATION_CONFLICT:
1782 * No SENSE Data payload for this case, set SCSI Status
1783 * and queue the response to $FABRIC_MOD.
1785 * Uses linux/include/scsi/scsi.h SAM status codes defs
1787 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1789 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1790 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1791 * CONFLICT STATUS.
1793 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1795 if (cmd->se_sess &&
1796 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1797 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1798 cmd->orig_fe_lun, 0x2C,
1799 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1802 goto queue_status;
1803 default:
1804 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1805 cmd->t_task_cdb[0], sense_reason);
1806 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1807 break;
1810 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1811 if (ret)
1812 goto queue_full;
1814 check_stop:
1815 transport_lun_remove_cmd(cmd);
1816 transport_cmd_check_stop_to_fabric(cmd);
1817 return;
1819 queue_status:
1820 trace_target_cmd_complete(cmd);
1821 ret = cmd->se_tfo->queue_status(cmd);
1822 if (!ret)
1823 goto check_stop;
1824 queue_full:
1825 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1827 EXPORT_SYMBOL(transport_generic_request_failure);
1829 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1831 sense_reason_t ret;
1833 if (!cmd->execute_cmd) {
1834 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1835 goto err;
1837 if (do_checks) {
1839 * Check for an existing UNIT ATTENTION condition after
1840 * target_handle_task_attr() has done SAM task attr
1841 * checking, and possibly have already defered execution
1842 * out to target_restart_delayed_cmds() context.
1844 ret = target_scsi3_ua_check(cmd);
1845 if (ret)
1846 goto err;
1848 ret = target_alua_state_check(cmd);
1849 if (ret)
1850 goto err;
1852 ret = target_check_reservation(cmd);
1853 if (ret) {
1854 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1855 goto err;
1859 ret = cmd->execute_cmd(cmd);
1860 if (!ret)
1861 return;
1862 err:
1863 spin_lock_irq(&cmd->t_state_lock);
1864 cmd->transport_state &= ~CMD_T_SENT;
1865 spin_unlock_irq(&cmd->t_state_lock);
1867 transport_generic_request_failure(cmd, ret);
1870 static int target_write_prot_action(struct se_cmd *cmd)
1872 u32 sectors;
1874 * Perform WRITE_INSERT of PI using software emulation when backend
1875 * device has PI enabled, if the transport has not already generated
1876 * PI using hardware WRITE_INSERT offload.
1878 switch (cmd->prot_op) {
1879 case TARGET_PROT_DOUT_INSERT:
1880 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1881 sbc_dif_generate(cmd);
1882 break;
1883 case TARGET_PROT_DOUT_STRIP:
1884 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1885 break;
1887 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1888 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1889 sectors, 0, cmd->t_prot_sg, 0);
1890 if (unlikely(cmd->pi_err)) {
1891 spin_lock_irq(&cmd->t_state_lock);
1892 cmd->transport_state &= ~CMD_T_SENT;
1893 spin_unlock_irq(&cmd->t_state_lock);
1894 transport_generic_request_failure(cmd, cmd->pi_err);
1895 return -1;
1897 break;
1898 default:
1899 break;
1902 return 0;
1905 static bool target_handle_task_attr(struct se_cmd *cmd)
1907 struct se_device *dev = cmd->se_dev;
1909 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1910 return false;
1912 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1915 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1916 * to allow the passed struct se_cmd list of tasks to the front of the list.
1918 switch (cmd->sam_task_attr) {
1919 case TCM_HEAD_TAG:
1920 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1921 cmd->t_task_cdb[0]);
1922 return false;
1923 case TCM_ORDERED_TAG:
1924 atomic_inc_mb(&dev->dev_ordered_sync);
1926 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1927 cmd->t_task_cdb[0]);
1930 * Execute an ORDERED command if no other older commands
1931 * exist that need to be completed first.
1933 if (!atomic_read(&dev->simple_cmds))
1934 return false;
1935 break;
1936 default:
1938 * For SIMPLE and UNTAGGED Task Attribute commands
1940 atomic_inc_mb(&dev->simple_cmds);
1941 break;
1944 if (atomic_read(&dev->dev_ordered_sync) == 0)
1945 return false;
1947 spin_lock(&dev->delayed_cmd_lock);
1948 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1949 spin_unlock(&dev->delayed_cmd_lock);
1951 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1952 cmd->t_task_cdb[0], cmd->sam_task_attr);
1953 return true;
1956 static int __transport_check_aborted_status(struct se_cmd *, int);
1958 void target_execute_cmd(struct se_cmd *cmd)
1961 * Determine if frontend context caller is requesting the stopping of
1962 * this command for frontend exceptions.
1964 * If the received CDB has aleady been aborted stop processing it here.
1966 spin_lock_irq(&cmd->t_state_lock);
1967 if (__transport_check_aborted_status(cmd, 1)) {
1968 spin_unlock_irq(&cmd->t_state_lock);
1969 return;
1971 if (cmd->transport_state & CMD_T_STOP) {
1972 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1973 __func__, __LINE__, cmd->tag);
1975 spin_unlock_irq(&cmd->t_state_lock);
1976 complete_all(&cmd->t_transport_stop_comp);
1977 return;
1980 cmd->t_state = TRANSPORT_PROCESSING;
1981 cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1982 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1983 spin_unlock_irq(&cmd->t_state_lock);
1985 if (target_write_prot_action(cmd))
1986 return;
1988 if (target_handle_task_attr(cmd)) {
1989 spin_lock_irq(&cmd->t_state_lock);
1990 cmd->transport_state &= ~CMD_T_SENT;
1991 spin_unlock_irq(&cmd->t_state_lock);
1992 return;
1995 __target_execute_cmd(cmd, true);
1997 EXPORT_SYMBOL(target_execute_cmd);
2000 * Process all commands up to the last received ORDERED task attribute which
2001 * requires another blocking boundary
2003 static void target_restart_delayed_cmds(struct se_device *dev)
2005 for (;;) {
2006 struct se_cmd *cmd;
2008 spin_lock(&dev->delayed_cmd_lock);
2009 if (list_empty(&dev->delayed_cmd_list)) {
2010 spin_unlock(&dev->delayed_cmd_lock);
2011 break;
2014 cmd = list_entry(dev->delayed_cmd_list.next,
2015 struct se_cmd, se_delayed_node);
2016 list_del(&cmd->se_delayed_node);
2017 spin_unlock(&dev->delayed_cmd_lock);
2019 cmd->transport_state |= CMD_T_SENT;
2021 __target_execute_cmd(cmd, true);
2023 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2024 break;
2029 * Called from I/O completion to determine which dormant/delayed
2030 * and ordered cmds need to have their tasks added to the execution queue.
2032 static void transport_complete_task_attr(struct se_cmd *cmd)
2034 struct se_device *dev = cmd->se_dev;
2036 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2037 return;
2039 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2040 goto restart;
2042 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2043 atomic_dec_mb(&dev->simple_cmds);
2044 dev->dev_cur_ordered_id++;
2045 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2046 dev->dev_cur_ordered_id++;
2047 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2048 dev->dev_cur_ordered_id);
2049 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2050 atomic_dec_mb(&dev->dev_ordered_sync);
2052 dev->dev_cur_ordered_id++;
2053 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2054 dev->dev_cur_ordered_id);
2056 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2058 restart:
2059 target_restart_delayed_cmds(dev);
2062 static void transport_complete_qf(struct se_cmd *cmd)
2064 int ret = 0;
2066 transport_complete_task_attr(cmd);
2068 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2069 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2070 * the same callbacks should not be retried. Return CHECK_CONDITION
2071 * if a scsi_status is not already set.
2073 * If a fabric driver ->queue_status() has returned non zero, always
2074 * keep retrying no matter what..
2076 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2077 if (cmd->scsi_status)
2078 goto queue_status;
2080 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2081 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2082 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2083 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2084 goto queue_status;
2087 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2088 goto queue_status;
2090 switch (cmd->data_direction) {
2091 case DMA_FROM_DEVICE:
2092 if (cmd->scsi_status)
2093 goto queue_status;
2095 trace_target_cmd_complete(cmd);
2096 ret = cmd->se_tfo->queue_data_in(cmd);
2097 break;
2098 case DMA_TO_DEVICE:
2099 if (cmd->se_cmd_flags & SCF_BIDI) {
2100 ret = cmd->se_tfo->queue_data_in(cmd);
2101 break;
2103 /* fall through */
2104 case DMA_NONE:
2105 queue_status:
2106 trace_target_cmd_complete(cmd);
2107 ret = cmd->se_tfo->queue_status(cmd);
2108 break;
2109 default:
2110 break;
2113 if (ret < 0) {
2114 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2115 return;
2117 transport_lun_remove_cmd(cmd);
2118 transport_cmd_check_stop_to_fabric(cmd);
2121 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2122 int err, bool write_pending)
2125 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2126 * ->queue_data_in() callbacks from new process context.
2128 * Otherwise for other errors, transport_complete_qf() will send
2129 * CHECK_CONDITION via ->queue_status() instead of attempting to
2130 * retry associated fabric driver data-transfer callbacks.
2132 if (err == -EAGAIN || err == -ENOMEM) {
2133 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2134 TRANSPORT_COMPLETE_QF_OK;
2135 } else {
2136 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2137 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2140 spin_lock_irq(&dev->qf_cmd_lock);
2141 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2142 atomic_inc_mb(&dev->dev_qf_count);
2143 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2145 schedule_work(&cmd->se_dev->qf_work_queue);
2148 static bool target_read_prot_action(struct se_cmd *cmd)
2150 switch (cmd->prot_op) {
2151 case TARGET_PROT_DIN_STRIP:
2152 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2153 u32 sectors = cmd->data_length >>
2154 ilog2(cmd->se_dev->dev_attrib.block_size);
2156 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2157 sectors, 0, cmd->t_prot_sg,
2159 if (cmd->pi_err)
2160 return true;
2162 break;
2163 case TARGET_PROT_DIN_INSERT:
2164 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2165 break;
2167 sbc_dif_generate(cmd);
2168 break;
2169 default:
2170 break;
2173 return false;
2176 static void target_complete_ok_work(struct work_struct *work)
2178 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2179 int ret;
2182 * Check if we need to move delayed/dormant tasks from cmds on the
2183 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2184 * Attribute.
2186 transport_complete_task_attr(cmd);
2189 * Check to schedule QUEUE_FULL work, or execute an existing
2190 * cmd->transport_qf_callback()
2192 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2193 schedule_work(&cmd->se_dev->qf_work_queue);
2196 * Check if we need to send a sense buffer from
2197 * the struct se_cmd in question.
2199 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2200 WARN_ON(!cmd->scsi_status);
2201 ret = transport_send_check_condition_and_sense(
2202 cmd, 0, 1);
2203 if (ret)
2204 goto queue_full;
2206 transport_lun_remove_cmd(cmd);
2207 transport_cmd_check_stop_to_fabric(cmd);
2208 return;
2211 * Check for a callback, used by amongst other things
2212 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2214 if (cmd->transport_complete_callback) {
2215 sense_reason_t rc;
2216 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2217 bool zero_dl = !(cmd->data_length);
2218 int post_ret = 0;
2220 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2221 if (!rc && !post_ret) {
2222 if (caw && zero_dl)
2223 goto queue_rsp;
2225 return;
2226 } else if (rc) {
2227 ret = transport_send_check_condition_and_sense(cmd,
2228 rc, 0);
2229 if (ret)
2230 goto queue_full;
2232 transport_lun_remove_cmd(cmd);
2233 transport_cmd_check_stop_to_fabric(cmd);
2234 return;
2238 queue_rsp:
2239 switch (cmd->data_direction) {
2240 case DMA_FROM_DEVICE:
2241 if (cmd->scsi_status)
2242 goto queue_status;
2244 atomic_long_add(cmd->data_length,
2245 &cmd->se_lun->lun_stats.tx_data_octets);
2247 * Perform READ_STRIP of PI using software emulation when
2248 * backend had PI enabled, if the transport will not be
2249 * performing hardware READ_STRIP offload.
2251 if (target_read_prot_action(cmd)) {
2252 ret = transport_send_check_condition_and_sense(cmd,
2253 cmd->pi_err, 0);
2254 if (ret)
2255 goto queue_full;
2257 transport_lun_remove_cmd(cmd);
2258 transport_cmd_check_stop_to_fabric(cmd);
2259 return;
2262 trace_target_cmd_complete(cmd);
2263 ret = cmd->se_tfo->queue_data_in(cmd);
2264 if (ret)
2265 goto queue_full;
2266 break;
2267 case DMA_TO_DEVICE:
2268 atomic_long_add(cmd->data_length,
2269 &cmd->se_lun->lun_stats.rx_data_octets);
2271 * Check if we need to send READ payload for BIDI-COMMAND
2273 if (cmd->se_cmd_flags & SCF_BIDI) {
2274 atomic_long_add(cmd->data_length,
2275 &cmd->se_lun->lun_stats.tx_data_octets);
2276 ret = cmd->se_tfo->queue_data_in(cmd);
2277 if (ret)
2278 goto queue_full;
2279 break;
2281 /* fall through */
2282 case DMA_NONE:
2283 queue_status:
2284 trace_target_cmd_complete(cmd);
2285 ret = cmd->se_tfo->queue_status(cmd);
2286 if (ret)
2287 goto queue_full;
2288 break;
2289 default:
2290 break;
2293 transport_lun_remove_cmd(cmd);
2294 transport_cmd_check_stop_to_fabric(cmd);
2295 return;
2297 queue_full:
2298 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2299 " data_direction: %d\n", cmd, cmd->data_direction);
2301 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2304 void target_free_sgl(struct scatterlist *sgl, int nents)
2306 sgl_free_n_order(sgl, nents, 0);
2308 EXPORT_SYMBOL(target_free_sgl);
2310 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2313 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2314 * emulation, and free + reset pointers if necessary..
2316 if (!cmd->t_data_sg_orig)
2317 return;
2319 kfree(cmd->t_data_sg);
2320 cmd->t_data_sg = cmd->t_data_sg_orig;
2321 cmd->t_data_sg_orig = NULL;
2322 cmd->t_data_nents = cmd->t_data_nents_orig;
2323 cmd->t_data_nents_orig = 0;
2326 static inline void transport_free_pages(struct se_cmd *cmd)
2328 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2329 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2330 cmd->t_prot_sg = NULL;
2331 cmd->t_prot_nents = 0;
2334 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2336 * Release special case READ buffer payload required for
2337 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2339 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2340 target_free_sgl(cmd->t_bidi_data_sg,
2341 cmd->t_bidi_data_nents);
2342 cmd->t_bidi_data_sg = NULL;
2343 cmd->t_bidi_data_nents = 0;
2345 transport_reset_sgl_orig(cmd);
2346 return;
2348 transport_reset_sgl_orig(cmd);
2350 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2351 cmd->t_data_sg = NULL;
2352 cmd->t_data_nents = 0;
2354 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2355 cmd->t_bidi_data_sg = NULL;
2356 cmd->t_bidi_data_nents = 0;
2359 void *transport_kmap_data_sg(struct se_cmd *cmd)
2361 struct scatterlist *sg = cmd->t_data_sg;
2362 struct page **pages;
2363 int i;
2366 * We need to take into account a possible offset here for fabrics like
2367 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2368 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2370 if (!cmd->t_data_nents)
2371 return NULL;
2373 BUG_ON(!sg);
2374 if (cmd->t_data_nents == 1)
2375 return kmap(sg_page(sg)) + sg->offset;
2377 /* >1 page. use vmap */
2378 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2379 if (!pages)
2380 return NULL;
2382 /* convert sg[] to pages[] */
2383 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2384 pages[i] = sg_page(sg);
2387 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2388 kfree(pages);
2389 if (!cmd->t_data_vmap)
2390 return NULL;
2392 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2394 EXPORT_SYMBOL(transport_kmap_data_sg);
2396 void transport_kunmap_data_sg(struct se_cmd *cmd)
2398 if (!cmd->t_data_nents) {
2399 return;
2400 } else if (cmd->t_data_nents == 1) {
2401 kunmap(sg_page(cmd->t_data_sg));
2402 return;
2405 vunmap(cmd->t_data_vmap);
2406 cmd->t_data_vmap = NULL;
2408 EXPORT_SYMBOL(transport_kunmap_data_sg);
2411 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2412 bool zero_page, bool chainable)
2414 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2416 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2417 return *sgl ? 0 : -ENOMEM;
2419 EXPORT_SYMBOL(target_alloc_sgl);
2422 * Allocate any required resources to execute the command. For writes we
2423 * might not have the payload yet, so notify the fabric via a call to
2424 * ->write_pending instead. Otherwise place it on the execution queue.
2426 sense_reason_t
2427 transport_generic_new_cmd(struct se_cmd *cmd)
2429 unsigned long flags;
2430 int ret = 0;
2431 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2433 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2434 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2435 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2436 cmd->prot_length, true, false);
2437 if (ret < 0)
2438 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2442 * Determine is the TCM fabric module has already allocated physical
2443 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2444 * beforehand.
2446 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2447 cmd->data_length) {
2449 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2450 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2451 u32 bidi_length;
2453 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2454 bidi_length = cmd->t_task_nolb *
2455 cmd->se_dev->dev_attrib.block_size;
2456 else
2457 bidi_length = cmd->data_length;
2459 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2460 &cmd->t_bidi_data_nents,
2461 bidi_length, zero_flag, false);
2462 if (ret < 0)
2463 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2466 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2467 cmd->data_length, zero_flag, false);
2468 if (ret < 0)
2469 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2470 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2471 cmd->data_length) {
2473 * Special case for COMPARE_AND_WRITE with fabrics
2474 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2476 u32 caw_length = cmd->t_task_nolb *
2477 cmd->se_dev->dev_attrib.block_size;
2479 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2480 &cmd->t_bidi_data_nents,
2481 caw_length, zero_flag, false);
2482 if (ret < 0)
2483 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2486 * If this command is not a write we can execute it right here,
2487 * for write buffers we need to notify the fabric driver first
2488 * and let it call back once the write buffers are ready.
2490 target_add_to_state_list(cmd);
2491 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2492 target_execute_cmd(cmd);
2493 return 0;
2496 spin_lock_irqsave(&cmd->t_state_lock, flags);
2497 cmd->t_state = TRANSPORT_WRITE_PENDING;
2499 * Determine if frontend context caller is requesting the stopping of
2500 * this command for frontend exceptions.
2502 if (cmd->transport_state & CMD_T_STOP) {
2503 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2504 __func__, __LINE__, cmd->tag);
2506 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2508 complete_all(&cmd->t_transport_stop_comp);
2509 return 0;
2511 cmd->transport_state &= ~CMD_T_ACTIVE;
2512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2514 ret = cmd->se_tfo->write_pending(cmd);
2515 if (ret)
2516 goto queue_full;
2518 return 0;
2520 queue_full:
2521 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2522 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2523 return 0;
2525 EXPORT_SYMBOL(transport_generic_new_cmd);
2527 static void transport_write_pending_qf(struct se_cmd *cmd)
2529 unsigned long flags;
2530 int ret;
2531 bool stop;
2533 spin_lock_irqsave(&cmd->t_state_lock, flags);
2534 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2535 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2537 if (stop) {
2538 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2539 __func__, __LINE__, cmd->tag);
2540 complete_all(&cmd->t_transport_stop_comp);
2541 return;
2544 ret = cmd->se_tfo->write_pending(cmd);
2545 if (ret) {
2546 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2547 cmd);
2548 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2552 static bool
2553 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2554 unsigned long *flags);
2556 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2558 unsigned long flags;
2560 spin_lock_irqsave(&cmd->t_state_lock, flags);
2561 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2562 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2565 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2567 int ret = 0;
2568 bool aborted = false, tas = false;
2570 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2571 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2572 target_wait_free_cmd(cmd, &aborted, &tas);
2574 if (!aborted || tas)
2575 ret = target_put_sess_cmd(cmd);
2576 } else {
2577 if (wait_for_tasks)
2578 target_wait_free_cmd(cmd, &aborted, &tas);
2580 * Handle WRITE failure case where transport_generic_new_cmd()
2581 * has already added se_cmd to state_list, but fabric has
2582 * failed command before I/O submission.
2584 if (cmd->state_active)
2585 target_remove_from_state_list(cmd);
2587 if (cmd->se_lun)
2588 transport_lun_remove_cmd(cmd);
2590 if (!aborted || tas)
2591 ret = target_put_sess_cmd(cmd);
2594 * If the task has been internally aborted due to TMR ABORT_TASK
2595 * or LUN_RESET, target_core_tmr.c is responsible for performing
2596 * the remaining calls to target_put_sess_cmd(), and not the
2597 * callers of this function.
2599 if (aborted) {
2600 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2601 wait_for_completion(&cmd->cmd_wait_comp);
2602 cmd->se_tfo->release_cmd(cmd);
2603 ret = 1;
2605 return ret;
2607 EXPORT_SYMBOL(transport_generic_free_cmd);
2609 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2610 * @se_cmd: command descriptor to add
2611 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2613 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2615 struct se_session *se_sess = se_cmd->se_sess;
2616 unsigned long flags;
2617 int ret = 0;
2620 * Add a second kref if the fabric caller is expecting to handle
2621 * fabric acknowledgement that requires two target_put_sess_cmd()
2622 * invocations before se_cmd descriptor release.
2624 if (ack_kref) {
2625 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2626 return -EINVAL;
2628 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2631 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2632 if (se_sess->sess_tearing_down) {
2633 ret = -ESHUTDOWN;
2634 goto out;
2636 se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2637 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2638 out:
2639 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2641 if (ret && ack_kref)
2642 target_put_sess_cmd(se_cmd);
2644 return ret;
2646 EXPORT_SYMBOL(target_get_sess_cmd);
2648 static void target_free_cmd_mem(struct se_cmd *cmd)
2650 transport_free_pages(cmd);
2652 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2653 core_tmr_release_req(cmd->se_tmr_req);
2654 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2655 kfree(cmd->t_task_cdb);
2658 static void target_release_cmd_kref(struct kref *kref)
2660 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2661 struct se_session *se_sess = se_cmd->se_sess;
2662 unsigned long flags;
2663 bool fabric_stop;
2665 if (se_sess) {
2666 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2668 spin_lock(&se_cmd->t_state_lock);
2669 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2670 (se_cmd->transport_state & CMD_T_ABORTED);
2671 spin_unlock(&se_cmd->t_state_lock);
2673 if (se_cmd->cmd_wait_set || fabric_stop) {
2674 list_del_init(&se_cmd->se_cmd_list);
2675 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2676 target_free_cmd_mem(se_cmd);
2677 complete(&se_cmd->cmd_wait_comp);
2678 return;
2680 list_del_init(&se_cmd->se_cmd_list);
2681 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2684 target_free_cmd_mem(se_cmd);
2685 se_cmd->se_tfo->release_cmd(se_cmd);
2689 * target_put_sess_cmd - decrease the command reference count
2690 * @se_cmd: command to drop a reference from
2692 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2693 * refcount to drop to zero. Returns zero otherwise.
2695 int target_put_sess_cmd(struct se_cmd *se_cmd)
2697 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2699 EXPORT_SYMBOL(target_put_sess_cmd);
2701 static const char *data_dir_name(enum dma_data_direction d)
2703 switch (d) {
2704 case DMA_BIDIRECTIONAL: return "BIDI";
2705 case DMA_TO_DEVICE: return "WRITE";
2706 case DMA_FROM_DEVICE: return "READ";
2707 case DMA_NONE: return "NONE";
2710 return "(?)";
2713 static const char *cmd_state_name(enum transport_state_table t)
2715 switch (t) {
2716 case TRANSPORT_NO_STATE: return "NO_STATE";
2717 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2718 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2719 case TRANSPORT_PROCESSING: return "PROCESSING";
2720 case TRANSPORT_COMPLETE: return "COMPLETE";
2721 case TRANSPORT_ISTATE_PROCESSING:
2722 return "ISTATE_PROCESSING";
2723 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2724 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2725 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2728 return "(?)";
2731 static void target_append_str(char **str, const char *txt)
2733 char *prev = *str;
2735 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2736 kstrdup(txt, GFP_ATOMIC);
2737 kfree(prev);
2741 * Convert a transport state bitmask into a string. The caller is
2742 * responsible for freeing the returned pointer.
2744 static char *target_ts_to_str(u32 ts)
2746 char *str = NULL;
2748 if (ts & CMD_T_ABORTED)
2749 target_append_str(&str, "aborted");
2750 if (ts & CMD_T_ACTIVE)
2751 target_append_str(&str, "active");
2752 if (ts & CMD_T_COMPLETE)
2753 target_append_str(&str, "complete");
2754 if (ts & CMD_T_SENT)
2755 target_append_str(&str, "sent");
2756 if (ts & CMD_T_STOP)
2757 target_append_str(&str, "stop");
2758 if (ts & CMD_T_FABRIC_STOP)
2759 target_append_str(&str, "fabric_stop");
2761 return str;
2764 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2766 switch (tmf) {
2767 case TMR_ABORT_TASK: return "ABORT_TASK";
2768 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2769 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2770 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2771 case TMR_LUN_RESET: return "LUN_RESET";
2772 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2773 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2774 case TMR_UNKNOWN: break;
2776 return "(?)";
2779 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2781 char *ts_str = target_ts_to_str(cmd->transport_state);
2782 const u8 *cdb = cmd->t_task_cdb;
2783 struct se_tmr_req *tmf = cmd->se_tmr_req;
2785 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2786 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2787 pfx, cdb[0], cdb[1], cmd->tag,
2788 data_dir_name(cmd->data_direction),
2789 cmd->se_tfo->get_cmd_state(cmd),
2790 cmd_state_name(cmd->t_state), cmd->data_length,
2791 kref_read(&cmd->cmd_kref), ts_str);
2792 } else {
2793 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2794 pfx, target_tmf_name(tmf->function), cmd->tag,
2795 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2796 cmd_state_name(cmd->t_state),
2797 kref_read(&cmd->cmd_kref), ts_str);
2799 kfree(ts_str);
2801 EXPORT_SYMBOL(target_show_cmd);
2803 /* target_sess_cmd_list_set_waiting - Flag all commands in
2804 * sess_cmd_list to complete cmd_wait_comp. Set
2805 * sess_tearing_down so no more commands are queued.
2806 * @se_sess: session to flag
2808 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2810 struct se_cmd *se_cmd, *tmp_cmd;
2811 unsigned long flags;
2812 int rc;
2814 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2815 if (se_sess->sess_tearing_down) {
2816 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2817 return;
2819 se_sess->sess_tearing_down = 1;
2820 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2822 list_for_each_entry_safe(se_cmd, tmp_cmd,
2823 &se_sess->sess_wait_list, se_cmd_list) {
2824 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2825 if (rc) {
2826 se_cmd->cmd_wait_set = 1;
2827 spin_lock(&se_cmd->t_state_lock);
2828 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2829 spin_unlock(&se_cmd->t_state_lock);
2830 } else
2831 list_del_init(&se_cmd->se_cmd_list);
2834 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2836 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2838 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2839 * @se_sess: session to wait for active I/O
2841 void target_wait_for_sess_cmds(struct se_session *se_sess)
2843 struct se_cmd *se_cmd, *tmp_cmd;
2844 unsigned long flags;
2845 bool tas;
2847 list_for_each_entry_safe(se_cmd, tmp_cmd,
2848 &se_sess->sess_wait_list, se_cmd_list) {
2849 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2850 " %d\n", se_cmd, se_cmd->t_state,
2851 se_cmd->se_tfo->get_cmd_state(se_cmd));
2853 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2854 tas = (se_cmd->transport_state & CMD_T_TAS);
2855 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2857 if (!target_put_sess_cmd(se_cmd)) {
2858 if (tas)
2859 target_put_sess_cmd(se_cmd);
2862 wait_for_completion(&se_cmd->cmd_wait_comp);
2863 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2864 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2865 se_cmd->se_tfo->get_cmd_state(se_cmd));
2867 se_cmd->se_tfo->release_cmd(se_cmd);
2870 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2871 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2872 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2875 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2877 static void target_lun_confirm(struct percpu_ref *ref)
2879 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2881 complete(&lun->lun_ref_comp);
2884 void transport_clear_lun_ref(struct se_lun *lun)
2887 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2888 * the initial reference and schedule confirm kill to be
2889 * executed after one full RCU grace period has completed.
2891 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2893 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2894 * to call target_lun_confirm after lun->lun_ref has been marked
2895 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2896 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2897 * fails for all new incoming I/O.
2899 wait_for_completion(&lun->lun_ref_comp);
2901 * The second completion waits for percpu_ref_put_many() to
2902 * invoke ->release() after lun->lun_ref has switched to
2903 * atomic_t mode, and lun->lun_ref.count has reached zero.
2905 * At this point all target-core lun->lun_ref references have
2906 * been dropped via transport_lun_remove_cmd(), and it's safe
2907 * to proceed with the remaining LUN shutdown.
2909 wait_for_completion(&lun->lun_shutdown_comp);
2912 static bool
2913 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2914 bool *aborted, bool *tas, unsigned long *flags)
2915 __releases(&cmd->t_state_lock)
2916 __acquires(&cmd->t_state_lock)
2919 assert_spin_locked(&cmd->t_state_lock);
2920 WARN_ON_ONCE(!irqs_disabled());
2922 if (fabric_stop)
2923 cmd->transport_state |= CMD_T_FABRIC_STOP;
2925 if (cmd->transport_state & CMD_T_ABORTED)
2926 *aborted = true;
2928 if (cmd->transport_state & CMD_T_TAS)
2929 *tas = true;
2931 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2932 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2933 return false;
2935 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2936 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2937 return false;
2939 if (!(cmd->transport_state & CMD_T_ACTIVE))
2940 return false;
2942 if (fabric_stop && *aborted)
2943 return false;
2945 cmd->transport_state |= CMD_T_STOP;
2947 target_show_cmd("wait_for_tasks: Stopping ", cmd);
2949 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2951 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
2952 180 * HZ))
2953 target_show_cmd("wait for tasks: ", cmd);
2955 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2956 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2958 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2959 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2961 return true;
2965 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2966 * @cmd: command to wait on
2968 bool transport_wait_for_tasks(struct se_cmd *cmd)
2970 unsigned long flags;
2971 bool ret, aborted = false, tas = false;
2973 spin_lock_irqsave(&cmd->t_state_lock, flags);
2974 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2975 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2977 return ret;
2979 EXPORT_SYMBOL(transport_wait_for_tasks);
2981 struct sense_info {
2982 u8 key;
2983 u8 asc;
2984 u8 ascq;
2985 bool add_sector_info;
2988 static const struct sense_info sense_info_table[] = {
2989 [TCM_NO_SENSE] = {
2990 .key = NOT_READY
2992 [TCM_NON_EXISTENT_LUN] = {
2993 .key = ILLEGAL_REQUEST,
2994 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2996 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2997 .key = ILLEGAL_REQUEST,
2998 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3000 [TCM_SECTOR_COUNT_TOO_MANY] = {
3001 .key = ILLEGAL_REQUEST,
3002 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3004 [TCM_UNKNOWN_MODE_PAGE] = {
3005 .key = ILLEGAL_REQUEST,
3006 .asc = 0x24, /* INVALID FIELD IN CDB */
3008 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3009 .key = ABORTED_COMMAND,
3010 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3011 .ascq = 0x03,
3013 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3014 .key = ABORTED_COMMAND,
3015 .asc = 0x0c, /* WRITE ERROR */
3016 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3018 [TCM_INVALID_CDB_FIELD] = {
3019 .key = ILLEGAL_REQUEST,
3020 .asc = 0x24, /* INVALID FIELD IN CDB */
3022 [TCM_INVALID_PARAMETER_LIST] = {
3023 .key = ILLEGAL_REQUEST,
3024 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3026 [TCM_TOO_MANY_TARGET_DESCS] = {
3027 .key = ILLEGAL_REQUEST,
3028 .asc = 0x26,
3029 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3031 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3032 .key = ILLEGAL_REQUEST,
3033 .asc = 0x26,
3034 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3036 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3037 .key = ILLEGAL_REQUEST,
3038 .asc = 0x26,
3039 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3041 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3042 .key = ILLEGAL_REQUEST,
3043 .asc = 0x26,
3044 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3046 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3047 .key = ILLEGAL_REQUEST,
3048 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3050 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3051 .key = ILLEGAL_REQUEST,
3052 .asc = 0x0c, /* WRITE ERROR */
3053 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3055 [TCM_SERVICE_CRC_ERROR] = {
3056 .key = ABORTED_COMMAND,
3057 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3058 .ascq = 0x05, /* N/A */
3060 [TCM_SNACK_REJECTED] = {
3061 .key = ABORTED_COMMAND,
3062 .asc = 0x11, /* READ ERROR */
3063 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3065 [TCM_WRITE_PROTECTED] = {
3066 .key = DATA_PROTECT,
3067 .asc = 0x27, /* WRITE PROTECTED */
3069 [TCM_ADDRESS_OUT_OF_RANGE] = {
3070 .key = ILLEGAL_REQUEST,
3071 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3073 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3074 .key = UNIT_ATTENTION,
3076 [TCM_CHECK_CONDITION_NOT_READY] = {
3077 .key = NOT_READY,
3079 [TCM_MISCOMPARE_VERIFY] = {
3080 .key = MISCOMPARE,
3081 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3082 .ascq = 0x00,
3084 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3085 .key = ABORTED_COMMAND,
3086 .asc = 0x10,
3087 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3088 .add_sector_info = true,
3090 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3091 .key = ABORTED_COMMAND,
3092 .asc = 0x10,
3093 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3094 .add_sector_info = true,
3096 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3097 .key = ABORTED_COMMAND,
3098 .asc = 0x10,
3099 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3100 .add_sector_info = true,
3102 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3103 .key = COPY_ABORTED,
3104 .asc = 0x0d,
3105 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3108 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3110 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3111 * Solaris initiators. Returning NOT READY instead means the
3112 * operations will be retried a finite number of times and we
3113 * can survive intermittent errors.
3115 .key = NOT_READY,
3116 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3118 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3120 * From spc4r22 section5.7.7,5.7.8
3121 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3122 * or a REGISTER AND IGNORE EXISTING KEY service action or
3123 * REGISTER AND MOVE service actionis attempted,
3124 * but there are insufficient device server resources to complete the
3125 * operation, then the command shall be terminated with CHECK CONDITION
3126 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3127 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3129 .key = ILLEGAL_REQUEST,
3130 .asc = 0x55,
3131 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3135 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3137 const struct sense_info *si;
3138 u8 *buffer = cmd->sense_buffer;
3139 int r = (__force int)reason;
3140 u8 asc, ascq;
3141 bool desc_format = target_sense_desc_format(cmd->se_dev);
3143 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3144 si = &sense_info_table[r];
3145 else
3146 si = &sense_info_table[(__force int)
3147 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3149 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3150 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3151 WARN_ON_ONCE(asc == 0);
3152 } else if (si->asc == 0) {
3153 WARN_ON_ONCE(cmd->scsi_asc == 0);
3154 asc = cmd->scsi_asc;
3155 ascq = cmd->scsi_ascq;
3156 } else {
3157 asc = si->asc;
3158 ascq = si->ascq;
3161 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3162 if (si->add_sector_info)
3163 return scsi_set_sense_information(buffer,
3164 cmd->scsi_sense_length,
3165 cmd->bad_sector);
3167 return 0;
3171 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3172 sense_reason_t reason, int from_transport)
3174 unsigned long flags;
3176 spin_lock_irqsave(&cmd->t_state_lock, flags);
3177 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3178 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3179 return 0;
3181 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3182 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3184 if (!from_transport) {
3185 int rc;
3187 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3188 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3189 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3190 rc = translate_sense_reason(cmd, reason);
3191 if (rc)
3192 return rc;
3195 trace_target_cmd_complete(cmd);
3196 return cmd->se_tfo->queue_status(cmd);
3198 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3200 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3201 __releases(&cmd->t_state_lock)
3202 __acquires(&cmd->t_state_lock)
3204 int ret;
3206 assert_spin_locked(&cmd->t_state_lock);
3207 WARN_ON_ONCE(!irqs_disabled());
3209 if (!(cmd->transport_state & CMD_T_ABORTED))
3210 return 0;
3212 * If cmd has been aborted but either no status is to be sent or it has
3213 * already been sent, just return
3215 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3216 if (send_status)
3217 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3218 return 1;
3221 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3222 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3224 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3225 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3226 trace_target_cmd_complete(cmd);
3228 spin_unlock_irq(&cmd->t_state_lock);
3229 ret = cmd->se_tfo->queue_status(cmd);
3230 if (ret)
3231 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3232 spin_lock_irq(&cmd->t_state_lock);
3234 return 1;
3237 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3239 int ret;
3241 spin_lock_irq(&cmd->t_state_lock);
3242 ret = __transport_check_aborted_status(cmd, send_status);
3243 spin_unlock_irq(&cmd->t_state_lock);
3245 return ret;
3247 EXPORT_SYMBOL(transport_check_aborted_status);
3249 void transport_send_task_abort(struct se_cmd *cmd)
3251 unsigned long flags;
3252 int ret;
3254 spin_lock_irqsave(&cmd->t_state_lock, flags);
3255 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3256 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3257 return;
3259 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3262 * If there are still expected incoming fabric WRITEs, we wait
3263 * until until they have completed before sending a TASK_ABORTED
3264 * response. This response with TASK_ABORTED status will be
3265 * queued back to fabric module by transport_check_aborted_status().
3267 if (cmd->data_direction == DMA_TO_DEVICE) {
3268 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3269 spin_lock_irqsave(&cmd->t_state_lock, flags);
3270 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3271 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3272 goto send_abort;
3274 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3275 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3276 return;
3279 send_abort:
3280 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3282 transport_lun_remove_cmd(cmd);
3284 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3285 cmd->t_task_cdb[0], cmd->tag);
3287 trace_target_cmd_complete(cmd);
3288 ret = cmd->se_tfo->queue_status(cmd);
3289 if (ret)
3290 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3293 static void target_tmr_work(struct work_struct *work)
3295 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3296 struct se_device *dev = cmd->se_dev;
3297 struct se_tmr_req *tmr = cmd->se_tmr_req;
3298 unsigned long flags;
3299 int ret;
3301 spin_lock_irqsave(&cmd->t_state_lock, flags);
3302 if (cmd->transport_state & CMD_T_ABORTED) {
3303 tmr->response = TMR_FUNCTION_REJECTED;
3304 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3305 goto check_stop;
3307 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3309 switch (tmr->function) {
3310 case TMR_ABORT_TASK:
3311 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3312 break;
3313 case TMR_ABORT_TASK_SET:
3314 case TMR_CLEAR_ACA:
3315 case TMR_CLEAR_TASK_SET:
3316 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3317 break;
3318 case TMR_LUN_RESET:
3319 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3320 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3321 TMR_FUNCTION_REJECTED;
3322 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3323 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3324 cmd->orig_fe_lun, 0x29,
3325 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3327 break;
3328 case TMR_TARGET_WARM_RESET:
3329 tmr->response = TMR_FUNCTION_REJECTED;
3330 break;
3331 case TMR_TARGET_COLD_RESET:
3332 tmr->response = TMR_FUNCTION_REJECTED;
3333 break;
3334 default:
3335 pr_err("Uknown TMR function: 0x%02x.\n",
3336 tmr->function);
3337 tmr->response = TMR_FUNCTION_REJECTED;
3338 break;
3341 spin_lock_irqsave(&cmd->t_state_lock, flags);
3342 if (cmd->transport_state & CMD_T_ABORTED) {
3343 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3344 goto check_stop;
3346 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3348 cmd->se_tfo->queue_tm_rsp(cmd);
3350 check_stop:
3351 transport_lun_remove_cmd(cmd);
3352 transport_cmd_check_stop_to_fabric(cmd);
3355 int transport_generic_handle_tmr(
3356 struct se_cmd *cmd)
3358 unsigned long flags;
3359 bool aborted = false;
3361 spin_lock_irqsave(&cmd->t_state_lock, flags);
3362 if (cmd->transport_state & CMD_T_ABORTED) {
3363 aborted = true;
3364 } else {
3365 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3366 cmd->transport_state |= CMD_T_ACTIVE;
3368 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3370 if (aborted) {
3371 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3372 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3373 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3374 transport_lun_remove_cmd(cmd);
3375 transport_cmd_check_stop_to_fabric(cmd);
3376 return 0;
3379 INIT_WORK(&cmd->work, target_tmr_work);
3380 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3381 return 0;
3383 EXPORT_SYMBOL(transport_generic_handle_tmr);
3385 bool
3386 target_check_wce(struct se_device *dev)
3388 bool wce = false;
3390 if (dev->transport->get_write_cache)
3391 wce = dev->transport->get_write_cache(dev);
3392 else if (dev->dev_attrib.emulate_write_cache > 0)
3393 wce = true;
3395 return wce;
3398 bool
3399 target_check_fua(struct se_device *dev)
3401 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;