Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / usb / host / xhci.c
blob25d4b748a56f3f4a5e3d29a55e853571195fc014
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * xhci_handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
56 u32 result;
58 do {
59 result = readl(ptr);
60 if (result == ~(u32)0) /* card removed */
61 return -ENODEV;
62 result &= mask;
63 if (result == done)
64 return 0;
65 udelay(1);
66 usec--;
67 } while (usec > 0);
68 return -ETIMEDOUT;
72 * Disable interrupts and begin the xHCI halting process.
74 void xhci_quiesce(struct xhci_hcd *xhci)
76 u32 halted;
77 u32 cmd;
78 u32 mask;
80 mask = ~(XHCI_IRQS);
81 halted = readl(&xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
85 cmd = readl(&xhci->op_regs->command);
86 cmd &= mask;
87 writel(cmd, &xhci->op_regs->command);
91 * Force HC into halt state.
93 * Disable any IRQs and clear the run/stop bit.
94 * HC will complete any current and actively pipelined transactions, and
95 * should halt within 16 ms of the run/stop bit being cleared.
96 * Read HC Halted bit in the status register to see when the HC is finished.
98 int xhci_halt(struct xhci_hcd *xhci)
100 int ret;
101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 xhci_quiesce(xhci);
104 ret = xhci_handshake(&xhci->op_regs->status,
105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 if (ret) {
107 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 return ret;
110 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 return ret;
116 * Set the run bit and wait for the host to be running.
118 int xhci_start(struct xhci_hcd *xhci)
120 u32 temp;
121 int ret;
123 temp = readl(&xhci->op_regs->command);
124 temp |= (CMD_RUN);
125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 temp);
127 writel(temp, &xhci->op_regs->command);
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 * running.
133 ret = xhci_handshake(&xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
138 XHCI_MAX_HALT_USEC);
139 if (!ret)
140 /* clear state flags. Including dying, halted or removing */
141 xhci->xhc_state = 0;
143 return ret;
147 * Reset a halted HC.
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
153 int xhci_reset(struct xhci_hcd *xhci)
155 u32 command;
156 u32 state;
157 int ret, i;
159 state = readl(&xhci->op_regs->status);
161 if (state == ~(u32)0) {
162 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 return -ENODEV;
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
176 /* Existing Intel xHCI controllers require a delay of 1 mS,
177 * after setting the CMD_RESET bit, and before accessing any
178 * HC registers. This allows the HC to complete the
179 * reset operation and be ready for HC register access.
180 * Without this delay, the subsequent HC register access,
181 * may result in a system hang very rarely.
183 if (xhci->quirks & XHCI_INTEL_HOST)
184 udelay(1000);
186 ret = xhci_handshake(&xhci->op_regs->command,
187 CMD_RESET, 0, 10 * 1000 * 1000);
188 if (ret)
189 return ret;
191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
203 for (i = 0; i < 2; i++) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
209 return ret;
213 #ifdef CONFIG_USB_PCI
215 * Set up MSI
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
219 int ret;
221 * TODO:Check with MSI Soc for sysdev
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 if (ret < 0) {
227 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 "failed to allocate MSI entry");
229 return ret;
232 ret = request_irq(pdev->irq, xhci_msi_irq,
233 0, "xhci_hcd", xhci_to_hcd(xhci));
234 if (ret) {
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "disable MSI interrupt");
237 pci_free_irq_vectors(pdev);
240 return ret;
244 * Set up MSI-X
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
248 int i, ret = 0;
249 struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
253 * calculate number of msi-x vectors supported.
254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 * with max number of interrupters based on the xhci HCSPARAMS1.
256 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 * Add additional 1 vector to ensure always available interrupt.
259 xhci->msix_count = min(num_online_cpus() + 1,
260 HCS_MAX_INTRS(xhci->hcs_params1));
262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 PCI_IRQ_MSIX);
264 if (ret < 0) {
265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 "Failed to enable MSI-X");
267 return ret;
270 for (i = 0; i < xhci->msix_count; i++) {
271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 "xhci_hcd", xhci_to_hcd(xhci));
273 if (ret)
274 goto disable_msix;
277 hcd->msix_enabled = 1;
278 return ret;
280 disable_msix:
281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 while (--i >= 0)
283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 pci_free_irq_vectors(pdev);
285 return ret;
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
291 struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
294 if (xhci->quirks & XHCI_PLAT)
295 return;
297 /* return if using legacy interrupt */
298 if (hcd->irq > 0)
299 return;
301 if (hcd->msix_enabled) {
302 int i;
304 for (i = 0; i < xhci->msix_count; i++)
305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 } else {
307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
310 pci_free_irq_vectors(pdev);
311 hcd->msix_enabled = 0;
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
316 struct usb_hcd *hcd = xhci_to_hcd(xhci);
318 if (hcd->msix_enabled) {
319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 int i;
322 for (i = 0; i < xhci->msix_count; i++)
323 synchronize_irq(pci_irq_vector(pdev, i));
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 struct pci_dev *pdev;
331 int ret;
333 /* The xhci platform device has set up IRQs through usb_add_hcd. */
334 if (xhci->quirks & XHCI_PLAT)
335 return 0;
337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
339 * Some Fresco Logic host controllers advertise MSI, but fail to
340 * generate interrupts. Don't even try to enable MSI.
342 if (xhci->quirks & XHCI_BROKEN_MSI)
343 goto legacy_irq;
345 /* unregister the legacy interrupt */
346 if (hcd->irq)
347 free_irq(hcd->irq, hcd);
348 hcd->irq = 0;
350 ret = xhci_setup_msix(xhci);
351 if (ret)
352 /* fall back to msi*/
353 ret = xhci_setup_msi(xhci);
355 if (!ret) {
356 hcd->msi_enabled = 1;
357 return 0;
360 if (!pdev->irq) {
361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 return -EINVAL;
365 legacy_irq:
366 if (!strlen(hcd->irq_descr))
367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 hcd->driver->description, hcd->self.busnum);
370 /* fall back to legacy interrupt*/
371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 hcd->irq_descr, hcd);
373 if (ret) {
374 xhci_err(xhci, "request interrupt %d failed\n",
375 pdev->irq);
376 return ret;
378 hcd->irq = pdev->irq;
379 return 0;
382 #else
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
386 return 0;
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 #endif
399 static void compliance_mode_recovery(struct timer_list *t)
401 struct xhci_hcd *xhci;
402 struct usb_hcd *hcd;
403 u32 temp;
404 int i;
406 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
408 for (i = 0; i < xhci->num_usb3_ports; i++) {
409 temp = readl(xhci->usb3_ports[i]);
410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
412 * Compliance Mode Detected. Letting USB Core
413 * handle the Warm Reset
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode detected->port %d",
417 i + 1);
418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 "Attempting compliance mode recovery");
420 hcd = xhci->shared_hcd;
422 if (hcd->state == HC_STATE_SUSPENDED)
423 usb_hcd_resume_root_hub(hcd);
425 usb_hcd_poll_rh_status(hcd);
429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 mod_timer(&xhci->comp_mode_recovery_timer,
431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436 * that causes ports behind that hardware to enter compliance mode sometimes.
437 * The quirk creates a timer that polls every 2 seconds the link state of
438 * each host controller's port and recovers it by issuing a Warm reset
439 * if Compliance mode is detected, otherwise the port will become "dead" (no
440 * device connections or disconnections will be detected anymore). Becasue no
441 * status event is generated when entering compliance mode (per xhci spec),
442 * this quirk is needed on systems that have the failing hardware installed.
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
446 xhci->port_status_u0 = 0;
447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
449 xhci->comp_mode_recovery_timer.expires = jiffies +
450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
452 add_timer(&xhci->comp_mode_recovery_timer);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode recovery timer initialized");
458 * This function identifies the systems that have installed the SN65LVPE502CP
459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
460 * Systems:
461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
465 const char *dmi_product_name, *dmi_sys_vendor;
467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 if (!dmi_product_name || !dmi_sys_vendor)
470 return false;
472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 return false;
475 if (strstr(dmi_product_name, "Z420") ||
476 strstr(dmi_product_name, "Z620") ||
477 strstr(dmi_product_name, "Z820") ||
478 strstr(dmi_product_name, "Z1 Workstation"))
479 return true;
481 return false;
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
491 * Initialize memory for HCD and xHC (one-time init).
493 * Program the PAGESIZE register, initialize the device context array, create
494 * device contexts (?), set up a command ring segment (or two?), create event
495 * ring (one for now).
497 static int xhci_init(struct usb_hcd *hcd)
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 int retval = 0;
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 spin_lock_init(&xhci->lock);
504 if (xhci->hci_version == 0x95 && link_quirk) {
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "QUIRK: Not clearing Link TRB chain bits.");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 } else {
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 "xHCI doesn't need link TRB QUIRK");
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
521 return retval;
524 /*-------------------------------------------------------------------------*/
527 static int xhci_run_finished(struct xhci_hcd *xhci)
529 if (xhci_start(xhci)) {
530 xhci_halt(xhci);
531 return -ENODEV;
533 xhci->shared_hcd->state = HC_STATE_RUNNING;
534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
536 if (xhci->quirks & XHCI_NEC_HOST)
537 xhci_ring_cmd_db(xhci);
539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 "Finished xhci_run for USB3 roothub");
541 return 0;
545 * Start the HC after it was halted.
547 * This function is called by the USB core when the HC driver is added.
548 * Its opposite is xhci_stop().
550 * xhci_init() must be called once before this function can be called.
551 * Reset the HC, enable device slot contexts, program DCBAAP, and
552 * set command ring pointer and event ring pointer.
554 * Setup MSI-X vectors and enable interrupts.
556 int xhci_run(struct usb_hcd *hcd)
558 u32 temp;
559 u64 temp_64;
560 int ret;
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
563 /* Start the xHCI host controller running only after the USB 2.0 roothub
564 * is setup.
567 hcd->uses_new_polling = 1;
568 if (!usb_hcd_is_primary_hcd(hcd))
569 return xhci_run_finished(xhci);
571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
573 ret = xhci_try_enable_msi(hcd);
574 if (ret)
575 return ret;
577 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578 temp_64 &= ~ERST_PTR_MASK;
579 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
582 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 "// Set the interrupt modulation register");
584 temp = readl(&xhci->ir_set->irq_control);
585 temp &= ~ER_IRQ_INTERVAL_MASK;
586 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587 writel(temp, &xhci->ir_set->irq_control);
589 /* Set the HCD state before we enable the irqs */
590 temp = readl(&xhci->op_regs->command);
591 temp |= (CMD_EIE);
592 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 "// Enable interrupts, cmd = 0x%x.", temp);
594 writel(temp, &xhci->op_regs->command);
596 temp = readl(&xhci->ir_set->irq_pending);
597 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
602 if (xhci->quirks & XHCI_NEC_HOST) {
603 struct xhci_command *command;
605 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606 if (!command)
607 return -ENOMEM;
609 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610 TRB_TYPE(TRB_NEC_GET_FW));
611 if (ret)
612 xhci_free_command(xhci, command);
614 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615 "Finished xhci_run for USB2 roothub");
617 xhci_dbc_init(xhci);
619 xhci_debugfs_init(xhci);
621 return 0;
623 EXPORT_SYMBOL_GPL(xhci_run);
626 * Stop xHCI driver.
628 * This function is called by the USB core when the HC driver is removed.
629 * Its opposite is xhci_run().
631 * Disable device contexts, disable IRQs, and quiesce the HC.
632 * Reset the HC, finish any completed transactions, and cleanup memory.
634 static void xhci_stop(struct usb_hcd *hcd)
636 u32 temp;
637 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
639 mutex_lock(&xhci->mutex);
641 /* Only halt host and free memory after both hcds are removed */
642 if (!usb_hcd_is_primary_hcd(hcd)) {
643 /* usb core will free this hcd shortly, unset pointer */
644 xhci->shared_hcd = NULL;
645 mutex_unlock(&xhci->mutex);
646 return;
649 xhci_dbc_exit(xhci);
651 spin_lock_irq(&xhci->lock);
652 xhci->xhc_state |= XHCI_STATE_HALTED;
653 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654 xhci_halt(xhci);
655 xhci_reset(xhci);
656 spin_unlock_irq(&xhci->lock);
658 xhci_cleanup_msix(xhci);
660 /* Deleting Compliance Mode Recovery Timer */
661 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662 (!(xhci_all_ports_seen_u0(xhci)))) {
663 del_timer_sync(&xhci->comp_mode_recovery_timer);
664 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665 "%s: compliance mode recovery timer deleted",
666 __func__);
669 if (xhci->quirks & XHCI_AMD_PLL_FIX)
670 usb_amd_dev_put();
672 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 "// Disabling event ring interrupts");
674 temp = readl(&xhci->op_regs->status);
675 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676 temp = readl(&xhci->ir_set->irq_pending);
677 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680 xhci_mem_cleanup(xhci);
681 xhci_debugfs_exit(xhci);
682 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 "xhci_stop completed - status = %x",
684 readl(&xhci->op_regs->status));
685 mutex_unlock(&xhci->mutex);
689 * Shutdown HC (not bus-specific)
691 * This is called when the machine is rebooting or halting. We assume that the
692 * machine will be powered off, and the HC's internal state will be reset.
693 * Don't bother to free memory.
695 * This will only ever be called with the main usb_hcd (the USB3 roothub).
697 static void xhci_shutdown(struct usb_hcd *hcd)
699 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
701 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
704 spin_lock_irq(&xhci->lock);
705 xhci_halt(xhci);
706 /* Workaround for spurious wakeups at shutdown with HSW */
707 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708 xhci_reset(xhci);
709 spin_unlock_irq(&xhci->lock);
711 xhci_cleanup_msix(xhci);
713 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 "xhci_shutdown completed - status = %x",
715 readl(&xhci->op_regs->status));
717 /* Yet another workaround for spurious wakeups at shutdown with HSW */
718 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
722 #ifdef CONFIG_PM
723 static void xhci_save_registers(struct xhci_hcd *xhci)
725 xhci->s3.command = readl(&xhci->op_regs->command);
726 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
738 writel(xhci->s3.command, &xhci->op_regs->command);
739 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
751 u64 val_64;
753 /* step 2: initialize command ring buffer */
754 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757 xhci->cmd_ring->dequeue) &
758 (u64) ~CMD_RING_RSVD_BITS) |
759 xhci->cmd_ring->cycle_state;
760 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 "// Setting command ring address to 0x%llx",
762 (long unsigned long) val_64);
763 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
767 * The whole command ring must be cleared to zero when we suspend the host.
769 * The host doesn't save the command ring pointer in the suspend well, so we
770 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
771 * aligned, because of the reserved bits in the command ring dequeue pointer
772 * register. Therefore, we can't just set the dequeue pointer back in the
773 * middle of the ring (TRBs are 16-byte aligned).
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
777 struct xhci_ring *ring;
778 struct xhci_segment *seg;
780 ring = xhci->cmd_ring;
781 seg = ring->deq_seg;
782 do {
783 memset(seg->trbs, 0,
784 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786 cpu_to_le32(~TRB_CYCLE);
787 seg = seg->next;
788 } while (seg != ring->deq_seg);
790 /* Reset the software enqueue and dequeue pointers */
791 ring->deq_seg = ring->first_seg;
792 ring->dequeue = ring->first_seg->trbs;
793 ring->enq_seg = ring->deq_seg;
794 ring->enqueue = ring->dequeue;
796 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
798 * Ring is now zeroed, so the HW should look for change of ownership
799 * when the cycle bit is set to 1.
801 ring->cycle_state = 1;
804 * Reset the hardware dequeue pointer.
805 * Yes, this will need to be re-written after resume, but we're paranoid
806 * and want to make sure the hardware doesn't access bogus memory
807 * because, say, the BIOS or an SMI started the host without changing
808 * the command ring pointers.
810 xhci_set_cmd_ring_deq(xhci);
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
815 int port_index;
816 __le32 __iomem **port_array;
817 unsigned long flags;
818 u32 t1, t2;
820 spin_lock_irqsave(&xhci->lock, flags);
822 /* disable usb3 ports Wake bits */
823 port_index = xhci->num_usb3_ports;
824 port_array = xhci->usb3_ports;
825 while (port_index--) {
826 t1 = readl(port_array[port_index]);
827 t1 = xhci_port_state_to_neutral(t1);
828 t2 = t1 & ~PORT_WAKE_BITS;
829 if (t1 != t2)
830 writel(t2, port_array[port_index]);
833 /* disable usb2 ports Wake bits */
834 port_index = xhci->num_usb2_ports;
835 port_array = xhci->usb2_ports;
836 while (port_index--) {
837 t1 = readl(port_array[port_index]);
838 t1 = xhci_port_state_to_neutral(t1);
839 t2 = t1 & ~PORT_WAKE_BITS;
840 if (t1 != t2)
841 writel(t2, port_array[port_index]);
844 spin_unlock_irqrestore(&xhci->lock, flags);
848 * Stop HC (not bus-specific)
850 * This is called when the machine transition into S3/S4 mode.
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
855 int rc = 0;
856 unsigned int delay = XHCI_MAX_HALT_USEC;
857 struct usb_hcd *hcd = xhci_to_hcd(xhci);
858 u32 command;
860 if (!hcd->state)
861 return 0;
863 if (hcd->state != HC_STATE_SUSPENDED ||
864 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865 return -EINVAL;
867 xhci_dbc_suspend(xhci);
869 /* Clear root port wake on bits if wakeup not allowed. */
870 if (!do_wakeup)
871 xhci_disable_port_wake_on_bits(xhci);
873 /* Don't poll the roothubs on bus suspend. */
874 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876 del_timer_sync(&hcd->rh_timer);
877 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878 del_timer_sync(&xhci->shared_hcd->rh_timer);
880 spin_lock_irq(&xhci->lock);
881 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
882 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
883 /* step 1: stop endpoint */
884 /* skipped assuming that port suspend has done */
886 /* step 2: clear Run/Stop bit */
887 command = readl(&xhci->op_regs->command);
888 command &= ~CMD_RUN;
889 writel(command, &xhci->op_regs->command);
891 /* Some chips from Fresco Logic need an extraordinary delay */
892 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
894 if (xhci_handshake(&xhci->op_regs->status,
895 STS_HALT, STS_HALT, delay)) {
896 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
897 spin_unlock_irq(&xhci->lock);
898 return -ETIMEDOUT;
900 xhci_clear_command_ring(xhci);
902 /* step 3: save registers */
903 xhci_save_registers(xhci);
905 /* step 4: set CSS flag */
906 command = readl(&xhci->op_regs->command);
907 command |= CMD_CSS;
908 writel(command, &xhci->op_regs->command);
909 if (xhci_handshake(&xhci->op_regs->status,
910 STS_SAVE, 0, 10 * 1000)) {
911 xhci_warn(xhci, "WARN: xHC save state timeout\n");
912 spin_unlock_irq(&xhci->lock);
913 return -ETIMEDOUT;
915 spin_unlock_irq(&xhci->lock);
918 * Deleting Compliance Mode Recovery Timer because the xHCI Host
919 * is about to be suspended.
921 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
922 (!(xhci_all_ports_seen_u0(xhci)))) {
923 del_timer_sync(&xhci->comp_mode_recovery_timer);
924 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
925 "%s: compliance mode recovery timer deleted",
926 __func__);
929 /* step 5: remove core well power */
930 /* synchronize irq when using MSI-X */
931 xhci_msix_sync_irqs(xhci);
933 return rc;
935 EXPORT_SYMBOL_GPL(xhci_suspend);
938 * start xHC (not bus-specific)
940 * This is called when the machine transition from S3/S4 mode.
943 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
945 u32 command, temp = 0, status;
946 struct usb_hcd *hcd = xhci_to_hcd(xhci);
947 struct usb_hcd *secondary_hcd;
948 int retval = 0;
949 bool comp_timer_running = false;
951 if (!hcd->state)
952 return 0;
954 /* Wait a bit if either of the roothubs need to settle from the
955 * transition into bus suspend.
957 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
958 time_before(jiffies,
959 xhci->bus_state[1].next_statechange))
960 msleep(100);
962 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
963 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
965 spin_lock_irq(&xhci->lock);
966 if (xhci->quirks & XHCI_RESET_ON_RESUME)
967 hibernated = true;
969 if (!hibernated) {
970 /* step 1: restore register */
971 xhci_restore_registers(xhci);
972 /* step 2: initialize command ring buffer */
973 xhci_set_cmd_ring_deq(xhci);
974 /* step 3: restore state and start state*/
975 /* step 3: set CRS flag */
976 command = readl(&xhci->op_regs->command);
977 command |= CMD_CRS;
978 writel(command, &xhci->op_regs->command);
979 if (xhci_handshake(&xhci->op_regs->status,
980 STS_RESTORE, 0, 10 * 1000)) {
981 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
982 spin_unlock_irq(&xhci->lock);
983 return -ETIMEDOUT;
985 temp = readl(&xhci->op_regs->status);
988 /* If restore operation fails, re-initialize the HC during resume */
989 if ((temp & STS_SRE) || hibernated) {
991 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
992 !(xhci_all_ports_seen_u0(xhci))) {
993 del_timer_sync(&xhci->comp_mode_recovery_timer);
994 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
995 "Compliance Mode Recovery Timer deleted!");
998 /* Let the USB core know _both_ roothubs lost power. */
999 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1000 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1002 xhci_dbg(xhci, "Stop HCD\n");
1003 xhci_halt(xhci);
1004 xhci_reset(xhci);
1005 spin_unlock_irq(&xhci->lock);
1006 xhci_cleanup_msix(xhci);
1008 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1009 temp = readl(&xhci->op_regs->status);
1010 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1011 temp = readl(&xhci->ir_set->irq_pending);
1012 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1014 xhci_dbg(xhci, "cleaning up memory\n");
1015 xhci_mem_cleanup(xhci);
1016 xhci_debugfs_exit(xhci);
1017 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018 readl(&xhci->op_regs->status));
1020 /* USB core calls the PCI reinit and start functions twice:
1021 * first with the primary HCD, and then with the secondary HCD.
1022 * If we don't do the same, the host will never be started.
1024 if (!usb_hcd_is_primary_hcd(hcd))
1025 secondary_hcd = hcd;
1026 else
1027 secondary_hcd = xhci->shared_hcd;
1029 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030 retval = xhci_init(hcd->primary_hcd);
1031 if (retval)
1032 return retval;
1033 comp_timer_running = true;
1035 xhci_dbg(xhci, "Start the primary HCD\n");
1036 retval = xhci_run(hcd->primary_hcd);
1037 if (!retval) {
1038 xhci_dbg(xhci, "Start the secondary HCD\n");
1039 retval = xhci_run(secondary_hcd);
1041 hcd->state = HC_STATE_SUSPENDED;
1042 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1043 goto done;
1046 /* step 4: set Run/Stop bit */
1047 command = readl(&xhci->op_regs->command);
1048 command |= CMD_RUN;
1049 writel(command, &xhci->op_regs->command);
1050 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1051 0, 250 * 1000);
1053 /* step 5: walk topology and initialize portsc,
1054 * portpmsc and portli
1056 /* this is done in bus_resume */
1058 /* step 6: restart each of the previously
1059 * Running endpoints by ringing their doorbells
1062 spin_unlock_irq(&xhci->lock);
1064 xhci_dbc_resume(xhci);
1066 done:
1067 if (retval == 0) {
1068 /* Resume root hubs only when have pending events. */
1069 status = readl(&xhci->op_regs->status);
1070 if (status & STS_EINT) {
1071 usb_hcd_resume_root_hub(xhci->shared_hcd);
1072 usb_hcd_resume_root_hub(hcd);
1077 * If system is subject to the Quirk, Compliance Mode Timer needs to
1078 * be re-initialized Always after a system resume. Ports are subject
1079 * to suffer the Compliance Mode issue again. It doesn't matter if
1080 * ports have entered previously to U0 before system's suspension.
1082 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1083 compliance_mode_recovery_timer_init(xhci);
1085 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1086 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1088 /* Re-enable port polling. */
1089 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091 usb_hcd_poll_rh_status(xhci->shared_hcd);
1092 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093 usb_hcd_poll_rh_status(hcd);
1095 return retval;
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif /* CONFIG_PM */
1100 /*-------------------------------------------------------------------------*/
1103 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1105 * value to right shift 1 for the bitmask.
1107 * Index = (epnum * 2) + direction - 1,
1108 * where direction = 0 for OUT, 1 for IN.
1109 * For control endpoints, the IN index is used (OUT index is unused), so
1110 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1114 unsigned int index;
1115 if (usb_endpoint_xfer_control(desc))
1116 index = (unsigned int) (usb_endpoint_num(desc)*2);
1117 else
1118 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120 return index;
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124 * address from the XHCI endpoint index.
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1128 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130 return direction | number;
1133 /* Find the flag for this endpoint (for use in the control context). Use the
1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1135 * bit 1, etc.
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1139 return 1 << (xhci_get_endpoint_index(desc) + 1);
1142 /* Find the flag for this endpoint (for use in the control context). Use the
1143 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1144 * bit 1, etc.
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1148 return 1 << (ep_index + 1);
1151 /* Compute the last valid endpoint context index. Basically, this is the
1152 * endpoint index plus one. For slot contexts with more than valid endpoint,
1153 * we find the most significant bit set in the added contexts flags.
1154 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1159 return fls(added_ctxs) - 1;
1162 /* Returns 1 if the arguments are OK;
1163 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167 const char *func) {
1168 struct xhci_hcd *xhci;
1169 struct xhci_virt_device *virt_dev;
1171 if (!hcd || (check_ep && !ep) || !udev) {
1172 pr_debug("xHCI %s called with invalid args\n", func);
1173 return -EINVAL;
1175 if (!udev->parent) {
1176 pr_debug("xHCI %s called for root hub\n", func);
1177 return 0;
1180 xhci = hcd_to_xhci(hcd);
1181 if (check_virt_dev) {
1182 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184 func);
1185 return -EINVAL;
1188 virt_dev = xhci->devs[udev->slot_id];
1189 if (virt_dev->udev != udev) {
1190 xhci_dbg(xhci, "xHCI %s called with udev and "
1191 "virt_dev does not match\n", func);
1192 return -EINVAL;
1196 if (xhci->xhc_state & XHCI_STATE_HALTED)
1197 return -ENODEV;
1199 return 1;
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203 struct usb_device *udev, struct xhci_command *command,
1204 bool ctx_change, bool must_succeed);
1207 * Full speed devices may have a max packet size greater than 8 bytes, but the
1208 * USB core doesn't know that until it reads the first 8 bytes of the
1209 * descriptor. If the usb_device's max packet size changes after that point,
1210 * we need to issue an evaluate context command and wait on it.
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213 unsigned int ep_index, struct urb *urb)
1215 struct xhci_container_ctx *out_ctx;
1216 struct xhci_input_control_ctx *ctrl_ctx;
1217 struct xhci_ep_ctx *ep_ctx;
1218 struct xhci_command *command;
1219 int max_packet_size;
1220 int hw_max_packet_size;
1221 int ret = 0;
1223 out_ctx = xhci->devs[slot_id]->out_ctx;
1224 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227 if (hw_max_packet_size != max_packet_size) {
1228 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1229 "Max Packet Size for ep 0 changed.");
1230 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1231 "Max packet size in usb_device = %d",
1232 max_packet_size);
1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1234 "Max packet size in xHCI HW = %d",
1235 hw_max_packet_size);
1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1237 "Issuing evaluate context command.");
1239 /* Set up the input context flags for the command */
1240 /* FIXME: This won't work if a non-default control endpoint
1241 * changes max packet sizes.
1244 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1245 if (!command)
1246 return -ENOMEM;
1248 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250 if (!ctrl_ctx) {
1251 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252 __func__);
1253 ret = -ENOMEM;
1254 goto command_cleanup;
1256 /* Set up the modified control endpoint 0 */
1257 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258 xhci->devs[slot_id]->out_ctx, ep_index);
1260 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1264 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265 ctrl_ctx->drop_flags = 0;
1267 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268 true, false);
1270 /* Clean up the input context for later use by bandwidth
1271 * functions.
1273 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275 kfree(command->completion);
1276 kfree(command);
1278 return ret;
1282 * non-error returns are a promise to giveback() the urb later
1283 * we drop ownership so next owner (or urb unlink) can get it
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1287 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288 unsigned long flags;
1289 int ret = 0;
1290 unsigned int slot_id, ep_index, ep_state;
1291 struct urb_priv *urb_priv;
1292 int num_tds;
1294 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295 true, true, __func__) <= 0)
1296 return -EINVAL;
1298 slot_id = urb->dev->slot_id;
1299 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1301 if (!HCD_HW_ACCESSIBLE(hcd)) {
1302 if (!in_interrupt())
1303 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304 return -ESHUTDOWN;
1307 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308 num_tds = urb->number_of_packets;
1309 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310 urb->transfer_buffer_length > 0 &&
1311 urb->transfer_flags & URB_ZERO_PACKET &&
1312 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313 num_tds = 2;
1314 else
1315 num_tds = 1;
1317 urb_priv = kzalloc(sizeof(struct urb_priv) +
1318 num_tds * sizeof(struct xhci_td), mem_flags);
1319 if (!urb_priv)
1320 return -ENOMEM;
1322 urb_priv->num_tds = num_tds;
1323 urb_priv->num_tds_done = 0;
1324 urb->hcpriv = urb_priv;
1326 trace_xhci_urb_enqueue(urb);
1328 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329 /* Check to see if the max packet size for the default control
1330 * endpoint changed during FS device enumeration
1332 if (urb->dev->speed == USB_SPEED_FULL) {
1333 ret = xhci_check_maxpacket(xhci, slot_id,
1334 ep_index, urb);
1335 if (ret < 0) {
1336 xhci_urb_free_priv(urb_priv);
1337 urb->hcpriv = NULL;
1338 return ret;
1343 spin_lock_irqsave(&xhci->lock, flags);
1345 if (xhci->xhc_state & XHCI_STATE_DYING) {
1346 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347 urb->ep->desc.bEndpointAddress, urb);
1348 ret = -ESHUTDOWN;
1349 goto free_priv;
1352 switch (usb_endpoint_type(&urb->ep->desc)) {
1354 case USB_ENDPOINT_XFER_CONTROL:
1355 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356 slot_id, ep_index);
1357 break;
1358 case USB_ENDPOINT_XFER_BULK:
1359 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362 ep_state);
1363 ret = -EINVAL;
1364 break;
1366 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367 slot_id, ep_index);
1368 break;
1371 case USB_ENDPOINT_XFER_INT:
1372 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373 slot_id, ep_index);
1374 break;
1376 case USB_ENDPOINT_XFER_ISOC:
1377 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378 slot_id, ep_index);
1381 if (ret) {
1382 free_priv:
1383 xhci_urb_free_priv(urb_priv);
1384 urb->hcpriv = NULL;
1386 spin_unlock_irqrestore(&xhci->lock, flags);
1387 return ret;
1391 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1392 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1393 * should pick up where it left off in the TD, unless a Set Transfer Ring
1394 * Dequeue Pointer is issued.
1396 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397 * the ring. Since the ring is a contiguous structure, they can't be physically
1398 * removed. Instead, there are two options:
1400 * 1) If the HC is in the middle of processing the URB to be canceled, we
1401 * simply move the ring's dequeue pointer past those TRBs using the Set
1402 * Transfer Ring Dequeue Pointer command. This will be the common case,
1403 * when drivers timeout on the last submitted URB and attempt to cancel.
1405 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1407 * HC will need to invalidate the any TRBs it has cached after the stop
1408 * endpoint command, as noted in the xHCI 0.95 errata.
1410 * 3) The TD may have completed by the time the Stop Endpoint Command
1411 * completes, so software needs to handle that case too.
1413 * This function should protect against the TD enqueueing code ringing the
1414 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415 * It also needs to account for multiple cancellations on happening at the same
1416 * time for the same endpoint.
1418 * Note that this function can be called in any context, or so says
1419 * usb_hcd_unlink_urb()
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1423 unsigned long flags;
1424 int ret, i;
1425 u32 temp;
1426 struct xhci_hcd *xhci;
1427 struct urb_priv *urb_priv;
1428 struct xhci_td *td;
1429 unsigned int ep_index;
1430 struct xhci_ring *ep_ring;
1431 struct xhci_virt_ep *ep;
1432 struct xhci_command *command;
1433 struct xhci_virt_device *vdev;
1435 xhci = hcd_to_xhci(hcd);
1436 spin_lock_irqsave(&xhci->lock, flags);
1438 trace_xhci_urb_dequeue(urb);
1440 /* Make sure the URB hasn't completed or been unlinked already */
1441 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442 if (ret)
1443 goto done;
1445 /* give back URB now if we can't queue it for cancel */
1446 vdev = xhci->devs[urb->dev->slot_id];
1447 urb_priv = urb->hcpriv;
1448 if (!vdev || !urb_priv)
1449 goto err_giveback;
1451 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452 ep = &vdev->eps[ep_index];
1453 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454 if (!ep || !ep_ring)
1455 goto err_giveback;
1457 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458 temp = readl(&xhci->op_regs->status);
1459 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460 xhci_hc_died(xhci);
1461 goto done;
1464 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466 "HC halted, freeing TD manually.");
1467 for (i = urb_priv->num_tds_done;
1468 i < urb_priv->num_tds;
1469 i++) {
1470 td = &urb_priv->td[i];
1471 if (!list_empty(&td->td_list))
1472 list_del_init(&td->td_list);
1473 if (!list_empty(&td->cancelled_td_list))
1474 list_del_init(&td->cancelled_td_list);
1476 goto err_giveback;
1479 i = urb_priv->num_tds_done;
1480 if (i < urb_priv->num_tds)
1481 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482 "Cancel URB %p, dev %s, ep 0x%x, "
1483 "starting at offset 0x%llx",
1484 urb, urb->dev->devpath,
1485 urb->ep->desc.bEndpointAddress,
1486 (unsigned long long) xhci_trb_virt_to_dma(
1487 urb_priv->td[i].start_seg,
1488 urb_priv->td[i].first_trb));
1490 for (; i < urb_priv->num_tds; i++) {
1491 td = &urb_priv->td[i];
1492 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1495 /* Queue a stop endpoint command, but only if this is
1496 * the first cancellation to be handled.
1498 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1500 if (!command) {
1501 ret = -ENOMEM;
1502 goto done;
1504 ep->ep_state |= EP_STOP_CMD_PENDING;
1505 ep->stop_cmd_timer.expires = jiffies +
1506 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507 add_timer(&ep->stop_cmd_timer);
1508 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509 ep_index, 0);
1510 xhci_ring_cmd_db(xhci);
1512 done:
1513 spin_unlock_irqrestore(&xhci->lock, flags);
1514 return ret;
1516 err_giveback:
1517 if (urb_priv)
1518 xhci_urb_free_priv(urb_priv);
1519 usb_hcd_unlink_urb_from_ep(hcd, urb);
1520 spin_unlock_irqrestore(&xhci->lock, flags);
1521 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522 return ret;
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526 * Only one call to this function is allowed per endpoint before
1527 * check_bandwidth() or reset_bandwidth() must be called.
1528 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529 * add the endpoint to the schedule with possibly new parameters denoted by a
1530 * different endpoint descriptor in usb_host_endpoint.
1531 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532 * not allowed.
1534 * The USB core will not allow URBs to be queued to an endpoint that is being
1535 * disabled, so there's no need for mutual exclusion to protect
1536 * the xhci->devs[slot_id] structure.
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539 struct usb_host_endpoint *ep)
1541 struct xhci_hcd *xhci;
1542 struct xhci_container_ctx *in_ctx, *out_ctx;
1543 struct xhci_input_control_ctx *ctrl_ctx;
1544 unsigned int ep_index;
1545 struct xhci_ep_ctx *ep_ctx;
1546 u32 drop_flag;
1547 u32 new_add_flags, new_drop_flags;
1548 int ret;
1550 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551 if (ret <= 0)
1552 return ret;
1553 xhci = hcd_to_xhci(hcd);
1554 if (xhci->xhc_state & XHCI_STATE_DYING)
1555 return -ENODEV;
1557 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561 __func__, drop_flag);
1562 return 0;
1565 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568 if (!ctrl_ctx) {
1569 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570 __func__);
1571 return 0;
1574 ep_index = xhci_get_endpoint_index(&ep->desc);
1575 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 /* If the HC already knows the endpoint is disabled,
1577 * or the HCD has noted it is disabled, ignore this request
1579 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580 le32_to_cpu(ctrl_ctx->drop_flags) &
1581 xhci_get_endpoint_flag(&ep->desc)) {
1582 /* Do not warn when called after a usb_device_reset */
1583 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585 __func__, ep);
1586 return 0;
1589 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1592 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1595 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1597 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1599 if (xhci->quirks & XHCI_MTK_HOST)
1600 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1602 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1603 (unsigned int) ep->desc.bEndpointAddress,
1604 udev->slot_id,
1605 (unsigned int) new_drop_flags,
1606 (unsigned int) new_add_flags);
1607 return 0;
1610 /* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1623 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624 struct usb_host_endpoint *ep)
1626 struct xhci_hcd *xhci;
1627 struct xhci_container_ctx *in_ctx;
1628 unsigned int ep_index;
1629 struct xhci_input_control_ctx *ctrl_ctx;
1630 u32 added_ctxs;
1631 u32 new_add_flags, new_drop_flags;
1632 struct xhci_virt_device *virt_dev;
1633 int ret = 0;
1635 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1636 if (ret <= 0) {
1637 /* So we won't queue a reset ep command for a root hub */
1638 ep->hcpriv = NULL;
1639 return ret;
1641 xhci = hcd_to_xhci(hcd);
1642 if (xhci->xhc_state & XHCI_STATE_DYING)
1643 return -ENODEV;
1645 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1646 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1647 /* FIXME when we have to issue an evaluate endpoint command to
1648 * deal with ep0 max packet size changing once we get the
1649 * descriptors
1651 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1652 __func__, added_ctxs);
1653 return 0;
1656 virt_dev = xhci->devs[udev->slot_id];
1657 in_ctx = virt_dev->in_ctx;
1658 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1659 if (!ctrl_ctx) {
1660 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1661 __func__);
1662 return 0;
1665 ep_index = xhci_get_endpoint_index(&ep->desc);
1666 /* If this endpoint is already in use, and the upper layers are trying
1667 * to add it again without dropping it, reject the addition.
1669 if (virt_dev->eps[ep_index].ring &&
1670 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1671 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1672 "without dropping it.\n",
1673 (unsigned int) ep->desc.bEndpointAddress);
1674 return -EINVAL;
1677 /* If the HCD has already noted the endpoint is enabled,
1678 * ignore this request.
1680 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1681 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1682 __func__, ep);
1683 return 0;
1687 * Configuration and alternate setting changes must be done in
1688 * process context, not interrupt context (or so documenation
1689 * for usb_set_interface() and usb_set_configuration() claim).
1691 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1692 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1693 __func__, ep->desc.bEndpointAddress);
1694 return -ENOMEM;
1697 if (xhci->quirks & XHCI_MTK_HOST) {
1698 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1699 if (ret < 0) {
1700 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1701 virt_dev->eps[ep_index].new_ring = NULL;
1702 return ret;
1706 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1707 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1709 /* If xhci_endpoint_disable() was called for this endpoint, but the
1710 * xHC hasn't been notified yet through the check_bandwidth() call,
1711 * this re-adds a new state for the endpoint from the new endpoint
1712 * descriptors. We must drop and re-add this endpoint, so we leave the
1713 * drop flags alone.
1715 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1717 /* Store the usb_device pointer for later use */
1718 ep->hcpriv = udev;
1720 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1722 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1723 (unsigned int) ep->desc.bEndpointAddress,
1724 udev->slot_id,
1725 (unsigned int) new_drop_flags,
1726 (unsigned int) new_add_flags);
1727 return 0;
1730 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1732 struct xhci_input_control_ctx *ctrl_ctx;
1733 struct xhci_ep_ctx *ep_ctx;
1734 struct xhci_slot_ctx *slot_ctx;
1735 int i;
1737 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1738 if (!ctrl_ctx) {
1739 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1740 __func__);
1741 return;
1744 /* When a device's add flag and drop flag are zero, any subsequent
1745 * configure endpoint command will leave that endpoint's state
1746 * untouched. Make sure we don't leave any old state in the input
1747 * endpoint contexts.
1749 ctrl_ctx->drop_flags = 0;
1750 ctrl_ctx->add_flags = 0;
1751 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1752 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1753 /* Endpoint 0 is always valid */
1754 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1755 for (i = 1; i < 31; i++) {
1756 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1757 ep_ctx->ep_info = 0;
1758 ep_ctx->ep_info2 = 0;
1759 ep_ctx->deq = 0;
1760 ep_ctx->tx_info = 0;
1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1765 struct usb_device *udev, u32 *cmd_status)
1767 int ret;
1769 switch (*cmd_status) {
1770 case COMP_COMMAND_ABORTED:
1771 case COMP_COMMAND_RING_STOPPED:
1772 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1773 ret = -ETIME;
1774 break;
1775 case COMP_RESOURCE_ERROR:
1776 dev_warn(&udev->dev,
1777 "Not enough host controller resources for new device state.\n");
1778 ret = -ENOMEM;
1779 /* FIXME: can we allocate more resources for the HC? */
1780 break;
1781 case COMP_BANDWIDTH_ERROR:
1782 case COMP_SECONDARY_BANDWIDTH_ERROR:
1783 dev_warn(&udev->dev,
1784 "Not enough bandwidth for new device state.\n");
1785 ret = -ENOSPC;
1786 /* FIXME: can we go back to the old state? */
1787 break;
1788 case COMP_TRB_ERROR:
1789 /* the HCD set up something wrong */
1790 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1791 "add flag = 1, "
1792 "and endpoint is not disabled.\n");
1793 ret = -EINVAL;
1794 break;
1795 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1796 dev_warn(&udev->dev,
1797 "ERROR: Incompatible device for endpoint configure command.\n");
1798 ret = -ENODEV;
1799 break;
1800 case COMP_SUCCESS:
1801 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1802 "Successful Endpoint Configure command");
1803 ret = 0;
1804 break;
1805 default:
1806 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1807 *cmd_status);
1808 ret = -EINVAL;
1809 break;
1811 return ret;
1814 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1815 struct usb_device *udev, u32 *cmd_status)
1817 int ret;
1819 switch (*cmd_status) {
1820 case COMP_COMMAND_ABORTED:
1821 case COMP_COMMAND_RING_STOPPED:
1822 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1823 ret = -ETIME;
1824 break;
1825 case COMP_PARAMETER_ERROR:
1826 dev_warn(&udev->dev,
1827 "WARN: xHCI driver setup invalid evaluate context command.\n");
1828 ret = -EINVAL;
1829 break;
1830 case COMP_SLOT_NOT_ENABLED_ERROR:
1831 dev_warn(&udev->dev,
1832 "WARN: slot not enabled for evaluate context command.\n");
1833 ret = -EINVAL;
1834 break;
1835 case COMP_CONTEXT_STATE_ERROR:
1836 dev_warn(&udev->dev,
1837 "WARN: invalid context state for evaluate context command.\n");
1838 ret = -EINVAL;
1839 break;
1840 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1841 dev_warn(&udev->dev,
1842 "ERROR: Incompatible device for evaluate context command.\n");
1843 ret = -ENODEV;
1844 break;
1845 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1846 /* Max Exit Latency too large error */
1847 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1848 ret = -EINVAL;
1849 break;
1850 case COMP_SUCCESS:
1851 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1852 "Successful evaluate context command");
1853 ret = 0;
1854 break;
1855 default:
1856 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1857 *cmd_status);
1858 ret = -EINVAL;
1859 break;
1861 return ret;
1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865 struct xhci_input_control_ctx *ctrl_ctx)
1867 u32 valid_add_flags;
1868 u32 valid_drop_flags;
1870 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1871 * (bit 1). The default control endpoint is added during the Address
1872 * Device command and is never removed until the slot is disabled.
1874 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1875 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1877 /* Use hweight32 to count the number of ones in the add flags, or
1878 * number of endpoints added. Don't count endpoints that are changed
1879 * (both added and dropped).
1881 return hweight32(valid_add_flags) -
1882 hweight32(valid_add_flags & valid_drop_flags);
1885 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1886 struct xhci_input_control_ctx *ctrl_ctx)
1888 u32 valid_add_flags;
1889 u32 valid_drop_flags;
1891 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1892 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1894 return hweight32(valid_drop_flags) -
1895 hweight32(valid_add_flags & valid_drop_flags);
1899 * We need to reserve the new number of endpoints before the configure endpoint
1900 * command completes. We can't subtract the dropped endpoints from the number
1901 * of active endpoints until the command completes because we can oversubscribe
1902 * the host in this case:
1904 * - the first configure endpoint command drops more endpoints than it adds
1905 * - a second configure endpoint command that adds more endpoints is queued
1906 * - the first configure endpoint command fails, so the config is unchanged
1907 * - the second command may succeed, even though there isn't enough resources
1909 * Must be called with xhci->lock held.
1911 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1912 struct xhci_input_control_ctx *ctrl_ctx)
1914 u32 added_eps;
1916 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1917 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1918 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1919 "Not enough ep ctxs: "
1920 "%u active, need to add %u, limit is %u.",
1921 xhci->num_active_eps, added_eps,
1922 xhci->limit_active_eps);
1923 return -ENOMEM;
1925 xhci->num_active_eps += added_eps;
1926 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1927 "Adding %u ep ctxs, %u now active.", added_eps,
1928 xhci->num_active_eps);
1929 return 0;
1933 * The configure endpoint was failed by the xHC for some other reason, so we
1934 * need to revert the resources that failed configuration would have used.
1936 * Must be called with xhci->lock held.
1938 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1939 struct xhci_input_control_ctx *ctrl_ctx)
1941 u32 num_failed_eps;
1943 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1944 xhci->num_active_eps -= num_failed_eps;
1945 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1946 "Removing %u failed ep ctxs, %u now active.",
1947 num_failed_eps,
1948 xhci->num_active_eps);
1952 * Now that the command has completed, clean up the active endpoint count by
1953 * subtracting out the endpoints that were dropped (but not changed).
1955 * Must be called with xhci->lock held.
1957 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1958 struct xhci_input_control_ctx *ctrl_ctx)
1960 u32 num_dropped_eps;
1962 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1963 xhci->num_active_eps -= num_dropped_eps;
1964 if (num_dropped_eps)
1965 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1966 "Removing %u dropped ep ctxs, %u now active.",
1967 num_dropped_eps,
1968 xhci->num_active_eps);
1971 static unsigned int xhci_get_block_size(struct usb_device *udev)
1973 switch (udev->speed) {
1974 case USB_SPEED_LOW:
1975 case USB_SPEED_FULL:
1976 return FS_BLOCK;
1977 case USB_SPEED_HIGH:
1978 return HS_BLOCK;
1979 case USB_SPEED_SUPER:
1980 case USB_SPEED_SUPER_PLUS:
1981 return SS_BLOCK;
1982 case USB_SPEED_UNKNOWN:
1983 case USB_SPEED_WIRELESS:
1984 default:
1985 /* Should never happen */
1986 return 1;
1990 static unsigned int
1991 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1993 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1994 return LS_OVERHEAD;
1995 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1996 return FS_OVERHEAD;
1997 return HS_OVERHEAD;
2000 /* If we are changing a LS/FS device under a HS hub,
2001 * make sure (if we are activating a new TT) that the HS bus has enough
2002 * bandwidth for this new TT.
2004 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2005 struct xhci_virt_device *virt_dev,
2006 int old_active_eps)
2008 struct xhci_interval_bw_table *bw_table;
2009 struct xhci_tt_bw_info *tt_info;
2011 /* Find the bandwidth table for the root port this TT is attached to. */
2012 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2013 tt_info = virt_dev->tt_info;
2014 /* If this TT already had active endpoints, the bandwidth for this TT
2015 * has already been added. Removing all periodic endpoints (and thus
2016 * making the TT enactive) will only decrease the bandwidth used.
2018 if (old_active_eps)
2019 return 0;
2020 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2021 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2022 return -ENOMEM;
2023 return 0;
2025 /* Not sure why we would have no new active endpoints...
2027 * Maybe because of an Evaluate Context change for a hub update or a
2028 * control endpoint 0 max packet size change?
2029 * FIXME: skip the bandwidth calculation in that case.
2031 return 0;
2034 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2035 struct xhci_virt_device *virt_dev)
2037 unsigned int bw_reserved;
2039 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2040 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2041 return -ENOMEM;
2043 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2044 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2045 return -ENOMEM;
2047 return 0;
2051 * This algorithm is a very conservative estimate of the worst-case scheduling
2052 * scenario for any one interval. The hardware dynamically schedules the
2053 * packets, so we can't tell which microframe could be the limiting factor in
2054 * the bandwidth scheduling. This only takes into account periodic endpoints.
2056 * Obviously, we can't solve an NP complete problem to find the minimum worst
2057 * case scenario. Instead, we come up with an estimate that is no less than
2058 * the worst case bandwidth used for any one microframe, but may be an
2059 * over-estimate.
2061 * We walk the requirements for each endpoint by interval, starting with the
2062 * smallest interval, and place packets in the schedule where there is only one
2063 * possible way to schedule packets for that interval. In order to simplify
2064 * this algorithm, we record the largest max packet size for each interval, and
2065 * assume all packets will be that size.
2067 * For interval 0, we obviously must schedule all packets for each interval.
2068 * The bandwidth for interval 0 is just the amount of data to be transmitted
2069 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2070 * the number of packets).
2072 * For interval 1, we have two possible microframes to schedule those packets
2073 * in. For this algorithm, if we can schedule the same number of packets for
2074 * each possible scheduling opportunity (each microframe), we will do so. The
2075 * remaining number of packets will be saved to be transmitted in the gaps in
2076 * the next interval's scheduling sequence.
2078 * As we move those remaining packets to be scheduled with interval 2 packets,
2079 * we have to double the number of remaining packets to transmit. This is
2080 * because the intervals are actually powers of 2, and we would be transmitting
2081 * the previous interval's packets twice in this interval. We also have to be
2082 * sure that when we look at the largest max packet size for this interval, we
2083 * also look at the largest max packet size for the remaining packets and take
2084 * the greater of the two.
2086 * The algorithm continues to evenly distribute packets in each scheduling
2087 * opportunity, and push the remaining packets out, until we get to the last
2088 * interval. Then those packets and their associated overhead are just added
2089 * to the bandwidth used.
2091 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2092 struct xhci_virt_device *virt_dev,
2093 int old_active_eps)
2095 unsigned int bw_reserved;
2096 unsigned int max_bandwidth;
2097 unsigned int bw_used;
2098 unsigned int block_size;
2099 struct xhci_interval_bw_table *bw_table;
2100 unsigned int packet_size = 0;
2101 unsigned int overhead = 0;
2102 unsigned int packets_transmitted = 0;
2103 unsigned int packets_remaining = 0;
2104 unsigned int i;
2106 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2107 return xhci_check_ss_bw(xhci, virt_dev);
2109 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2110 max_bandwidth = HS_BW_LIMIT;
2111 /* Convert percent of bus BW reserved to blocks reserved */
2112 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2113 } else {
2114 max_bandwidth = FS_BW_LIMIT;
2115 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2118 bw_table = virt_dev->bw_table;
2119 /* We need to translate the max packet size and max ESIT payloads into
2120 * the units the hardware uses.
2122 block_size = xhci_get_block_size(virt_dev->udev);
2124 /* If we are manipulating a LS/FS device under a HS hub, double check
2125 * that the HS bus has enough bandwidth if we are activing a new TT.
2127 if (virt_dev->tt_info) {
2128 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2129 "Recalculating BW for rootport %u",
2130 virt_dev->real_port);
2131 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2132 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2133 "newly activated TT.\n");
2134 return -ENOMEM;
2136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 "Recalculating BW for TT slot %u port %u",
2138 virt_dev->tt_info->slot_id,
2139 virt_dev->tt_info->ttport);
2140 } else {
2141 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2142 "Recalculating BW for rootport %u",
2143 virt_dev->real_port);
2146 /* Add in how much bandwidth will be used for interval zero, or the
2147 * rounded max ESIT payload + number of packets * largest overhead.
2149 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2150 bw_table->interval_bw[0].num_packets *
2151 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2153 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2154 unsigned int bw_added;
2155 unsigned int largest_mps;
2156 unsigned int interval_overhead;
2159 * How many packets could we transmit in this interval?
2160 * If packets didn't fit in the previous interval, we will need
2161 * to transmit that many packets twice within this interval.
2163 packets_remaining = 2 * packets_remaining +
2164 bw_table->interval_bw[i].num_packets;
2166 /* Find the largest max packet size of this or the previous
2167 * interval.
2169 if (list_empty(&bw_table->interval_bw[i].endpoints))
2170 largest_mps = 0;
2171 else {
2172 struct xhci_virt_ep *virt_ep;
2173 struct list_head *ep_entry;
2175 ep_entry = bw_table->interval_bw[i].endpoints.next;
2176 virt_ep = list_entry(ep_entry,
2177 struct xhci_virt_ep, bw_endpoint_list);
2178 /* Convert to blocks, rounding up */
2179 largest_mps = DIV_ROUND_UP(
2180 virt_ep->bw_info.max_packet_size,
2181 block_size);
2183 if (largest_mps > packet_size)
2184 packet_size = largest_mps;
2186 /* Use the larger overhead of this or the previous interval. */
2187 interval_overhead = xhci_get_largest_overhead(
2188 &bw_table->interval_bw[i]);
2189 if (interval_overhead > overhead)
2190 overhead = interval_overhead;
2192 /* How many packets can we evenly distribute across
2193 * (1 << (i + 1)) possible scheduling opportunities?
2195 packets_transmitted = packets_remaining >> (i + 1);
2197 /* Add in the bandwidth used for those scheduled packets */
2198 bw_added = packets_transmitted * (overhead + packet_size);
2200 /* How many packets do we have remaining to transmit? */
2201 packets_remaining = packets_remaining % (1 << (i + 1));
2203 /* What largest max packet size should those packets have? */
2204 /* If we've transmitted all packets, don't carry over the
2205 * largest packet size.
2207 if (packets_remaining == 0) {
2208 packet_size = 0;
2209 overhead = 0;
2210 } else if (packets_transmitted > 0) {
2211 /* Otherwise if we do have remaining packets, and we've
2212 * scheduled some packets in this interval, take the
2213 * largest max packet size from endpoints with this
2214 * interval.
2216 packet_size = largest_mps;
2217 overhead = interval_overhead;
2219 /* Otherwise carry over packet_size and overhead from the last
2220 * time we had a remainder.
2222 bw_used += bw_added;
2223 if (bw_used > max_bandwidth) {
2224 xhci_warn(xhci, "Not enough bandwidth. "
2225 "Proposed: %u, Max: %u\n",
2226 bw_used, max_bandwidth);
2227 return -ENOMEM;
2231 * Ok, we know we have some packets left over after even-handedly
2232 * scheduling interval 15. We don't know which microframes they will
2233 * fit into, so we over-schedule and say they will be scheduled every
2234 * microframe.
2236 if (packets_remaining > 0)
2237 bw_used += overhead + packet_size;
2239 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2240 unsigned int port_index = virt_dev->real_port - 1;
2242 /* OK, we're manipulating a HS device attached to a
2243 * root port bandwidth domain. Include the number of active TTs
2244 * in the bandwidth used.
2246 bw_used += TT_HS_OVERHEAD *
2247 xhci->rh_bw[port_index].num_active_tts;
2250 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2251 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2252 "Available: %u " "percent",
2253 bw_used, max_bandwidth, bw_reserved,
2254 (max_bandwidth - bw_used - bw_reserved) * 100 /
2255 max_bandwidth);
2257 bw_used += bw_reserved;
2258 if (bw_used > max_bandwidth) {
2259 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2260 bw_used, max_bandwidth);
2261 return -ENOMEM;
2264 bw_table->bw_used = bw_used;
2265 return 0;
2268 static bool xhci_is_async_ep(unsigned int ep_type)
2270 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2271 ep_type != ISOC_IN_EP &&
2272 ep_type != INT_IN_EP);
2275 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2277 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2280 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2282 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2284 if (ep_bw->ep_interval == 0)
2285 return SS_OVERHEAD_BURST +
2286 (ep_bw->mult * ep_bw->num_packets *
2287 (SS_OVERHEAD + mps));
2288 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2289 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2290 1 << ep_bw->ep_interval);
2294 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2295 struct xhci_bw_info *ep_bw,
2296 struct xhci_interval_bw_table *bw_table,
2297 struct usb_device *udev,
2298 struct xhci_virt_ep *virt_ep,
2299 struct xhci_tt_bw_info *tt_info)
2301 struct xhci_interval_bw *interval_bw;
2302 int normalized_interval;
2304 if (xhci_is_async_ep(ep_bw->type))
2305 return;
2307 if (udev->speed >= USB_SPEED_SUPER) {
2308 if (xhci_is_sync_in_ep(ep_bw->type))
2309 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2310 xhci_get_ss_bw_consumed(ep_bw);
2311 else
2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2313 xhci_get_ss_bw_consumed(ep_bw);
2314 return;
2317 /* SuperSpeed endpoints never get added to intervals in the table, so
2318 * this check is only valid for HS/FS/LS devices.
2320 if (list_empty(&virt_ep->bw_endpoint_list))
2321 return;
2322 /* For LS/FS devices, we need to translate the interval expressed in
2323 * microframes to frames.
2325 if (udev->speed == USB_SPEED_HIGH)
2326 normalized_interval = ep_bw->ep_interval;
2327 else
2328 normalized_interval = ep_bw->ep_interval - 3;
2330 if (normalized_interval == 0)
2331 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2332 interval_bw = &bw_table->interval_bw[normalized_interval];
2333 interval_bw->num_packets -= ep_bw->num_packets;
2334 switch (udev->speed) {
2335 case USB_SPEED_LOW:
2336 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2337 break;
2338 case USB_SPEED_FULL:
2339 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2340 break;
2341 case USB_SPEED_HIGH:
2342 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2343 break;
2344 case USB_SPEED_SUPER:
2345 case USB_SPEED_SUPER_PLUS:
2346 case USB_SPEED_UNKNOWN:
2347 case USB_SPEED_WIRELESS:
2348 /* Should never happen because only LS/FS/HS endpoints will get
2349 * added to the endpoint list.
2351 return;
2353 if (tt_info)
2354 tt_info->active_eps -= 1;
2355 list_del_init(&virt_ep->bw_endpoint_list);
2358 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2359 struct xhci_bw_info *ep_bw,
2360 struct xhci_interval_bw_table *bw_table,
2361 struct usb_device *udev,
2362 struct xhci_virt_ep *virt_ep,
2363 struct xhci_tt_bw_info *tt_info)
2365 struct xhci_interval_bw *interval_bw;
2366 struct xhci_virt_ep *smaller_ep;
2367 int normalized_interval;
2369 if (xhci_is_async_ep(ep_bw->type))
2370 return;
2372 if (udev->speed == USB_SPEED_SUPER) {
2373 if (xhci_is_sync_in_ep(ep_bw->type))
2374 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2375 xhci_get_ss_bw_consumed(ep_bw);
2376 else
2377 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2378 xhci_get_ss_bw_consumed(ep_bw);
2379 return;
2382 /* For LS/FS devices, we need to translate the interval expressed in
2383 * microframes to frames.
2385 if (udev->speed == USB_SPEED_HIGH)
2386 normalized_interval = ep_bw->ep_interval;
2387 else
2388 normalized_interval = ep_bw->ep_interval - 3;
2390 if (normalized_interval == 0)
2391 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2392 interval_bw = &bw_table->interval_bw[normalized_interval];
2393 interval_bw->num_packets += ep_bw->num_packets;
2394 switch (udev->speed) {
2395 case USB_SPEED_LOW:
2396 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2397 break;
2398 case USB_SPEED_FULL:
2399 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2400 break;
2401 case USB_SPEED_HIGH:
2402 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2403 break;
2404 case USB_SPEED_SUPER:
2405 case USB_SPEED_SUPER_PLUS:
2406 case USB_SPEED_UNKNOWN:
2407 case USB_SPEED_WIRELESS:
2408 /* Should never happen because only LS/FS/HS endpoints will get
2409 * added to the endpoint list.
2411 return;
2414 if (tt_info)
2415 tt_info->active_eps += 1;
2416 /* Insert the endpoint into the list, largest max packet size first. */
2417 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2418 bw_endpoint_list) {
2419 if (ep_bw->max_packet_size >=
2420 smaller_ep->bw_info.max_packet_size) {
2421 /* Add the new ep before the smaller endpoint */
2422 list_add_tail(&virt_ep->bw_endpoint_list,
2423 &smaller_ep->bw_endpoint_list);
2424 return;
2427 /* Add the new endpoint at the end of the list. */
2428 list_add_tail(&virt_ep->bw_endpoint_list,
2429 &interval_bw->endpoints);
2432 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2433 struct xhci_virt_device *virt_dev,
2434 int old_active_eps)
2436 struct xhci_root_port_bw_info *rh_bw_info;
2437 if (!virt_dev->tt_info)
2438 return;
2440 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2441 if (old_active_eps == 0 &&
2442 virt_dev->tt_info->active_eps != 0) {
2443 rh_bw_info->num_active_tts += 1;
2444 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2445 } else if (old_active_eps != 0 &&
2446 virt_dev->tt_info->active_eps == 0) {
2447 rh_bw_info->num_active_tts -= 1;
2448 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2452 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2453 struct xhci_virt_device *virt_dev,
2454 struct xhci_container_ctx *in_ctx)
2456 struct xhci_bw_info ep_bw_info[31];
2457 int i;
2458 struct xhci_input_control_ctx *ctrl_ctx;
2459 int old_active_eps = 0;
2461 if (virt_dev->tt_info)
2462 old_active_eps = virt_dev->tt_info->active_eps;
2464 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2465 if (!ctrl_ctx) {
2466 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2467 __func__);
2468 return -ENOMEM;
2471 for (i = 0; i < 31; i++) {
2472 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2473 continue;
2475 /* Make a copy of the BW info in case we need to revert this */
2476 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2477 sizeof(ep_bw_info[i]));
2478 /* Drop the endpoint from the interval table if the endpoint is
2479 * being dropped or changed.
2481 if (EP_IS_DROPPED(ctrl_ctx, i))
2482 xhci_drop_ep_from_interval_table(xhci,
2483 &virt_dev->eps[i].bw_info,
2484 virt_dev->bw_table,
2485 virt_dev->udev,
2486 &virt_dev->eps[i],
2487 virt_dev->tt_info);
2489 /* Overwrite the information stored in the endpoints' bw_info */
2490 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2491 for (i = 0; i < 31; i++) {
2492 /* Add any changed or added endpoints to the interval table */
2493 if (EP_IS_ADDED(ctrl_ctx, i))
2494 xhci_add_ep_to_interval_table(xhci,
2495 &virt_dev->eps[i].bw_info,
2496 virt_dev->bw_table,
2497 virt_dev->udev,
2498 &virt_dev->eps[i],
2499 virt_dev->tt_info);
2502 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2503 /* Ok, this fits in the bandwidth we have.
2504 * Update the number of active TTs.
2506 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2507 return 0;
2510 /* We don't have enough bandwidth for this, revert the stored info. */
2511 for (i = 0; i < 31; i++) {
2512 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2513 continue;
2515 /* Drop the new copies of any added or changed endpoints from
2516 * the interval table.
2518 if (EP_IS_ADDED(ctrl_ctx, i)) {
2519 xhci_drop_ep_from_interval_table(xhci,
2520 &virt_dev->eps[i].bw_info,
2521 virt_dev->bw_table,
2522 virt_dev->udev,
2523 &virt_dev->eps[i],
2524 virt_dev->tt_info);
2526 /* Revert the endpoint back to its old information */
2527 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2528 sizeof(ep_bw_info[i]));
2529 /* Add any changed or dropped endpoints back into the table */
2530 if (EP_IS_DROPPED(ctrl_ctx, i))
2531 xhci_add_ep_to_interval_table(xhci,
2532 &virt_dev->eps[i].bw_info,
2533 virt_dev->bw_table,
2534 virt_dev->udev,
2535 &virt_dev->eps[i],
2536 virt_dev->tt_info);
2538 return -ENOMEM;
2542 /* Issue a configure endpoint command or evaluate context command
2543 * and wait for it to finish.
2545 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2546 struct usb_device *udev,
2547 struct xhci_command *command,
2548 bool ctx_change, bool must_succeed)
2550 int ret;
2551 unsigned long flags;
2552 struct xhci_input_control_ctx *ctrl_ctx;
2553 struct xhci_virt_device *virt_dev;
2554 struct xhci_slot_ctx *slot_ctx;
2556 if (!command)
2557 return -EINVAL;
2559 spin_lock_irqsave(&xhci->lock, flags);
2561 if (xhci->xhc_state & XHCI_STATE_DYING) {
2562 spin_unlock_irqrestore(&xhci->lock, flags);
2563 return -ESHUTDOWN;
2566 virt_dev = xhci->devs[udev->slot_id];
2568 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2569 if (!ctrl_ctx) {
2570 spin_unlock_irqrestore(&xhci->lock, flags);
2571 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2572 __func__);
2573 return -ENOMEM;
2576 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2577 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2578 spin_unlock_irqrestore(&xhci->lock, flags);
2579 xhci_warn(xhci, "Not enough host resources, "
2580 "active endpoint contexts = %u\n",
2581 xhci->num_active_eps);
2582 return -ENOMEM;
2584 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2585 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2586 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2587 xhci_free_host_resources(xhci, ctrl_ctx);
2588 spin_unlock_irqrestore(&xhci->lock, flags);
2589 xhci_warn(xhci, "Not enough bandwidth\n");
2590 return -ENOMEM;
2593 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2594 trace_xhci_configure_endpoint(slot_ctx);
2596 if (!ctx_change)
2597 ret = xhci_queue_configure_endpoint(xhci, command,
2598 command->in_ctx->dma,
2599 udev->slot_id, must_succeed);
2600 else
2601 ret = xhci_queue_evaluate_context(xhci, command,
2602 command->in_ctx->dma,
2603 udev->slot_id, must_succeed);
2604 if (ret < 0) {
2605 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2606 xhci_free_host_resources(xhci, ctrl_ctx);
2607 spin_unlock_irqrestore(&xhci->lock, flags);
2608 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2609 "FIXME allocate a new ring segment");
2610 return -ENOMEM;
2612 xhci_ring_cmd_db(xhci);
2613 spin_unlock_irqrestore(&xhci->lock, flags);
2615 /* Wait for the configure endpoint command to complete */
2616 wait_for_completion(command->completion);
2618 if (!ctx_change)
2619 ret = xhci_configure_endpoint_result(xhci, udev,
2620 &command->status);
2621 else
2622 ret = xhci_evaluate_context_result(xhci, udev,
2623 &command->status);
2625 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2626 spin_lock_irqsave(&xhci->lock, flags);
2627 /* If the command failed, remove the reserved resources.
2628 * Otherwise, clean up the estimate to include dropped eps.
2630 if (ret)
2631 xhci_free_host_resources(xhci, ctrl_ctx);
2632 else
2633 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2634 spin_unlock_irqrestore(&xhci->lock, flags);
2636 return ret;
2639 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2640 struct xhci_virt_device *vdev, int i)
2642 struct xhci_virt_ep *ep = &vdev->eps[i];
2644 if (ep->ep_state & EP_HAS_STREAMS) {
2645 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2646 xhci_get_endpoint_address(i));
2647 xhci_free_stream_info(xhci, ep->stream_info);
2648 ep->stream_info = NULL;
2649 ep->ep_state &= ~EP_HAS_STREAMS;
2653 /* Called after one or more calls to xhci_add_endpoint() or
2654 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2655 * to call xhci_reset_bandwidth().
2657 * Since we are in the middle of changing either configuration or
2658 * installing a new alt setting, the USB core won't allow URBs to be
2659 * enqueued for any endpoint on the old config or interface. Nothing
2660 * else should be touching the xhci->devs[slot_id] structure, so we
2661 * don't need to take the xhci->lock for manipulating that.
2663 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2665 int i;
2666 int ret = 0;
2667 struct xhci_hcd *xhci;
2668 struct xhci_virt_device *virt_dev;
2669 struct xhci_input_control_ctx *ctrl_ctx;
2670 struct xhci_slot_ctx *slot_ctx;
2671 struct xhci_command *command;
2673 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2674 if (ret <= 0)
2675 return ret;
2676 xhci = hcd_to_xhci(hcd);
2677 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2678 (xhci->xhc_state & XHCI_STATE_REMOVING))
2679 return -ENODEV;
2681 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2682 virt_dev = xhci->devs[udev->slot_id];
2684 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2685 if (!command)
2686 return -ENOMEM;
2688 command->in_ctx = virt_dev->in_ctx;
2690 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2692 if (!ctrl_ctx) {
2693 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2694 __func__);
2695 ret = -ENOMEM;
2696 goto command_cleanup;
2698 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2699 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2700 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2702 /* Don't issue the command if there's no endpoints to update. */
2703 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2704 ctrl_ctx->drop_flags == 0) {
2705 ret = 0;
2706 goto command_cleanup;
2708 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2709 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2710 for (i = 31; i >= 1; i--) {
2711 __le32 le32 = cpu_to_le32(BIT(i));
2713 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2714 || (ctrl_ctx->add_flags & le32) || i == 1) {
2715 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2716 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2717 break;
2721 ret = xhci_configure_endpoint(xhci, udev, command,
2722 false, false);
2723 if (ret)
2724 /* Callee should call reset_bandwidth() */
2725 goto command_cleanup;
2727 /* Free any rings that were dropped, but not changed. */
2728 for (i = 1; i < 31; i++) {
2729 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2730 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2731 xhci_free_endpoint_ring(xhci, virt_dev, i);
2732 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2735 xhci_zero_in_ctx(xhci, virt_dev);
2737 * Install any rings for completely new endpoints or changed endpoints,
2738 * and free any old rings from changed endpoints.
2740 for (i = 1; i < 31; i++) {
2741 if (!virt_dev->eps[i].new_ring)
2742 continue;
2743 /* Only free the old ring if it exists.
2744 * It may not if this is the first add of an endpoint.
2746 if (virt_dev->eps[i].ring) {
2747 xhci_free_endpoint_ring(xhci, virt_dev, i);
2749 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2750 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2751 virt_dev->eps[i].new_ring = NULL;
2753 command_cleanup:
2754 kfree(command->completion);
2755 kfree(command);
2757 return ret;
2760 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2762 struct xhci_hcd *xhci;
2763 struct xhci_virt_device *virt_dev;
2764 int i, ret;
2766 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2767 if (ret <= 0)
2768 return;
2769 xhci = hcd_to_xhci(hcd);
2771 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2772 virt_dev = xhci->devs[udev->slot_id];
2773 /* Free any rings allocated for added endpoints */
2774 for (i = 0; i < 31; i++) {
2775 if (virt_dev->eps[i].new_ring) {
2776 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2777 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2778 virt_dev->eps[i].new_ring = NULL;
2781 xhci_zero_in_ctx(xhci, virt_dev);
2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2785 struct xhci_container_ctx *in_ctx,
2786 struct xhci_container_ctx *out_ctx,
2787 struct xhci_input_control_ctx *ctrl_ctx,
2788 u32 add_flags, u32 drop_flags)
2790 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2791 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2792 xhci_slot_copy(xhci, in_ctx, out_ctx);
2793 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2796 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2797 unsigned int slot_id, unsigned int ep_index,
2798 struct xhci_dequeue_state *deq_state)
2800 struct xhci_input_control_ctx *ctrl_ctx;
2801 struct xhci_container_ctx *in_ctx;
2802 struct xhci_ep_ctx *ep_ctx;
2803 u32 added_ctxs;
2804 dma_addr_t addr;
2806 in_ctx = xhci->devs[slot_id]->in_ctx;
2807 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2808 if (!ctrl_ctx) {
2809 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2810 __func__);
2811 return;
2814 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2815 xhci->devs[slot_id]->out_ctx, ep_index);
2816 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2817 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2818 deq_state->new_deq_ptr);
2819 if (addr == 0) {
2820 xhci_warn(xhci, "WARN Cannot submit config ep after "
2821 "reset ep command\n");
2822 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2823 deq_state->new_deq_seg,
2824 deq_state->new_deq_ptr);
2825 return;
2827 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2829 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2830 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2831 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2832 added_ctxs, added_ctxs);
2835 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2836 unsigned int stream_id, struct xhci_td *td)
2838 struct xhci_dequeue_state deq_state;
2839 struct usb_device *udev = td->urb->dev;
2841 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2842 "Cleaning up stalled endpoint ring");
2843 /* We need to move the HW's dequeue pointer past this TD,
2844 * or it will attempt to resend it on the next doorbell ring.
2846 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2847 ep_index, stream_id, td, &deq_state);
2849 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2850 return;
2852 /* HW with the reset endpoint quirk will use the saved dequeue state to
2853 * issue a configure endpoint command later.
2855 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2856 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857 "Queueing new dequeue state");
2858 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2859 ep_index, &deq_state);
2860 } else {
2861 /* Better hope no one uses the input context between now and the
2862 * reset endpoint completion!
2863 * XXX: No idea how this hardware will react when stream rings
2864 * are enabled.
2866 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2867 "Setting up input context for "
2868 "configure endpoint command");
2869 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2870 ep_index, &deq_state);
2874 /* Called when clearing halted device. The core should have sent the control
2875 * message to clear the device halt condition. The host side of the halt should
2876 * already be cleared with a reset endpoint command issued when the STALL tx
2877 * event was received.
2879 * Context: in_interrupt
2882 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2883 struct usb_host_endpoint *ep)
2885 struct xhci_hcd *xhci;
2887 xhci = hcd_to_xhci(hcd);
2890 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2891 * The Reset Endpoint Command may only be issued to endpoints in the
2892 * Halted state. If software wishes reset the Data Toggle or Sequence
2893 * Number of an endpoint that isn't in the Halted state, then software
2894 * may issue a Configure Endpoint Command with the Drop and Add bits set
2895 * for the target endpoint. that is in the Stopped state.
2898 /* For now just print debug to follow the situation */
2899 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2900 ep->desc.bEndpointAddress);
2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2904 struct usb_device *udev, struct usb_host_endpoint *ep,
2905 unsigned int slot_id)
2907 int ret;
2908 unsigned int ep_index;
2909 unsigned int ep_state;
2911 if (!ep)
2912 return -EINVAL;
2913 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2914 if (ret <= 0)
2915 return -EINVAL;
2916 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2917 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2918 " descriptor for ep 0x%x does not support streams\n",
2919 ep->desc.bEndpointAddress);
2920 return -EINVAL;
2923 ep_index = xhci_get_endpoint_index(&ep->desc);
2924 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2925 if (ep_state & EP_HAS_STREAMS ||
2926 ep_state & EP_GETTING_STREAMS) {
2927 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2928 "already has streams set up.\n",
2929 ep->desc.bEndpointAddress);
2930 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2931 "dynamic stream context array reallocation.\n");
2932 return -EINVAL;
2934 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2935 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2936 "endpoint 0x%x; URBs are pending.\n",
2937 ep->desc.bEndpointAddress);
2938 return -EINVAL;
2940 return 0;
2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2944 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2946 unsigned int max_streams;
2948 /* The stream context array size must be a power of two */
2949 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2951 * Find out how many primary stream array entries the host controller
2952 * supports. Later we may use secondary stream arrays (similar to 2nd
2953 * level page entries), but that's an optional feature for xHCI host
2954 * controllers. xHCs must support at least 4 stream IDs.
2956 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2957 if (*num_stream_ctxs > max_streams) {
2958 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2959 max_streams);
2960 *num_stream_ctxs = max_streams;
2961 *num_streams = max_streams;
2965 /* Returns an error code if one of the endpoint already has streams.
2966 * This does not change any data structures, it only checks and gathers
2967 * information.
2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2970 struct usb_device *udev,
2971 struct usb_host_endpoint **eps, unsigned int num_eps,
2972 unsigned int *num_streams, u32 *changed_ep_bitmask)
2974 unsigned int max_streams;
2975 unsigned int endpoint_flag;
2976 int i;
2977 int ret;
2979 for (i = 0; i < num_eps; i++) {
2980 ret = xhci_check_streams_endpoint(xhci, udev,
2981 eps[i], udev->slot_id);
2982 if (ret < 0)
2983 return ret;
2985 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2986 if (max_streams < (*num_streams - 1)) {
2987 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2988 eps[i]->desc.bEndpointAddress,
2989 max_streams);
2990 *num_streams = max_streams+1;
2993 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2994 if (*changed_ep_bitmask & endpoint_flag)
2995 return -EINVAL;
2996 *changed_ep_bitmask |= endpoint_flag;
2998 return 0;
3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3002 struct usb_device *udev,
3003 struct usb_host_endpoint **eps, unsigned int num_eps)
3005 u32 changed_ep_bitmask = 0;
3006 unsigned int slot_id;
3007 unsigned int ep_index;
3008 unsigned int ep_state;
3009 int i;
3011 slot_id = udev->slot_id;
3012 if (!xhci->devs[slot_id])
3013 return 0;
3015 for (i = 0; i < num_eps; i++) {
3016 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3017 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3018 /* Are streams already being freed for the endpoint? */
3019 if (ep_state & EP_GETTING_NO_STREAMS) {
3020 xhci_warn(xhci, "WARN Can't disable streams for "
3021 "endpoint 0x%x, "
3022 "streams are being disabled already\n",
3023 eps[i]->desc.bEndpointAddress);
3024 return 0;
3026 /* Are there actually any streams to free? */
3027 if (!(ep_state & EP_HAS_STREAMS) &&
3028 !(ep_state & EP_GETTING_STREAMS)) {
3029 xhci_warn(xhci, "WARN Can't disable streams for "
3030 "endpoint 0x%x, "
3031 "streams are already disabled!\n",
3032 eps[i]->desc.bEndpointAddress);
3033 xhci_warn(xhci, "WARN xhci_free_streams() called "
3034 "with non-streams endpoint\n");
3035 return 0;
3037 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3039 return changed_ep_bitmask;
3043 * The USB device drivers use this function (through the HCD interface in USB
3044 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3045 * coordinate mass storage command queueing across multiple endpoints (basically
3046 * a stream ID == a task ID).
3048 * Setting up streams involves allocating the same size stream context array
3049 * for each endpoint and issuing a configure endpoint command for all endpoints.
3051 * Don't allow the call to succeed if one endpoint only supports one stream
3052 * (which means it doesn't support streams at all).
3054 * Drivers may get less stream IDs than they asked for, if the host controller
3055 * hardware or endpoints claim they can't support the number of requested
3056 * stream IDs.
3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3059 struct usb_host_endpoint **eps, unsigned int num_eps,
3060 unsigned int num_streams, gfp_t mem_flags)
3062 int i, ret;
3063 struct xhci_hcd *xhci;
3064 struct xhci_virt_device *vdev;
3065 struct xhci_command *config_cmd;
3066 struct xhci_input_control_ctx *ctrl_ctx;
3067 unsigned int ep_index;
3068 unsigned int num_stream_ctxs;
3069 unsigned int max_packet;
3070 unsigned long flags;
3071 u32 changed_ep_bitmask = 0;
3073 if (!eps)
3074 return -EINVAL;
3076 /* Add one to the number of streams requested to account for
3077 * stream 0 that is reserved for xHCI usage.
3079 num_streams += 1;
3080 xhci = hcd_to_xhci(hcd);
3081 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082 num_streams);
3084 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3085 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3086 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3087 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3088 return -ENOSYS;
3091 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3092 if (!config_cmd)
3093 return -ENOMEM;
3095 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3096 if (!ctrl_ctx) {
3097 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3098 __func__);
3099 xhci_free_command(xhci, config_cmd);
3100 return -ENOMEM;
3103 /* Check to make sure all endpoints are not already configured for
3104 * streams. While we're at it, find the maximum number of streams that
3105 * all the endpoints will support and check for duplicate endpoints.
3107 spin_lock_irqsave(&xhci->lock, flags);
3108 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3109 num_eps, &num_streams, &changed_ep_bitmask);
3110 if (ret < 0) {
3111 xhci_free_command(xhci, config_cmd);
3112 spin_unlock_irqrestore(&xhci->lock, flags);
3113 return ret;
3115 if (num_streams <= 1) {
3116 xhci_warn(xhci, "WARN: endpoints can't handle "
3117 "more than one stream.\n");
3118 xhci_free_command(xhci, config_cmd);
3119 spin_unlock_irqrestore(&xhci->lock, flags);
3120 return -EINVAL;
3122 vdev = xhci->devs[udev->slot_id];
3123 /* Mark each endpoint as being in transition, so
3124 * xhci_urb_enqueue() will reject all URBs.
3126 for (i = 0; i < num_eps; i++) {
3127 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3130 spin_unlock_irqrestore(&xhci->lock, flags);
3132 /* Setup internal data structures and allocate HW data structures for
3133 * streams (but don't install the HW structures in the input context
3134 * until we're sure all memory allocation succeeded).
3136 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3137 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3138 num_stream_ctxs, num_streams);
3140 for (i = 0; i < num_eps; i++) {
3141 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3142 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3143 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3144 num_stream_ctxs,
3145 num_streams,
3146 max_packet, mem_flags);
3147 if (!vdev->eps[ep_index].stream_info)
3148 goto cleanup;
3149 /* Set maxPstreams in endpoint context and update deq ptr to
3150 * point to stream context array. FIXME
3154 /* Set up the input context for a configure endpoint command. */
3155 for (i = 0; i < num_eps; i++) {
3156 struct xhci_ep_ctx *ep_ctx;
3158 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3161 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3162 vdev->out_ctx, ep_index);
3163 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3164 vdev->eps[ep_index].stream_info);
3166 /* Tell the HW to drop its old copy of the endpoint context info
3167 * and add the updated copy from the input context.
3169 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3170 vdev->out_ctx, ctrl_ctx,
3171 changed_ep_bitmask, changed_ep_bitmask);
3173 /* Issue and wait for the configure endpoint command */
3174 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3175 false, false);
3177 /* xHC rejected the configure endpoint command for some reason, so we
3178 * leave the old ring intact and free our internal streams data
3179 * structure.
3181 if (ret < 0)
3182 goto cleanup;
3184 spin_lock_irqsave(&xhci->lock, flags);
3185 for (i = 0; i < num_eps; i++) {
3186 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3188 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3189 udev->slot_id, ep_index);
3190 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3192 xhci_free_command(xhci, config_cmd);
3193 spin_unlock_irqrestore(&xhci->lock, flags);
3195 /* Subtract 1 for stream 0, which drivers can't use */
3196 return num_streams - 1;
3198 cleanup:
3199 /* If it didn't work, free the streams! */
3200 for (i = 0; i < num_eps; i++) {
3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3203 vdev->eps[ep_index].stream_info = NULL;
3204 /* FIXME Unset maxPstreams in endpoint context and
3205 * update deq ptr to point to normal string ring.
3207 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3208 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3209 xhci_endpoint_zero(xhci, vdev, eps[i]);
3211 xhci_free_command(xhci, config_cmd);
3212 return -ENOMEM;
3215 /* Transition the endpoint from using streams to being a "normal" endpoint
3216 * without streams.
3218 * Modify the endpoint context state, submit a configure endpoint command,
3219 * and free all endpoint rings for streams if that completes successfully.
3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3222 struct usb_host_endpoint **eps, unsigned int num_eps,
3223 gfp_t mem_flags)
3225 int i, ret;
3226 struct xhci_hcd *xhci;
3227 struct xhci_virt_device *vdev;
3228 struct xhci_command *command;
3229 struct xhci_input_control_ctx *ctrl_ctx;
3230 unsigned int ep_index;
3231 unsigned long flags;
3232 u32 changed_ep_bitmask;
3234 xhci = hcd_to_xhci(hcd);
3235 vdev = xhci->devs[udev->slot_id];
3237 /* Set up a configure endpoint command to remove the streams rings */
3238 spin_lock_irqsave(&xhci->lock, flags);
3239 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3240 udev, eps, num_eps);
3241 if (changed_ep_bitmask == 0) {
3242 spin_unlock_irqrestore(&xhci->lock, flags);
3243 return -EINVAL;
3246 /* Use the xhci_command structure from the first endpoint. We may have
3247 * allocated too many, but the driver may call xhci_free_streams() for
3248 * each endpoint it grouped into one call to xhci_alloc_streams().
3250 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3251 command = vdev->eps[ep_index].stream_info->free_streams_command;
3252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3253 if (!ctrl_ctx) {
3254 spin_unlock_irqrestore(&xhci->lock, flags);
3255 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3256 __func__);
3257 return -EINVAL;
3260 for (i = 0; i < num_eps; i++) {
3261 struct xhci_ep_ctx *ep_ctx;
3263 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3265 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3266 EP_GETTING_NO_STREAMS;
3268 xhci_endpoint_copy(xhci, command->in_ctx,
3269 vdev->out_ctx, ep_index);
3270 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3271 &vdev->eps[ep_index]);
3273 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3274 vdev->out_ctx, ctrl_ctx,
3275 changed_ep_bitmask, changed_ep_bitmask);
3276 spin_unlock_irqrestore(&xhci->lock, flags);
3278 /* Issue and wait for the configure endpoint command,
3279 * which must succeed.
3281 ret = xhci_configure_endpoint(xhci, udev, command,
3282 false, true);
3284 /* xHC rejected the configure endpoint command for some reason, so we
3285 * leave the streams rings intact.
3287 if (ret < 0)
3288 return ret;
3290 spin_lock_irqsave(&xhci->lock, flags);
3291 for (i = 0; i < num_eps; i++) {
3292 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3293 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3294 vdev->eps[ep_index].stream_info = NULL;
3295 /* FIXME Unset maxPstreams in endpoint context and
3296 * update deq ptr to point to normal string ring.
3298 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3299 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3303 return 0;
3307 * Deletes endpoint resources for endpoints that were active before a Reset
3308 * Device command, or a Disable Slot command. The Reset Device command leaves
3309 * the control endpoint intact, whereas the Disable Slot command deletes it.
3311 * Must be called with xhci->lock held.
3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3314 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3316 int i;
3317 unsigned int num_dropped_eps = 0;
3318 unsigned int drop_flags = 0;
3320 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3321 if (virt_dev->eps[i].ring) {
3322 drop_flags |= 1 << i;
3323 num_dropped_eps++;
3326 xhci->num_active_eps -= num_dropped_eps;
3327 if (num_dropped_eps)
3328 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3329 "Dropped %u ep ctxs, flags = 0x%x, "
3330 "%u now active.",
3331 num_dropped_eps, drop_flags,
3332 xhci->num_active_eps);
3336 * This submits a Reset Device Command, which will set the device state to 0,
3337 * set the device address to 0, and disable all the endpoints except the default
3338 * control endpoint. The USB core should come back and call
3339 * xhci_address_device(), and then re-set up the configuration. If this is
3340 * called because of a usb_reset_and_verify_device(), then the old alternate
3341 * settings will be re-installed through the normal bandwidth allocation
3342 * functions.
3344 * Wait for the Reset Device command to finish. Remove all structures
3345 * associated with the endpoints that were disabled. Clear the input device
3346 * structure? Reset the control endpoint 0 max packet size?
3348 * If the virt_dev to be reset does not exist or does not match the udev,
3349 * it means the device is lost, possibly due to the xHC restore error and
3350 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3351 * re-allocate the device.
3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3354 struct usb_device *udev)
3356 int ret, i;
3357 unsigned long flags;
3358 struct xhci_hcd *xhci;
3359 unsigned int slot_id;
3360 struct xhci_virt_device *virt_dev;
3361 struct xhci_command *reset_device_cmd;
3362 struct xhci_slot_ctx *slot_ctx;
3363 int old_active_eps = 0;
3365 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3366 if (ret <= 0)
3367 return ret;
3368 xhci = hcd_to_xhci(hcd);
3369 slot_id = udev->slot_id;
3370 virt_dev = xhci->devs[slot_id];
3371 if (!virt_dev) {
3372 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3373 "not exist. Re-allocate the device\n", slot_id);
3374 ret = xhci_alloc_dev(hcd, udev);
3375 if (ret == 1)
3376 return 0;
3377 else
3378 return -EINVAL;
3381 if (virt_dev->tt_info)
3382 old_active_eps = virt_dev->tt_info->active_eps;
3384 if (virt_dev->udev != udev) {
3385 /* If the virt_dev and the udev does not match, this virt_dev
3386 * may belong to another udev.
3387 * Re-allocate the device.
3389 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3390 "not match the udev. Re-allocate the device\n",
3391 slot_id);
3392 ret = xhci_alloc_dev(hcd, udev);
3393 if (ret == 1)
3394 return 0;
3395 else
3396 return -EINVAL;
3399 /* If device is not setup, there is no point in resetting it */
3400 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3401 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3402 SLOT_STATE_DISABLED)
3403 return 0;
3405 trace_xhci_discover_or_reset_device(slot_ctx);
3407 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3408 /* Allocate the command structure that holds the struct completion.
3409 * Assume we're in process context, since the normal device reset
3410 * process has to wait for the device anyway. Storage devices are
3411 * reset as part of error handling, so use GFP_NOIO instead of
3412 * GFP_KERNEL.
3414 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3415 if (!reset_device_cmd) {
3416 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3417 return -ENOMEM;
3420 /* Attempt to submit the Reset Device command to the command ring */
3421 spin_lock_irqsave(&xhci->lock, flags);
3423 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3424 if (ret) {
3425 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3426 spin_unlock_irqrestore(&xhci->lock, flags);
3427 goto command_cleanup;
3429 xhci_ring_cmd_db(xhci);
3430 spin_unlock_irqrestore(&xhci->lock, flags);
3432 /* Wait for the Reset Device command to finish */
3433 wait_for_completion(reset_device_cmd->completion);
3435 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3436 * unless we tried to reset a slot ID that wasn't enabled,
3437 * or the device wasn't in the addressed or configured state.
3439 ret = reset_device_cmd->status;
3440 switch (ret) {
3441 case COMP_COMMAND_ABORTED:
3442 case COMP_COMMAND_RING_STOPPED:
3443 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3444 ret = -ETIME;
3445 goto command_cleanup;
3446 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3447 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3448 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3449 slot_id,
3450 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3451 xhci_dbg(xhci, "Not freeing device rings.\n");
3452 /* Don't treat this as an error. May change my mind later. */
3453 ret = 0;
3454 goto command_cleanup;
3455 case COMP_SUCCESS:
3456 xhci_dbg(xhci, "Successful reset device command.\n");
3457 break;
3458 default:
3459 if (xhci_is_vendor_info_code(xhci, ret))
3460 break;
3461 xhci_warn(xhci, "Unknown completion code %u for "
3462 "reset device command.\n", ret);
3463 ret = -EINVAL;
3464 goto command_cleanup;
3467 /* Free up host controller endpoint resources */
3468 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3469 spin_lock_irqsave(&xhci->lock, flags);
3470 /* Don't delete the default control endpoint resources */
3471 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3472 spin_unlock_irqrestore(&xhci->lock, flags);
3475 /* Everything but endpoint 0 is disabled, so free the rings. */
3476 for (i = 1; i < 31; i++) {
3477 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3479 if (ep->ep_state & EP_HAS_STREAMS) {
3480 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3481 xhci_get_endpoint_address(i));
3482 xhci_free_stream_info(xhci, ep->stream_info);
3483 ep->stream_info = NULL;
3484 ep->ep_state &= ~EP_HAS_STREAMS;
3487 if (ep->ring) {
3488 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3489 xhci_free_endpoint_ring(xhci, virt_dev, i);
3491 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3492 xhci_drop_ep_from_interval_table(xhci,
3493 &virt_dev->eps[i].bw_info,
3494 virt_dev->bw_table,
3495 udev,
3496 &virt_dev->eps[i],
3497 virt_dev->tt_info);
3498 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3500 /* If necessary, update the number of active TTs on this root port */
3501 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3502 ret = 0;
3504 command_cleanup:
3505 xhci_free_command(xhci, reset_device_cmd);
3506 return ret;
3510 * At this point, the struct usb_device is about to go away, the device has
3511 * disconnected, and all traffic has been stopped and the endpoints have been
3512 * disabled. Free any HC data structures associated with that device.
3514 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3516 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3517 struct xhci_virt_device *virt_dev;
3518 struct xhci_slot_ctx *slot_ctx;
3519 int i, ret;
3521 #ifndef CONFIG_USB_DEFAULT_PERSIST
3523 * We called pm_runtime_get_noresume when the device was attached.
3524 * Decrement the counter here to allow controller to runtime suspend
3525 * if no devices remain.
3527 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3528 pm_runtime_put_noidle(hcd->self.controller);
3529 #endif
3531 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3532 /* If the host is halted due to driver unload, we still need to free the
3533 * device.
3535 if (ret <= 0 && ret != -ENODEV)
3536 return;
3538 virt_dev = xhci->devs[udev->slot_id];
3539 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3540 trace_xhci_free_dev(slot_ctx);
3542 /* Stop any wayward timer functions (which may grab the lock) */
3543 for (i = 0; i < 31; i++) {
3544 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3545 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3547 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3548 ret = xhci_disable_slot(xhci, udev->slot_id);
3549 if (ret)
3550 xhci_free_virt_device(xhci, udev->slot_id);
3553 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3555 struct xhci_command *command;
3556 unsigned long flags;
3557 u32 state;
3558 int ret = 0;
3560 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3561 if (!command)
3562 return -ENOMEM;
3564 spin_lock_irqsave(&xhci->lock, flags);
3565 /* Don't disable the slot if the host controller is dead. */
3566 state = readl(&xhci->op_regs->status);
3567 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3568 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3569 spin_unlock_irqrestore(&xhci->lock, flags);
3570 kfree(command);
3571 return -ENODEV;
3574 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3575 slot_id);
3576 if (ret) {
3577 spin_unlock_irqrestore(&xhci->lock, flags);
3578 kfree(command);
3579 return ret;
3581 xhci_ring_cmd_db(xhci);
3582 spin_unlock_irqrestore(&xhci->lock, flags);
3583 return ret;
3587 * Checks if we have enough host controller resources for the default control
3588 * endpoint.
3590 * Must be called with xhci->lock held.
3592 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3594 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3595 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3596 "Not enough ep ctxs: "
3597 "%u active, need to add 1, limit is %u.",
3598 xhci->num_active_eps, xhci->limit_active_eps);
3599 return -ENOMEM;
3601 xhci->num_active_eps += 1;
3602 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3603 "Adding 1 ep ctx, %u now active.",
3604 xhci->num_active_eps);
3605 return 0;
3610 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3611 * timed out, or allocating memory failed. Returns 1 on success.
3613 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3615 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3616 struct xhci_virt_device *vdev;
3617 struct xhci_slot_ctx *slot_ctx;
3618 unsigned long flags;
3619 int ret, slot_id;
3620 struct xhci_command *command;
3622 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3623 if (!command)
3624 return 0;
3626 spin_lock_irqsave(&xhci->lock, flags);
3627 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3628 if (ret) {
3629 spin_unlock_irqrestore(&xhci->lock, flags);
3630 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631 xhci_free_command(xhci, command);
3632 return 0;
3634 xhci_ring_cmd_db(xhci);
3635 spin_unlock_irqrestore(&xhci->lock, flags);
3637 wait_for_completion(command->completion);
3638 slot_id = command->slot_id;
3640 if (!slot_id || command->status != COMP_SUCCESS) {
3641 xhci_err(xhci, "Error while assigning device slot ID\n");
3642 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3643 HCS_MAX_SLOTS(
3644 readl(&xhci->cap_regs->hcs_params1)));
3645 xhci_free_command(xhci, command);
3646 return 0;
3649 xhci_free_command(xhci, command);
3651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3652 spin_lock_irqsave(&xhci->lock, flags);
3653 ret = xhci_reserve_host_control_ep_resources(xhci);
3654 if (ret) {
3655 spin_unlock_irqrestore(&xhci->lock, flags);
3656 xhci_warn(xhci, "Not enough host resources, "
3657 "active endpoint contexts = %u\n",
3658 xhci->num_active_eps);
3659 goto disable_slot;
3661 spin_unlock_irqrestore(&xhci->lock, flags);
3663 /* Use GFP_NOIO, since this function can be called from
3664 * xhci_discover_or_reset_device(), which may be called as part of
3665 * mass storage driver error handling.
3667 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3668 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3669 goto disable_slot;
3671 vdev = xhci->devs[slot_id];
3672 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3673 trace_xhci_alloc_dev(slot_ctx);
3675 udev->slot_id = slot_id;
3677 xhci_debugfs_create_slot(xhci, slot_id);
3679 #ifndef CONFIG_USB_DEFAULT_PERSIST
3681 * If resetting upon resume, we can't put the controller into runtime
3682 * suspend if there is a device attached.
3684 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3685 pm_runtime_get_noresume(hcd->self.controller);
3686 #endif
3688 /* Is this a LS or FS device under a HS hub? */
3689 /* Hub or peripherial? */
3690 return 1;
3692 disable_slot:
3693 ret = xhci_disable_slot(xhci, udev->slot_id);
3694 if (ret)
3695 xhci_free_virt_device(xhci, udev->slot_id);
3697 return 0;
3701 * Issue an Address Device command and optionally send a corresponding
3702 * SetAddress request to the device.
3704 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3705 enum xhci_setup_dev setup)
3707 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3708 unsigned long flags;
3709 struct xhci_virt_device *virt_dev;
3710 int ret = 0;
3711 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3712 struct xhci_slot_ctx *slot_ctx;
3713 struct xhci_input_control_ctx *ctrl_ctx;
3714 u64 temp_64;
3715 struct xhci_command *command = NULL;
3717 mutex_lock(&xhci->mutex);
3719 if (xhci->xhc_state) { /* dying, removing or halted */
3720 ret = -ESHUTDOWN;
3721 goto out;
3724 if (!udev->slot_id) {
3725 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3726 "Bad Slot ID %d", udev->slot_id);
3727 ret = -EINVAL;
3728 goto out;
3731 virt_dev = xhci->devs[udev->slot_id];
3733 if (WARN_ON(!virt_dev)) {
3735 * In plug/unplug torture test with an NEC controller,
3736 * a zero-dereference was observed once due to virt_dev = 0.
3737 * Print useful debug rather than crash if it is observed again!
3739 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3740 udev->slot_id);
3741 ret = -EINVAL;
3742 goto out;
3744 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3745 trace_xhci_setup_device_slot(slot_ctx);
3747 if (setup == SETUP_CONTEXT_ONLY) {
3748 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3749 SLOT_STATE_DEFAULT) {
3750 xhci_dbg(xhci, "Slot already in default state\n");
3751 goto out;
3755 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3756 if (!command) {
3757 ret = -ENOMEM;
3758 goto out;
3761 command->in_ctx = virt_dev->in_ctx;
3763 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3764 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3765 if (!ctrl_ctx) {
3766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3767 __func__);
3768 ret = -EINVAL;
3769 goto out;
3772 * If this is the first Set Address since device plug-in or
3773 * virt_device realloaction after a resume with an xHCI power loss,
3774 * then set up the slot context.
3776 if (!slot_ctx->dev_info)
3777 xhci_setup_addressable_virt_dev(xhci, udev);
3778 /* Otherwise, update the control endpoint ring enqueue pointer. */
3779 else
3780 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3781 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3782 ctrl_ctx->drop_flags = 0;
3784 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3785 le32_to_cpu(slot_ctx->dev_info) >> 27);
3787 spin_lock_irqsave(&xhci->lock, flags);
3788 trace_xhci_setup_device(virt_dev);
3789 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3790 udev->slot_id, setup);
3791 if (ret) {
3792 spin_unlock_irqrestore(&xhci->lock, flags);
3793 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3794 "FIXME: allocate a command ring segment");
3795 goto out;
3797 xhci_ring_cmd_db(xhci);
3798 spin_unlock_irqrestore(&xhci->lock, flags);
3800 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3801 wait_for_completion(command->completion);
3803 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3804 * the SetAddress() "recovery interval" required by USB and aborting the
3805 * command on a timeout.
3807 switch (command->status) {
3808 case COMP_COMMAND_ABORTED:
3809 case COMP_COMMAND_RING_STOPPED:
3810 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3811 ret = -ETIME;
3812 break;
3813 case COMP_CONTEXT_STATE_ERROR:
3814 case COMP_SLOT_NOT_ENABLED_ERROR:
3815 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3816 act, udev->slot_id);
3817 ret = -EINVAL;
3818 break;
3819 case COMP_USB_TRANSACTION_ERROR:
3820 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3822 mutex_unlock(&xhci->mutex);
3823 ret = xhci_disable_slot(xhci, udev->slot_id);
3824 if (!ret)
3825 xhci_alloc_dev(hcd, udev);
3826 kfree(command->completion);
3827 kfree(command);
3828 return -EPROTO;
3829 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3830 dev_warn(&udev->dev,
3831 "ERROR: Incompatible device for setup %s command\n", act);
3832 ret = -ENODEV;
3833 break;
3834 case COMP_SUCCESS:
3835 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3836 "Successful setup %s command", act);
3837 break;
3838 default:
3839 xhci_err(xhci,
3840 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3841 act, command->status);
3842 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3843 ret = -EINVAL;
3844 break;
3846 if (ret)
3847 goto out;
3848 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3849 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3850 "Op regs DCBAA ptr = %#016llx", temp_64);
3851 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852 "Slot ID %d dcbaa entry @%p = %#016llx",
3853 udev->slot_id,
3854 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3855 (unsigned long long)
3856 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 "Output Context DMA address = %#08llx",
3859 (unsigned long long)virt_dev->out_ctx->dma);
3860 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3861 le32_to_cpu(slot_ctx->dev_info) >> 27);
3863 * USB core uses address 1 for the roothubs, so we add one to the
3864 * address given back to us by the HC.
3866 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3867 le32_to_cpu(slot_ctx->dev_info) >> 27);
3868 /* Zero the input context control for later use */
3869 ctrl_ctx->add_flags = 0;
3870 ctrl_ctx->drop_flags = 0;
3872 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3873 "Internal device address = %d",
3874 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3875 out:
3876 mutex_unlock(&xhci->mutex);
3877 if (command) {
3878 kfree(command->completion);
3879 kfree(command);
3881 return ret;
3884 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3886 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3889 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3891 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3895 * Transfer the port index into real index in the HW port status
3896 * registers. Caculate offset between the port's PORTSC register
3897 * and port status base. Divide the number of per port register
3898 * to get the real index. The raw port number bases 1.
3900 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3902 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3903 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3904 __le32 __iomem *addr;
3905 int raw_port;
3907 if (hcd->speed < HCD_USB3)
3908 addr = xhci->usb2_ports[port1 - 1];
3909 else
3910 addr = xhci->usb3_ports[port1 - 1];
3912 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3913 return raw_port;
3917 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3918 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3920 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3921 struct usb_device *udev, u16 max_exit_latency)
3923 struct xhci_virt_device *virt_dev;
3924 struct xhci_command *command;
3925 struct xhci_input_control_ctx *ctrl_ctx;
3926 struct xhci_slot_ctx *slot_ctx;
3927 unsigned long flags;
3928 int ret;
3930 spin_lock_irqsave(&xhci->lock, flags);
3932 virt_dev = xhci->devs[udev->slot_id];
3935 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3936 * xHC was re-initialized. Exit latency will be set later after
3937 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3940 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3941 spin_unlock_irqrestore(&xhci->lock, flags);
3942 return 0;
3945 /* Attempt to issue an Evaluate Context command to change the MEL. */
3946 command = xhci->lpm_command;
3947 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3948 if (!ctrl_ctx) {
3949 spin_unlock_irqrestore(&xhci->lock, flags);
3950 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3951 __func__);
3952 return -ENOMEM;
3955 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3956 spin_unlock_irqrestore(&xhci->lock, flags);
3958 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3959 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3960 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3961 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3962 slot_ctx->dev_state = 0;
3964 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3965 "Set up evaluate context for LPM MEL change.");
3967 /* Issue and wait for the evaluate context command. */
3968 ret = xhci_configure_endpoint(xhci, udev, command,
3969 true, true);
3971 if (!ret) {
3972 spin_lock_irqsave(&xhci->lock, flags);
3973 virt_dev->current_mel = max_exit_latency;
3974 spin_unlock_irqrestore(&xhci->lock, flags);
3976 return ret;
3979 #ifdef CONFIG_PM
3981 /* BESL to HIRD Encoding array for USB2 LPM */
3982 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3983 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3985 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3986 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3987 struct usb_device *udev)
3989 int u2del, besl, besl_host;
3990 int besl_device = 0;
3991 u32 field;
3993 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3994 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3996 if (field & USB_BESL_SUPPORT) {
3997 for (besl_host = 0; besl_host < 16; besl_host++) {
3998 if (xhci_besl_encoding[besl_host] >= u2del)
3999 break;
4001 /* Use baseline BESL value as default */
4002 if (field & USB_BESL_BASELINE_VALID)
4003 besl_device = USB_GET_BESL_BASELINE(field);
4004 else if (field & USB_BESL_DEEP_VALID)
4005 besl_device = USB_GET_BESL_DEEP(field);
4006 } else {
4007 if (u2del <= 50)
4008 besl_host = 0;
4009 else
4010 besl_host = (u2del - 51) / 75 + 1;
4013 besl = besl_host + besl_device;
4014 if (besl > 15)
4015 besl = 15;
4017 return besl;
4020 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4021 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4023 u32 field;
4024 int l1;
4025 int besld = 0;
4026 int hirdm = 0;
4028 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4030 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4031 l1 = udev->l1_params.timeout / 256;
4033 /* device has preferred BESLD */
4034 if (field & USB_BESL_DEEP_VALID) {
4035 besld = USB_GET_BESL_DEEP(field);
4036 hirdm = 1;
4039 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4042 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4043 struct usb_device *udev, int enable)
4045 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4046 __le32 __iomem **port_array;
4047 __le32 __iomem *pm_addr, *hlpm_addr;
4048 u32 pm_val, hlpm_val, field;
4049 unsigned int port_num;
4050 unsigned long flags;
4051 int hird, exit_latency;
4052 int ret;
4054 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4055 !udev->lpm_capable)
4056 return -EPERM;
4058 if (!udev->parent || udev->parent->parent ||
4059 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4060 return -EPERM;
4062 if (udev->usb2_hw_lpm_capable != 1)
4063 return -EPERM;
4065 spin_lock_irqsave(&xhci->lock, flags);
4067 port_array = xhci->usb2_ports;
4068 port_num = udev->portnum - 1;
4069 pm_addr = port_array[port_num] + PORTPMSC;
4070 pm_val = readl(pm_addr);
4071 hlpm_addr = port_array[port_num] + PORTHLPMC;
4072 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4074 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4075 enable ? "enable" : "disable", port_num + 1);
4077 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4078 /* Host supports BESL timeout instead of HIRD */
4079 if (udev->usb2_hw_lpm_besl_capable) {
4080 /* if device doesn't have a preferred BESL value use a
4081 * default one which works with mixed HIRD and BESL
4082 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4084 if ((field & USB_BESL_SUPPORT) &&
4085 (field & USB_BESL_BASELINE_VALID))
4086 hird = USB_GET_BESL_BASELINE(field);
4087 else
4088 hird = udev->l1_params.besl;
4090 exit_latency = xhci_besl_encoding[hird];
4091 spin_unlock_irqrestore(&xhci->lock, flags);
4093 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4094 * input context for link powermanagement evaluate
4095 * context commands. It is protected by hcd->bandwidth
4096 * mutex and is shared by all devices. We need to set
4097 * the max ext latency in USB 2 BESL LPM as well, so
4098 * use the same mutex and xhci_change_max_exit_latency()
4100 mutex_lock(hcd->bandwidth_mutex);
4101 ret = xhci_change_max_exit_latency(xhci, udev,
4102 exit_latency);
4103 mutex_unlock(hcd->bandwidth_mutex);
4105 if (ret < 0)
4106 return ret;
4107 spin_lock_irqsave(&xhci->lock, flags);
4109 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4110 writel(hlpm_val, hlpm_addr);
4111 /* flush write */
4112 readl(hlpm_addr);
4113 } else {
4114 hird = xhci_calculate_hird_besl(xhci, udev);
4117 pm_val &= ~PORT_HIRD_MASK;
4118 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4119 writel(pm_val, pm_addr);
4120 pm_val = readl(pm_addr);
4121 pm_val |= PORT_HLE;
4122 writel(pm_val, pm_addr);
4123 /* flush write */
4124 readl(pm_addr);
4125 } else {
4126 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4127 writel(pm_val, pm_addr);
4128 /* flush write */
4129 readl(pm_addr);
4130 if (udev->usb2_hw_lpm_besl_capable) {
4131 spin_unlock_irqrestore(&xhci->lock, flags);
4132 mutex_lock(hcd->bandwidth_mutex);
4133 xhci_change_max_exit_latency(xhci, udev, 0);
4134 mutex_unlock(hcd->bandwidth_mutex);
4135 return 0;
4139 spin_unlock_irqrestore(&xhci->lock, flags);
4140 return 0;
4143 /* check if a usb2 port supports a given extened capability protocol
4144 * only USB2 ports extended protocol capability values are cached.
4145 * Return 1 if capability is supported
4147 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4148 unsigned capability)
4150 u32 port_offset, port_count;
4151 int i;
4153 for (i = 0; i < xhci->num_ext_caps; i++) {
4154 if (xhci->ext_caps[i] & capability) {
4155 /* port offsets starts at 1 */
4156 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4157 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4158 if (port >= port_offset &&
4159 port < port_offset + port_count)
4160 return 1;
4163 return 0;
4166 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4168 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4169 int portnum = udev->portnum - 1;
4171 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4172 !udev->lpm_capable)
4173 return 0;
4175 /* we only support lpm for non-hub device connected to root hub yet */
4176 if (!udev->parent || udev->parent->parent ||
4177 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4178 return 0;
4180 if (xhci->hw_lpm_support == 1 &&
4181 xhci_check_usb2_port_capability(
4182 xhci, portnum, XHCI_HLC)) {
4183 udev->usb2_hw_lpm_capable = 1;
4184 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4185 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4186 if (xhci_check_usb2_port_capability(xhci, portnum,
4187 XHCI_BLC))
4188 udev->usb2_hw_lpm_besl_capable = 1;
4191 return 0;
4194 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4196 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4197 static unsigned long long xhci_service_interval_to_ns(
4198 struct usb_endpoint_descriptor *desc)
4200 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4203 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4204 enum usb3_link_state state)
4206 unsigned long long sel;
4207 unsigned long long pel;
4208 unsigned int max_sel_pel;
4209 char *state_name;
4211 switch (state) {
4212 case USB3_LPM_U1:
4213 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4214 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4215 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4216 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4217 state_name = "U1";
4218 break;
4219 case USB3_LPM_U2:
4220 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4221 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4222 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4223 state_name = "U2";
4224 break;
4225 default:
4226 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4227 __func__);
4228 return USB3_LPM_DISABLED;
4231 if (sel <= max_sel_pel && pel <= max_sel_pel)
4232 return USB3_LPM_DEVICE_INITIATED;
4234 if (sel > max_sel_pel)
4235 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4236 "due to long SEL %llu ms\n",
4237 state_name, sel);
4238 else
4239 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4240 "due to long PEL %llu ms\n",
4241 state_name, pel);
4242 return USB3_LPM_DISABLED;
4245 /* The U1 timeout should be the maximum of the following values:
4246 * - For control endpoints, U1 system exit latency (SEL) * 3
4247 * - For bulk endpoints, U1 SEL * 5
4248 * - For interrupt endpoints:
4249 * - Notification EPs, U1 SEL * 3
4250 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4251 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4253 static unsigned long long xhci_calculate_intel_u1_timeout(
4254 struct usb_device *udev,
4255 struct usb_endpoint_descriptor *desc)
4257 unsigned long long timeout_ns;
4258 int ep_type;
4259 int intr_type;
4261 ep_type = usb_endpoint_type(desc);
4262 switch (ep_type) {
4263 case USB_ENDPOINT_XFER_CONTROL:
4264 timeout_ns = udev->u1_params.sel * 3;
4265 break;
4266 case USB_ENDPOINT_XFER_BULK:
4267 timeout_ns = udev->u1_params.sel * 5;
4268 break;
4269 case USB_ENDPOINT_XFER_INT:
4270 intr_type = usb_endpoint_interrupt_type(desc);
4271 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4272 timeout_ns = udev->u1_params.sel * 3;
4273 break;
4275 /* Otherwise the calculation is the same as isoc eps */
4276 /* fall through */
4277 case USB_ENDPOINT_XFER_ISOC:
4278 timeout_ns = xhci_service_interval_to_ns(desc);
4279 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4280 if (timeout_ns < udev->u1_params.sel * 2)
4281 timeout_ns = udev->u1_params.sel * 2;
4282 break;
4283 default:
4284 return 0;
4287 return timeout_ns;
4290 /* Returns the hub-encoded U1 timeout value. */
4291 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4292 struct usb_device *udev,
4293 struct usb_endpoint_descriptor *desc)
4295 unsigned long long timeout_ns;
4297 if (xhci->quirks & XHCI_INTEL_HOST)
4298 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4299 else
4300 timeout_ns = udev->u1_params.sel;
4302 /* The U1 timeout is encoded in 1us intervals.
4303 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4305 if (timeout_ns == USB3_LPM_DISABLED)
4306 timeout_ns = 1;
4307 else
4308 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4310 /* If the necessary timeout value is bigger than what we can set in the
4311 * USB 3.0 hub, we have to disable hub-initiated U1.
4313 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4314 return timeout_ns;
4315 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4316 "due to long timeout %llu ms\n", timeout_ns);
4317 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4320 /* The U2 timeout should be the maximum of:
4321 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4322 * - largest bInterval of any active periodic endpoint (to avoid going
4323 * into lower power link states between intervals).
4324 * - the U2 Exit Latency of the device
4326 static unsigned long long xhci_calculate_intel_u2_timeout(
4327 struct usb_device *udev,
4328 struct usb_endpoint_descriptor *desc)
4330 unsigned long long timeout_ns;
4331 unsigned long long u2_del_ns;
4333 timeout_ns = 10 * 1000 * 1000;
4335 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4336 (xhci_service_interval_to_ns(desc) > timeout_ns))
4337 timeout_ns = xhci_service_interval_to_ns(desc);
4339 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4340 if (u2_del_ns > timeout_ns)
4341 timeout_ns = u2_del_ns;
4343 return timeout_ns;
4346 /* Returns the hub-encoded U2 timeout value. */
4347 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4348 struct usb_device *udev,
4349 struct usb_endpoint_descriptor *desc)
4351 unsigned long long timeout_ns;
4353 if (xhci->quirks & XHCI_INTEL_HOST)
4354 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4355 else
4356 timeout_ns = udev->u2_params.sel;
4358 /* The U2 timeout is encoded in 256us intervals */
4359 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4360 /* If the necessary timeout value is bigger than what we can set in the
4361 * USB 3.0 hub, we have to disable hub-initiated U2.
4363 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4364 return timeout_ns;
4365 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4366 "due to long timeout %llu ms\n", timeout_ns);
4367 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4370 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4371 struct usb_device *udev,
4372 struct usb_endpoint_descriptor *desc,
4373 enum usb3_link_state state,
4374 u16 *timeout)
4376 if (state == USB3_LPM_U1)
4377 return xhci_calculate_u1_timeout(xhci, udev, desc);
4378 else if (state == USB3_LPM_U2)
4379 return xhci_calculate_u2_timeout(xhci, udev, desc);
4381 return USB3_LPM_DISABLED;
4384 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4385 struct usb_device *udev,
4386 struct usb_endpoint_descriptor *desc,
4387 enum usb3_link_state state,
4388 u16 *timeout)
4390 u16 alt_timeout;
4392 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4393 desc, state, timeout);
4395 /* If we found we can't enable hub-initiated LPM, or
4396 * the U1 or U2 exit latency was too high to allow
4397 * device-initiated LPM as well, just stop searching.
4399 if (alt_timeout == USB3_LPM_DISABLED ||
4400 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4401 *timeout = alt_timeout;
4402 return -E2BIG;
4404 if (alt_timeout > *timeout)
4405 *timeout = alt_timeout;
4406 return 0;
4409 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4410 struct usb_device *udev,
4411 struct usb_host_interface *alt,
4412 enum usb3_link_state state,
4413 u16 *timeout)
4415 int j;
4417 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4418 if (xhci_update_timeout_for_endpoint(xhci, udev,
4419 &alt->endpoint[j].desc, state, timeout))
4420 return -E2BIG;
4421 continue;
4423 return 0;
4426 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4427 enum usb3_link_state state)
4429 struct usb_device *parent;
4430 unsigned int num_hubs;
4432 if (state == USB3_LPM_U2)
4433 return 0;
4435 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4436 for (parent = udev->parent, num_hubs = 0; parent->parent;
4437 parent = parent->parent)
4438 num_hubs++;
4440 if (num_hubs < 2)
4441 return 0;
4443 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4444 " below second-tier hub.\n");
4445 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4446 "to decrease power consumption.\n");
4447 return -E2BIG;
4450 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4451 struct usb_device *udev,
4452 enum usb3_link_state state)
4454 if (xhci->quirks & XHCI_INTEL_HOST)
4455 return xhci_check_intel_tier_policy(udev, state);
4456 else
4457 return 0;
4460 /* Returns the U1 or U2 timeout that should be enabled.
4461 * If the tier check or timeout setting functions return with a non-zero exit
4462 * code, that means the timeout value has been finalized and we shouldn't look
4463 * at any more endpoints.
4465 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4466 struct usb_device *udev, enum usb3_link_state state)
4468 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4469 struct usb_host_config *config;
4470 char *state_name;
4471 int i;
4472 u16 timeout = USB3_LPM_DISABLED;
4474 if (state == USB3_LPM_U1)
4475 state_name = "U1";
4476 else if (state == USB3_LPM_U2)
4477 state_name = "U2";
4478 else {
4479 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4480 state);
4481 return timeout;
4484 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4485 return timeout;
4487 /* Gather some information about the currently installed configuration
4488 * and alternate interface settings.
4490 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4491 state, &timeout))
4492 return timeout;
4494 config = udev->actconfig;
4495 if (!config)
4496 return timeout;
4498 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4499 struct usb_driver *driver;
4500 struct usb_interface *intf = config->interface[i];
4502 if (!intf)
4503 continue;
4505 /* Check if any currently bound drivers want hub-initiated LPM
4506 * disabled.
4508 if (intf->dev.driver) {
4509 driver = to_usb_driver(intf->dev.driver);
4510 if (driver && driver->disable_hub_initiated_lpm) {
4511 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4512 "at request of driver %s\n",
4513 state_name, driver->name);
4514 return xhci_get_timeout_no_hub_lpm(udev, state);
4518 /* Not sure how this could happen... */
4519 if (!intf->cur_altsetting)
4520 continue;
4522 if (xhci_update_timeout_for_interface(xhci, udev,
4523 intf->cur_altsetting,
4524 state, &timeout))
4525 return timeout;
4527 return timeout;
4530 static int calculate_max_exit_latency(struct usb_device *udev,
4531 enum usb3_link_state state_changed,
4532 u16 hub_encoded_timeout)
4534 unsigned long long u1_mel_us = 0;
4535 unsigned long long u2_mel_us = 0;
4536 unsigned long long mel_us = 0;
4537 bool disabling_u1;
4538 bool disabling_u2;
4539 bool enabling_u1;
4540 bool enabling_u2;
4542 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4543 hub_encoded_timeout == USB3_LPM_DISABLED);
4544 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4545 hub_encoded_timeout == USB3_LPM_DISABLED);
4547 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4548 hub_encoded_timeout != USB3_LPM_DISABLED);
4549 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4550 hub_encoded_timeout != USB3_LPM_DISABLED);
4552 /* If U1 was already enabled and we're not disabling it,
4553 * or we're going to enable U1, account for the U1 max exit latency.
4555 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4556 enabling_u1)
4557 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4558 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4559 enabling_u2)
4560 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4562 if (u1_mel_us > u2_mel_us)
4563 mel_us = u1_mel_us;
4564 else
4565 mel_us = u2_mel_us;
4566 /* xHCI host controller max exit latency field is only 16 bits wide. */
4567 if (mel_us > MAX_EXIT) {
4568 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4569 "is too big.\n", mel_us);
4570 return -E2BIG;
4572 return mel_us;
4575 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4576 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4577 struct usb_device *udev, enum usb3_link_state state)
4579 struct xhci_hcd *xhci;
4580 u16 hub_encoded_timeout;
4581 int mel;
4582 int ret;
4584 xhci = hcd_to_xhci(hcd);
4585 /* The LPM timeout values are pretty host-controller specific, so don't
4586 * enable hub-initiated timeouts unless the vendor has provided
4587 * information about their timeout algorithm.
4589 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4590 !xhci->devs[udev->slot_id])
4591 return USB3_LPM_DISABLED;
4593 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4594 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4595 if (mel < 0) {
4596 /* Max Exit Latency is too big, disable LPM. */
4597 hub_encoded_timeout = USB3_LPM_DISABLED;
4598 mel = 0;
4601 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4602 if (ret)
4603 return ret;
4604 return hub_encoded_timeout;
4607 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4608 struct usb_device *udev, enum usb3_link_state state)
4610 struct xhci_hcd *xhci;
4611 u16 mel;
4613 xhci = hcd_to_xhci(hcd);
4614 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4615 !xhci->devs[udev->slot_id])
4616 return 0;
4618 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4619 return xhci_change_max_exit_latency(xhci, udev, mel);
4621 #else /* CONFIG_PM */
4623 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4624 struct usb_device *udev, int enable)
4626 return 0;
4629 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4631 return 0;
4634 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4635 struct usb_device *udev, enum usb3_link_state state)
4637 return USB3_LPM_DISABLED;
4640 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4641 struct usb_device *udev, enum usb3_link_state state)
4643 return 0;
4645 #endif /* CONFIG_PM */
4647 /*-------------------------------------------------------------------------*/
4649 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4650 * internal data structures for the device.
4652 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4653 struct usb_tt *tt, gfp_t mem_flags)
4655 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4656 struct xhci_virt_device *vdev;
4657 struct xhci_command *config_cmd;
4658 struct xhci_input_control_ctx *ctrl_ctx;
4659 struct xhci_slot_ctx *slot_ctx;
4660 unsigned long flags;
4661 unsigned think_time;
4662 int ret;
4664 /* Ignore root hubs */
4665 if (!hdev->parent)
4666 return 0;
4668 vdev = xhci->devs[hdev->slot_id];
4669 if (!vdev) {
4670 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4671 return -EINVAL;
4674 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4675 if (!config_cmd)
4676 return -ENOMEM;
4678 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4679 if (!ctrl_ctx) {
4680 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4681 __func__);
4682 xhci_free_command(xhci, config_cmd);
4683 return -ENOMEM;
4686 spin_lock_irqsave(&xhci->lock, flags);
4687 if (hdev->speed == USB_SPEED_HIGH &&
4688 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4689 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4690 xhci_free_command(xhci, config_cmd);
4691 spin_unlock_irqrestore(&xhci->lock, flags);
4692 return -ENOMEM;
4695 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4696 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4697 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4698 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4700 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4701 * but it may be already set to 1 when setup an xHCI virtual
4702 * device, so clear it anyway.
4704 if (tt->multi)
4705 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4706 else if (hdev->speed == USB_SPEED_FULL)
4707 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4709 if (xhci->hci_version > 0x95) {
4710 xhci_dbg(xhci, "xHCI version %x needs hub "
4711 "TT think time and number of ports\n",
4712 (unsigned int) xhci->hci_version);
4713 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4714 /* Set TT think time - convert from ns to FS bit times.
4715 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4716 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4718 * xHCI 1.0: this field shall be 0 if the device is not a
4719 * High-spped hub.
4721 think_time = tt->think_time;
4722 if (think_time != 0)
4723 think_time = (think_time / 666) - 1;
4724 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4725 slot_ctx->tt_info |=
4726 cpu_to_le32(TT_THINK_TIME(think_time));
4727 } else {
4728 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4729 "TT think time or number of ports\n",
4730 (unsigned int) xhci->hci_version);
4732 slot_ctx->dev_state = 0;
4733 spin_unlock_irqrestore(&xhci->lock, flags);
4735 xhci_dbg(xhci, "Set up %s for hub device.\n",
4736 (xhci->hci_version > 0x95) ?
4737 "configure endpoint" : "evaluate context");
4739 /* Issue and wait for the configure endpoint or
4740 * evaluate context command.
4742 if (xhci->hci_version > 0x95)
4743 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4744 false, false);
4745 else
4746 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4747 true, false);
4749 xhci_free_command(xhci, config_cmd);
4750 return ret;
4753 static int xhci_get_frame(struct usb_hcd *hcd)
4755 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4756 /* EHCI mods by the periodic size. Why? */
4757 return readl(&xhci->run_regs->microframe_index) >> 3;
4760 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4762 struct xhci_hcd *xhci;
4764 * TODO: Check with DWC3 clients for sysdev according to
4765 * quirks
4767 struct device *dev = hcd->self.sysdev;
4768 int retval;
4770 /* Accept arbitrarily long scatter-gather lists */
4771 hcd->self.sg_tablesize = ~0;
4773 /* support to build packet from discontinuous buffers */
4774 hcd->self.no_sg_constraint = 1;
4776 /* XHCI controllers don't stop the ep queue on short packets :| */
4777 hcd->self.no_stop_on_short = 1;
4779 xhci = hcd_to_xhci(hcd);
4781 if (usb_hcd_is_primary_hcd(hcd)) {
4782 xhci->main_hcd = hcd;
4783 /* Mark the first roothub as being USB 2.0.
4784 * The xHCI driver will register the USB 3.0 roothub.
4786 hcd->speed = HCD_USB2;
4787 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4789 * USB 2.0 roothub under xHCI has an integrated TT,
4790 * (rate matching hub) as opposed to having an OHCI/UHCI
4791 * companion controller.
4793 hcd->has_tt = 1;
4794 } else {
4795 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4796 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4797 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4798 hcd->speed = HCD_USB31;
4799 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4801 /* xHCI private pointer was set in xhci_pci_probe for the second
4802 * registered roothub.
4804 return 0;
4807 mutex_init(&xhci->mutex);
4808 xhci->cap_regs = hcd->regs;
4809 xhci->op_regs = hcd->regs +
4810 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4811 xhci->run_regs = hcd->regs +
4812 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4813 /* Cache read-only capability registers */
4814 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4815 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4816 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4817 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4818 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4819 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4820 if (xhci->hci_version > 0x100)
4821 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4823 xhci->quirks |= quirks;
4825 get_quirks(dev, xhci);
4827 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4828 * success event after a short transfer. This quirk will ignore such
4829 * spurious event.
4831 if (xhci->hci_version > 0x96)
4832 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4834 /* Make sure the HC is halted. */
4835 retval = xhci_halt(xhci);
4836 if (retval)
4837 return retval;
4839 xhci_dbg(xhci, "Resetting HCD\n");
4840 /* Reset the internal HC memory state and registers. */
4841 retval = xhci_reset(xhci);
4842 if (retval)
4843 return retval;
4844 xhci_dbg(xhci, "Reset complete\n");
4847 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4848 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4849 * address memory pointers actually. So, this driver clears the AC64
4850 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4851 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4853 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4854 xhci->hcc_params &= ~BIT(0);
4856 /* Set dma_mask and coherent_dma_mask to 64-bits,
4857 * if xHC supports 64-bit addressing */
4858 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4859 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4860 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4861 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4862 } else {
4864 * This is to avoid error in cases where a 32-bit USB
4865 * controller is used on a 64-bit capable system.
4867 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4868 if (retval)
4869 return retval;
4870 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4871 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4874 xhci_dbg(xhci, "Calling HCD init\n");
4875 /* Initialize HCD and host controller data structures. */
4876 retval = xhci_init(hcd);
4877 if (retval)
4878 return retval;
4879 xhci_dbg(xhci, "Called HCD init\n");
4881 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4882 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4884 return 0;
4886 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4888 static const struct hc_driver xhci_hc_driver = {
4889 .description = "xhci-hcd",
4890 .product_desc = "xHCI Host Controller",
4891 .hcd_priv_size = sizeof(struct xhci_hcd),
4894 * generic hardware linkage
4896 .irq = xhci_irq,
4897 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4900 * basic lifecycle operations
4902 .reset = NULL, /* set in xhci_init_driver() */
4903 .start = xhci_run,
4904 .stop = xhci_stop,
4905 .shutdown = xhci_shutdown,
4908 * managing i/o requests and associated device resources
4910 .urb_enqueue = xhci_urb_enqueue,
4911 .urb_dequeue = xhci_urb_dequeue,
4912 .alloc_dev = xhci_alloc_dev,
4913 .free_dev = xhci_free_dev,
4914 .alloc_streams = xhci_alloc_streams,
4915 .free_streams = xhci_free_streams,
4916 .add_endpoint = xhci_add_endpoint,
4917 .drop_endpoint = xhci_drop_endpoint,
4918 .endpoint_reset = xhci_endpoint_reset,
4919 .check_bandwidth = xhci_check_bandwidth,
4920 .reset_bandwidth = xhci_reset_bandwidth,
4921 .address_device = xhci_address_device,
4922 .enable_device = xhci_enable_device,
4923 .update_hub_device = xhci_update_hub_device,
4924 .reset_device = xhci_discover_or_reset_device,
4927 * scheduling support
4929 .get_frame_number = xhci_get_frame,
4932 * root hub support
4934 .hub_control = xhci_hub_control,
4935 .hub_status_data = xhci_hub_status_data,
4936 .bus_suspend = xhci_bus_suspend,
4937 .bus_resume = xhci_bus_resume,
4940 * call back when device connected and addressed
4942 .update_device = xhci_update_device,
4943 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4944 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4945 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4946 .find_raw_port_number = xhci_find_raw_port_number,
4949 void xhci_init_driver(struct hc_driver *drv,
4950 const struct xhci_driver_overrides *over)
4952 BUG_ON(!over);
4954 /* Copy the generic table to drv then apply the overrides */
4955 *drv = xhci_hc_driver;
4957 if (over) {
4958 drv->hcd_priv_size += over->extra_priv_size;
4959 if (over->reset)
4960 drv->reset = over->reset;
4961 if (over->start)
4962 drv->start = over->start;
4965 EXPORT_SYMBOL_GPL(xhci_init_driver);
4967 MODULE_DESCRIPTION(DRIVER_DESC);
4968 MODULE_AUTHOR(DRIVER_AUTHOR);
4969 MODULE_LICENSE("GPL");
4971 static int __init xhci_hcd_init(void)
4974 * Check the compiler generated sizes of structures that must be laid
4975 * out in specific ways for hardware access.
4977 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4978 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4979 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4980 /* xhci_device_control has eight fields, and also
4981 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4983 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4984 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4985 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4986 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4987 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4988 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4989 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4991 if (usb_disabled())
4992 return -ENODEV;
4994 xhci_debugfs_create_root();
4996 return 0;
5000 * If an init function is provided, an exit function must also be provided
5001 * to allow module unload.
5003 static void __exit xhci_hcd_fini(void)
5005 xhci_debugfs_remove_root();
5008 module_init(xhci_hcd_init);
5009 module_exit(xhci_hcd_fini);