2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include <linux/iversion.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
63 #include "compression.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32
{
74 } __attribute__ ((__packed__
));
76 struct btrfs_ioctl_received_subvol_args_32
{
77 char uuid
[BTRFS_UUID_SIZE
]; /* in */
78 __u64 stransid
; /* in */
79 __u64 rtransid
; /* out */
80 struct btrfs_ioctl_timespec_32 stime
; /* in */
81 struct btrfs_ioctl_timespec_32 rtime
; /* out */
83 __u64 reserved
[16]; /* in */
84 } __attribute__ ((__packed__
));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32
{
92 __s64 send_fd
; /* in */
93 __u64 clone_sources_count
; /* in */
94 compat_uptr_t clone_sources
; /* in */
95 __u64 parent_root
; /* in */
97 __u64 reserved
[4]; /* in */
98 } __attribute__ ((__packed__
));
100 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
101 struct btrfs_ioctl_send_args_32)
104 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
105 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
108 /* Mask out flags that are inappropriate for the given type of inode. */
109 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
113 else if (S_ISREG(mode
))
114 return flags
& ~FS_DIRSYNC_FL
;
116 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
120 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
122 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
124 unsigned int iflags
= 0;
126 if (flags
& BTRFS_INODE_SYNC
)
127 iflags
|= FS_SYNC_FL
;
128 if (flags
& BTRFS_INODE_IMMUTABLE
)
129 iflags
|= FS_IMMUTABLE_FL
;
130 if (flags
& BTRFS_INODE_APPEND
)
131 iflags
|= FS_APPEND_FL
;
132 if (flags
& BTRFS_INODE_NODUMP
)
133 iflags
|= FS_NODUMP_FL
;
134 if (flags
& BTRFS_INODE_NOATIME
)
135 iflags
|= FS_NOATIME_FL
;
136 if (flags
& BTRFS_INODE_DIRSYNC
)
137 iflags
|= FS_DIRSYNC_FL
;
138 if (flags
& BTRFS_INODE_NODATACOW
)
139 iflags
|= FS_NOCOW_FL
;
141 if (flags
& BTRFS_INODE_NOCOMPRESS
)
142 iflags
|= FS_NOCOMP_FL
;
143 else if (flags
& BTRFS_INODE_COMPRESS
)
144 iflags
|= FS_COMPR_FL
;
150 * Update inode->i_flags based on the btrfs internal flags.
152 void btrfs_update_iflags(struct inode
*inode
)
154 struct btrfs_inode
*ip
= BTRFS_I(inode
);
155 unsigned int new_fl
= 0;
157 if (ip
->flags
& BTRFS_INODE_SYNC
)
159 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
160 new_fl
|= S_IMMUTABLE
;
161 if (ip
->flags
& BTRFS_INODE_APPEND
)
163 if (ip
->flags
& BTRFS_INODE_NOATIME
)
165 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
168 set_mask_bits(&inode
->i_flags
,
169 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
173 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
175 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
176 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
178 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
183 static int check_flags(unsigned int flags
)
185 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
186 FS_NOATIME_FL
| FS_NODUMP_FL
| \
187 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
188 FS_NOCOMP_FL
| FS_COMPR_FL
|
192 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
198 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
200 struct inode
*inode
= file_inode(file
);
201 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
202 struct btrfs_inode
*ip
= BTRFS_I(inode
);
203 struct btrfs_root
*root
= ip
->root
;
204 struct btrfs_trans_handle
*trans
;
205 unsigned int flags
, oldflags
;
208 unsigned int i_oldflags
;
211 if (!inode_owner_or_capable(inode
))
214 if (btrfs_root_readonly(root
))
217 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
220 ret
= check_flags(flags
);
224 ret
= mnt_want_write_file(file
);
230 ip_oldflags
= ip
->flags
;
231 i_oldflags
= inode
->i_flags
;
232 mode
= inode
->i_mode
;
234 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
235 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
236 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
237 if (!capable(CAP_LINUX_IMMUTABLE
)) {
243 if (flags
& FS_SYNC_FL
)
244 ip
->flags
|= BTRFS_INODE_SYNC
;
246 ip
->flags
&= ~BTRFS_INODE_SYNC
;
247 if (flags
& FS_IMMUTABLE_FL
)
248 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
250 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
251 if (flags
& FS_APPEND_FL
)
252 ip
->flags
|= BTRFS_INODE_APPEND
;
254 ip
->flags
&= ~BTRFS_INODE_APPEND
;
255 if (flags
& FS_NODUMP_FL
)
256 ip
->flags
|= BTRFS_INODE_NODUMP
;
258 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
259 if (flags
& FS_NOATIME_FL
)
260 ip
->flags
|= BTRFS_INODE_NOATIME
;
262 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
263 if (flags
& FS_DIRSYNC_FL
)
264 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
266 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
267 if (flags
& FS_NOCOW_FL
) {
270 * It's safe to turn csums off here, no extents exist.
271 * Otherwise we want the flag to reflect the real COW
272 * status of the file and will not set it.
274 if (inode
->i_size
== 0)
275 ip
->flags
|= BTRFS_INODE_NODATACOW
276 | BTRFS_INODE_NODATASUM
;
278 ip
->flags
|= BTRFS_INODE_NODATACOW
;
282 * Revert back under same assumptions as above
285 if (inode
->i_size
== 0)
286 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
287 | BTRFS_INODE_NODATASUM
);
289 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
294 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
295 * flag may be changed automatically if compression code won't make
298 if (flags
& FS_NOCOMP_FL
) {
299 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
300 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
302 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
303 if (ret
&& ret
!= -ENODATA
)
305 } else if (flags
& FS_COMPR_FL
) {
308 ip
->flags
|= BTRFS_INODE_COMPRESS
;
309 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
311 comp
= btrfs_compress_type2str(fs_info
->compress_type
);
312 if (!comp
|| comp
[0] == 0)
313 comp
= btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB
);
315 ret
= btrfs_set_prop(inode
, "btrfs.compression",
316 comp
, strlen(comp
), 0);
321 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
322 if (ret
&& ret
!= -ENODATA
)
324 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
327 trans
= btrfs_start_transaction(root
, 1);
329 ret
= PTR_ERR(trans
);
333 btrfs_update_iflags(inode
);
334 inode_inc_iversion(inode
);
335 inode
->i_ctime
= current_time(inode
);
336 ret
= btrfs_update_inode(trans
, root
, inode
);
338 btrfs_end_transaction(trans
);
341 ip
->flags
= ip_oldflags
;
342 inode
->i_flags
= i_oldflags
;
347 mnt_drop_write_file(file
);
351 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
353 struct inode
*inode
= file_inode(file
);
355 return put_user(inode
->i_generation
, arg
);
358 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
360 struct inode
*inode
= file_inode(file
);
361 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
362 struct btrfs_device
*device
;
363 struct request_queue
*q
;
364 struct fstrim_range range
;
365 u64 minlen
= ULLONG_MAX
;
367 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
370 if (!capable(CAP_SYS_ADMIN
))
374 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
378 q
= bdev_get_queue(device
->bdev
);
379 if (blk_queue_discard(q
)) {
381 minlen
= min_t(u64
, q
->limits
.discard_granularity
,
389 if (copy_from_user(&range
, arg
, sizeof(range
)))
391 if (range
.start
> total_bytes
||
392 range
.len
< fs_info
->sb
->s_blocksize
)
395 range
.len
= min(range
.len
, total_bytes
- range
.start
);
396 range
.minlen
= max(range
.minlen
, minlen
);
397 ret
= btrfs_trim_fs(fs_info
, &range
);
401 if (copy_to_user(arg
, &range
, sizeof(range
)))
407 int btrfs_is_empty_uuid(u8
*uuid
)
411 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
418 static noinline
int create_subvol(struct inode
*dir
,
419 struct dentry
*dentry
,
420 const char *name
, int namelen
,
422 struct btrfs_qgroup_inherit
*inherit
)
424 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
425 struct btrfs_trans_handle
*trans
;
426 struct btrfs_key key
;
427 struct btrfs_root_item
*root_item
;
428 struct btrfs_inode_item
*inode_item
;
429 struct extent_buffer
*leaf
;
430 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
431 struct btrfs_root
*new_root
;
432 struct btrfs_block_rsv block_rsv
;
433 struct timespec cur_time
= current_time(dir
);
438 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
443 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
447 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &objectid
);
452 * Don't create subvolume whose level is not zero. Or qgroup will be
453 * screwed up since it assumes subvolume qgroup's level to be 0.
455 if (btrfs_qgroup_level(objectid
)) {
460 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
462 * The same as the snapshot creation, please see the comment
463 * of create_snapshot().
465 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
466 8, &qgroup_reserved
, false);
470 trans
= btrfs_start_transaction(root
, 0);
472 ret
= PTR_ERR(trans
);
473 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
476 trans
->block_rsv
= &block_rsv
;
477 trans
->bytes_reserved
= block_rsv
.size
;
479 ret
= btrfs_qgroup_inherit(trans
, fs_info
, 0, objectid
, inherit
);
483 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
489 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
490 btrfs_set_header_bytenr(leaf
, leaf
->start
);
491 btrfs_set_header_generation(leaf
, trans
->transid
);
492 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
493 btrfs_set_header_owner(leaf
, objectid
);
495 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
496 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
497 btrfs_mark_buffer_dirty(leaf
);
499 inode_item
= &root_item
->inode
;
500 btrfs_set_stack_inode_generation(inode_item
, 1);
501 btrfs_set_stack_inode_size(inode_item
, 3);
502 btrfs_set_stack_inode_nlink(inode_item
, 1);
503 btrfs_set_stack_inode_nbytes(inode_item
,
505 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
507 btrfs_set_root_flags(root_item
, 0);
508 btrfs_set_root_limit(root_item
, 0);
509 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
511 btrfs_set_root_bytenr(root_item
, leaf
->start
);
512 btrfs_set_root_generation(root_item
, trans
->transid
);
513 btrfs_set_root_level(root_item
, 0);
514 btrfs_set_root_refs(root_item
, 1);
515 btrfs_set_root_used(root_item
, leaf
->len
);
516 btrfs_set_root_last_snapshot(root_item
, 0);
518 btrfs_set_root_generation_v2(root_item
,
519 btrfs_root_generation(root_item
));
520 uuid_le_gen(&new_uuid
);
521 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
522 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
523 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
524 root_item
->ctime
= root_item
->otime
;
525 btrfs_set_root_ctransid(root_item
, trans
->transid
);
526 btrfs_set_root_otransid(root_item
, trans
->transid
);
528 btrfs_tree_unlock(leaf
);
529 free_extent_buffer(leaf
);
532 btrfs_set_root_dirid(root_item
, new_dirid
);
534 key
.objectid
= objectid
;
536 key
.type
= BTRFS_ROOT_ITEM_KEY
;
537 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
, &key
,
542 key
.offset
= (u64
)-1;
543 new_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
544 if (IS_ERR(new_root
)) {
545 ret
= PTR_ERR(new_root
);
546 btrfs_abort_transaction(trans
, ret
);
550 btrfs_record_root_in_trans(trans
, new_root
);
552 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
554 /* We potentially lose an unused inode item here */
555 btrfs_abort_transaction(trans
, ret
);
559 mutex_lock(&new_root
->objectid_mutex
);
560 new_root
->highest_objectid
= new_dirid
;
561 mutex_unlock(&new_root
->objectid_mutex
);
564 * insert the directory item
566 ret
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
568 btrfs_abort_transaction(trans
, ret
);
572 ret
= btrfs_insert_dir_item(trans
, root
,
573 name
, namelen
, BTRFS_I(dir
), &key
,
574 BTRFS_FT_DIR
, index
);
576 btrfs_abort_transaction(trans
, ret
);
580 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ namelen
* 2);
581 ret
= btrfs_update_inode(trans
, root
, dir
);
584 ret
= btrfs_add_root_ref(trans
, fs_info
,
585 objectid
, root
->root_key
.objectid
,
586 btrfs_ino(BTRFS_I(dir
)), index
, name
, namelen
);
589 ret
= btrfs_uuid_tree_add(trans
, fs_info
, root_item
->uuid
,
590 BTRFS_UUID_KEY_SUBVOL
, objectid
);
592 btrfs_abort_transaction(trans
, ret
);
596 trans
->block_rsv
= NULL
;
597 trans
->bytes_reserved
= 0;
598 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
601 *async_transid
= trans
->transid
;
602 err
= btrfs_commit_transaction_async(trans
, 1);
604 err
= btrfs_commit_transaction(trans
);
606 err
= btrfs_commit_transaction(trans
);
612 inode
= btrfs_lookup_dentry(dir
, dentry
);
614 return PTR_ERR(inode
);
615 d_instantiate(dentry
, inode
);
624 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
625 struct dentry
*dentry
,
626 u64
*async_transid
, bool readonly
,
627 struct btrfs_qgroup_inherit
*inherit
)
629 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
631 struct btrfs_pending_snapshot
*pending_snapshot
;
632 struct btrfs_trans_handle
*trans
;
635 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
638 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_KERNEL
);
639 if (!pending_snapshot
)
642 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
644 pending_snapshot
->path
= btrfs_alloc_path();
645 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
650 atomic_inc(&root
->will_be_snapshotted
);
651 smp_mb__after_atomic();
652 /* wait for no snapshot writes */
653 wait_event(root
->subv_writers
->wait
,
654 percpu_counter_sum(&root
->subv_writers
->counter
) == 0);
656 ret
= btrfs_start_delalloc_inodes(root
, 0);
660 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, (u64
)-1);
662 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
663 BTRFS_BLOCK_RSV_TEMP
);
665 * 1 - parent dir inode
668 * 2 - root ref/backref
669 * 1 - root of snapshot
672 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
673 &pending_snapshot
->block_rsv
, 8,
674 &pending_snapshot
->qgroup_reserved
,
679 pending_snapshot
->dentry
= dentry
;
680 pending_snapshot
->root
= root
;
681 pending_snapshot
->readonly
= readonly
;
682 pending_snapshot
->dir
= dir
;
683 pending_snapshot
->inherit
= inherit
;
685 trans
= btrfs_start_transaction(root
, 0);
687 ret
= PTR_ERR(trans
);
691 spin_lock(&fs_info
->trans_lock
);
692 list_add(&pending_snapshot
->list
,
693 &trans
->transaction
->pending_snapshots
);
694 spin_unlock(&fs_info
->trans_lock
);
696 *async_transid
= trans
->transid
;
697 ret
= btrfs_commit_transaction_async(trans
, 1);
699 ret
= btrfs_commit_transaction(trans
);
701 ret
= btrfs_commit_transaction(trans
);
706 ret
= pending_snapshot
->error
;
710 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
714 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
716 ret
= PTR_ERR(inode
);
720 d_instantiate(dentry
, inode
);
723 btrfs_subvolume_release_metadata(fs_info
, &pending_snapshot
->block_rsv
);
725 if (atomic_dec_and_test(&root
->will_be_snapshotted
))
726 wake_up_atomic_t(&root
->will_be_snapshotted
);
728 kfree(pending_snapshot
->root_item
);
729 btrfs_free_path(pending_snapshot
->path
);
730 kfree(pending_snapshot
);
735 /* copy of may_delete in fs/namei.c()
736 * Check whether we can remove a link victim from directory dir, check
737 * whether the type of victim is right.
738 * 1. We can't do it if dir is read-only (done in permission())
739 * 2. We should have write and exec permissions on dir
740 * 3. We can't remove anything from append-only dir
741 * 4. We can't do anything with immutable dir (done in permission())
742 * 5. If the sticky bit on dir is set we should either
743 * a. be owner of dir, or
744 * b. be owner of victim, or
745 * c. have CAP_FOWNER capability
746 * 6. If the victim is append-only or immutable we can't do anything with
747 * links pointing to it.
748 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
749 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
750 * 9. We can't remove a root or mountpoint.
751 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
752 * nfs_async_unlink().
755 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
759 if (d_really_is_negative(victim
))
762 BUG_ON(d_inode(victim
->d_parent
) != dir
);
763 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
765 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
770 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
771 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
774 if (!d_is_dir(victim
))
778 } else if (d_is_dir(victim
))
782 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
787 /* copy of may_create in fs/namei.c() */
788 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
790 if (d_really_is_positive(child
))
794 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
798 * Create a new subvolume below @parent. This is largely modeled after
799 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
800 * inside this filesystem so it's quite a bit simpler.
802 static noinline
int btrfs_mksubvol(const struct path
*parent
,
803 const char *name
, int namelen
,
804 struct btrfs_root
*snap_src
,
805 u64
*async_transid
, bool readonly
,
806 struct btrfs_qgroup_inherit
*inherit
)
808 struct inode
*dir
= d_inode(parent
->dentry
);
809 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
810 struct dentry
*dentry
;
813 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
817 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
818 error
= PTR_ERR(dentry
);
822 error
= btrfs_may_create(dir
, dentry
);
827 * even if this name doesn't exist, we may get hash collisions.
828 * check for them now when we can safely fail
830 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
836 down_read(&fs_info
->subvol_sem
);
838 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
842 error
= create_snapshot(snap_src
, dir
, dentry
,
843 async_transid
, readonly
, inherit
);
845 error
= create_subvol(dir
, dentry
, name
, namelen
,
846 async_transid
, inherit
);
849 fsnotify_mkdir(dir
, dentry
);
851 up_read(&fs_info
->subvol_sem
);
860 * When we're defragging a range, we don't want to kick it off again
861 * if it is really just waiting for delalloc to send it down.
862 * If we find a nice big extent or delalloc range for the bytes in the
863 * file you want to defrag, we return 0 to let you know to skip this
866 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
868 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
869 struct extent_map
*em
= NULL
;
870 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
873 read_lock(&em_tree
->lock
);
874 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
875 read_unlock(&em_tree
->lock
);
878 end
= extent_map_end(em
);
880 if (end
- offset
> thresh
)
883 /* if we already have a nice delalloc here, just stop */
885 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
886 thresh
, EXTENT_DELALLOC
, 1);
893 * helper function to walk through a file and find extents
894 * newer than a specific transid, and smaller than thresh.
896 * This is used by the defragging code to find new and small
899 static int find_new_extents(struct btrfs_root
*root
,
900 struct inode
*inode
, u64 newer_than
,
901 u64
*off
, u32 thresh
)
903 struct btrfs_path
*path
;
904 struct btrfs_key min_key
;
905 struct extent_buffer
*leaf
;
906 struct btrfs_file_extent_item
*extent
;
909 u64 ino
= btrfs_ino(BTRFS_I(inode
));
911 path
= btrfs_alloc_path();
915 min_key
.objectid
= ino
;
916 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
917 min_key
.offset
= *off
;
920 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
924 if (min_key
.objectid
!= ino
)
926 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
929 leaf
= path
->nodes
[0];
930 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
931 struct btrfs_file_extent_item
);
933 type
= btrfs_file_extent_type(leaf
, extent
);
934 if (type
== BTRFS_FILE_EXTENT_REG
&&
935 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
936 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
937 *off
= min_key
.offset
;
938 btrfs_free_path(path
);
943 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
944 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
948 if (min_key
.offset
== (u64
)-1)
952 btrfs_release_path(path
);
955 btrfs_free_path(path
);
959 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
961 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
962 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
963 struct extent_map
*em
;
967 * hopefully we have this extent in the tree already, try without
968 * the full extent lock
970 read_lock(&em_tree
->lock
);
971 em
= lookup_extent_mapping(em_tree
, start
, len
);
972 read_unlock(&em_tree
->lock
);
975 struct extent_state
*cached
= NULL
;
976 u64 end
= start
+ len
- 1;
978 /* get the big lock and read metadata off disk */
979 lock_extent_bits(io_tree
, start
, end
, &cached
);
980 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
981 unlock_extent_cached(io_tree
, start
, end
, &cached
);
990 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
992 struct extent_map
*next
;
995 /* this is the last extent */
996 if (em
->start
+ em
->len
>= i_size_read(inode
))
999 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1000 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1002 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1003 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1006 free_extent_map(next
);
1010 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1011 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1014 struct extent_map
*em
;
1016 bool next_mergeable
= true;
1017 bool prev_mergeable
= true;
1020 * make sure that once we start defragging an extent, we keep on
1023 if (start
< *defrag_end
)
1028 em
= defrag_lookup_extent(inode
, start
);
1032 /* this will cover holes, and inline extents */
1033 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1039 prev_mergeable
= false;
1041 next_mergeable
= defrag_check_next_extent(inode
, em
);
1043 * we hit a real extent, if it is big or the next extent is not a
1044 * real extent, don't bother defragging it
1046 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1047 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1051 * last_len ends up being a counter of how many bytes we've defragged.
1052 * every time we choose not to defrag an extent, we reset *last_len
1053 * so that the next tiny extent will force a defrag.
1055 * The end result of this is that tiny extents before a single big
1056 * extent will force at least part of that big extent to be defragged.
1059 *defrag_end
= extent_map_end(em
);
1062 *skip
= extent_map_end(em
);
1066 free_extent_map(em
);
1071 * it doesn't do much good to defrag one or two pages
1072 * at a time. This pulls in a nice chunk of pages
1073 * to COW and defrag.
1075 * It also makes sure the delalloc code has enough
1076 * dirty data to avoid making new small extents as part
1079 * It's a good idea to start RA on this range
1080 * before calling this.
1082 static int cluster_pages_for_defrag(struct inode
*inode
,
1083 struct page
**pages
,
1084 unsigned long start_index
,
1085 unsigned long num_pages
)
1087 unsigned long file_end
;
1088 u64 isize
= i_size_read(inode
);
1095 struct btrfs_ordered_extent
*ordered
;
1096 struct extent_state
*cached_state
= NULL
;
1097 struct extent_io_tree
*tree
;
1098 struct extent_changeset
*data_reserved
= NULL
;
1099 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1101 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1102 if (!isize
|| start_index
> file_end
)
1105 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1107 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
1108 start_index
<< PAGE_SHIFT
,
1109 page_cnt
<< PAGE_SHIFT
);
1113 tree
= &BTRFS_I(inode
)->io_tree
;
1115 /* step one, lock all the pages */
1116 for (i
= 0; i
< page_cnt
; i
++) {
1119 page
= find_or_create_page(inode
->i_mapping
,
1120 start_index
+ i
, mask
);
1124 page_start
= page_offset(page
);
1125 page_end
= page_start
+ PAGE_SIZE
- 1;
1127 lock_extent_bits(tree
, page_start
, page_end
,
1129 ordered
= btrfs_lookup_ordered_extent(inode
,
1131 unlock_extent_cached(tree
, page_start
, page_end
,
1137 btrfs_start_ordered_extent(inode
, ordered
, 1);
1138 btrfs_put_ordered_extent(ordered
);
1141 * we unlocked the page above, so we need check if
1142 * it was released or not.
1144 if (page
->mapping
!= inode
->i_mapping
) {
1151 if (!PageUptodate(page
)) {
1152 btrfs_readpage(NULL
, page
);
1154 if (!PageUptodate(page
)) {
1162 if (page
->mapping
!= inode
->i_mapping
) {
1174 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1178 * so now we have a nice long stream of locked
1179 * and up to date pages, lets wait on them
1181 for (i
= 0; i
< i_done
; i
++)
1182 wait_on_page_writeback(pages
[i
]);
1184 page_start
= page_offset(pages
[0]);
1185 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1187 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1188 page_start
, page_end
- 1, &cached_state
);
1189 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1190 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1191 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1194 if (i_done
!= page_cnt
) {
1195 spin_lock(&BTRFS_I(inode
)->lock
);
1196 BTRFS_I(inode
)->outstanding_extents
++;
1197 spin_unlock(&BTRFS_I(inode
)->lock
);
1198 btrfs_delalloc_release_space(inode
, data_reserved
,
1199 start_index
<< PAGE_SHIFT
,
1200 (page_cnt
- i_done
) << PAGE_SHIFT
);
1204 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1207 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1208 page_start
, page_end
- 1, &cached_state
);
1210 for (i
= 0; i
< i_done
; i
++) {
1211 clear_page_dirty_for_io(pages
[i
]);
1212 ClearPageChecked(pages
[i
]);
1213 set_page_extent_mapped(pages
[i
]);
1214 set_page_dirty(pages
[i
]);
1215 unlock_page(pages
[i
]);
1218 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
);
1219 extent_changeset_free(data_reserved
);
1222 for (i
= 0; i
< i_done
; i
++) {
1223 unlock_page(pages
[i
]);
1226 btrfs_delalloc_release_space(inode
, data_reserved
,
1227 start_index
<< PAGE_SHIFT
,
1228 page_cnt
<< PAGE_SHIFT
);
1229 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
);
1230 extent_changeset_free(data_reserved
);
1235 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1236 struct btrfs_ioctl_defrag_range_args
*range
,
1237 u64 newer_than
, unsigned long max_to_defrag
)
1239 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1241 struct file_ra_state
*ra
= NULL
;
1242 unsigned long last_index
;
1243 u64 isize
= i_size_read(inode
);
1247 u64 newer_off
= range
->start
;
1249 unsigned long ra_index
= 0;
1251 int defrag_count
= 0;
1252 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1253 u32 extent_thresh
= range
->extent_thresh
;
1254 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1255 unsigned long cluster
= max_cluster
;
1256 u64 new_align
= ~((u64
)SZ_128K
- 1);
1257 struct page
**pages
= NULL
;
1258 bool do_compress
= range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
;
1263 if (range
->start
>= isize
)
1267 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1269 if (range
->compress_type
)
1270 compress_type
= range
->compress_type
;
1273 if (extent_thresh
== 0)
1274 extent_thresh
= SZ_256K
;
1277 * If we were not given a file, allocate a readahead context. As
1278 * readahead is just an optimization, defrag will work without it so
1279 * we don't error out.
1282 ra
= kzalloc(sizeof(*ra
), GFP_KERNEL
);
1284 file_ra_state_init(ra
, inode
->i_mapping
);
1289 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*), GFP_KERNEL
);
1295 /* find the last page to defrag */
1296 if (range
->start
+ range
->len
> range
->start
) {
1297 last_index
= min_t(u64
, isize
- 1,
1298 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1300 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1304 ret
= find_new_extents(root
, inode
, newer_than
,
1305 &newer_off
, SZ_64K
);
1307 range
->start
= newer_off
;
1309 * we always align our defrag to help keep
1310 * the extents in the file evenly spaced
1312 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1316 i
= range
->start
>> PAGE_SHIFT
;
1319 max_to_defrag
= last_index
- i
+ 1;
1322 * make writeback starts from i, so the defrag range can be
1323 * written sequentially.
1325 if (i
< inode
->i_mapping
->writeback_index
)
1326 inode
->i_mapping
->writeback_index
= i
;
1328 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1329 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1331 * make sure we stop running if someone unmounts
1334 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1337 if (btrfs_defrag_cancelled(fs_info
)) {
1338 btrfs_debug(fs_info
, "defrag_file cancelled");
1343 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1344 extent_thresh
, &last_len
, &skip
,
1345 &defrag_end
, do_compress
)){
1348 * the should_defrag function tells us how much to skip
1349 * bump our counter by the suggested amount
1351 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1352 i
= max(i
+ 1, next
);
1357 cluster
= (PAGE_ALIGN(defrag_end
) >>
1359 cluster
= min(cluster
, max_cluster
);
1361 cluster
= max_cluster
;
1364 if (i
+ cluster
> ra_index
) {
1365 ra_index
= max(i
, ra_index
);
1367 page_cache_sync_readahead(inode
->i_mapping
, ra
,
1368 file
, ra_index
, cluster
);
1369 ra_index
+= cluster
;
1374 BTRFS_I(inode
)->defrag_compress
= compress_type
;
1375 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1377 inode_unlock(inode
);
1381 defrag_count
+= ret
;
1382 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1383 inode_unlock(inode
);
1386 if (newer_off
== (u64
)-1)
1392 newer_off
= max(newer_off
+ 1,
1393 (u64
)i
<< PAGE_SHIFT
);
1395 ret
= find_new_extents(root
, inode
, newer_than
,
1396 &newer_off
, SZ_64K
);
1398 range
->start
= newer_off
;
1399 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1406 last_len
+= ret
<< PAGE_SHIFT
;
1414 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1415 filemap_flush(inode
->i_mapping
);
1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1417 &BTRFS_I(inode
)->runtime_flags
))
1418 filemap_flush(inode
->i_mapping
);
1421 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1422 btrfs_set_fs_incompat(fs_info
, COMPRESS_LZO
);
1423 } else if (range
->compress_type
== BTRFS_COMPRESS_ZSTD
) {
1424 btrfs_set_fs_incompat(fs_info
, COMPRESS_ZSTD
);
1432 BTRFS_I(inode
)->defrag_compress
= BTRFS_COMPRESS_NONE
;
1433 inode_unlock(inode
);
1441 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1444 struct inode
*inode
= file_inode(file
);
1445 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1449 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1450 struct btrfs_ioctl_vol_args
*vol_args
;
1451 struct btrfs_trans_handle
*trans
;
1452 struct btrfs_device
*device
= NULL
;
1455 char *devstr
= NULL
;
1459 if (!capable(CAP_SYS_ADMIN
))
1462 ret
= mnt_want_write_file(file
);
1466 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
1467 mnt_drop_write_file(file
);
1468 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1471 mutex_lock(&fs_info
->volume_mutex
);
1472 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1473 if (IS_ERR(vol_args
)) {
1474 ret
= PTR_ERR(vol_args
);
1478 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1480 sizestr
= vol_args
->name
;
1481 devstr
= strchr(sizestr
, ':');
1483 sizestr
= devstr
+ 1;
1485 devstr
= vol_args
->name
;
1486 ret
= kstrtoull(devstr
, 10, &devid
);
1493 btrfs_info(fs_info
, "resizing devid %llu", devid
);
1496 device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
1498 btrfs_info(fs_info
, "resizer unable to find device %llu",
1504 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1506 "resizer unable to apply on readonly device %llu",
1512 if (!strcmp(sizestr
, "max"))
1513 new_size
= device
->bdev
->bd_inode
->i_size
;
1515 if (sizestr
[0] == '-') {
1518 } else if (sizestr
[0] == '+') {
1522 new_size
= memparse(sizestr
, &retptr
);
1523 if (*retptr
!= '\0' || new_size
== 0) {
1529 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1534 old_size
= btrfs_device_get_total_bytes(device
);
1537 if (new_size
> old_size
) {
1541 new_size
= old_size
- new_size
;
1542 } else if (mod
> 0) {
1543 if (new_size
> ULLONG_MAX
- old_size
) {
1547 new_size
= old_size
+ new_size
;
1550 if (new_size
< SZ_256M
) {
1554 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1559 new_size
= round_down(new_size
, fs_info
->sectorsize
);
1561 btrfs_info_in_rcu(fs_info
, "new size for %s is %llu",
1562 rcu_str_deref(device
->name
), new_size
);
1564 if (new_size
> old_size
) {
1565 trans
= btrfs_start_transaction(root
, 0);
1566 if (IS_ERR(trans
)) {
1567 ret
= PTR_ERR(trans
);
1570 ret
= btrfs_grow_device(trans
, device
, new_size
);
1571 btrfs_commit_transaction(trans
);
1572 } else if (new_size
< old_size
) {
1573 ret
= btrfs_shrink_device(device
, new_size
);
1574 } /* equal, nothing need to do */
1579 mutex_unlock(&fs_info
->volume_mutex
);
1580 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
1581 mnt_drop_write_file(file
);
1585 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1586 const char *name
, unsigned long fd
, int subvol
,
1587 u64
*transid
, bool readonly
,
1588 struct btrfs_qgroup_inherit
*inherit
)
1593 if (!S_ISDIR(file_inode(file
)->i_mode
))
1596 ret
= mnt_want_write_file(file
);
1600 namelen
= strlen(name
);
1601 if (strchr(name
, '/')) {
1603 goto out_drop_write
;
1606 if (name
[0] == '.' &&
1607 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1609 goto out_drop_write
;
1613 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1614 NULL
, transid
, readonly
, inherit
);
1616 struct fd src
= fdget(fd
);
1617 struct inode
*src_inode
;
1620 goto out_drop_write
;
1623 src_inode
= file_inode(src
.file
);
1624 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1625 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1626 "Snapshot src from another FS");
1628 } else if (!inode_owner_or_capable(src_inode
)) {
1630 * Subvolume creation is not restricted, but snapshots
1631 * are limited to own subvolumes only
1635 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1636 BTRFS_I(src_inode
)->root
,
1637 transid
, readonly
, inherit
);
1642 mnt_drop_write_file(file
);
1647 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1648 void __user
*arg
, int subvol
)
1650 struct btrfs_ioctl_vol_args
*vol_args
;
1653 if (!S_ISDIR(file_inode(file
)->i_mode
))
1656 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1657 if (IS_ERR(vol_args
))
1658 return PTR_ERR(vol_args
);
1659 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1661 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1662 vol_args
->fd
, subvol
,
1669 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1670 void __user
*arg
, int subvol
)
1672 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1676 bool readonly
= false;
1677 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1679 if (!S_ISDIR(file_inode(file
)->i_mode
))
1682 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1683 if (IS_ERR(vol_args
))
1684 return PTR_ERR(vol_args
);
1685 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1687 if (vol_args
->flags
&
1688 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1689 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1694 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1696 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1698 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1699 if (vol_args
->size
> PAGE_SIZE
) {
1703 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1704 if (IS_ERR(inherit
)) {
1705 ret
= PTR_ERR(inherit
);
1710 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1711 vol_args
->fd
, subvol
, ptr
,
1716 if (ptr
&& copy_to_user(arg
+
1717 offsetof(struct btrfs_ioctl_vol_args_v2
,
1729 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1732 struct inode
*inode
= file_inode(file
);
1733 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1734 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1738 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
)
1741 down_read(&fs_info
->subvol_sem
);
1742 if (btrfs_root_readonly(root
))
1743 flags
|= BTRFS_SUBVOL_RDONLY
;
1744 up_read(&fs_info
->subvol_sem
);
1746 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1752 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1755 struct inode
*inode
= file_inode(file
);
1756 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1757 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1758 struct btrfs_trans_handle
*trans
;
1763 if (!inode_owner_or_capable(inode
))
1766 ret
= mnt_want_write_file(file
);
1770 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
1772 goto out_drop_write
;
1775 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1777 goto out_drop_write
;
1780 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1782 goto out_drop_write
;
1785 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1787 goto out_drop_write
;
1790 down_write(&fs_info
->subvol_sem
);
1793 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1796 root_flags
= btrfs_root_flags(&root
->root_item
);
1797 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1798 btrfs_set_root_flags(&root
->root_item
,
1799 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1802 * Block RO -> RW transition if this subvolume is involved in
1805 spin_lock(&root
->root_item_lock
);
1806 if (root
->send_in_progress
== 0) {
1807 btrfs_set_root_flags(&root
->root_item
,
1808 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1809 spin_unlock(&root
->root_item_lock
);
1811 spin_unlock(&root
->root_item_lock
);
1813 "Attempt to set subvolume %llu read-write during send",
1814 root
->root_key
.objectid
);
1820 trans
= btrfs_start_transaction(root
, 1);
1821 if (IS_ERR(trans
)) {
1822 ret
= PTR_ERR(trans
);
1826 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
1827 &root
->root_key
, &root
->root_item
);
1829 btrfs_end_transaction(trans
);
1833 ret
= btrfs_commit_transaction(trans
);
1837 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1839 up_write(&fs_info
->subvol_sem
);
1841 mnt_drop_write_file(file
);
1847 * helper to check if the subvolume references other subvolumes
1849 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1851 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1852 struct btrfs_path
*path
;
1853 struct btrfs_dir_item
*di
;
1854 struct btrfs_key key
;
1858 path
= btrfs_alloc_path();
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1864 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
1865 dir_id
, "default", 7, 0);
1866 if (di
&& !IS_ERR(di
)) {
1867 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1868 if (key
.objectid
== root
->root_key
.objectid
) {
1871 "deleting default subvolume %llu is not allowed",
1875 btrfs_release_path(path
);
1878 key
.objectid
= root
->root_key
.objectid
;
1879 key
.type
= BTRFS_ROOT_REF_KEY
;
1880 key
.offset
= (u64
)-1;
1882 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1888 if (path
->slots
[0] > 0) {
1890 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1891 if (key
.objectid
== root
->root_key
.objectid
&&
1892 key
.type
== BTRFS_ROOT_REF_KEY
)
1896 btrfs_free_path(path
);
1900 static noinline
int key_in_sk(struct btrfs_key
*key
,
1901 struct btrfs_ioctl_search_key
*sk
)
1903 struct btrfs_key test
;
1906 test
.objectid
= sk
->min_objectid
;
1907 test
.type
= sk
->min_type
;
1908 test
.offset
= sk
->min_offset
;
1910 ret
= btrfs_comp_cpu_keys(key
, &test
);
1914 test
.objectid
= sk
->max_objectid
;
1915 test
.type
= sk
->max_type
;
1916 test
.offset
= sk
->max_offset
;
1918 ret
= btrfs_comp_cpu_keys(key
, &test
);
1924 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1925 struct btrfs_key
*key
,
1926 struct btrfs_ioctl_search_key
*sk
,
1929 unsigned long *sk_offset
,
1933 struct extent_buffer
*leaf
;
1934 struct btrfs_ioctl_search_header sh
;
1935 struct btrfs_key test
;
1936 unsigned long item_off
;
1937 unsigned long item_len
;
1943 leaf
= path
->nodes
[0];
1944 slot
= path
->slots
[0];
1945 nritems
= btrfs_header_nritems(leaf
);
1947 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1951 found_transid
= btrfs_header_generation(leaf
);
1953 for (i
= slot
; i
< nritems
; i
++) {
1954 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1955 item_len
= btrfs_item_size_nr(leaf
, i
);
1957 btrfs_item_key_to_cpu(leaf
, key
, i
);
1958 if (!key_in_sk(key
, sk
))
1961 if (sizeof(sh
) + item_len
> *buf_size
) {
1968 * return one empty item back for v1, which does not
1972 *buf_size
= sizeof(sh
) + item_len
;
1977 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
1982 sh
.objectid
= key
->objectid
;
1983 sh
.offset
= key
->offset
;
1984 sh
.type
= key
->type
;
1986 sh
.transid
= found_transid
;
1988 /* copy search result header */
1989 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
1994 *sk_offset
+= sizeof(sh
);
1997 char __user
*up
= ubuf
+ *sk_offset
;
1999 if (read_extent_buffer_to_user(leaf
, up
,
2000 item_off
, item_len
)) {
2005 *sk_offset
+= item_len
;
2009 if (ret
) /* -EOVERFLOW from above */
2012 if (*num_found
>= sk
->nr_items
) {
2019 test
.objectid
= sk
->max_objectid
;
2020 test
.type
= sk
->max_type
;
2021 test
.offset
= sk
->max_offset
;
2022 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2024 else if (key
->offset
< (u64
)-1)
2026 else if (key
->type
< (u8
)-1) {
2029 } else if (key
->objectid
< (u64
)-1) {
2037 * 0: all items from this leaf copied, continue with next
2038 * 1: * more items can be copied, but unused buffer is too small
2039 * * all items were found
2040 * Either way, it will stops the loop which iterates to the next
2042 * -EOVERFLOW: item was to large for buffer
2043 * -EFAULT: could not copy extent buffer back to userspace
2048 static noinline
int search_ioctl(struct inode
*inode
,
2049 struct btrfs_ioctl_search_key
*sk
,
2053 struct btrfs_fs_info
*info
= btrfs_sb(inode
->i_sb
);
2054 struct btrfs_root
*root
;
2055 struct btrfs_key key
;
2056 struct btrfs_path
*path
;
2059 unsigned long sk_offset
= 0;
2061 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2062 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2066 path
= btrfs_alloc_path();
2070 if (sk
->tree_id
== 0) {
2071 /* search the root of the inode that was passed */
2072 root
= BTRFS_I(inode
)->root
;
2074 key
.objectid
= sk
->tree_id
;
2075 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2076 key
.offset
= (u64
)-1;
2077 root
= btrfs_read_fs_root_no_name(info
, &key
);
2079 btrfs_free_path(path
);
2084 key
.objectid
= sk
->min_objectid
;
2085 key
.type
= sk
->min_type
;
2086 key
.offset
= sk
->min_offset
;
2089 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2095 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2096 &sk_offset
, &num_found
);
2097 btrfs_release_path(path
);
2105 sk
->nr_items
= num_found
;
2106 btrfs_free_path(path
);
2110 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2113 struct btrfs_ioctl_search_args __user
*uargs
;
2114 struct btrfs_ioctl_search_key sk
;
2115 struct inode
*inode
;
2119 if (!capable(CAP_SYS_ADMIN
))
2122 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2124 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2127 buf_size
= sizeof(uargs
->buf
);
2129 inode
= file_inode(file
);
2130 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2133 * In the origin implementation an overflow is handled by returning a
2134 * search header with a len of zero, so reset ret.
2136 if (ret
== -EOVERFLOW
)
2139 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2144 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2147 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2148 struct btrfs_ioctl_search_args_v2 args
;
2149 struct inode
*inode
;
2152 const size_t buf_limit
= SZ_16M
;
2154 if (!capable(CAP_SYS_ADMIN
))
2157 /* copy search header and buffer size */
2158 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2159 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2162 buf_size
= args
.buf_size
;
2164 /* limit result size to 16MB */
2165 if (buf_size
> buf_limit
)
2166 buf_size
= buf_limit
;
2168 inode
= file_inode(file
);
2169 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2170 (char __user
*)(&uarg
->buf
[0]));
2171 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2173 else if (ret
== -EOVERFLOW
&&
2174 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2181 * Search INODE_REFs to identify path name of 'dirid' directory
2182 * in a 'tree_id' tree. and sets path name to 'name'.
2184 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2185 u64 tree_id
, u64 dirid
, char *name
)
2187 struct btrfs_root
*root
;
2188 struct btrfs_key key
;
2194 struct btrfs_inode_ref
*iref
;
2195 struct extent_buffer
*l
;
2196 struct btrfs_path
*path
;
2198 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2203 path
= btrfs_alloc_path();
2207 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
- 1];
2209 key
.objectid
= tree_id
;
2210 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2211 key
.offset
= (u64
)-1;
2212 root
= btrfs_read_fs_root_no_name(info
, &key
);
2214 btrfs_err(info
, "could not find root %llu", tree_id
);
2219 key
.objectid
= dirid
;
2220 key
.type
= BTRFS_INODE_REF_KEY
;
2221 key
.offset
= (u64
)-1;
2224 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2228 ret
= btrfs_previous_item(root
, path
, dirid
,
2229 BTRFS_INODE_REF_KEY
);
2239 slot
= path
->slots
[0];
2240 btrfs_item_key_to_cpu(l
, &key
, slot
);
2242 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2243 len
= btrfs_inode_ref_name_len(l
, iref
);
2245 total_len
+= len
+ 1;
2247 ret
= -ENAMETOOLONG
;
2252 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2254 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2257 btrfs_release_path(path
);
2258 key
.objectid
= key
.offset
;
2259 key
.offset
= (u64
)-1;
2260 dirid
= key
.objectid
;
2262 memmove(name
, ptr
, total_len
);
2263 name
[total_len
] = '\0';
2266 btrfs_free_path(path
);
2270 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2273 struct btrfs_ioctl_ino_lookup_args
*args
;
2274 struct inode
*inode
;
2277 args
= memdup_user(argp
, sizeof(*args
));
2279 return PTR_ERR(args
);
2281 inode
= file_inode(file
);
2284 * Unprivileged query to obtain the containing subvolume root id. The
2285 * path is reset so it's consistent with btrfs_search_path_in_tree.
2287 if (args
->treeid
== 0)
2288 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2290 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2295 if (!capable(CAP_SYS_ADMIN
)) {
2300 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2301 args
->treeid
, args
->objectid
,
2305 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2312 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2315 struct dentry
*parent
= file
->f_path
.dentry
;
2316 struct btrfs_fs_info
*fs_info
= btrfs_sb(parent
->d_sb
);
2317 struct dentry
*dentry
;
2318 struct inode
*dir
= d_inode(parent
);
2319 struct inode
*inode
;
2320 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2321 struct btrfs_root
*dest
= NULL
;
2322 struct btrfs_ioctl_vol_args
*vol_args
;
2323 struct btrfs_trans_handle
*trans
;
2324 struct btrfs_block_rsv block_rsv
;
2326 u64 qgroup_reserved
;
2331 if (!S_ISDIR(dir
->i_mode
))
2334 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2335 if (IS_ERR(vol_args
))
2336 return PTR_ERR(vol_args
);
2338 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2339 namelen
= strlen(vol_args
->name
);
2340 if (strchr(vol_args
->name
, '/') ||
2341 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2346 err
= mnt_want_write_file(file
);
2351 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2353 goto out_drop_write
;
2354 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2355 if (IS_ERR(dentry
)) {
2356 err
= PTR_ERR(dentry
);
2357 goto out_unlock_dir
;
2360 if (d_really_is_negative(dentry
)) {
2365 inode
= d_inode(dentry
);
2366 dest
= BTRFS_I(inode
)->root
;
2367 if (!capable(CAP_SYS_ADMIN
)) {
2369 * Regular user. Only allow this with a special mount
2370 * option, when the user has write+exec access to the
2371 * subvol root, and when rmdir(2) would have been
2374 * Note that this is _not_ check that the subvol is
2375 * empty or doesn't contain data that we wouldn't
2376 * otherwise be able to delete.
2378 * Users who want to delete empty subvols should try
2382 if (!btrfs_test_opt(fs_info
, USER_SUBVOL_RM_ALLOWED
))
2386 * Do not allow deletion if the parent dir is the same
2387 * as the dir to be deleted. That means the ioctl
2388 * must be called on the dentry referencing the root
2389 * of the subvol, not a random directory contained
2396 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2401 /* check if subvolume may be deleted by a user */
2402 err
= btrfs_may_delete(dir
, dentry
, 1);
2406 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
2414 * Don't allow to delete a subvolume with send in progress. This is
2415 * inside the i_mutex so the error handling that has to drop the bit
2416 * again is not run concurrently.
2418 spin_lock(&dest
->root_item_lock
);
2419 root_flags
= btrfs_root_flags(&dest
->root_item
);
2420 if (dest
->send_in_progress
== 0) {
2421 btrfs_set_root_flags(&dest
->root_item
,
2422 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2423 spin_unlock(&dest
->root_item_lock
);
2425 spin_unlock(&dest
->root_item_lock
);
2427 "Attempt to delete subvolume %llu during send",
2428 dest
->root_key
.objectid
);
2430 goto out_unlock_inode
;
2433 down_write(&fs_info
->subvol_sem
);
2435 err
= may_destroy_subvol(dest
);
2439 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2441 * One for dir inode, two for dir entries, two for root
2444 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2445 5, &qgroup_reserved
, true);
2449 trans
= btrfs_start_transaction(root
, 0);
2450 if (IS_ERR(trans
)) {
2451 err
= PTR_ERR(trans
);
2454 trans
->block_rsv
= &block_rsv
;
2455 trans
->bytes_reserved
= block_rsv
.size
;
2457 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
2459 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2460 dest
->root_key
.objectid
,
2461 dentry
->d_name
.name
,
2462 dentry
->d_name
.len
);
2465 btrfs_abort_transaction(trans
, ret
);
2469 btrfs_record_root_in_trans(trans
, dest
);
2471 memset(&dest
->root_item
.drop_progress
, 0,
2472 sizeof(dest
->root_item
.drop_progress
));
2473 dest
->root_item
.drop_level
= 0;
2474 btrfs_set_root_refs(&dest
->root_item
, 0);
2476 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2477 ret
= btrfs_insert_orphan_item(trans
,
2479 dest
->root_key
.objectid
);
2481 btrfs_abort_transaction(trans
, ret
);
2487 ret
= btrfs_uuid_tree_rem(trans
, fs_info
, dest
->root_item
.uuid
,
2488 BTRFS_UUID_KEY_SUBVOL
,
2489 dest
->root_key
.objectid
);
2490 if (ret
&& ret
!= -ENOENT
) {
2491 btrfs_abort_transaction(trans
, ret
);
2495 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2496 ret
= btrfs_uuid_tree_rem(trans
, fs_info
,
2497 dest
->root_item
.received_uuid
,
2498 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2499 dest
->root_key
.objectid
);
2500 if (ret
&& ret
!= -ENOENT
) {
2501 btrfs_abort_transaction(trans
, ret
);
2508 trans
->block_rsv
= NULL
;
2509 trans
->bytes_reserved
= 0;
2510 ret
= btrfs_end_transaction(trans
);
2513 inode
->i_flags
|= S_DEAD
;
2515 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
2517 up_write(&fs_info
->subvol_sem
);
2519 spin_lock(&dest
->root_item_lock
);
2520 root_flags
= btrfs_root_flags(&dest
->root_item
);
2521 btrfs_set_root_flags(&dest
->root_item
,
2522 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2523 spin_unlock(&dest
->root_item_lock
);
2526 inode_unlock(inode
);
2528 d_invalidate(dentry
);
2529 btrfs_invalidate_inodes(dest
);
2531 ASSERT(dest
->send_in_progress
== 0);
2534 if (dest
->ino_cache_inode
) {
2535 iput(dest
->ino_cache_inode
);
2536 dest
->ino_cache_inode
= NULL
;
2544 mnt_drop_write_file(file
);
2550 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2552 struct inode
*inode
= file_inode(file
);
2553 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2554 struct btrfs_ioctl_defrag_range_args
*range
;
2557 ret
= mnt_want_write_file(file
);
2561 if (btrfs_root_readonly(root
)) {
2566 switch (inode
->i_mode
& S_IFMT
) {
2568 if (!capable(CAP_SYS_ADMIN
)) {
2572 ret
= btrfs_defrag_root(root
);
2575 if (!(file
->f_mode
& FMODE_WRITE
)) {
2580 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2587 if (copy_from_user(range
, argp
,
2593 /* compression requires us to start the IO */
2594 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2595 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2596 range
->extent_thresh
= (u32
)-1;
2599 /* the rest are all set to zero by kzalloc */
2600 range
->len
= (u64
)-1;
2602 ret
= btrfs_defrag_file(file_inode(file
), file
,
2612 mnt_drop_write_file(file
);
2616 static long btrfs_ioctl_add_dev(struct btrfs_fs_info
*fs_info
, void __user
*arg
)
2618 struct btrfs_ioctl_vol_args
*vol_args
;
2621 if (!capable(CAP_SYS_ADMIN
))
2624 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
2625 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2627 mutex_lock(&fs_info
->volume_mutex
);
2628 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2629 if (IS_ERR(vol_args
)) {
2630 ret
= PTR_ERR(vol_args
);
2634 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2635 ret
= btrfs_init_new_device(fs_info
, vol_args
->name
);
2638 btrfs_info(fs_info
, "disk added %s", vol_args
->name
);
2642 mutex_unlock(&fs_info
->volume_mutex
);
2643 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2647 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2649 struct inode
*inode
= file_inode(file
);
2650 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2651 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2654 if (!capable(CAP_SYS_ADMIN
))
2657 ret
= mnt_want_write_file(file
);
2661 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2662 if (IS_ERR(vol_args
)) {
2663 ret
= PTR_ERR(vol_args
);
2667 /* Check for compatibility reject unknown flags */
2668 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2671 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
2672 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2676 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2677 ret
= btrfs_rm_device(fs_info
, NULL
, vol_args
->devid
);
2679 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2680 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2682 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2685 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2686 btrfs_info(fs_info
, "device deleted: id %llu",
2689 btrfs_info(fs_info
, "device deleted: %s",
2695 mnt_drop_write_file(file
);
2699 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2701 struct inode
*inode
= file_inode(file
);
2702 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2703 struct btrfs_ioctl_vol_args
*vol_args
;
2706 if (!capable(CAP_SYS_ADMIN
))
2709 ret
= mnt_want_write_file(file
);
2713 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
2714 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2715 goto out_drop_write
;
2718 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2719 if (IS_ERR(vol_args
)) {
2720 ret
= PTR_ERR(vol_args
);
2724 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2725 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2728 btrfs_info(fs_info
, "disk deleted %s", vol_args
->name
);
2731 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2733 mnt_drop_write_file(file
);
2738 static long btrfs_ioctl_fs_info(struct btrfs_fs_info
*fs_info
,
2741 struct btrfs_ioctl_fs_info_args
*fi_args
;
2742 struct btrfs_device
*device
;
2743 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2746 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2751 fi_args
->num_devices
= fs_devices
->num_devices
;
2753 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
2754 if (device
->devid
> fi_args
->max_id
)
2755 fi_args
->max_id
= device
->devid
;
2759 memcpy(&fi_args
->fsid
, fs_info
->fsid
, sizeof(fi_args
->fsid
));
2760 fi_args
->nodesize
= fs_info
->nodesize
;
2761 fi_args
->sectorsize
= fs_info
->sectorsize
;
2762 fi_args
->clone_alignment
= fs_info
->sectorsize
;
2764 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2771 static long btrfs_ioctl_dev_info(struct btrfs_fs_info
*fs_info
,
2774 struct btrfs_ioctl_dev_info_args
*di_args
;
2775 struct btrfs_device
*dev
;
2777 char *s_uuid
= NULL
;
2779 di_args
= memdup_user(arg
, sizeof(*di_args
));
2780 if (IS_ERR(di_args
))
2781 return PTR_ERR(di_args
);
2783 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2784 s_uuid
= di_args
->uuid
;
2787 dev
= btrfs_find_device(fs_info
, di_args
->devid
, s_uuid
, NULL
);
2794 di_args
->devid
= dev
->devid
;
2795 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2796 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2797 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2799 struct rcu_string
*name
;
2801 name
= rcu_dereference(dev
->name
);
2802 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
) - 1);
2803 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2805 di_args
->path
[0] = '\0';
2810 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2817 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2821 page
= grab_cache_page(inode
->i_mapping
, index
);
2823 return ERR_PTR(-ENOMEM
);
2825 if (!PageUptodate(page
)) {
2828 ret
= btrfs_readpage(NULL
, page
);
2830 return ERR_PTR(ret
);
2832 if (!PageUptodate(page
)) {
2835 return ERR_PTR(-EIO
);
2837 if (page
->mapping
!= inode
->i_mapping
) {
2840 return ERR_PTR(-EAGAIN
);
2847 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2848 int num_pages
, u64 off
)
2851 pgoff_t index
= off
>> PAGE_SHIFT
;
2853 for (i
= 0; i
< num_pages
; i
++) {
2855 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2856 if (IS_ERR(pages
[i
])) {
2857 int err
= PTR_ERR(pages
[i
]);
2868 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2869 bool retry_range_locking
)
2872 * Do any pending delalloc/csum calculations on inode, one way or
2873 * another, and lock file content.
2874 * The locking order is:
2877 * 2) range in the inode's io tree
2880 struct btrfs_ordered_extent
*ordered
;
2881 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2882 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2885 ordered
->file_offset
+ ordered
->len
<= off
||
2886 ordered
->file_offset
>= off
+ len
) &&
2887 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2888 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2890 btrfs_put_ordered_extent(ordered
);
2893 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2895 btrfs_put_ordered_extent(ordered
);
2896 if (!retry_range_locking
)
2898 btrfs_wait_ordered_range(inode
, off
, len
);
2903 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2905 inode_unlock(inode1
);
2906 inode_unlock(inode2
);
2909 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2911 if (inode1
< inode2
)
2912 swap(inode1
, inode2
);
2914 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2915 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2918 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2919 struct inode
*inode2
, u64 loff2
, u64 len
)
2921 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2922 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2925 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2926 struct inode
*inode2
, u64 loff2
, u64 len
,
2927 bool retry_range_locking
)
2931 if (inode1
< inode2
) {
2932 swap(inode1
, inode2
);
2935 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2938 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2940 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2947 struct page
**src_pages
;
2948 struct page
**dst_pages
;
2951 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
2956 for (i
= 0; i
< cmp
->num_pages
; i
++) {
2957 pg
= cmp
->src_pages
[i
];
2962 pg
= cmp
->dst_pages
[i
];
2968 kfree(cmp
->src_pages
);
2969 kfree(cmp
->dst_pages
);
2972 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
2973 struct inode
*dst
, u64 dst_loff
,
2974 u64 len
, struct cmp_pages
*cmp
)
2977 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
2978 struct page
**src_pgarr
, **dst_pgarr
;
2981 * We must gather up all the pages before we initiate our
2982 * extent locking. We use an array for the page pointers. Size
2983 * of the array is bounded by len, which is in turn bounded by
2984 * BTRFS_MAX_DEDUPE_LEN.
2986 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
2987 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
2988 if (!src_pgarr
|| !dst_pgarr
) {
2993 cmp
->num_pages
= num_pages
;
2994 cmp
->src_pages
= src_pgarr
;
2995 cmp
->dst_pages
= dst_pgarr
;
2998 * If deduping ranges in the same inode, locking rules make it mandatory
2999 * to always lock pages in ascending order to avoid deadlocks with
3000 * concurrent tasks (such as starting writeback/delalloc).
3002 if (src
== dst
&& dst_loff
< loff
) {
3003 swap(src_pgarr
, dst_pgarr
);
3004 swap(loff
, dst_loff
);
3007 ret
= gather_extent_pages(src
, src_pgarr
, cmp
->num_pages
, loff
);
3011 ret
= gather_extent_pages(dst
, dst_pgarr
, cmp
->num_pages
, dst_loff
);
3015 btrfs_cmp_data_free(cmp
);
3019 static int btrfs_cmp_data(u64 len
, struct cmp_pages
*cmp
)
3023 struct page
*src_page
, *dst_page
;
3024 unsigned int cmp_len
= PAGE_SIZE
;
3025 void *addr
, *dst_addr
;
3029 if (len
< PAGE_SIZE
)
3032 BUG_ON(i
>= cmp
->num_pages
);
3034 src_page
= cmp
->src_pages
[i
];
3035 dst_page
= cmp
->dst_pages
[i
];
3036 ASSERT(PageLocked(src_page
));
3037 ASSERT(PageLocked(dst_page
));
3039 addr
= kmap_atomic(src_page
);
3040 dst_addr
= kmap_atomic(dst_page
);
3042 flush_dcache_page(src_page
);
3043 flush_dcache_page(dst_page
);
3045 if (memcmp(addr
, dst_addr
, cmp_len
))
3048 kunmap_atomic(addr
);
3049 kunmap_atomic(dst_addr
);
3061 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3065 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3067 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3070 /* if we extend to eof, continue to block boundary */
3071 if (off
+ len
== inode
->i_size
)
3072 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3074 /* Check that we are block aligned - btrfs_clone() requires this */
3075 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3081 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3082 struct inode
*dst
, u64 dst_loff
)
3086 struct cmp_pages cmp
;
3087 bool same_inode
= (src
== dst
);
3088 u64 same_lock_start
= 0;
3089 u64 same_lock_len
= 0;
3097 btrfs_double_inode_lock(src
, dst
);
3099 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3103 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3109 * Single inode case wants the same checks, except we
3110 * don't want our length pushed out past i_size as
3111 * comparing that data range makes no sense.
3113 * extent_same_check_offsets() will do this for an
3114 * unaligned length at i_size, so catch it here and
3115 * reject the request.
3117 * This effectively means we require aligned extents
3118 * for the single-inode case, whereas the other cases
3119 * allow an unaligned length so long as it ends at
3127 /* Check for overlapping ranges */
3128 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3133 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3134 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3137 /* don't make the dst file partly checksummed */
3138 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3139 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3145 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3150 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3153 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3156 * If one of the inodes has dirty pages in the respective range or
3157 * ordered extents, we need to flush dellaloc and wait for all ordered
3158 * extents in the range. We must unlock the pages and the ranges in the
3159 * io trees to avoid deadlocks when flushing delalloc (requires locking
3160 * pages) and when waiting for ordered extents to complete (they require
3163 if (ret
== -EAGAIN
) {
3165 * Ranges in the io trees already unlocked. Now unlock all
3166 * pages before waiting for all IO to complete.
3168 btrfs_cmp_data_free(&cmp
);
3170 btrfs_wait_ordered_range(src
, same_lock_start
,
3173 btrfs_wait_ordered_range(src
, loff
, len
);
3174 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3180 /* ranges in the io trees already unlocked */
3181 btrfs_cmp_data_free(&cmp
);
3185 /* pass original length for comparison so we stay within i_size */
3186 ret
= btrfs_cmp_data(olen
, &cmp
);
3188 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3191 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3192 same_lock_start
+ same_lock_len
- 1);
3194 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3196 btrfs_cmp_data_free(&cmp
);
3201 btrfs_double_inode_unlock(src
, dst
);
3206 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3208 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3209 struct file
*dst_file
, u64 dst_loff
)
3211 struct inode
*src
= file_inode(src_file
);
3212 struct inode
*dst
= file_inode(dst_file
);
3213 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3216 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3217 olen
= BTRFS_MAX_DEDUPE_LEN
;
3219 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3221 * Btrfs does not support blocksize < page_size. As a
3222 * result, btrfs_cmp_data() won't correctly handle
3223 * this situation without an update.
3228 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3234 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3235 struct inode
*inode
,
3241 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3244 inode_inc_iversion(inode
);
3245 if (!no_time_update
)
3246 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
3248 * We round up to the block size at eof when determining which
3249 * extents to clone above, but shouldn't round up the file size.
3251 if (endoff
> destoff
+ olen
)
3252 endoff
= destoff
+ olen
;
3253 if (endoff
> inode
->i_size
)
3254 btrfs_i_size_write(BTRFS_I(inode
), endoff
);
3256 ret
= btrfs_update_inode(trans
, root
, inode
);
3258 btrfs_abort_transaction(trans
, ret
);
3259 btrfs_end_transaction(trans
);
3262 ret
= btrfs_end_transaction(trans
);
3267 static void clone_update_extent_map(struct btrfs_inode
*inode
,
3268 const struct btrfs_trans_handle
*trans
,
3269 const struct btrfs_path
*path
,
3270 const u64 hole_offset
,
3273 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
3274 struct extent_map
*em
;
3277 em
= alloc_extent_map();
3279 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3284 struct btrfs_file_extent_item
*fi
;
3286 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3287 struct btrfs_file_extent_item
);
3288 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3289 em
->generation
= -1;
3290 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3291 BTRFS_FILE_EXTENT_INLINE
)
3292 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3293 &inode
->runtime_flags
);
3295 em
->start
= hole_offset
;
3297 em
->ram_bytes
= em
->len
;
3298 em
->orig_start
= hole_offset
;
3299 em
->block_start
= EXTENT_MAP_HOLE
;
3301 em
->orig_block_len
= 0;
3302 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3303 em
->generation
= trans
->transid
;
3307 write_lock(&em_tree
->lock
);
3308 ret
= add_extent_mapping(em_tree
, em
, 1);
3309 write_unlock(&em_tree
->lock
);
3310 if (ret
!= -EEXIST
) {
3311 free_extent_map(em
);
3314 btrfs_drop_extent_cache(inode
, em
->start
,
3315 em
->start
+ em
->len
- 1, 0);
3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3323 * Make sure we do not end up inserting an inline extent into a file that has
3324 * already other (non-inline) extents. If a file has an inline extent it can
3325 * not have any other extents and the (single) inline extent must start at the
3326 * file offset 0. Failing to respect these rules will lead to file corruption,
3327 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3329 * We can have extents that have been already written to disk or we can have
3330 * dirty ranges still in delalloc, in which case the extent maps and items are
3331 * created only when we run delalloc, and the delalloc ranges might fall outside
3332 * the range we are currently locking in the inode's io tree. So we check the
3333 * inode's i_size because of that (i_size updates are done while holding the
3334 * i_mutex, which we are holding here).
3335 * We also check to see if the inode has a size not greater than "datal" but has
3336 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3337 * protected against such concurrent fallocate calls by the i_mutex).
3339 * If the file has no extents but a size greater than datal, do not allow the
3340 * copy because we would need turn the inline extent into a non-inline one (even
3341 * with NO_HOLES enabled). If we find our destination inode only has one inline
3342 * extent, just overwrite it with the source inline extent if its size is less
3343 * than the source extent's size, or we could copy the source inline extent's
3344 * data into the destination inode's inline extent if the later is greater then
3347 static int clone_copy_inline_extent(struct inode
*dst
,
3348 struct btrfs_trans_handle
*trans
,
3349 struct btrfs_path
*path
,
3350 struct btrfs_key
*new_key
,
3351 const u64 drop_start
,
3357 struct btrfs_fs_info
*fs_info
= btrfs_sb(dst
->i_sb
);
3358 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3359 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3360 fs_info
->sectorsize
);
3362 struct btrfs_key key
;
3364 if (new_key
->offset
> 0)
3367 key
.objectid
= btrfs_ino(BTRFS_I(dst
));
3368 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3370 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3373 } else if (ret
> 0) {
3374 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3375 ret
= btrfs_next_leaf(root
, path
);
3379 goto copy_inline_extent
;
3381 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3382 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3383 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3384 ASSERT(key
.offset
> 0);
3387 } else if (i_size_read(dst
) <= datal
) {
3388 struct btrfs_file_extent_item
*ei
;
3392 * If the file size is <= datal, make sure there are no other
3393 * extents following (can happen do to an fallocate call with
3394 * the flag FALLOC_FL_KEEP_SIZE).
3396 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3397 struct btrfs_file_extent_item
);
3399 * If it's an inline extent, it can not have other extents
3402 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3403 BTRFS_FILE_EXTENT_INLINE
)
3404 goto copy_inline_extent
;
3406 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3407 if (ext_len
> aligned_end
)
3410 ret
= btrfs_next_item(root
, path
);
3413 } else if (ret
== 0) {
3414 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3416 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3417 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3424 * We have no extent items, or we have an extent at offset 0 which may
3425 * or may not be inlined. All these cases are dealt the same way.
3427 if (i_size_read(dst
) > datal
) {
3429 * If the destination inode has an inline extent...
3430 * This would require copying the data from the source inline
3431 * extent into the beginning of the destination's inline extent.
3432 * But this is really complex, both extents can be compressed
3433 * or just one of them, which would require decompressing and
3434 * re-compressing data (which could increase the new compressed
3435 * size, not allowing the compressed data to fit anymore in an
3437 * So just don't support this case for now (it should be rare,
3438 * we are not really saving space when cloning inline extents).
3443 btrfs_release_path(path
);
3444 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3447 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3452 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3454 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3457 write_extent_buffer(path
->nodes
[0], inline_data
,
3458 btrfs_item_ptr_offset(path
->nodes
[0],
3461 inode_add_bytes(dst
, datal
);
3467 * btrfs_clone() - clone a range from inode file to another
3469 * @src: Inode to clone from
3470 * @inode: Inode to clone to
3471 * @off: Offset within source to start clone from
3472 * @olen: Original length, passed by user, of range to clone
3473 * @olen_aligned: Block-aligned value of olen
3474 * @destoff: Offset within @inode to start clone
3475 * @no_time_update: Whether to update mtime/ctime on the target inode
3477 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3478 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3479 const u64 destoff
, int no_time_update
)
3481 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3482 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3483 struct btrfs_path
*path
= NULL
;
3484 struct extent_buffer
*leaf
;
3485 struct btrfs_trans_handle
*trans
;
3487 struct btrfs_key key
;
3491 const u64 len
= olen_aligned
;
3492 u64 last_dest_end
= destoff
;
3495 buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
3499 path
= btrfs_alloc_path();
3505 path
->reada
= READA_FORWARD
;
3507 key
.objectid
= btrfs_ino(BTRFS_I(src
));
3508 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3512 u64 next_key_min_offset
= key
.offset
+ 1;
3515 * note the key will change type as we walk through the
3518 path
->leave_spinning
= 1;
3519 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3524 * First search, if no extent item that starts at offset off was
3525 * found but the previous item is an extent item, it's possible
3526 * it might overlap our target range, therefore process it.
3528 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3529 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3530 path
->slots
[0] - 1);
3531 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3535 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3537 if (path
->slots
[0] >= nritems
) {
3538 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3543 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3545 leaf
= path
->nodes
[0];
3546 slot
= path
->slots
[0];
3548 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3549 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3550 key
.objectid
!= btrfs_ino(BTRFS_I(src
)))
3553 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3554 struct btrfs_file_extent_item
*extent
;
3557 struct btrfs_key new_key
;
3558 u64 disko
= 0, diskl
= 0;
3559 u64 datao
= 0, datal
= 0;
3563 extent
= btrfs_item_ptr(leaf
, slot
,
3564 struct btrfs_file_extent_item
);
3565 comp
= btrfs_file_extent_compression(leaf
, extent
);
3566 type
= btrfs_file_extent_type(leaf
, extent
);
3567 if (type
== BTRFS_FILE_EXTENT_REG
||
3568 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3569 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3571 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3573 datao
= btrfs_file_extent_offset(leaf
, extent
);
3574 datal
= btrfs_file_extent_num_bytes(leaf
,
3576 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3577 /* take upper bound, may be compressed */
3578 datal
= btrfs_file_extent_ram_bytes(leaf
,
3583 * The first search might have left us at an extent
3584 * item that ends before our target range's start, can
3585 * happen if we have holes and NO_HOLES feature enabled.
3587 if (key
.offset
+ datal
<= off
) {
3590 } else if (key
.offset
>= off
+ len
) {
3593 next_key_min_offset
= key
.offset
+ datal
;
3594 size
= btrfs_item_size_nr(leaf
, slot
);
3595 read_extent_buffer(leaf
, buf
,
3596 btrfs_item_ptr_offset(leaf
, slot
),
3599 btrfs_release_path(path
);
3600 path
->leave_spinning
= 0;
3602 memcpy(&new_key
, &key
, sizeof(new_key
));
3603 new_key
.objectid
= btrfs_ino(BTRFS_I(inode
));
3604 if (off
<= key
.offset
)
3605 new_key
.offset
= key
.offset
+ destoff
- off
;
3607 new_key
.offset
= destoff
;
3610 * Deal with a hole that doesn't have an extent item
3611 * that represents it (NO_HOLES feature enabled).
3612 * This hole is either in the middle of the cloning
3613 * range or at the beginning (fully overlaps it or
3614 * partially overlaps it).
3616 if (new_key
.offset
!= last_dest_end
)
3617 drop_start
= last_dest_end
;
3619 drop_start
= new_key
.offset
;
3622 * 1 - adjusting old extent (we may have to split it)
3623 * 1 - add new extent
3626 trans
= btrfs_start_transaction(root
, 3);
3627 if (IS_ERR(trans
)) {
3628 ret
= PTR_ERR(trans
);
3632 if (type
== BTRFS_FILE_EXTENT_REG
||
3633 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3635 * a | --- range to clone ---| b
3636 * | ------------- extent ------------- |
3639 /* subtract range b */
3640 if (key
.offset
+ datal
> off
+ len
)
3641 datal
= off
+ len
- key
.offset
;
3643 /* subtract range a */
3644 if (off
> key
.offset
) {
3645 datao
+= off
- key
.offset
;
3646 datal
-= off
- key
.offset
;
3649 ret
= btrfs_drop_extents(trans
, root
, inode
,
3651 new_key
.offset
+ datal
,
3654 if (ret
!= -EOPNOTSUPP
)
3655 btrfs_abort_transaction(trans
,
3657 btrfs_end_transaction(trans
);
3661 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3664 btrfs_abort_transaction(trans
, ret
);
3665 btrfs_end_transaction(trans
);
3669 leaf
= path
->nodes
[0];
3670 slot
= path
->slots
[0];
3671 write_extent_buffer(leaf
, buf
,
3672 btrfs_item_ptr_offset(leaf
, slot
),
3675 extent
= btrfs_item_ptr(leaf
, slot
,
3676 struct btrfs_file_extent_item
);
3678 /* disko == 0 means it's a hole */
3682 btrfs_set_file_extent_offset(leaf
, extent
,
3684 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3688 inode_add_bytes(inode
, datal
);
3689 ret
= btrfs_inc_extent_ref(trans
,
3692 root
->root_key
.objectid
,
3693 btrfs_ino(BTRFS_I(inode
)),
3694 new_key
.offset
- datao
);
3696 btrfs_abort_transaction(trans
,
3698 btrfs_end_transaction(trans
);
3703 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3707 if (off
> key
.offset
) {
3708 skip
= off
- key
.offset
;
3709 new_key
.offset
+= skip
;
3712 if (key
.offset
+ datal
> off
+ len
)
3713 trim
= key
.offset
+ datal
- (off
+ len
);
3715 if (comp
&& (skip
|| trim
)) {
3717 btrfs_end_transaction(trans
);
3720 size
-= skip
+ trim
;
3721 datal
-= skip
+ trim
;
3723 ret
= clone_copy_inline_extent(inode
,
3730 if (ret
!= -EOPNOTSUPP
)
3731 btrfs_abort_transaction(trans
,
3733 btrfs_end_transaction(trans
);
3736 leaf
= path
->nodes
[0];
3737 slot
= path
->slots
[0];
3740 /* If we have an implicit hole (NO_HOLES feature). */
3741 if (drop_start
< new_key
.offset
)
3742 clone_update_extent_map(BTRFS_I(inode
), trans
,
3744 new_key
.offset
- drop_start
);
3746 clone_update_extent_map(BTRFS_I(inode
), trans
,
3749 btrfs_mark_buffer_dirty(leaf
);
3750 btrfs_release_path(path
);
3752 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3753 fs_info
->sectorsize
);
3754 ret
= clone_finish_inode_update(trans
, inode
,
3760 if (new_key
.offset
+ datal
>= destoff
+ len
)
3763 btrfs_release_path(path
);
3764 key
.offset
= next_key_min_offset
;
3766 if (fatal_signal_pending(current
)) {
3773 if (last_dest_end
< destoff
+ len
) {
3775 * We have an implicit hole (NO_HOLES feature is enabled) that
3776 * fully or partially overlaps our cloning range at its end.
3778 btrfs_release_path(path
);
3781 * 1 - remove extent(s)
3784 trans
= btrfs_start_transaction(root
, 2);
3785 if (IS_ERR(trans
)) {
3786 ret
= PTR_ERR(trans
);
3789 ret
= btrfs_drop_extents(trans
, root
, inode
,
3790 last_dest_end
, destoff
+ len
, 1);
3792 if (ret
!= -EOPNOTSUPP
)
3793 btrfs_abort_transaction(trans
, ret
);
3794 btrfs_end_transaction(trans
);
3797 clone_update_extent_map(BTRFS_I(inode
), trans
, NULL
,
3799 destoff
+ len
- last_dest_end
);
3800 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3801 destoff
, olen
, no_time_update
);
3805 btrfs_free_path(path
);
3810 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3811 u64 off
, u64 olen
, u64 destoff
)
3813 struct inode
*inode
= file_inode(file
);
3814 struct inode
*src
= file_inode(file_src
);
3815 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3816 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3819 u64 bs
= fs_info
->sb
->s_blocksize
;
3820 int same_inode
= src
== inode
;
3824 * - split compressed inline extents. annoying: we need to
3825 * decompress into destination's address_space (the file offset
3826 * may change, so source mapping won't do), then recompress (or
3827 * otherwise reinsert) a subrange.
3829 * - split destination inode's inline extents. The inline extents can
3830 * be either compressed or non-compressed.
3833 if (btrfs_root_readonly(root
))
3836 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3837 src
->i_sb
!= inode
->i_sb
)
3840 /* don't make the dst file partly checksummed */
3841 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3842 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3845 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3849 btrfs_double_inode_lock(src
, inode
);
3854 /* determine range to clone */
3856 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3859 olen
= len
= src
->i_size
- off
;
3860 /* if we extend to eof, continue to block boundary */
3861 if (off
+ len
== src
->i_size
)
3862 len
= ALIGN(src
->i_size
, bs
) - off
;
3869 /* verify the end result is block aligned */
3870 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3871 !IS_ALIGNED(destoff
, bs
))
3874 /* verify if ranges are overlapped within the same file */
3876 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3880 if (destoff
> inode
->i_size
) {
3881 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3887 * Lock the target range too. Right after we replace the file extent
3888 * items in the fs tree (which now point to the cloned data), we might
3889 * have a worker replace them with extent items relative to a write
3890 * operation that was issued before this clone operation (i.e. confront
3891 * with inode.c:btrfs_finish_ordered_io).
3894 u64 lock_start
= min_t(u64
, off
, destoff
);
3895 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3897 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3899 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3904 /* ranges in the io trees already unlocked */
3908 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3911 u64 lock_start
= min_t(u64
, off
, destoff
);
3912 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3914 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3916 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3919 * Truncate page cache pages so that future reads will see the cloned
3920 * data immediately and not the previous data.
3922 truncate_inode_pages_range(&inode
->i_data
,
3923 round_down(destoff
, PAGE_SIZE
),
3924 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3927 btrfs_double_inode_unlock(src
, inode
);
3933 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3934 struct file
*dst_file
, loff_t destoff
, u64 len
)
3936 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
3940 * there are many ways the trans_start and trans_end ioctls can lead
3941 * to deadlocks. They should only be used by applications that
3942 * basically own the machine, and have a very in depth understanding
3943 * of all the possible deadlocks and enospc problems.
3945 static long btrfs_ioctl_trans_start(struct file
*file
)
3947 struct inode
*inode
= file_inode(file
);
3948 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3949 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3950 struct btrfs_trans_handle
*trans
;
3951 struct btrfs_file_private
*private;
3953 static bool warned
= false;
3956 if (!capable(CAP_SYS_ADMIN
))
3961 "Userspace transaction mechanism is considered "
3962 "deprecated and slated to be removed in 4.17. "
3963 "If you have a valid use case please "
3964 "speak up on the mailing list");
3970 private = file
->private_data
;
3971 if (private && private->trans
)
3974 private = kzalloc(sizeof(struct btrfs_file_private
),
3978 file
->private_data
= private;
3982 if (btrfs_root_readonly(root
))
3985 ret
= mnt_want_write_file(file
);
3989 atomic_inc(&fs_info
->open_ioctl_trans
);
3992 trans
= btrfs_start_ioctl_transaction(root
);
3996 private->trans
= trans
;
4000 atomic_dec(&fs_info
->open_ioctl_trans
);
4001 mnt_drop_write_file(file
);
4006 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4008 struct inode
*inode
= file_inode(file
);
4009 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4010 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4011 struct btrfs_root
*new_root
;
4012 struct btrfs_dir_item
*di
;
4013 struct btrfs_trans_handle
*trans
;
4014 struct btrfs_path
*path
;
4015 struct btrfs_key location
;
4016 struct btrfs_disk_key disk_key
;
4021 if (!capable(CAP_SYS_ADMIN
))
4024 ret
= mnt_want_write_file(file
);
4028 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4034 objectid
= BTRFS_FS_TREE_OBJECTID
;
4036 location
.objectid
= objectid
;
4037 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4038 location
.offset
= (u64
)-1;
4040 new_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
4041 if (IS_ERR(new_root
)) {
4042 ret
= PTR_ERR(new_root
);
4045 if (!is_fstree(new_root
->objectid
)) {
4050 path
= btrfs_alloc_path();
4055 path
->leave_spinning
= 1;
4057 trans
= btrfs_start_transaction(root
, 1);
4058 if (IS_ERR(trans
)) {
4059 btrfs_free_path(path
);
4060 ret
= PTR_ERR(trans
);
4064 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4065 di
= btrfs_lookup_dir_item(trans
, fs_info
->tree_root
, path
,
4066 dir_id
, "default", 7, 1);
4067 if (IS_ERR_OR_NULL(di
)) {
4068 btrfs_free_path(path
);
4069 btrfs_end_transaction(trans
);
4071 "Umm, you don't have the default diritem, this isn't going to work");
4076 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4077 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4078 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4079 btrfs_free_path(path
);
4081 btrfs_set_fs_incompat(fs_info
, DEFAULT_SUBVOL
);
4082 btrfs_end_transaction(trans
);
4084 mnt_drop_write_file(file
);
4088 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4089 struct btrfs_ioctl_space_info
*space
)
4091 struct btrfs_block_group_cache
*block_group
;
4093 space
->total_bytes
= 0;
4094 space
->used_bytes
= 0;
4096 list_for_each_entry(block_group
, groups_list
, list
) {
4097 space
->flags
= block_group
->flags
;
4098 space
->total_bytes
+= block_group
->key
.offset
;
4099 space
->used_bytes
+=
4100 btrfs_block_group_used(&block_group
->item
);
4104 static long btrfs_ioctl_space_info(struct btrfs_fs_info
*fs_info
,
4107 struct btrfs_ioctl_space_args space_args
;
4108 struct btrfs_ioctl_space_info space
;
4109 struct btrfs_ioctl_space_info
*dest
;
4110 struct btrfs_ioctl_space_info
*dest_orig
;
4111 struct btrfs_ioctl_space_info __user
*user_dest
;
4112 struct btrfs_space_info
*info
;
4113 static const u64 types
[] = {
4114 BTRFS_BLOCK_GROUP_DATA
,
4115 BTRFS_BLOCK_GROUP_SYSTEM
,
4116 BTRFS_BLOCK_GROUP_METADATA
,
4117 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
4125 if (copy_from_user(&space_args
,
4126 (struct btrfs_ioctl_space_args __user
*)arg
,
4127 sizeof(space_args
)))
4130 for (i
= 0; i
< num_types
; i
++) {
4131 struct btrfs_space_info
*tmp
;
4135 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4137 if (tmp
->flags
== types
[i
]) {
4147 down_read(&info
->groups_sem
);
4148 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4149 if (!list_empty(&info
->block_groups
[c
]))
4152 up_read(&info
->groups_sem
);
4156 * Global block reserve, exported as a space_info
4160 /* space_slots == 0 means they are asking for a count */
4161 if (space_args
.space_slots
== 0) {
4162 space_args
.total_spaces
= slot_count
;
4166 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4168 alloc_size
= sizeof(*dest
) * slot_count
;
4170 /* we generally have at most 6 or so space infos, one for each raid
4171 * level. So, a whole page should be more than enough for everyone
4173 if (alloc_size
> PAGE_SIZE
)
4176 space_args
.total_spaces
= 0;
4177 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4182 /* now we have a buffer to copy into */
4183 for (i
= 0; i
< num_types
; i
++) {
4184 struct btrfs_space_info
*tmp
;
4191 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4193 if (tmp
->flags
== types
[i
]) {
4202 down_read(&info
->groups_sem
);
4203 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4204 if (!list_empty(&info
->block_groups
[c
])) {
4205 btrfs_get_block_group_info(
4206 &info
->block_groups
[c
], &space
);
4207 memcpy(dest
, &space
, sizeof(space
));
4209 space_args
.total_spaces
++;
4215 up_read(&info
->groups_sem
);
4219 * Add global block reserve
4222 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4224 spin_lock(&block_rsv
->lock
);
4225 space
.total_bytes
= block_rsv
->size
;
4226 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4227 spin_unlock(&block_rsv
->lock
);
4228 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4229 memcpy(dest
, &space
, sizeof(space
));
4230 space_args
.total_spaces
++;
4233 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4234 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4236 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4241 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4248 * there are many ways the trans_start and trans_end ioctls can lead
4249 * to deadlocks. They should only be used by applications that
4250 * basically own the machine, and have a very in depth understanding
4251 * of all the possible deadlocks and enospc problems.
4253 long btrfs_ioctl_trans_end(struct file
*file
)
4255 struct inode
*inode
= file_inode(file
);
4256 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4257 struct btrfs_file_private
*private = file
->private_data
;
4259 if (!private || !private->trans
)
4262 btrfs_end_transaction(private->trans
);
4263 private->trans
= NULL
;
4265 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4267 mnt_drop_write_file(file
);
4271 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4274 struct btrfs_trans_handle
*trans
;
4278 trans
= btrfs_attach_transaction_barrier(root
);
4279 if (IS_ERR(trans
)) {
4280 if (PTR_ERR(trans
) != -ENOENT
)
4281 return PTR_ERR(trans
);
4283 /* No running transaction, don't bother */
4284 transid
= root
->fs_info
->last_trans_committed
;
4287 transid
= trans
->transid
;
4288 ret
= btrfs_commit_transaction_async(trans
, 0);
4290 btrfs_end_transaction(trans
);
4295 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4300 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_fs_info
*fs_info
,
4306 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4309 transid
= 0; /* current trans */
4311 return btrfs_wait_for_commit(fs_info
, transid
);
4314 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4316 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
4317 struct btrfs_ioctl_scrub_args
*sa
;
4320 if (!capable(CAP_SYS_ADMIN
))
4323 sa
= memdup_user(arg
, sizeof(*sa
));
4327 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4328 ret
= mnt_want_write_file(file
);
4333 ret
= btrfs_scrub_dev(fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4334 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4337 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4340 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4341 mnt_drop_write_file(file
);
4347 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4349 if (!capable(CAP_SYS_ADMIN
))
4352 return btrfs_scrub_cancel(fs_info
);
4355 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info
*fs_info
,
4358 struct btrfs_ioctl_scrub_args
*sa
;
4361 if (!capable(CAP_SYS_ADMIN
))
4364 sa
= memdup_user(arg
, sizeof(*sa
));
4368 ret
= btrfs_scrub_progress(fs_info
, sa
->devid
, &sa
->progress
);
4370 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4377 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info
*fs_info
,
4380 struct btrfs_ioctl_get_dev_stats
*sa
;
4383 sa
= memdup_user(arg
, sizeof(*sa
));
4387 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4392 ret
= btrfs_get_dev_stats(fs_info
, sa
);
4394 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4401 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info
*fs_info
,
4404 struct btrfs_ioctl_dev_replace_args
*p
;
4407 if (!capable(CAP_SYS_ADMIN
))
4410 p
= memdup_user(arg
, sizeof(*p
));
4415 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4416 if (sb_rdonly(fs_info
->sb
)) {
4420 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4421 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4423 ret
= btrfs_dev_replace_by_ioctl(fs_info
, p
);
4424 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4427 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4428 btrfs_dev_replace_status(fs_info
, p
);
4431 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4432 ret
= btrfs_dev_replace_cancel(fs_info
, p
);
4439 if (copy_to_user(arg
, p
, sizeof(*p
)))
4446 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4452 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4453 struct inode_fs_paths
*ipath
= NULL
;
4454 struct btrfs_path
*path
;
4456 if (!capable(CAP_DAC_READ_SEARCH
))
4459 path
= btrfs_alloc_path();
4465 ipa
= memdup_user(arg
, sizeof(*ipa
));
4472 size
= min_t(u32
, ipa
->size
, 4096);
4473 ipath
= init_ipath(size
, root
, path
);
4474 if (IS_ERR(ipath
)) {
4475 ret
= PTR_ERR(ipath
);
4480 ret
= paths_from_inode(ipa
->inum
, ipath
);
4484 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4485 rel_ptr
= ipath
->fspath
->val
[i
] -
4486 (u64
)(unsigned long)ipath
->fspath
->val
;
4487 ipath
->fspath
->val
[i
] = rel_ptr
;
4490 ret
= copy_to_user((void __user
*)(unsigned long)ipa
->fspath
,
4491 ipath
->fspath
, size
);
4498 btrfs_free_path(path
);
4505 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4507 struct btrfs_data_container
*inodes
= ctx
;
4508 const size_t c
= 3 * sizeof(u64
);
4510 if (inodes
->bytes_left
>= c
) {
4511 inodes
->bytes_left
-= c
;
4512 inodes
->val
[inodes
->elem_cnt
] = inum
;
4513 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4514 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4515 inodes
->elem_cnt
+= 3;
4517 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4518 inodes
->bytes_left
= 0;
4519 inodes
->elem_missed
+= 3;
4525 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info
*fs_info
,
4526 void __user
*arg
, int version
)
4530 struct btrfs_ioctl_logical_ino_args
*loi
;
4531 struct btrfs_data_container
*inodes
= NULL
;
4532 struct btrfs_path
*path
= NULL
;
4535 if (!capable(CAP_SYS_ADMIN
))
4538 loi
= memdup_user(arg
, sizeof(*loi
));
4540 return PTR_ERR(loi
);
4543 ignore_offset
= false;
4544 size
= min_t(u32
, loi
->size
, SZ_64K
);
4546 /* All reserved bits must be 0 for now */
4547 if (memchr_inv(loi
->reserved
, 0, sizeof(loi
->reserved
))) {
4551 /* Only accept flags we have defined so far */
4552 if (loi
->flags
& ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
)) {
4556 ignore_offset
= loi
->flags
& BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
;
4557 size
= min_t(u32
, loi
->size
, SZ_16M
);
4560 path
= btrfs_alloc_path();
4566 inodes
= init_data_container(size
);
4567 if (IS_ERR(inodes
)) {
4568 ret
= PTR_ERR(inodes
);
4573 ret
= iterate_inodes_from_logical(loi
->logical
, fs_info
, path
,
4574 build_ino_list
, inodes
, ignore_offset
);
4580 ret
= copy_to_user((void __user
*)(unsigned long)loi
->inodes
, inodes
,
4586 btrfs_free_path(path
);
4594 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4595 struct btrfs_ioctl_balance_args
*bargs
)
4597 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4599 bargs
->flags
= bctl
->flags
;
4601 if (atomic_read(&fs_info
->balance_running
))
4602 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4603 if (atomic_read(&fs_info
->balance_pause_req
))
4604 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4605 if (atomic_read(&fs_info
->balance_cancel_req
))
4606 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4608 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4609 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4610 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4613 spin_lock(&fs_info
->balance_lock
);
4614 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4615 spin_unlock(&fs_info
->balance_lock
);
4617 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4621 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4623 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4624 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4625 struct btrfs_ioctl_balance_args
*bargs
;
4626 struct btrfs_balance_control
*bctl
;
4627 bool need_unlock
; /* for mut. excl. ops lock */
4630 if (!capable(CAP_SYS_ADMIN
))
4633 ret
= mnt_want_write_file(file
);
4638 if (!test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4639 mutex_lock(&fs_info
->volume_mutex
);
4640 mutex_lock(&fs_info
->balance_mutex
);
4646 * mut. excl. ops lock is locked. Three possibilities:
4647 * (1) some other op is running
4648 * (2) balance is running
4649 * (3) balance is paused -- special case (think resume)
4651 mutex_lock(&fs_info
->balance_mutex
);
4652 if (fs_info
->balance_ctl
) {
4653 /* this is either (2) or (3) */
4654 if (!atomic_read(&fs_info
->balance_running
)) {
4655 mutex_unlock(&fs_info
->balance_mutex
);
4656 if (!mutex_trylock(&fs_info
->volume_mutex
))
4658 mutex_lock(&fs_info
->balance_mutex
);
4660 if (fs_info
->balance_ctl
&&
4661 !atomic_read(&fs_info
->balance_running
)) {
4663 need_unlock
= false;
4667 mutex_unlock(&fs_info
->balance_mutex
);
4668 mutex_unlock(&fs_info
->volume_mutex
);
4672 mutex_unlock(&fs_info
->balance_mutex
);
4678 mutex_unlock(&fs_info
->balance_mutex
);
4679 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4684 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4687 bargs
= memdup_user(arg
, sizeof(*bargs
));
4688 if (IS_ERR(bargs
)) {
4689 ret
= PTR_ERR(bargs
);
4693 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4694 if (!fs_info
->balance_ctl
) {
4699 bctl
= fs_info
->balance_ctl
;
4700 spin_lock(&fs_info
->balance_lock
);
4701 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4702 spin_unlock(&fs_info
->balance_lock
);
4710 if (fs_info
->balance_ctl
) {
4715 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4721 bctl
->fs_info
= fs_info
;
4723 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4724 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4725 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4727 bctl
->flags
= bargs
->flags
;
4729 /* balance everything - no filters */
4730 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4733 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4740 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4741 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4742 * or, if restriper was paused all the way until unmount, in
4743 * free_fs_info. The flag is cleared in __cancel_balance.
4745 need_unlock
= false;
4747 ret
= btrfs_balance(bctl
, bargs
);
4751 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4760 mutex_unlock(&fs_info
->balance_mutex
);
4761 mutex_unlock(&fs_info
->volume_mutex
);
4763 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4765 mnt_drop_write_file(file
);
4769 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info
*fs_info
, int cmd
)
4771 if (!capable(CAP_SYS_ADMIN
))
4775 case BTRFS_BALANCE_CTL_PAUSE
:
4776 return btrfs_pause_balance(fs_info
);
4777 case BTRFS_BALANCE_CTL_CANCEL
:
4778 return btrfs_cancel_balance(fs_info
);
4784 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info
*fs_info
,
4787 struct btrfs_ioctl_balance_args
*bargs
;
4790 if (!capable(CAP_SYS_ADMIN
))
4793 mutex_lock(&fs_info
->balance_mutex
);
4794 if (!fs_info
->balance_ctl
) {
4799 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4805 update_ioctl_balance_args(fs_info
, 1, bargs
);
4807 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4812 mutex_unlock(&fs_info
->balance_mutex
);
4816 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4818 struct inode
*inode
= file_inode(file
);
4819 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4820 struct btrfs_ioctl_quota_ctl_args
*sa
;
4821 struct btrfs_trans_handle
*trans
= NULL
;
4825 if (!capable(CAP_SYS_ADMIN
))
4828 ret
= mnt_want_write_file(file
);
4832 sa
= memdup_user(arg
, sizeof(*sa
));
4838 down_write(&fs_info
->subvol_sem
);
4839 trans
= btrfs_start_transaction(fs_info
->tree_root
, 2);
4840 if (IS_ERR(trans
)) {
4841 ret
= PTR_ERR(trans
);
4846 case BTRFS_QUOTA_CTL_ENABLE
:
4847 ret
= btrfs_quota_enable(trans
, fs_info
);
4849 case BTRFS_QUOTA_CTL_DISABLE
:
4850 ret
= btrfs_quota_disable(trans
, fs_info
);
4857 err
= btrfs_commit_transaction(trans
);
4862 up_write(&fs_info
->subvol_sem
);
4864 mnt_drop_write_file(file
);
4868 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4870 struct inode
*inode
= file_inode(file
);
4871 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4872 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4873 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4874 struct btrfs_trans_handle
*trans
;
4878 if (!capable(CAP_SYS_ADMIN
))
4881 ret
= mnt_want_write_file(file
);
4885 sa
= memdup_user(arg
, sizeof(*sa
));
4891 trans
= btrfs_join_transaction(root
);
4892 if (IS_ERR(trans
)) {
4893 ret
= PTR_ERR(trans
);
4898 ret
= btrfs_add_qgroup_relation(trans
, fs_info
,
4901 ret
= btrfs_del_qgroup_relation(trans
, fs_info
,
4905 /* update qgroup status and info */
4906 err
= btrfs_run_qgroups(trans
, fs_info
);
4908 btrfs_handle_fs_error(fs_info
, err
,
4909 "failed to update qgroup status and info");
4910 err
= btrfs_end_transaction(trans
);
4917 mnt_drop_write_file(file
);
4921 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4923 struct inode
*inode
= file_inode(file
);
4924 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4925 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4926 struct btrfs_ioctl_qgroup_create_args
*sa
;
4927 struct btrfs_trans_handle
*trans
;
4931 if (!capable(CAP_SYS_ADMIN
))
4934 ret
= mnt_want_write_file(file
);
4938 sa
= memdup_user(arg
, sizeof(*sa
));
4944 if (!sa
->qgroupid
) {
4949 trans
= btrfs_join_transaction(root
);
4950 if (IS_ERR(trans
)) {
4951 ret
= PTR_ERR(trans
);
4956 ret
= btrfs_create_qgroup(trans
, fs_info
, sa
->qgroupid
);
4958 ret
= btrfs_remove_qgroup(trans
, fs_info
, sa
->qgroupid
);
4961 err
= btrfs_end_transaction(trans
);
4968 mnt_drop_write_file(file
);
4972 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4974 struct inode
*inode
= file_inode(file
);
4975 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4976 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4977 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4978 struct btrfs_trans_handle
*trans
;
4983 if (!capable(CAP_SYS_ADMIN
))
4986 ret
= mnt_want_write_file(file
);
4990 sa
= memdup_user(arg
, sizeof(*sa
));
4996 trans
= btrfs_join_transaction(root
);
4997 if (IS_ERR(trans
)) {
4998 ret
= PTR_ERR(trans
);
5002 qgroupid
= sa
->qgroupid
;
5004 /* take the current subvol as qgroup */
5005 qgroupid
= root
->root_key
.objectid
;
5008 ret
= btrfs_limit_qgroup(trans
, fs_info
, qgroupid
, &sa
->lim
);
5010 err
= btrfs_end_transaction(trans
);
5017 mnt_drop_write_file(file
);
5021 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5023 struct inode
*inode
= file_inode(file
);
5024 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5025 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5028 if (!capable(CAP_SYS_ADMIN
))
5031 ret
= mnt_want_write_file(file
);
5035 qsa
= memdup_user(arg
, sizeof(*qsa
));
5046 ret
= btrfs_qgroup_rescan(fs_info
);
5051 mnt_drop_write_file(file
);
5055 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5057 struct inode
*inode
= file_inode(file
);
5058 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5059 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5062 if (!capable(CAP_SYS_ADMIN
))
5065 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5069 if (fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5071 qsa
->progress
= fs_info
->qgroup_rescan_progress
.objectid
;
5074 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5081 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5083 struct inode
*inode
= file_inode(file
);
5084 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5086 if (!capable(CAP_SYS_ADMIN
))
5089 return btrfs_qgroup_wait_for_completion(fs_info
, true);
5092 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5093 struct btrfs_ioctl_received_subvol_args
*sa
)
5095 struct inode
*inode
= file_inode(file
);
5096 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5097 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5098 struct btrfs_root_item
*root_item
= &root
->root_item
;
5099 struct btrfs_trans_handle
*trans
;
5100 struct timespec ct
= current_time(inode
);
5102 int received_uuid_changed
;
5104 if (!inode_owner_or_capable(inode
))
5107 ret
= mnt_want_write_file(file
);
5111 down_write(&fs_info
->subvol_sem
);
5113 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
5118 if (btrfs_root_readonly(root
)) {
5125 * 2 - uuid items (received uuid + subvol uuid)
5127 trans
= btrfs_start_transaction(root
, 3);
5128 if (IS_ERR(trans
)) {
5129 ret
= PTR_ERR(trans
);
5134 sa
->rtransid
= trans
->transid
;
5135 sa
->rtime
.sec
= ct
.tv_sec
;
5136 sa
->rtime
.nsec
= ct
.tv_nsec
;
5138 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5140 if (received_uuid_changed
&&
5141 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5142 btrfs_uuid_tree_rem(trans
, fs_info
, root_item
->received_uuid
,
5143 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5144 root
->root_key
.objectid
);
5145 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5146 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5147 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5148 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5149 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5150 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5151 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5153 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
5154 &root
->root_key
, &root
->root_item
);
5156 btrfs_end_transaction(trans
);
5159 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5160 ret
= btrfs_uuid_tree_add(trans
, fs_info
, sa
->uuid
,
5161 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5162 root
->root_key
.objectid
);
5163 if (ret
< 0 && ret
!= -EEXIST
) {
5164 btrfs_abort_transaction(trans
, ret
);
5165 btrfs_end_transaction(trans
);
5169 ret
= btrfs_commit_transaction(trans
);
5171 up_write(&fs_info
->subvol_sem
);
5172 mnt_drop_write_file(file
);
5177 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5180 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5181 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5184 args32
= memdup_user(arg
, sizeof(*args32
));
5186 return PTR_ERR(args32
);
5188 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5194 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5195 args64
->stransid
= args32
->stransid
;
5196 args64
->rtransid
= args32
->rtransid
;
5197 args64
->stime
.sec
= args32
->stime
.sec
;
5198 args64
->stime
.nsec
= args32
->stime
.nsec
;
5199 args64
->rtime
.sec
= args32
->rtime
.sec
;
5200 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5201 args64
->flags
= args32
->flags
;
5203 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5207 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5208 args32
->stransid
= args64
->stransid
;
5209 args32
->rtransid
= args64
->rtransid
;
5210 args32
->stime
.sec
= args64
->stime
.sec
;
5211 args32
->stime
.nsec
= args64
->stime
.nsec
;
5212 args32
->rtime
.sec
= args64
->rtime
.sec
;
5213 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5214 args32
->flags
= args64
->flags
;
5216 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5227 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5230 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5233 sa
= memdup_user(arg
, sizeof(*sa
));
5237 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5242 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5251 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5253 struct inode
*inode
= file_inode(file
);
5254 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5257 char label
[BTRFS_LABEL_SIZE
];
5259 spin_lock(&fs_info
->super_lock
);
5260 memcpy(label
, fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5261 spin_unlock(&fs_info
->super_lock
);
5263 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5265 if (len
== BTRFS_LABEL_SIZE
) {
5267 "label is too long, return the first %zu bytes",
5271 ret
= copy_to_user(arg
, label
, len
);
5273 return ret
? -EFAULT
: 0;
5276 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5278 struct inode
*inode
= file_inode(file
);
5279 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5280 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5281 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5282 struct btrfs_trans_handle
*trans
;
5283 char label
[BTRFS_LABEL_SIZE
];
5286 if (!capable(CAP_SYS_ADMIN
))
5289 if (copy_from_user(label
, arg
, sizeof(label
)))
5292 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5294 "unable to set label with more than %d bytes",
5295 BTRFS_LABEL_SIZE
- 1);
5299 ret
= mnt_want_write_file(file
);
5303 trans
= btrfs_start_transaction(root
, 0);
5304 if (IS_ERR(trans
)) {
5305 ret
= PTR_ERR(trans
);
5309 spin_lock(&fs_info
->super_lock
);
5310 strcpy(super_block
->label
, label
);
5311 spin_unlock(&fs_info
->super_lock
);
5312 ret
= btrfs_commit_transaction(trans
);
5315 mnt_drop_write_file(file
);
5319 #define INIT_FEATURE_FLAGS(suffix) \
5320 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5321 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5322 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5324 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5326 static const struct btrfs_ioctl_feature_flags features
[3] = {
5327 INIT_FEATURE_FLAGS(SUPP
),
5328 INIT_FEATURE_FLAGS(SAFE_SET
),
5329 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5332 if (copy_to_user(arg
, &features
, sizeof(features
)))
5338 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5340 struct inode
*inode
= file_inode(file
);
5341 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5342 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5343 struct btrfs_ioctl_feature_flags features
;
5345 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5346 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5347 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5349 if (copy_to_user(arg
, &features
, sizeof(features
)))
5355 static int check_feature_bits(struct btrfs_fs_info
*fs_info
,
5356 enum btrfs_feature_set set
,
5357 u64 change_mask
, u64 flags
, u64 supported_flags
,
5358 u64 safe_set
, u64 safe_clear
)
5360 const char *type
= btrfs_feature_set_names
[set
];
5362 u64 disallowed
, unsupported
;
5363 u64 set_mask
= flags
& change_mask
;
5364 u64 clear_mask
= ~flags
& change_mask
;
5366 unsupported
= set_mask
& ~supported_flags
;
5368 names
= btrfs_printable_features(set
, unsupported
);
5371 "this kernel does not support the %s feature bit%s",
5372 names
, strchr(names
, ',') ? "s" : "");
5376 "this kernel does not support %s bits 0x%llx",
5381 disallowed
= set_mask
& ~safe_set
;
5383 names
= btrfs_printable_features(set
, disallowed
);
5386 "can't set the %s feature bit%s while mounted",
5387 names
, strchr(names
, ',') ? "s" : "");
5391 "can't set %s bits 0x%llx while mounted",
5396 disallowed
= clear_mask
& ~safe_clear
;
5398 names
= btrfs_printable_features(set
, disallowed
);
5401 "can't clear the %s feature bit%s while mounted",
5402 names
, strchr(names
, ',') ? "s" : "");
5406 "can't clear %s bits 0x%llx while mounted",
5414 #define check_feature(fs_info, change_mask, flags, mask_base) \
5415 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5416 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5417 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5418 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5420 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5422 struct inode
*inode
= file_inode(file
);
5423 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5424 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5425 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5426 struct btrfs_ioctl_feature_flags flags
[2];
5427 struct btrfs_trans_handle
*trans
;
5431 if (!capable(CAP_SYS_ADMIN
))
5434 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5438 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5439 !flags
[0].incompat_flags
)
5442 ret
= check_feature(fs_info
, flags
[0].compat_flags
,
5443 flags
[1].compat_flags
, COMPAT
);
5447 ret
= check_feature(fs_info
, flags
[0].compat_ro_flags
,
5448 flags
[1].compat_ro_flags
, COMPAT_RO
);
5452 ret
= check_feature(fs_info
, flags
[0].incompat_flags
,
5453 flags
[1].incompat_flags
, INCOMPAT
);
5457 ret
= mnt_want_write_file(file
);
5461 trans
= btrfs_start_transaction(root
, 0);
5462 if (IS_ERR(trans
)) {
5463 ret
= PTR_ERR(trans
);
5464 goto out_drop_write
;
5467 spin_lock(&fs_info
->super_lock
);
5468 newflags
= btrfs_super_compat_flags(super_block
);
5469 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5470 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5471 btrfs_set_super_compat_flags(super_block
, newflags
);
5473 newflags
= btrfs_super_compat_ro_flags(super_block
);
5474 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5475 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5476 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5478 newflags
= btrfs_super_incompat_flags(super_block
);
5479 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5480 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5481 btrfs_set_super_incompat_flags(super_block
, newflags
);
5482 spin_unlock(&fs_info
->super_lock
);
5484 ret
= btrfs_commit_transaction(trans
);
5486 mnt_drop_write_file(file
);
5491 static int _btrfs_ioctl_send(struct file
*file
, void __user
*argp
, bool compat
)
5493 struct btrfs_ioctl_send_args
*arg
;
5497 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5498 struct btrfs_ioctl_send_args_32 args32
;
5500 ret
= copy_from_user(&args32
, argp
, sizeof(args32
));
5503 arg
= kzalloc(sizeof(*arg
), GFP_KERNEL
);
5506 arg
->send_fd
= args32
.send_fd
;
5507 arg
->clone_sources_count
= args32
.clone_sources_count
;
5508 arg
->clone_sources
= compat_ptr(args32
.clone_sources
);
5509 arg
->parent_root
= args32
.parent_root
;
5510 arg
->flags
= args32
.flags
;
5511 memcpy(arg
->reserved
, args32
.reserved
,
5512 sizeof(args32
.reserved
));
5517 arg
= memdup_user(argp
, sizeof(*arg
));
5519 return PTR_ERR(arg
);
5521 ret
= btrfs_ioctl_send(file
, arg
);
5526 long btrfs_ioctl(struct file
*file
, unsigned int
5527 cmd
, unsigned long arg
)
5529 struct inode
*inode
= file_inode(file
);
5530 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5531 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5532 void __user
*argp
= (void __user
*)arg
;
5535 case FS_IOC_GETFLAGS
:
5536 return btrfs_ioctl_getflags(file
, argp
);
5537 case FS_IOC_SETFLAGS
:
5538 return btrfs_ioctl_setflags(file
, argp
);
5539 case FS_IOC_GETVERSION
:
5540 return btrfs_ioctl_getversion(file
, argp
);
5542 return btrfs_ioctl_fitrim(file
, argp
);
5543 case BTRFS_IOC_SNAP_CREATE
:
5544 return btrfs_ioctl_snap_create(file
, argp
, 0);
5545 case BTRFS_IOC_SNAP_CREATE_V2
:
5546 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5547 case BTRFS_IOC_SUBVOL_CREATE
:
5548 return btrfs_ioctl_snap_create(file
, argp
, 1);
5549 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5550 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5551 case BTRFS_IOC_SNAP_DESTROY
:
5552 return btrfs_ioctl_snap_destroy(file
, argp
);
5553 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5554 return btrfs_ioctl_subvol_getflags(file
, argp
);
5555 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5556 return btrfs_ioctl_subvol_setflags(file
, argp
);
5557 case BTRFS_IOC_DEFAULT_SUBVOL
:
5558 return btrfs_ioctl_default_subvol(file
, argp
);
5559 case BTRFS_IOC_DEFRAG
:
5560 return btrfs_ioctl_defrag(file
, NULL
);
5561 case BTRFS_IOC_DEFRAG_RANGE
:
5562 return btrfs_ioctl_defrag(file
, argp
);
5563 case BTRFS_IOC_RESIZE
:
5564 return btrfs_ioctl_resize(file
, argp
);
5565 case BTRFS_IOC_ADD_DEV
:
5566 return btrfs_ioctl_add_dev(fs_info
, argp
);
5567 case BTRFS_IOC_RM_DEV
:
5568 return btrfs_ioctl_rm_dev(file
, argp
);
5569 case BTRFS_IOC_RM_DEV_V2
:
5570 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5571 case BTRFS_IOC_FS_INFO
:
5572 return btrfs_ioctl_fs_info(fs_info
, argp
);
5573 case BTRFS_IOC_DEV_INFO
:
5574 return btrfs_ioctl_dev_info(fs_info
, argp
);
5575 case BTRFS_IOC_BALANCE
:
5576 return btrfs_ioctl_balance(file
, NULL
);
5577 case BTRFS_IOC_TRANS_START
:
5578 return btrfs_ioctl_trans_start(file
);
5579 case BTRFS_IOC_TRANS_END
:
5580 return btrfs_ioctl_trans_end(file
);
5581 case BTRFS_IOC_TREE_SEARCH
:
5582 return btrfs_ioctl_tree_search(file
, argp
);
5583 case BTRFS_IOC_TREE_SEARCH_V2
:
5584 return btrfs_ioctl_tree_search_v2(file
, argp
);
5585 case BTRFS_IOC_INO_LOOKUP
:
5586 return btrfs_ioctl_ino_lookup(file
, argp
);
5587 case BTRFS_IOC_INO_PATHS
:
5588 return btrfs_ioctl_ino_to_path(root
, argp
);
5589 case BTRFS_IOC_LOGICAL_INO
:
5590 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 1);
5591 case BTRFS_IOC_LOGICAL_INO_V2
:
5592 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 2);
5593 case BTRFS_IOC_SPACE_INFO
:
5594 return btrfs_ioctl_space_info(fs_info
, argp
);
5595 case BTRFS_IOC_SYNC
: {
5598 ret
= btrfs_start_delalloc_roots(fs_info
, 0, -1);
5601 ret
= btrfs_sync_fs(inode
->i_sb
, 1);
5603 * The transaction thread may want to do more work,
5604 * namely it pokes the cleaner kthread that will start
5605 * processing uncleaned subvols.
5607 wake_up_process(fs_info
->transaction_kthread
);
5610 case BTRFS_IOC_START_SYNC
:
5611 return btrfs_ioctl_start_sync(root
, argp
);
5612 case BTRFS_IOC_WAIT_SYNC
:
5613 return btrfs_ioctl_wait_sync(fs_info
, argp
);
5614 case BTRFS_IOC_SCRUB
:
5615 return btrfs_ioctl_scrub(file
, argp
);
5616 case BTRFS_IOC_SCRUB_CANCEL
:
5617 return btrfs_ioctl_scrub_cancel(fs_info
);
5618 case BTRFS_IOC_SCRUB_PROGRESS
:
5619 return btrfs_ioctl_scrub_progress(fs_info
, argp
);
5620 case BTRFS_IOC_BALANCE_V2
:
5621 return btrfs_ioctl_balance(file
, argp
);
5622 case BTRFS_IOC_BALANCE_CTL
:
5623 return btrfs_ioctl_balance_ctl(fs_info
, arg
);
5624 case BTRFS_IOC_BALANCE_PROGRESS
:
5625 return btrfs_ioctl_balance_progress(fs_info
, argp
);
5626 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5627 return btrfs_ioctl_set_received_subvol(file
, argp
);
5629 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5630 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5632 case BTRFS_IOC_SEND
:
5633 return _btrfs_ioctl_send(file
, argp
, false);
5634 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5635 case BTRFS_IOC_SEND_32
:
5636 return _btrfs_ioctl_send(file
, argp
, true);
5638 case BTRFS_IOC_GET_DEV_STATS
:
5639 return btrfs_ioctl_get_dev_stats(fs_info
, argp
);
5640 case BTRFS_IOC_QUOTA_CTL
:
5641 return btrfs_ioctl_quota_ctl(file
, argp
);
5642 case BTRFS_IOC_QGROUP_ASSIGN
:
5643 return btrfs_ioctl_qgroup_assign(file
, argp
);
5644 case BTRFS_IOC_QGROUP_CREATE
:
5645 return btrfs_ioctl_qgroup_create(file
, argp
);
5646 case BTRFS_IOC_QGROUP_LIMIT
:
5647 return btrfs_ioctl_qgroup_limit(file
, argp
);
5648 case BTRFS_IOC_QUOTA_RESCAN
:
5649 return btrfs_ioctl_quota_rescan(file
, argp
);
5650 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5651 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5652 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5653 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5654 case BTRFS_IOC_DEV_REPLACE
:
5655 return btrfs_ioctl_dev_replace(fs_info
, argp
);
5656 case BTRFS_IOC_GET_FSLABEL
:
5657 return btrfs_ioctl_get_fslabel(file
, argp
);
5658 case BTRFS_IOC_SET_FSLABEL
:
5659 return btrfs_ioctl_set_fslabel(file
, argp
);
5660 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5661 return btrfs_ioctl_get_supported_features(argp
);
5662 case BTRFS_IOC_GET_FEATURES
:
5663 return btrfs_ioctl_get_features(file
, argp
);
5664 case BTRFS_IOC_SET_FEATURES
:
5665 return btrfs_ioctl_set_features(file
, argp
);
5671 #ifdef CONFIG_COMPAT
5672 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5675 * These all access 32-bit values anyway so no further
5676 * handling is necessary.
5679 case FS_IOC32_GETFLAGS
:
5680 cmd
= FS_IOC_GETFLAGS
;
5682 case FS_IOC32_SETFLAGS
:
5683 cmd
= FS_IOC_SETFLAGS
;
5685 case FS_IOC32_GETVERSION
:
5686 cmd
= FS_IOC_GETVERSION
;
5690 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));