Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / fs / btrfs / ioctl.c
blob111ee282b7772a85c46dd4cf746c59cf313803cd
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include <linux/iversion.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u64 reserved[4]; /* in */
98 } __attribute__ ((__packed__));
100 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
101 struct btrfs_ioctl_send_args_32)
102 #endif
104 static int btrfs_clone(struct inode *src, struct inode *inode,
105 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
106 int no_time_update);
108 /* Mask out flags that are inappropriate for the given type of inode. */
109 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
111 if (S_ISDIR(mode))
112 return flags;
113 else if (S_ISREG(mode))
114 return flags & ~FS_DIRSYNC_FL;
115 else
116 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
120 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
122 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
124 unsigned int iflags = 0;
126 if (flags & BTRFS_INODE_SYNC)
127 iflags |= FS_SYNC_FL;
128 if (flags & BTRFS_INODE_IMMUTABLE)
129 iflags |= FS_IMMUTABLE_FL;
130 if (flags & BTRFS_INODE_APPEND)
131 iflags |= FS_APPEND_FL;
132 if (flags & BTRFS_INODE_NODUMP)
133 iflags |= FS_NODUMP_FL;
134 if (flags & BTRFS_INODE_NOATIME)
135 iflags |= FS_NOATIME_FL;
136 if (flags & BTRFS_INODE_DIRSYNC)
137 iflags |= FS_DIRSYNC_FL;
138 if (flags & BTRFS_INODE_NODATACOW)
139 iflags |= FS_NOCOW_FL;
141 if (flags & BTRFS_INODE_NOCOMPRESS)
142 iflags |= FS_NOCOMP_FL;
143 else if (flags & BTRFS_INODE_COMPRESS)
144 iflags |= FS_COMPR_FL;
146 return iflags;
150 * Update inode->i_flags based on the btrfs internal flags.
152 void btrfs_update_iflags(struct inode *inode)
154 struct btrfs_inode *ip = BTRFS_I(inode);
155 unsigned int new_fl = 0;
157 if (ip->flags & BTRFS_INODE_SYNC)
158 new_fl |= S_SYNC;
159 if (ip->flags & BTRFS_INODE_IMMUTABLE)
160 new_fl |= S_IMMUTABLE;
161 if (ip->flags & BTRFS_INODE_APPEND)
162 new_fl |= S_APPEND;
163 if (ip->flags & BTRFS_INODE_NOATIME)
164 new_fl |= S_NOATIME;
165 if (ip->flags & BTRFS_INODE_DIRSYNC)
166 new_fl |= S_DIRSYNC;
168 set_mask_bits(&inode->i_flags,
169 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
170 new_fl);
173 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
175 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
176 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
178 if (copy_to_user(arg, &flags, sizeof(flags)))
179 return -EFAULT;
180 return 0;
183 static int check_flags(unsigned int flags)
185 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
186 FS_NOATIME_FL | FS_NODUMP_FL | \
187 FS_SYNC_FL | FS_DIRSYNC_FL | \
188 FS_NOCOMP_FL | FS_COMPR_FL |
189 FS_NOCOW_FL))
190 return -EOPNOTSUPP;
192 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
193 return -EINVAL;
195 return 0;
198 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
200 struct inode *inode = file_inode(file);
201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
202 struct btrfs_inode *ip = BTRFS_I(inode);
203 struct btrfs_root *root = ip->root;
204 struct btrfs_trans_handle *trans;
205 unsigned int flags, oldflags;
206 int ret;
207 u64 ip_oldflags;
208 unsigned int i_oldflags;
209 umode_t mode;
211 if (!inode_owner_or_capable(inode))
212 return -EPERM;
214 if (btrfs_root_readonly(root))
215 return -EROFS;
217 if (copy_from_user(&flags, arg, sizeof(flags)))
218 return -EFAULT;
220 ret = check_flags(flags);
221 if (ret)
222 return ret;
224 ret = mnt_want_write_file(file);
225 if (ret)
226 return ret;
228 inode_lock(inode);
230 ip_oldflags = ip->flags;
231 i_oldflags = inode->i_flags;
232 mode = inode->i_mode;
234 flags = btrfs_mask_flags(inode->i_mode, flags);
235 oldflags = btrfs_flags_to_ioctl(ip->flags);
236 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
237 if (!capable(CAP_LINUX_IMMUTABLE)) {
238 ret = -EPERM;
239 goto out_unlock;
243 if (flags & FS_SYNC_FL)
244 ip->flags |= BTRFS_INODE_SYNC;
245 else
246 ip->flags &= ~BTRFS_INODE_SYNC;
247 if (flags & FS_IMMUTABLE_FL)
248 ip->flags |= BTRFS_INODE_IMMUTABLE;
249 else
250 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
251 if (flags & FS_APPEND_FL)
252 ip->flags |= BTRFS_INODE_APPEND;
253 else
254 ip->flags &= ~BTRFS_INODE_APPEND;
255 if (flags & FS_NODUMP_FL)
256 ip->flags |= BTRFS_INODE_NODUMP;
257 else
258 ip->flags &= ~BTRFS_INODE_NODUMP;
259 if (flags & FS_NOATIME_FL)
260 ip->flags |= BTRFS_INODE_NOATIME;
261 else
262 ip->flags &= ~BTRFS_INODE_NOATIME;
263 if (flags & FS_DIRSYNC_FL)
264 ip->flags |= BTRFS_INODE_DIRSYNC;
265 else
266 ip->flags &= ~BTRFS_INODE_DIRSYNC;
267 if (flags & FS_NOCOW_FL) {
268 if (S_ISREG(mode)) {
270 * It's safe to turn csums off here, no extents exist.
271 * Otherwise we want the flag to reflect the real COW
272 * status of the file and will not set it.
274 if (inode->i_size == 0)
275 ip->flags |= BTRFS_INODE_NODATACOW
276 | BTRFS_INODE_NODATASUM;
277 } else {
278 ip->flags |= BTRFS_INODE_NODATACOW;
280 } else {
282 * Revert back under same assumptions as above
284 if (S_ISREG(mode)) {
285 if (inode->i_size == 0)
286 ip->flags &= ~(BTRFS_INODE_NODATACOW
287 | BTRFS_INODE_NODATASUM);
288 } else {
289 ip->flags &= ~BTRFS_INODE_NODATACOW;
294 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
295 * flag may be changed automatically if compression code won't make
296 * things smaller.
298 if (flags & FS_NOCOMP_FL) {
299 ip->flags &= ~BTRFS_INODE_COMPRESS;
300 ip->flags |= BTRFS_INODE_NOCOMPRESS;
302 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
303 if (ret && ret != -ENODATA)
304 goto out_drop;
305 } else if (flags & FS_COMPR_FL) {
306 const char *comp;
308 ip->flags |= BTRFS_INODE_COMPRESS;
309 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
311 comp = btrfs_compress_type2str(fs_info->compress_type);
312 if (!comp || comp[0] == 0)
313 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
315 ret = btrfs_set_prop(inode, "btrfs.compression",
316 comp, strlen(comp), 0);
317 if (ret)
318 goto out_drop;
320 } else {
321 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
322 if (ret && ret != -ENODATA)
323 goto out_drop;
324 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 trans = btrfs_start_transaction(root, 1);
328 if (IS_ERR(trans)) {
329 ret = PTR_ERR(trans);
330 goto out_drop;
333 btrfs_update_iflags(inode);
334 inode_inc_iversion(inode);
335 inode->i_ctime = current_time(inode);
336 ret = btrfs_update_inode(trans, root, inode);
338 btrfs_end_transaction(trans);
339 out_drop:
340 if (ret) {
341 ip->flags = ip_oldflags;
342 inode->i_flags = i_oldflags;
345 out_unlock:
346 inode_unlock(inode);
347 mnt_drop_write_file(file);
348 return ret;
351 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
353 struct inode *inode = file_inode(file);
355 return put_user(inode->i_generation, arg);
358 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
360 struct inode *inode = file_inode(file);
361 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
362 struct btrfs_device *device;
363 struct request_queue *q;
364 struct fstrim_range range;
365 u64 minlen = ULLONG_MAX;
366 u64 num_devices = 0;
367 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
368 int ret;
370 if (!capable(CAP_SYS_ADMIN))
371 return -EPERM;
373 rcu_read_lock();
374 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
375 dev_list) {
376 if (!device->bdev)
377 continue;
378 q = bdev_get_queue(device->bdev);
379 if (blk_queue_discard(q)) {
380 num_devices++;
381 minlen = min_t(u64, q->limits.discard_granularity,
382 minlen);
385 rcu_read_unlock();
387 if (!num_devices)
388 return -EOPNOTSUPP;
389 if (copy_from_user(&range, arg, sizeof(range)))
390 return -EFAULT;
391 if (range.start > total_bytes ||
392 range.len < fs_info->sb->s_blocksize)
393 return -EINVAL;
395 range.len = min(range.len, total_bytes - range.start);
396 range.minlen = max(range.minlen, minlen);
397 ret = btrfs_trim_fs(fs_info, &range);
398 if (ret < 0)
399 return ret;
401 if (copy_to_user(arg, &range, sizeof(range)))
402 return -EFAULT;
404 return 0;
407 int btrfs_is_empty_uuid(u8 *uuid)
409 int i;
411 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
412 if (uuid[i])
413 return 0;
415 return 1;
418 static noinline int create_subvol(struct inode *dir,
419 struct dentry *dentry,
420 const char *name, int namelen,
421 u64 *async_transid,
422 struct btrfs_qgroup_inherit *inherit)
424 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
425 struct btrfs_trans_handle *trans;
426 struct btrfs_key key;
427 struct btrfs_root_item *root_item;
428 struct btrfs_inode_item *inode_item;
429 struct extent_buffer *leaf;
430 struct btrfs_root *root = BTRFS_I(dir)->root;
431 struct btrfs_root *new_root;
432 struct btrfs_block_rsv block_rsv;
433 struct timespec cur_time = current_time(dir);
434 struct inode *inode;
435 int ret;
436 int err;
437 u64 objectid;
438 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
439 u64 index = 0;
440 u64 qgroup_reserved;
441 uuid_le new_uuid;
443 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
444 if (!root_item)
445 return -ENOMEM;
447 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
448 if (ret)
449 goto fail_free;
452 * Don't create subvolume whose level is not zero. Or qgroup will be
453 * screwed up since it assumes subvolume qgroup's level to be 0.
455 if (btrfs_qgroup_level(objectid)) {
456 ret = -ENOSPC;
457 goto fail_free;
460 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
462 * The same as the snapshot creation, please see the comment
463 * of create_snapshot().
465 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
466 8, &qgroup_reserved, false);
467 if (ret)
468 goto fail_free;
470 trans = btrfs_start_transaction(root, 0);
471 if (IS_ERR(trans)) {
472 ret = PTR_ERR(trans);
473 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
474 goto fail_free;
476 trans->block_rsv = &block_rsv;
477 trans->bytes_reserved = block_rsv.size;
479 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
480 if (ret)
481 goto fail;
483 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
484 if (IS_ERR(leaf)) {
485 ret = PTR_ERR(leaf);
486 goto fail;
489 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
490 btrfs_set_header_bytenr(leaf, leaf->start);
491 btrfs_set_header_generation(leaf, trans->transid);
492 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
493 btrfs_set_header_owner(leaf, objectid);
495 write_extent_buffer_fsid(leaf, fs_info->fsid);
496 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
497 btrfs_mark_buffer_dirty(leaf);
499 inode_item = &root_item->inode;
500 btrfs_set_stack_inode_generation(inode_item, 1);
501 btrfs_set_stack_inode_size(inode_item, 3);
502 btrfs_set_stack_inode_nlink(inode_item, 1);
503 btrfs_set_stack_inode_nbytes(inode_item,
504 fs_info->nodesize);
505 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
507 btrfs_set_root_flags(root_item, 0);
508 btrfs_set_root_limit(root_item, 0);
509 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
511 btrfs_set_root_bytenr(root_item, leaf->start);
512 btrfs_set_root_generation(root_item, trans->transid);
513 btrfs_set_root_level(root_item, 0);
514 btrfs_set_root_refs(root_item, 1);
515 btrfs_set_root_used(root_item, leaf->len);
516 btrfs_set_root_last_snapshot(root_item, 0);
518 btrfs_set_root_generation_v2(root_item,
519 btrfs_root_generation(root_item));
520 uuid_le_gen(&new_uuid);
521 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
522 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
523 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
524 root_item->ctime = root_item->otime;
525 btrfs_set_root_ctransid(root_item, trans->transid);
526 btrfs_set_root_otransid(root_item, trans->transid);
528 btrfs_tree_unlock(leaf);
529 free_extent_buffer(leaf);
530 leaf = NULL;
532 btrfs_set_root_dirid(root_item, new_dirid);
534 key.objectid = objectid;
535 key.offset = 0;
536 key.type = BTRFS_ROOT_ITEM_KEY;
537 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
538 root_item);
539 if (ret)
540 goto fail;
542 key.offset = (u64)-1;
543 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
544 if (IS_ERR(new_root)) {
545 ret = PTR_ERR(new_root);
546 btrfs_abort_transaction(trans, ret);
547 goto fail;
550 btrfs_record_root_in_trans(trans, new_root);
552 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
553 if (ret) {
554 /* We potentially lose an unused inode item here */
555 btrfs_abort_transaction(trans, ret);
556 goto fail;
559 mutex_lock(&new_root->objectid_mutex);
560 new_root->highest_objectid = new_dirid;
561 mutex_unlock(&new_root->objectid_mutex);
564 * insert the directory item
566 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
567 if (ret) {
568 btrfs_abort_transaction(trans, ret);
569 goto fail;
572 ret = btrfs_insert_dir_item(trans, root,
573 name, namelen, BTRFS_I(dir), &key,
574 BTRFS_FT_DIR, index);
575 if (ret) {
576 btrfs_abort_transaction(trans, ret);
577 goto fail;
580 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
581 ret = btrfs_update_inode(trans, root, dir);
582 BUG_ON(ret);
584 ret = btrfs_add_root_ref(trans, fs_info,
585 objectid, root->root_key.objectid,
586 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
587 BUG_ON(ret);
589 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
590 BTRFS_UUID_KEY_SUBVOL, objectid);
591 if (ret)
592 btrfs_abort_transaction(trans, ret);
594 fail:
595 kfree(root_item);
596 trans->block_rsv = NULL;
597 trans->bytes_reserved = 0;
598 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
600 if (async_transid) {
601 *async_transid = trans->transid;
602 err = btrfs_commit_transaction_async(trans, 1);
603 if (err)
604 err = btrfs_commit_transaction(trans);
605 } else {
606 err = btrfs_commit_transaction(trans);
608 if (err && !ret)
609 ret = err;
611 if (!ret) {
612 inode = btrfs_lookup_dentry(dir, dentry);
613 if (IS_ERR(inode))
614 return PTR_ERR(inode);
615 d_instantiate(dentry, inode);
617 return ret;
619 fail_free:
620 kfree(root_item);
621 return ret;
624 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
625 struct dentry *dentry,
626 u64 *async_transid, bool readonly,
627 struct btrfs_qgroup_inherit *inherit)
629 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
630 struct inode *inode;
631 struct btrfs_pending_snapshot *pending_snapshot;
632 struct btrfs_trans_handle *trans;
633 int ret;
635 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
636 return -EINVAL;
638 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
639 if (!pending_snapshot)
640 return -ENOMEM;
642 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
643 GFP_KERNEL);
644 pending_snapshot->path = btrfs_alloc_path();
645 if (!pending_snapshot->root_item || !pending_snapshot->path) {
646 ret = -ENOMEM;
647 goto free_pending;
650 atomic_inc(&root->will_be_snapshotted);
651 smp_mb__after_atomic();
652 /* wait for no snapshot writes */
653 wait_event(root->subv_writers->wait,
654 percpu_counter_sum(&root->subv_writers->counter) == 0);
656 ret = btrfs_start_delalloc_inodes(root, 0);
657 if (ret)
658 goto dec_and_free;
660 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
663 BTRFS_BLOCK_RSV_TEMP);
665 * 1 - parent dir inode
666 * 2 - dir entries
667 * 1 - root item
668 * 2 - root ref/backref
669 * 1 - root of snapshot
670 * 1 - UUID item
672 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
673 &pending_snapshot->block_rsv, 8,
674 &pending_snapshot->qgroup_reserved,
675 false);
676 if (ret)
677 goto dec_and_free;
679 pending_snapshot->dentry = dentry;
680 pending_snapshot->root = root;
681 pending_snapshot->readonly = readonly;
682 pending_snapshot->dir = dir;
683 pending_snapshot->inherit = inherit;
685 trans = btrfs_start_transaction(root, 0);
686 if (IS_ERR(trans)) {
687 ret = PTR_ERR(trans);
688 goto fail;
691 spin_lock(&fs_info->trans_lock);
692 list_add(&pending_snapshot->list,
693 &trans->transaction->pending_snapshots);
694 spin_unlock(&fs_info->trans_lock);
695 if (async_transid) {
696 *async_transid = trans->transid;
697 ret = btrfs_commit_transaction_async(trans, 1);
698 if (ret)
699 ret = btrfs_commit_transaction(trans);
700 } else {
701 ret = btrfs_commit_transaction(trans);
703 if (ret)
704 goto fail;
706 ret = pending_snapshot->error;
707 if (ret)
708 goto fail;
710 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 if (ret)
712 goto fail;
714 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
715 if (IS_ERR(inode)) {
716 ret = PTR_ERR(inode);
717 goto fail;
720 d_instantiate(dentry, inode);
721 ret = 0;
722 fail:
723 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
724 dec_and_free:
725 if (atomic_dec_and_test(&root->will_be_snapshotted))
726 wake_up_atomic_t(&root->will_be_snapshotted);
727 free_pending:
728 kfree(pending_snapshot->root_item);
729 btrfs_free_path(pending_snapshot->path);
730 kfree(pending_snapshot);
732 return ret;
735 /* copy of may_delete in fs/namei.c()
736 * Check whether we can remove a link victim from directory dir, check
737 * whether the type of victim is right.
738 * 1. We can't do it if dir is read-only (done in permission())
739 * 2. We should have write and exec permissions on dir
740 * 3. We can't remove anything from append-only dir
741 * 4. We can't do anything with immutable dir (done in permission())
742 * 5. If the sticky bit on dir is set we should either
743 * a. be owner of dir, or
744 * b. be owner of victim, or
745 * c. have CAP_FOWNER capability
746 * 6. If the victim is append-only or immutable we can't do anything with
747 * links pointing to it.
748 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
749 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
750 * 9. We can't remove a root or mountpoint.
751 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
752 * nfs_async_unlink().
755 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
757 int error;
759 if (d_really_is_negative(victim))
760 return -ENOENT;
762 BUG_ON(d_inode(victim->d_parent) != dir);
763 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
766 if (error)
767 return error;
768 if (IS_APPEND(dir))
769 return -EPERM;
770 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
771 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
772 return -EPERM;
773 if (isdir) {
774 if (!d_is_dir(victim))
775 return -ENOTDIR;
776 if (IS_ROOT(victim))
777 return -EBUSY;
778 } else if (d_is_dir(victim))
779 return -EISDIR;
780 if (IS_DEADDIR(dir))
781 return -ENOENT;
782 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
783 return -EBUSY;
784 return 0;
787 /* copy of may_create in fs/namei.c() */
788 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 if (d_really_is_positive(child))
791 return -EEXIST;
792 if (IS_DEADDIR(dir))
793 return -ENOENT;
794 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
798 * Create a new subvolume below @parent. This is largely modeled after
799 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
800 * inside this filesystem so it's quite a bit simpler.
802 static noinline int btrfs_mksubvol(const struct path *parent,
803 const char *name, int namelen,
804 struct btrfs_root *snap_src,
805 u64 *async_transid, bool readonly,
806 struct btrfs_qgroup_inherit *inherit)
808 struct inode *dir = d_inode(parent->dentry);
809 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
810 struct dentry *dentry;
811 int error;
813 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
814 if (error == -EINTR)
815 return error;
817 dentry = lookup_one_len(name, parent->dentry, namelen);
818 error = PTR_ERR(dentry);
819 if (IS_ERR(dentry))
820 goto out_unlock;
822 error = btrfs_may_create(dir, dentry);
823 if (error)
824 goto out_dput;
827 * even if this name doesn't exist, we may get hash collisions.
828 * check for them now when we can safely fail
830 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
831 dir->i_ino, name,
832 namelen);
833 if (error)
834 goto out_dput;
836 down_read(&fs_info->subvol_sem);
838 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
839 goto out_up_read;
841 if (snap_src) {
842 error = create_snapshot(snap_src, dir, dentry,
843 async_transid, readonly, inherit);
844 } else {
845 error = create_subvol(dir, dentry, name, namelen,
846 async_transid, inherit);
848 if (!error)
849 fsnotify_mkdir(dir, dentry);
850 out_up_read:
851 up_read(&fs_info->subvol_sem);
852 out_dput:
853 dput(dentry);
854 out_unlock:
855 inode_unlock(dir);
856 return error;
860 * When we're defragging a range, we don't want to kick it off again
861 * if it is really just waiting for delalloc to send it down.
862 * If we find a nice big extent or delalloc range for the bytes in the
863 * file you want to defrag, we return 0 to let you know to skip this
864 * part of the file
866 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
869 struct extent_map *em = NULL;
870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 u64 end;
873 read_lock(&em_tree->lock);
874 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
875 read_unlock(&em_tree->lock);
877 if (em) {
878 end = extent_map_end(em);
879 free_extent_map(em);
880 if (end - offset > thresh)
881 return 0;
883 /* if we already have a nice delalloc here, just stop */
884 thresh /= 2;
885 end = count_range_bits(io_tree, &offset, offset + thresh,
886 thresh, EXTENT_DELALLOC, 1);
887 if (end >= thresh)
888 return 0;
889 return 1;
893 * helper function to walk through a file and find extents
894 * newer than a specific transid, and smaller than thresh.
896 * This is used by the defragging code to find new and small
897 * extents
899 static int find_new_extents(struct btrfs_root *root,
900 struct inode *inode, u64 newer_than,
901 u64 *off, u32 thresh)
903 struct btrfs_path *path;
904 struct btrfs_key min_key;
905 struct extent_buffer *leaf;
906 struct btrfs_file_extent_item *extent;
907 int type;
908 int ret;
909 u64 ino = btrfs_ino(BTRFS_I(inode));
911 path = btrfs_alloc_path();
912 if (!path)
913 return -ENOMEM;
915 min_key.objectid = ino;
916 min_key.type = BTRFS_EXTENT_DATA_KEY;
917 min_key.offset = *off;
919 while (1) {
920 ret = btrfs_search_forward(root, &min_key, path, newer_than);
921 if (ret != 0)
922 goto none;
923 process_slot:
924 if (min_key.objectid != ino)
925 goto none;
926 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
927 goto none;
929 leaf = path->nodes[0];
930 extent = btrfs_item_ptr(leaf, path->slots[0],
931 struct btrfs_file_extent_item);
933 type = btrfs_file_extent_type(leaf, extent);
934 if (type == BTRFS_FILE_EXTENT_REG &&
935 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
936 check_defrag_in_cache(inode, min_key.offset, thresh)) {
937 *off = min_key.offset;
938 btrfs_free_path(path);
939 return 0;
942 path->slots[0]++;
943 if (path->slots[0] < btrfs_header_nritems(leaf)) {
944 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
945 goto process_slot;
948 if (min_key.offset == (u64)-1)
949 goto none;
951 min_key.offset++;
952 btrfs_release_path(path);
954 none:
955 btrfs_free_path(path);
956 return -ENOENT;
959 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
962 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
963 struct extent_map *em;
964 u64 len = PAGE_SIZE;
967 * hopefully we have this extent in the tree already, try without
968 * the full extent lock
970 read_lock(&em_tree->lock);
971 em = lookup_extent_mapping(em_tree, start, len);
972 read_unlock(&em_tree->lock);
974 if (!em) {
975 struct extent_state *cached = NULL;
976 u64 end = start + len - 1;
978 /* get the big lock and read metadata off disk */
979 lock_extent_bits(io_tree, start, end, &cached);
980 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
981 unlock_extent_cached(io_tree, start, end, &cached);
983 if (IS_ERR(em))
984 return NULL;
987 return em;
990 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 struct extent_map *next;
993 bool ret = true;
995 /* this is the last extent */
996 if (em->start + em->len >= i_size_read(inode))
997 return false;
999 next = defrag_lookup_extent(inode, em->start + em->len);
1000 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1001 ret = false;
1002 else if ((em->block_start + em->block_len == next->block_start) &&
1003 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1004 ret = false;
1006 free_extent_map(next);
1007 return ret;
1010 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1011 u64 *last_len, u64 *skip, u64 *defrag_end,
1012 int compress)
1014 struct extent_map *em;
1015 int ret = 1;
1016 bool next_mergeable = true;
1017 bool prev_mergeable = true;
1020 * make sure that once we start defragging an extent, we keep on
1021 * defragging it
1023 if (start < *defrag_end)
1024 return 1;
1026 *skip = 0;
1028 em = defrag_lookup_extent(inode, start);
1029 if (!em)
1030 return 0;
1032 /* this will cover holes, and inline extents */
1033 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1034 ret = 0;
1035 goto out;
1038 if (!*defrag_end)
1039 prev_mergeable = false;
1041 next_mergeable = defrag_check_next_extent(inode, em);
1043 * we hit a real extent, if it is big or the next extent is not a
1044 * real extent, don't bother defragging it
1046 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1047 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1048 ret = 0;
1049 out:
1051 * last_len ends up being a counter of how many bytes we've defragged.
1052 * every time we choose not to defrag an extent, we reset *last_len
1053 * so that the next tiny extent will force a defrag.
1055 * The end result of this is that tiny extents before a single big
1056 * extent will force at least part of that big extent to be defragged.
1058 if (ret) {
1059 *defrag_end = extent_map_end(em);
1060 } else {
1061 *last_len = 0;
1062 *skip = extent_map_end(em);
1063 *defrag_end = 0;
1066 free_extent_map(em);
1067 return ret;
1071 * it doesn't do much good to defrag one or two pages
1072 * at a time. This pulls in a nice chunk of pages
1073 * to COW and defrag.
1075 * It also makes sure the delalloc code has enough
1076 * dirty data to avoid making new small extents as part
1077 * of the defrag
1079 * It's a good idea to start RA on this range
1080 * before calling this.
1082 static int cluster_pages_for_defrag(struct inode *inode,
1083 struct page **pages,
1084 unsigned long start_index,
1085 unsigned long num_pages)
1087 unsigned long file_end;
1088 u64 isize = i_size_read(inode);
1089 u64 page_start;
1090 u64 page_end;
1091 u64 page_cnt;
1092 int ret;
1093 int i;
1094 int i_done;
1095 struct btrfs_ordered_extent *ordered;
1096 struct extent_state *cached_state = NULL;
1097 struct extent_io_tree *tree;
1098 struct extent_changeset *data_reserved = NULL;
1099 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101 file_end = (isize - 1) >> PAGE_SHIFT;
1102 if (!isize || start_index > file_end)
1103 return 0;
1105 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1108 start_index << PAGE_SHIFT,
1109 page_cnt << PAGE_SHIFT);
1110 if (ret)
1111 return ret;
1112 i_done = 0;
1113 tree = &BTRFS_I(inode)->io_tree;
1115 /* step one, lock all the pages */
1116 for (i = 0; i < page_cnt; i++) {
1117 struct page *page;
1118 again:
1119 page = find_or_create_page(inode->i_mapping,
1120 start_index + i, mask);
1121 if (!page)
1122 break;
1124 page_start = page_offset(page);
1125 page_end = page_start + PAGE_SIZE - 1;
1126 while (1) {
1127 lock_extent_bits(tree, page_start, page_end,
1128 &cached_state);
1129 ordered = btrfs_lookup_ordered_extent(inode,
1130 page_start);
1131 unlock_extent_cached(tree, page_start, page_end,
1132 &cached_state);
1133 if (!ordered)
1134 break;
1136 unlock_page(page);
1137 btrfs_start_ordered_extent(inode, ordered, 1);
1138 btrfs_put_ordered_extent(ordered);
1139 lock_page(page);
1141 * we unlocked the page above, so we need check if
1142 * it was released or not.
1144 if (page->mapping != inode->i_mapping) {
1145 unlock_page(page);
1146 put_page(page);
1147 goto again;
1151 if (!PageUptodate(page)) {
1152 btrfs_readpage(NULL, page);
1153 lock_page(page);
1154 if (!PageUptodate(page)) {
1155 unlock_page(page);
1156 put_page(page);
1157 ret = -EIO;
1158 break;
1162 if (page->mapping != inode->i_mapping) {
1163 unlock_page(page);
1164 put_page(page);
1165 goto again;
1168 pages[i] = page;
1169 i_done++;
1171 if (!i_done || ret)
1172 goto out;
1174 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1175 goto out;
1178 * so now we have a nice long stream of locked
1179 * and up to date pages, lets wait on them
1181 for (i = 0; i < i_done; i++)
1182 wait_on_page_writeback(pages[i]);
1184 page_start = page_offset(pages[0]);
1185 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1188 page_start, page_end - 1, &cached_state);
1189 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1190 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1191 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1192 &cached_state);
1194 if (i_done != page_cnt) {
1195 spin_lock(&BTRFS_I(inode)->lock);
1196 BTRFS_I(inode)->outstanding_extents++;
1197 spin_unlock(&BTRFS_I(inode)->lock);
1198 btrfs_delalloc_release_space(inode, data_reserved,
1199 start_index << PAGE_SHIFT,
1200 (page_cnt - i_done) << PAGE_SHIFT);
1204 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1205 &cached_state);
1207 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1208 page_start, page_end - 1, &cached_state);
1210 for (i = 0; i < i_done; i++) {
1211 clear_page_dirty_for_io(pages[i]);
1212 ClearPageChecked(pages[i]);
1213 set_page_extent_mapped(pages[i]);
1214 set_page_dirty(pages[i]);
1215 unlock_page(pages[i]);
1216 put_page(pages[i]);
1218 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1219 extent_changeset_free(data_reserved);
1220 return i_done;
1221 out:
1222 for (i = 0; i < i_done; i++) {
1223 unlock_page(pages[i]);
1224 put_page(pages[i]);
1226 btrfs_delalloc_release_space(inode, data_reserved,
1227 start_index << PAGE_SHIFT,
1228 page_cnt << PAGE_SHIFT);
1229 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1230 extent_changeset_free(data_reserved);
1231 return ret;
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 struct btrfs_ioctl_defrag_range_args *range,
1237 u64 newer_than, unsigned long max_to_defrag)
1239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 struct btrfs_root *root = BTRFS_I(inode)->root;
1241 struct file_ra_state *ra = NULL;
1242 unsigned long last_index;
1243 u64 isize = i_size_read(inode);
1244 u64 last_len = 0;
1245 u64 skip = 0;
1246 u64 defrag_end = 0;
1247 u64 newer_off = range->start;
1248 unsigned long i;
1249 unsigned long ra_index = 0;
1250 int ret;
1251 int defrag_count = 0;
1252 int compress_type = BTRFS_COMPRESS_ZLIB;
1253 u32 extent_thresh = range->extent_thresh;
1254 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 unsigned long cluster = max_cluster;
1256 u64 new_align = ~((u64)SZ_128K - 1);
1257 struct page **pages = NULL;
1258 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1260 if (isize == 0)
1261 return 0;
1263 if (range->start >= isize)
1264 return -EINVAL;
1266 if (do_compress) {
1267 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1268 return -EINVAL;
1269 if (range->compress_type)
1270 compress_type = range->compress_type;
1273 if (extent_thresh == 0)
1274 extent_thresh = SZ_256K;
1277 * If we were not given a file, allocate a readahead context. As
1278 * readahead is just an optimization, defrag will work without it so
1279 * we don't error out.
1281 if (!file) {
1282 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1283 if (ra)
1284 file_ra_state_init(ra, inode->i_mapping);
1285 } else {
1286 ra = &file->f_ra;
1289 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1290 if (!pages) {
1291 ret = -ENOMEM;
1292 goto out_ra;
1295 /* find the last page to defrag */
1296 if (range->start + range->len > range->start) {
1297 last_index = min_t(u64, isize - 1,
1298 range->start + range->len - 1) >> PAGE_SHIFT;
1299 } else {
1300 last_index = (isize - 1) >> PAGE_SHIFT;
1303 if (newer_than) {
1304 ret = find_new_extents(root, inode, newer_than,
1305 &newer_off, SZ_64K);
1306 if (!ret) {
1307 range->start = newer_off;
1309 * we always align our defrag to help keep
1310 * the extents in the file evenly spaced
1312 i = (newer_off & new_align) >> PAGE_SHIFT;
1313 } else
1314 goto out_ra;
1315 } else {
1316 i = range->start >> PAGE_SHIFT;
1318 if (!max_to_defrag)
1319 max_to_defrag = last_index - i + 1;
1322 * make writeback starts from i, so the defrag range can be
1323 * written sequentially.
1325 if (i < inode->i_mapping->writeback_index)
1326 inode->i_mapping->writeback_index = i;
1328 while (i <= last_index && defrag_count < max_to_defrag &&
1329 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1331 * make sure we stop running if someone unmounts
1332 * the FS
1334 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1335 break;
1337 if (btrfs_defrag_cancelled(fs_info)) {
1338 btrfs_debug(fs_info, "defrag_file cancelled");
1339 ret = -EAGAIN;
1340 break;
1343 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1344 extent_thresh, &last_len, &skip,
1345 &defrag_end, do_compress)){
1346 unsigned long next;
1348 * the should_defrag function tells us how much to skip
1349 * bump our counter by the suggested amount
1351 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 i = max(i + 1, next);
1353 continue;
1356 if (!newer_than) {
1357 cluster = (PAGE_ALIGN(defrag_end) >>
1358 PAGE_SHIFT) - i;
1359 cluster = min(cluster, max_cluster);
1360 } else {
1361 cluster = max_cluster;
1364 if (i + cluster > ra_index) {
1365 ra_index = max(i, ra_index);
1366 if (ra)
1367 page_cache_sync_readahead(inode->i_mapping, ra,
1368 file, ra_index, cluster);
1369 ra_index += cluster;
1372 inode_lock(inode);
1373 if (do_compress)
1374 BTRFS_I(inode)->defrag_compress = compress_type;
1375 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1376 if (ret < 0) {
1377 inode_unlock(inode);
1378 goto out_ra;
1381 defrag_count += ret;
1382 balance_dirty_pages_ratelimited(inode->i_mapping);
1383 inode_unlock(inode);
1385 if (newer_than) {
1386 if (newer_off == (u64)-1)
1387 break;
1389 if (ret > 0)
1390 i += ret;
1392 newer_off = max(newer_off + 1,
1393 (u64)i << PAGE_SHIFT);
1395 ret = find_new_extents(root, inode, newer_than,
1396 &newer_off, SZ_64K);
1397 if (!ret) {
1398 range->start = newer_off;
1399 i = (newer_off & new_align) >> PAGE_SHIFT;
1400 } else {
1401 break;
1403 } else {
1404 if (ret > 0) {
1405 i += ret;
1406 last_len += ret << PAGE_SHIFT;
1407 } else {
1408 i++;
1409 last_len = 0;
1414 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 filemap_flush(inode->i_mapping);
1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 &BTRFS_I(inode)->runtime_flags))
1418 filemap_flush(inode->i_mapping);
1421 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1422 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1423 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1424 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1427 ret = defrag_count;
1429 out_ra:
1430 if (do_compress) {
1431 inode_lock(inode);
1432 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1433 inode_unlock(inode);
1435 if (!file)
1436 kfree(ra);
1437 kfree(pages);
1438 return ret;
1441 static noinline int btrfs_ioctl_resize(struct file *file,
1442 void __user *arg)
1444 struct inode *inode = file_inode(file);
1445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1446 u64 new_size;
1447 u64 old_size;
1448 u64 devid = 1;
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 struct btrfs_ioctl_vol_args *vol_args;
1451 struct btrfs_trans_handle *trans;
1452 struct btrfs_device *device = NULL;
1453 char *sizestr;
1454 char *retptr;
1455 char *devstr = NULL;
1456 int ret = 0;
1457 int mod = 0;
1459 if (!capable(CAP_SYS_ADMIN))
1460 return -EPERM;
1462 ret = mnt_want_write_file(file);
1463 if (ret)
1464 return ret;
1466 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1467 mnt_drop_write_file(file);
1468 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1471 mutex_lock(&fs_info->volume_mutex);
1472 vol_args = memdup_user(arg, sizeof(*vol_args));
1473 if (IS_ERR(vol_args)) {
1474 ret = PTR_ERR(vol_args);
1475 goto out;
1478 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1480 sizestr = vol_args->name;
1481 devstr = strchr(sizestr, ':');
1482 if (devstr) {
1483 sizestr = devstr + 1;
1484 *devstr = '\0';
1485 devstr = vol_args->name;
1486 ret = kstrtoull(devstr, 10, &devid);
1487 if (ret)
1488 goto out_free;
1489 if (!devid) {
1490 ret = -EINVAL;
1491 goto out_free;
1493 btrfs_info(fs_info, "resizing devid %llu", devid);
1496 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1497 if (!device) {
1498 btrfs_info(fs_info, "resizer unable to find device %llu",
1499 devid);
1500 ret = -ENODEV;
1501 goto out_free;
1504 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1505 btrfs_info(fs_info,
1506 "resizer unable to apply on readonly device %llu",
1507 devid);
1508 ret = -EPERM;
1509 goto out_free;
1512 if (!strcmp(sizestr, "max"))
1513 new_size = device->bdev->bd_inode->i_size;
1514 else {
1515 if (sizestr[0] == '-') {
1516 mod = -1;
1517 sizestr++;
1518 } else if (sizestr[0] == '+') {
1519 mod = 1;
1520 sizestr++;
1522 new_size = memparse(sizestr, &retptr);
1523 if (*retptr != '\0' || new_size == 0) {
1524 ret = -EINVAL;
1525 goto out_free;
1529 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1530 ret = -EPERM;
1531 goto out_free;
1534 old_size = btrfs_device_get_total_bytes(device);
1536 if (mod < 0) {
1537 if (new_size > old_size) {
1538 ret = -EINVAL;
1539 goto out_free;
1541 new_size = old_size - new_size;
1542 } else if (mod > 0) {
1543 if (new_size > ULLONG_MAX - old_size) {
1544 ret = -ERANGE;
1545 goto out_free;
1547 new_size = old_size + new_size;
1550 if (new_size < SZ_256M) {
1551 ret = -EINVAL;
1552 goto out_free;
1554 if (new_size > device->bdev->bd_inode->i_size) {
1555 ret = -EFBIG;
1556 goto out_free;
1559 new_size = round_down(new_size, fs_info->sectorsize);
1561 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1562 rcu_str_deref(device->name), new_size);
1564 if (new_size > old_size) {
1565 trans = btrfs_start_transaction(root, 0);
1566 if (IS_ERR(trans)) {
1567 ret = PTR_ERR(trans);
1568 goto out_free;
1570 ret = btrfs_grow_device(trans, device, new_size);
1571 btrfs_commit_transaction(trans);
1572 } else if (new_size < old_size) {
1573 ret = btrfs_shrink_device(device, new_size);
1574 } /* equal, nothing need to do */
1576 out_free:
1577 kfree(vol_args);
1578 out:
1579 mutex_unlock(&fs_info->volume_mutex);
1580 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1581 mnt_drop_write_file(file);
1582 return ret;
1585 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1586 const char *name, unsigned long fd, int subvol,
1587 u64 *transid, bool readonly,
1588 struct btrfs_qgroup_inherit *inherit)
1590 int namelen;
1591 int ret = 0;
1593 if (!S_ISDIR(file_inode(file)->i_mode))
1594 return -ENOTDIR;
1596 ret = mnt_want_write_file(file);
1597 if (ret)
1598 goto out;
1600 namelen = strlen(name);
1601 if (strchr(name, '/')) {
1602 ret = -EINVAL;
1603 goto out_drop_write;
1606 if (name[0] == '.' &&
1607 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1608 ret = -EEXIST;
1609 goto out_drop_write;
1612 if (subvol) {
1613 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1614 NULL, transid, readonly, inherit);
1615 } else {
1616 struct fd src = fdget(fd);
1617 struct inode *src_inode;
1618 if (!src.file) {
1619 ret = -EINVAL;
1620 goto out_drop_write;
1623 src_inode = file_inode(src.file);
1624 if (src_inode->i_sb != file_inode(file)->i_sb) {
1625 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1626 "Snapshot src from another FS");
1627 ret = -EXDEV;
1628 } else if (!inode_owner_or_capable(src_inode)) {
1630 * Subvolume creation is not restricted, but snapshots
1631 * are limited to own subvolumes only
1633 ret = -EPERM;
1634 } else {
1635 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1636 BTRFS_I(src_inode)->root,
1637 transid, readonly, inherit);
1639 fdput(src);
1641 out_drop_write:
1642 mnt_drop_write_file(file);
1643 out:
1644 return ret;
1647 static noinline int btrfs_ioctl_snap_create(struct file *file,
1648 void __user *arg, int subvol)
1650 struct btrfs_ioctl_vol_args *vol_args;
1651 int ret;
1653 if (!S_ISDIR(file_inode(file)->i_mode))
1654 return -ENOTDIR;
1656 vol_args = memdup_user(arg, sizeof(*vol_args));
1657 if (IS_ERR(vol_args))
1658 return PTR_ERR(vol_args);
1659 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1661 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1662 vol_args->fd, subvol,
1663 NULL, false, NULL);
1665 kfree(vol_args);
1666 return ret;
1669 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1670 void __user *arg, int subvol)
1672 struct btrfs_ioctl_vol_args_v2 *vol_args;
1673 int ret;
1674 u64 transid = 0;
1675 u64 *ptr = NULL;
1676 bool readonly = false;
1677 struct btrfs_qgroup_inherit *inherit = NULL;
1679 if (!S_ISDIR(file_inode(file)->i_mode))
1680 return -ENOTDIR;
1682 vol_args = memdup_user(arg, sizeof(*vol_args));
1683 if (IS_ERR(vol_args))
1684 return PTR_ERR(vol_args);
1685 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1687 if (vol_args->flags &
1688 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1689 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1690 ret = -EOPNOTSUPP;
1691 goto free_args;
1694 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1695 ptr = &transid;
1696 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1697 readonly = true;
1698 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1699 if (vol_args->size > PAGE_SIZE) {
1700 ret = -EINVAL;
1701 goto free_args;
1703 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1704 if (IS_ERR(inherit)) {
1705 ret = PTR_ERR(inherit);
1706 goto free_args;
1710 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1711 vol_args->fd, subvol, ptr,
1712 readonly, inherit);
1713 if (ret)
1714 goto free_inherit;
1716 if (ptr && copy_to_user(arg +
1717 offsetof(struct btrfs_ioctl_vol_args_v2,
1718 transid),
1719 ptr, sizeof(*ptr)))
1720 ret = -EFAULT;
1722 free_inherit:
1723 kfree(inherit);
1724 free_args:
1725 kfree(vol_args);
1726 return ret;
1729 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1730 void __user *arg)
1732 struct inode *inode = file_inode(file);
1733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1734 struct btrfs_root *root = BTRFS_I(inode)->root;
1735 int ret = 0;
1736 u64 flags = 0;
1738 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1739 return -EINVAL;
1741 down_read(&fs_info->subvol_sem);
1742 if (btrfs_root_readonly(root))
1743 flags |= BTRFS_SUBVOL_RDONLY;
1744 up_read(&fs_info->subvol_sem);
1746 if (copy_to_user(arg, &flags, sizeof(flags)))
1747 ret = -EFAULT;
1749 return ret;
1752 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1753 void __user *arg)
1755 struct inode *inode = file_inode(file);
1756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1757 struct btrfs_root *root = BTRFS_I(inode)->root;
1758 struct btrfs_trans_handle *trans;
1759 u64 root_flags;
1760 u64 flags;
1761 int ret = 0;
1763 if (!inode_owner_or_capable(inode))
1764 return -EPERM;
1766 ret = mnt_want_write_file(file);
1767 if (ret)
1768 goto out;
1770 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1771 ret = -EINVAL;
1772 goto out_drop_write;
1775 if (copy_from_user(&flags, arg, sizeof(flags))) {
1776 ret = -EFAULT;
1777 goto out_drop_write;
1780 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1781 ret = -EINVAL;
1782 goto out_drop_write;
1785 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1786 ret = -EOPNOTSUPP;
1787 goto out_drop_write;
1790 down_write(&fs_info->subvol_sem);
1792 /* nothing to do */
1793 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1794 goto out_drop_sem;
1796 root_flags = btrfs_root_flags(&root->root_item);
1797 if (flags & BTRFS_SUBVOL_RDONLY) {
1798 btrfs_set_root_flags(&root->root_item,
1799 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1800 } else {
1802 * Block RO -> RW transition if this subvolume is involved in
1803 * send
1805 spin_lock(&root->root_item_lock);
1806 if (root->send_in_progress == 0) {
1807 btrfs_set_root_flags(&root->root_item,
1808 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1809 spin_unlock(&root->root_item_lock);
1810 } else {
1811 spin_unlock(&root->root_item_lock);
1812 btrfs_warn(fs_info,
1813 "Attempt to set subvolume %llu read-write during send",
1814 root->root_key.objectid);
1815 ret = -EPERM;
1816 goto out_drop_sem;
1820 trans = btrfs_start_transaction(root, 1);
1821 if (IS_ERR(trans)) {
1822 ret = PTR_ERR(trans);
1823 goto out_reset;
1826 ret = btrfs_update_root(trans, fs_info->tree_root,
1827 &root->root_key, &root->root_item);
1828 if (ret < 0) {
1829 btrfs_end_transaction(trans);
1830 goto out_reset;
1833 ret = btrfs_commit_transaction(trans);
1835 out_reset:
1836 if (ret)
1837 btrfs_set_root_flags(&root->root_item, root_flags);
1838 out_drop_sem:
1839 up_write(&fs_info->subvol_sem);
1840 out_drop_write:
1841 mnt_drop_write_file(file);
1842 out:
1843 return ret;
1847 * helper to check if the subvolume references other subvolumes
1849 static noinline int may_destroy_subvol(struct btrfs_root *root)
1851 struct btrfs_fs_info *fs_info = root->fs_info;
1852 struct btrfs_path *path;
1853 struct btrfs_dir_item *di;
1854 struct btrfs_key key;
1855 u64 dir_id;
1856 int ret;
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1864 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1865 dir_id, "default", 7, 0);
1866 if (di && !IS_ERR(di)) {
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1868 if (key.objectid == root->root_key.objectid) {
1869 ret = -EPERM;
1870 btrfs_err(fs_info,
1871 "deleting default subvolume %llu is not allowed",
1872 key.objectid);
1873 goto out;
1875 btrfs_release_path(path);
1878 key.objectid = root->root_key.objectid;
1879 key.type = BTRFS_ROOT_REF_KEY;
1880 key.offset = (u64)-1;
1882 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1883 if (ret < 0)
1884 goto out;
1885 BUG_ON(ret == 0);
1887 ret = 0;
1888 if (path->slots[0] > 0) {
1889 path->slots[0]--;
1890 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1891 if (key.objectid == root->root_key.objectid &&
1892 key.type == BTRFS_ROOT_REF_KEY)
1893 ret = -ENOTEMPTY;
1895 out:
1896 btrfs_free_path(path);
1897 return ret;
1900 static noinline int key_in_sk(struct btrfs_key *key,
1901 struct btrfs_ioctl_search_key *sk)
1903 struct btrfs_key test;
1904 int ret;
1906 test.objectid = sk->min_objectid;
1907 test.type = sk->min_type;
1908 test.offset = sk->min_offset;
1910 ret = btrfs_comp_cpu_keys(key, &test);
1911 if (ret < 0)
1912 return 0;
1914 test.objectid = sk->max_objectid;
1915 test.type = sk->max_type;
1916 test.offset = sk->max_offset;
1918 ret = btrfs_comp_cpu_keys(key, &test);
1919 if (ret > 0)
1920 return 0;
1921 return 1;
1924 static noinline int copy_to_sk(struct btrfs_path *path,
1925 struct btrfs_key *key,
1926 struct btrfs_ioctl_search_key *sk,
1927 size_t *buf_size,
1928 char __user *ubuf,
1929 unsigned long *sk_offset,
1930 int *num_found)
1932 u64 found_transid;
1933 struct extent_buffer *leaf;
1934 struct btrfs_ioctl_search_header sh;
1935 struct btrfs_key test;
1936 unsigned long item_off;
1937 unsigned long item_len;
1938 int nritems;
1939 int i;
1940 int slot;
1941 int ret = 0;
1943 leaf = path->nodes[0];
1944 slot = path->slots[0];
1945 nritems = btrfs_header_nritems(leaf);
1947 if (btrfs_header_generation(leaf) > sk->max_transid) {
1948 i = nritems;
1949 goto advance_key;
1951 found_transid = btrfs_header_generation(leaf);
1953 for (i = slot; i < nritems; i++) {
1954 item_off = btrfs_item_ptr_offset(leaf, i);
1955 item_len = btrfs_item_size_nr(leaf, i);
1957 btrfs_item_key_to_cpu(leaf, key, i);
1958 if (!key_in_sk(key, sk))
1959 continue;
1961 if (sizeof(sh) + item_len > *buf_size) {
1962 if (*num_found) {
1963 ret = 1;
1964 goto out;
1968 * return one empty item back for v1, which does not
1969 * handle -EOVERFLOW
1972 *buf_size = sizeof(sh) + item_len;
1973 item_len = 0;
1974 ret = -EOVERFLOW;
1977 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1978 ret = 1;
1979 goto out;
1982 sh.objectid = key->objectid;
1983 sh.offset = key->offset;
1984 sh.type = key->type;
1985 sh.len = item_len;
1986 sh.transid = found_transid;
1988 /* copy search result header */
1989 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1990 ret = -EFAULT;
1991 goto out;
1994 *sk_offset += sizeof(sh);
1996 if (item_len) {
1997 char __user *up = ubuf + *sk_offset;
1998 /* copy the item */
1999 if (read_extent_buffer_to_user(leaf, up,
2000 item_off, item_len)) {
2001 ret = -EFAULT;
2002 goto out;
2005 *sk_offset += item_len;
2007 (*num_found)++;
2009 if (ret) /* -EOVERFLOW from above */
2010 goto out;
2012 if (*num_found >= sk->nr_items) {
2013 ret = 1;
2014 goto out;
2017 advance_key:
2018 ret = 0;
2019 test.objectid = sk->max_objectid;
2020 test.type = sk->max_type;
2021 test.offset = sk->max_offset;
2022 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2023 ret = 1;
2024 else if (key->offset < (u64)-1)
2025 key->offset++;
2026 else if (key->type < (u8)-1) {
2027 key->offset = 0;
2028 key->type++;
2029 } else if (key->objectid < (u64)-1) {
2030 key->offset = 0;
2031 key->type = 0;
2032 key->objectid++;
2033 } else
2034 ret = 1;
2035 out:
2037 * 0: all items from this leaf copied, continue with next
2038 * 1: * more items can be copied, but unused buffer is too small
2039 * * all items were found
2040 * Either way, it will stops the loop which iterates to the next
2041 * leaf
2042 * -EOVERFLOW: item was to large for buffer
2043 * -EFAULT: could not copy extent buffer back to userspace
2045 return ret;
2048 static noinline int search_ioctl(struct inode *inode,
2049 struct btrfs_ioctl_search_key *sk,
2050 size_t *buf_size,
2051 char __user *ubuf)
2053 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2054 struct btrfs_root *root;
2055 struct btrfs_key key;
2056 struct btrfs_path *path;
2057 int ret;
2058 int num_found = 0;
2059 unsigned long sk_offset = 0;
2061 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2062 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2063 return -EOVERFLOW;
2066 path = btrfs_alloc_path();
2067 if (!path)
2068 return -ENOMEM;
2070 if (sk->tree_id == 0) {
2071 /* search the root of the inode that was passed */
2072 root = BTRFS_I(inode)->root;
2073 } else {
2074 key.objectid = sk->tree_id;
2075 key.type = BTRFS_ROOT_ITEM_KEY;
2076 key.offset = (u64)-1;
2077 root = btrfs_read_fs_root_no_name(info, &key);
2078 if (IS_ERR(root)) {
2079 btrfs_free_path(path);
2080 return -ENOENT;
2084 key.objectid = sk->min_objectid;
2085 key.type = sk->min_type;
2086 key.offset = sk->min_offset;
2088 while (1) {
2089 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2090 if (ret != 0) {
2091 if (ret > 0)
2092 ret = 0;
2093 goto err;
2095 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2096 &sk_offset, &num_found);
2097 btrfs_release_path(path);
2098 if (ret)
2099 break;
2102 if (ret > 0)
2103 ret = 0;
2104 err:
2105 sk->nr_items = num_found;
2106 btrfs_free_path(path);
2107 return ret;
2110 static noinline int btrfs_ioctl_tree_search(struct file *file,
2111 void __user *argp)
2113 struct btrfs_ioctl_search_args __user *uargs;
2114 struct btrfs_ioctl_search_key sk;
2115 struct inode *inode;
2116 int ret;
2117 size_t buf_size;
2119 if (!capable(CAP_SYS_ADMIN))
2120 return -EPERM;
2122 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2124 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2125 return -EFAULT;
2127 buf_size = sizeof(uargs->buf);
2129 inode = file_inode(file);
2130 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2133 * In the origin implementation an overflow is handled by returning a
2134 * search header with a len of zero, so reset ret.
2136 if (ret == -EOVERFLOW)
2137 ret = 0;
2139 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2140 ret = -EFAULT;
2141 return ret;
2144 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2145 void __user *argp)
2147 struct btrfs_ioctl_search_args_v2 __user *uarg;
2148 struct btrfs_ioctl_search_args_v2 args;
2149 struct inode *inode;
2150 int ret;
2151 size_t buf_size;
2152 const size_t buf_limit = SZ_16M;
2154 if (!capable(CAP_SYS_ADMIN))
2155 return -EPERM;
2157 /* copy search header and buffer size */
2158 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2159 if (copy_from_user(&args, uarg, sizeof(args)))
2160 return -EFAULT;
2162 buf_size = args.buf_size;
2164 /* limit result size to 16MB */
2165 if (buf_size > buf_limit)
2166 buf_size = buf_limit;
2168 inode = file_inode(file);
2169 ret = search_ioctl(inode, &args.key, &buf_size,
2170 (char __user *)(&uarg->buf[0]));
2171 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2172 ret = -EFAULT;
2173 else if (ret == -EOVERFLOW &&
2174 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2175 ret = -EFAULT;
2177 return ret;
2181 * Search INODE_REFs to identify path name of 'dirid' directory
2182 * in a 'tree_id' tree. and sets path name to 'name'.
2184 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2185 u64 tree_id, u64 dirid, char *name)
2187 struct btrfs_root *root;
2188 struct btrfs_key key;
2189 char *ptr;
2190 int ret = -1;
2191 int slot;
2192 int len;
2193 int total_len = 0;
2194 struct btrfs_inode_ref *iref;
2195 struct extent_buffer *l;
2196 struct btrfs_path *path;
2198 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2199 name[0]='\0';
2200 return 0;
2203 path = btrfs_alloc_path();
2204 if (!path)
2205 return -ENOMEM;
2207 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2209 key.objectid = tree_id;
2210 key.type = BTRFS_ROOT_ITEM_KEY;
2211 key.offset = (u64)-1;
2212 root = btrfs_read_fs_root_no_name(info, &key);
2213 if (IS_ERR(root)) {
2214 btrfs_err(info, "could not find root %llu", tree_id);
2215 ret = -ENOENT;
2216 goto out;
2219 key.objectid = dirid;
2220 key.type = BTRFS_INODE_REF_KEY;
2221 key.offset = (u64)-1;
2223 while (1) {
2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2225 if (ret < 0)
2226 goto out;
2227 else if (ret > 0) {
2228 ret = btrfs_previous_item(root, path, dirid,
2229 BTRFS_INODE_REF_KEY);
2230 if (ret < 0)
2231 goto out;
2232 else if (ret > 0) {
2233 ret = -ENOENT;
2234 goto out;
2238 l = path->nodes[0];
2239 slot = path->slots[0];
2240 btrfs_item_key_to_cpu(l, &key, slot);
2242 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2243 len = btrfs_inode_ref_name_len(l, iref);
2244 ptr -= len + 1;
2245 total_len += len + 1;
2246 if (ptr < name) {
2247 ret = -ENAMETOOLONG;
2248 goto out;
2251 *(ptr + len) = '/';
2252 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2254 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2255 break;
2257 btrfs_release_path(path);
2258 key.objectid = key.offset;
2259 key.offset = (u64)-1;
2260 dirid = key.objectid;
2262 memmove(name, ptr, total_len);
2263 name[total_len] = '\0';
2264 ret = 0;
2265 out:
2266 btrfs_free_path(path);
2267 return ret;
2270 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2271 void __user *argp)
2273 struct btrfs_ioctl_ino_lookup_args *args;
2274 struct inode *inode;
2275 int ret = 0;
2277 args = memdup_user(argp, sizeof(*args));
2278 if (IS_ERR(args))
2279 return PTR_ERR(args);
2281 inode = file_inode(file);
2284 * Unprivileged query to obtain the containing subvolume root id. The
2285 * path is reset so it's consistent with btrfs_search_path_in_tree.
2287 if (args->treeid == 0)
2288 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2290 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2291 args->name[0] = 0;
2292 goto out;
2295 if (!capable(CAP_SYS_ADMIN)) {
2296 ret = -EPERM;
2297 goto out;
2300 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2301 args->treeid, args->objectid,
2302 args->name);
2304 out:
2305 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2306 ret = -EFAULT;
2308 kfree(args);
2309 return ret;
2312 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2313 void __user *arg)
2315 struct dentry *parent = file->f_path.dentry;
2316 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2317 struct dentry *dentry;
2318 struct inode *dir = d_inode(parent);
2319 struct inode *inode;
2320 struct btrfs_root *root = BTRFS_I(dir)->root;
2321 struct btrfs_root *dest = NULL;
2322 struct btrfs_ioctl_vol_args *vol_args;
2323 struct btrfs_trans_handle *trans;
2324 struct btrfs_block_rsv block_rsv;
2325 u64 root_flags;
2326 u64 qgroup_reserved;
2327 int namelen;
2328 int ret;
2329 int err = 0;
2331 if (!S_ISDIR(dir->i_mode))
2332 return -ENOTDIR;
2334 vol_args = memdup_user(arg, sizeof(*vol_args));
2335 if (IS_ERR(vol_args))
2336 return PTR_ERR(vol_args);
2338 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2339 namelen = strlen(vol_args->name);
2340 if (strchr(vol_args->name, '/') ||
2341 strncmp(vol_args->name, "..", namelen) == 0) {
2342 err = -EINVAL;
2343 goto out;
2346 err = mnt_want_write_file(file);
2347 if (err)
2348 goto out;
2351 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2352 if (err == -EINTR)
2353 goto out_drop_write;
2354 dentry = lookup_one_len(vol_args->name, parent, namelen);
2355 if (IS_ERR(dentry)) {
2356 err = PTR_ERR(dentry);
2357 goto out_unlock_dir;
2360 if (d_really_is_negative(dentry)) {
2361 err = -ENOENT;
2362 goto out_dput;
2365 inode = d_inode(dentry);
2366 dest = BTRFS_I(inode)->root;
2367 if (!capable(CAP_SYS_ADMIN)) {
2369 * Regular user. Only allow this with a special mount
2370 * option, when the user has write+exec access to the
2371 * subvol root, and when rmdir(2) would have been
2372 * allowed.
2374 * Note that this is _not_ check that the subvol is
2375 * empty or doesn't contain data that we wouldn't
2376 * otherwise be able to delete.
2378 * Users who want to delete empty subvols should try
2379 * rmdir(2).
2381 err = -EPERM;
2382 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2383 goto out_dput;
2386 * Do not allow deletion if the parent dir is the same
2387 * as the dir to be deleted. That means the ioctl
2388 * must be called on the dentry referencing the root
2389 * of the subvol, not a random directory contained
2390 * within it.
2392 err = -EINVAL;
2393 if (root == dest)
2394 goto out_dput;
2396 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2397 if (err)
2398 goto out_dput;
2401 /* check if subvolume may be deleted by a user */
2402 err = btrfs_may_delete(dir, dentry, 1);
2403 if (err)
2404 goto out_dput;
2406 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2407 err = -EINVAL;
2408 goto out_dput;
2411 inode_lock(inode);
2414 * Don't allow to delete a subvolume with send in progress. This is
2415 * inside the i_mutex so the error handling that has to drop the bit
2416 * again is not run concurrently.
2418 spin_lock(&dest->root_item_lock);
2419 root_flags = btrfs_root_flags(&dest->root_item);
2420 if (dest->send_in_progress == 0) {
2421 btrfs_set_root_flags(&dest->root_item,
2422 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2423 spin_unlock(&dest->root_item_lock);
2424 } else {
2425 spin_unlock(&dest->root_item_lock);
2426 btrfs_warn(fs_info,
2427 "Attempt to delete subvolume %llu during send",
2428 dest->root_key.objectid);
2429 err = -EPERM;
2430 goto out_unlock_inode;
2433 down_write(&fs_info->subvol_sem);
2435 err = may_destroy_subvol(dest);
2436 if (err)
2437 goto out_up_write;
2439 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2441 * One for dir inode, two for dir entries, two for root
2442 * ref/backref.
2444 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2445 5, &qgroup_reserved, true);
2446 if (err)
2447 goto out_up_write;
2449 trans = btrfs_start_transaction(root, 0);
2450 if (IS_ERR(trans)) {
2451 err = PTR_ERR(trans);
2452 goto out_release;
2454 trans->block_rsv = &block_rsv;
2455 trans->bytes_reserved = block_rsv.size;
2457 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2459 ret = btrfs_unlink_subvol(trans, root, dir,
2460 dest->root_key.objectid,
2461 dentry->d_name.name,
2462 dentry->d_name.len);
2463 if (ret) {
2464 err = ret;
2465 btrfs_abort_transaction(trans, ret);
2466 goto out_end_trans;
2469 btrfs_record_root_in_trans(trans, dest);
2471 memset(&dest->root_item.drop_progress, 0,
2472 sizeof(dest->root_item.drop_progress));
2473 dest->root_item.drop_level = 0;
2474 btrfs_set_root_refs(&dest->root_item, 0);
2476 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2477 ret = btrfs_insert_orphan_item(trans,
2478 fs_info->tree_root,
2479 dest->root_key.objectid);
2480 if (ret) {
2481 btrfs_abort_transaction(trans, ret);
2482 err = ret;
2483 goto out_end_trans;
2487 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2488 BTRFS_UUID_KEY_SUBVOL,
2489 dest->root_key.objectid);
2490 if (ret && ret != -ENOENT) {
2491 btrfs_abort_transaction(trans, ret);
2492 err = ret;
2493 goto out_end_trans;
2495 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2496 ret = btrfs_uuid_tree_rem(trans, fs_info,
2497 dest->root_item.received_uuid,
2498 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2499 dest->root_key.objectid);
2500 if (ret && ret != -ENOENT) {
2501 btrfs_abort_transaction(trans, ret);
2502 err = ret;
2503 goto out_end_trans;
2507 out_end_trans:
2508 trans->block_rsv = NULL;
2509 trans->bytes_reserved = 0;
2510 ret = btrfs_end_transaction(trans);
2511 if (ret && !err)
2512 err = ret;
2513 inode->i_flags |= S_DEAD;
2514 out_release:
2515 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2516 out_up_write:
2517 up_write(&fs_info->subvol_sem);
2518 if (err) {
2519 spin_lock(&dest->root_item_lock);
2520 root_flags = btrfs_root_flags(&dest->root_item);
2521 btrfs_set_root_flags(&dest->root_item,
2522 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2523 spin_unlock(&dest->root_item_lock);
2525 out_unlock_inode:
2526 inode_unlock(inode);
2527 if (!err) {
2528 d_invalidate(dentry);
2529 btrfs_invalidate_inodes(dest);
2530 d_delete(dentry);
2531 ASSERT(dest->send_in_progress == 0);
2533 /* the last ref */
2534 if (dest->ino_cache_inode) {
2535 iput(dest->ino_cache_inode);
2536 dest->ino_cache_inode = NULL;
2539 out_dput:
2540 dput(dentry);
2541 out_unlock_dir:
2542 inode_unlock(dir);
2543 out_drop_write:
2544 mnt_drop_write_file(file);
2545 out:
2546 kfree(vol_args);
2547 return err;
2550 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2552 struct inode *inode = file_inode(file);
2553 struct btrfs_root *root = BTRFS_I(inode)->root;
2554 struct btrfs_ioctl_defrag_range_args *range;
2555 int ret;
2557 ret = mnt_want_write_file(file);
2558 if (ret)
2559 return ret;
2561 if (btrfs_root_readonly(root)) {
2562 ret = -EROFS;
2563 goto out;
2566 switch (inode->i_mode & S_IFMT) {
2567 case S_IFDIR:
2568 if (!capable(CAP_SYS_ADMIN)) {
2569 ret = -EPERM;
2570 goto out;
2572 ret = btrfs_defrag_root(root);
2573 break;
2574 case S_IFREG:
2575 if (!(file->f_mode & FMODE_WRITE)) {
2576 ret = -EINVAL;
2577 goto out;
2580 range = kzalloc(sizeof(*range), GFP_KERNEL);
2581 if (!range) {
2582 ret = -ENOMEM;
2583 goto out;
2586 if (argp) {
2587 if (copy_from_user(range, argp,
2588 sizeof(*range))) {
2589 ret = -EFAULT;
2590 kfree(range);
2591 goto out;
2593 /* compression requires us to start the IO */
2594 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2595 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2596 range->extent_thresh = (u32)-1;
2598 } else {
2599 /* the rest are all set to zero by kzalloc */
2600 range->len = (u64)-1;
2602 ret = btrfs_defrag_file(file_inode(file), file,
2603 range, 0, 0);
2604 if (ret > 0)
2605 ret = 0;
2606 kfree(range);
2607 break;
2608 default:
2609 ret = -EINVAL;
2611 out:
2612 mnt_drop_write_file(file);
2613 return ret;
2616 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2618 struct btrfs_ioctl_vol_args *vol_args;
2619 int ret;
2621 if (!capable(CAP_SYS_ADMIN))
2622 return -EPERM;
2624 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2625 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2627 mutex_lock(&fs_info->volume_mutex);
2628 vol_args = memdup_user(arg, sizeof(*vol_args));
2629 if (IS_ERR(vol_args)) {
2630 ret = PTR_ERR(vol_args);
2631 goto out;
2634 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2635 ret = btrfs_init_new_device(fs_info, vol_args->name);
2637 if (!ret)
2638 btrfs_info(fs_info, "disk added %s", vol_args->name);
2640 kfree(vol_args);
2641 out:
2642 mutex_unlock(&fs_info->volume_mutex);
2643 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2644 return ret;
2647 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2649 struct inode *inode = file_inode(file);
2650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2651 struct btrfs_ioctl_vol_args_v2 *vol_args;
2652 int ret;
2654 if (!capable(CAP_SYS_ADMIN))
2655 return -EPERM;
2657 ret = mnt_want_write_file(file);
2658 if (ret)
2659 return ret;
2661 vol_args = memdup_user(arg, sizeof(*vol_args));
2662 if (IS_ERR(vol_args)) {
2663 ret = PTR_ERR(vol_args);
2664 goto err_drop;
2667 /* Check for compatibility reject unknown flags */
2668 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2669 return -EOPNOTSUPP;
2671 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2672 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2673 goto out;
2676 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2677 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2678 } else {
2679 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2680 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2682 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2684 if (!ret) {
2685 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2686 btrfs_info(fs_info, "device deleted: id %llu",
2687 vol_args->devid);
2688 else
2689 btrfs_info(fs_info, "device deleted: %s",
2690 vol_args->name);
2692 out:
2693 kfree(vol_args);
2694 err_drop:
2695 mnt_drop_write_file(file);
2696 return ret;
2699 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2701 struct inode *inode = file_inode(file);
2702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2703 struct btrfs_ioctl_vol_args *vol_args;
2704 int ret;
2706 if (!capable(CAP_SYS_ADMIN))
2707 return -EPERM;
2709 ret = mnt_want_write_file(file);
2710 if (ret)
2711 return ret;
2713 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2714 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2715 goto out_drop_write;
2718 vol_args = memdup_user(arg, sizeof(*vol_args));
2719 if (IS_ERR(vol_args)) {
2720 ret = PTR_ERR(vol_args);
2721 goto out;
2724 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2725 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2727 if (!ret)
2728 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2729 kfree(vol_args);
2730 out:
2731 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2732 out_drop_write:
2733 mnt_drop_write_file(file);
2735 return ret;
2738 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2739 void __user *arg)
2741 struct btrfs_ioctl_fs_info_args *fi_args;
2742 struct btrfs_device *device;
2743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2744 int ret = 0;
2746 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2747 if (!fi_args)
2748 return -ENOMEM;
2750 rcu_read_lock();
2751 fi_args->num_devices = fs_devices->num_devices;
2753 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2754 if (device->devid > fi_args->max_id)
2755 fi_args->max_id = device->devid;
2757 rcu_read_unlock();
2759 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2760 fi_args->nodesize = fs_info->nodesize;
2761 fi_args->sectorsize = fs_info->sectorsize;
2762 fi_args->clone_alignment = fs_info->sectorsize;
2764 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2765 ret = -EFAULT;
2767 kfree(fi_args);
2768 return ret;
2771 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2772 void __user *arg)
2774 struct btrfs_ioctl_dev_info_args *di_args;
2775 struct btrfs_device *dev;
2776 int ret = 0;
2777 char *s_uuid = NULL;
2779 di_args = memdup_user(arg, sizeof(*di_args));
2780 if (IS_ERR(di_args))
2781 return PTR_ERR(di_args);
2783 if (!btrfs_is_empty_uuid(di_args->uuid))
2784 s_uuid = di_args->uuid;
2786 rcu_read_lock();
2787 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2789 if (!dev) {
2790 ret = -ENODEV;
2791 goto out;
2794 di_args->devid = dev->devid;
2795 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2796 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2797 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2798 if (dev->name) {
2799 struct rcu_string *name;
2801 name = rcu_dereference(dev->name);
2802 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2803 di_args->path[sizeof(di_args->path) - 1] = 0;
2804 } else {
2805 di_args->path[0] = '\0';
2808 out:
2809 rcu_read_unlock();
2810 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2811 ret = -EFAULT;
2813 kfree(di_args);
2814 return ret;
2817 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2819 struct page *page;
2821 page = grab_cache_page(inode->i_mapping, index);
2822 if (!page)
2823 return ERR_PTR(-ENOMEM);
2825 if (!PageUptodate(page)) {
2826 int ret;
2828 ret = btrfs_readpage(NULL, page);
2829 if (ret)
2830 return ERR_PTR(ret);
2831 lock_page(page);
2832 if (!PageUptodate(page)) {
2833 unlock_page(page);
2834 put_page(page);
2835 return ERR_PTR(-EIO);
2837 if (page->mapping != inode->i_mapping) {
2838 unlock_page(page);
2839 put_page(page);
2840 return ERR_PTR(-EAGAIN);
2844 return page;
2847 static int gather_extent_pages(struct inode *inode, struct page **pages,
2848 int num_pages, u64 off)
2850 int i;
2851 pgoff_t index = off >> PAGE_SHIFT;
2853 for (i = 0; i < num_pages; i++) {
2854 again:
2855 pages[i] = extent_same_get_page(inode, index + i);
2856 if (IS_ERR(pages[i])) {
2857 int err = PTR_ERR(pages[i]);
2859 if (err == -EAGAIN)
2860 goto again;
2861 pages[i] = NULL;
2862 return err;
2865 return 0;
2868 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2869 bool retry_range_locking)
2872 * Do any pending delalloc/csum calculations on inode, one way or
2873 * another, and lock file content.
2874 * The locking order is:
2876 * 1) pages
2877 * 2) range in the inode's io tree
2879 while (1) {
2880 struct btrfs_ordered_extent *ordered;
2881 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2882 ordered = btrfs_lookup_first_ordered_extent(inode,
2883 off + len - 1);
2884 if ((!ordered ||
2885 ordered->file_offset + ordered->len <= off ||
2886 ordered->file_offset >= off + len) &&
2887 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2888 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2889 if (ordered)
2890 btrfs_put_ordered_extent(ordered);
2891 break;
2893 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2894 if (ordered)
2895 btrfs_put_ordered_extent(ordered);
2896 if (!retry_range_locking)
2897 return -EAGAIN;
2898 btrfs_wait_ordered_range(inode, off, len);
2900 return 0;
2903 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2905 inode_unlock(inode1);
2906 inode_unlock(inode2);
2909 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2911 if (inode1 < inode2)
2912 swap(inode1, inode2);
2914 inode_lock_nested(inode1, I_MUTEX_PARENT);
2915 inode_lock_nested(inode2, I_MUTEX_CHILD);
2918 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2919 struct inode *inode2, u64 loff2, u64 len)
2921 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2922 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2925 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2926 struct inode *inode2, u64 loff2, u64 len,
2927 bool retry_range_locking)
2929 int ret;
2931 if (inode1 < inode2) {
2932 swap(inode1, inode2);
2933 swap(loff1, loff2);
2935 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2936 if (ret)
2937 return ret;
2938 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2939 if (ret)
2940 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2941 loff1 + len - 1);
2942 return ret;
2945 struct cmp_pages {
2946 int num_pages;
2947 struct page **src_pages;
2948 struct page **dst_pages;
2951 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2953 int i;
2954 struct page *pg;
2956 for (i = 0; i < cmp->num_pages; i++) {
2957 pg = cmp->src_pages[i];
2958 if (pg) {
2959 unlock_page(pg);
2960 put_page(pg);
2962 pg = cmp->dst_pages[i];
2963 if (pg) {
2964 unlock_page(pg);
2965 put_page(pg);
2968 kfree(cmp->src_pages);
2969 kfree(cmp->dst_pages);
2972 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2973 struct inode *dst, u64 dst_loff,
2974 u64 len, struct cmp_pages *cmp)
2976 int ret;
2977 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2978 struct page **src_pgarr, **dst_pgarr;
2981 * We must gather up all the pages before we initiate our
2982 * extent locking. We use an array for the page pointers. Size
2983 * of the array is bounded by len, which is in turn bounded by
2984 * BTRFS_MAX_DEDUPE_LEN.
2986 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2987 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2988 if (!src_pgarr || !dst_pgarr) {
2989 kfree(src_pgarr);
2990 kfree(dst_pgarr);
2991 return -ENOMEM;
2993 cmp->num_pages = num_pages;
2994 cmp->src_pages = src_pgarr;
2995 cmp->dst_pages = dst_pgarr;
2998 * If deduping ranges in the same inode, locking rules make it mandatory
2999 * to always lock pages in ascending order to avoid deadlocks with
3000 * concurrent tasks (such as starting writeback/delalloc).
3002 if (src == dst && dst_loff < loff) {
3003 swap(src_pgarr, dst_pgarr);
3004 swap(loff, dst_loff);
3007 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3008 if (ret)
3009 goto out;
3011 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3013 out:
3014 if (ret)
3015 btrfs_cmp_data_free(cmp);
3016 return ret;
3019 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3021 int ret = 0;
3022 int i;
3023 struct page *src_page, *dst_page;
3024 unsigned int cmp_len = PAGE_SIZE;
3025 void *addr, *dst_addr;
3027 i = 0;
3028 while (len) {
3029 if (len < PAGE_SIZE)
3030 cmp_len = len;
3032 BUG_ON(i >= cmp->num_pages);
3034 src_page = cmp->src_pages[i];
3035 dst_page = cmp->dst_pages[i];
3036 ASSERT(PageLocked(src_page));
3037 ASSERT(PageLocked(dst_page));
3039 addr = kmap_atomic(src_page);
3040 dst_addr = kmap_atomic(dst_page);
3042 flush_dcache_page(src_page);
3043 flush_dcache_page(dst_page);
3045 if (memcmp(addr, dst_addr, cmp_len))
3046 ret = -EBADE;
3048 kunmap_atomic(addr);
3049 kunmap_atomic(dst_addr);
3051 if (ret)
3052 break;
3054 len -= cmp_len;
3055 i++;
3058 return ret;
3061 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3062 u64 olen)
3064 u64 len = *plen;
3065 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3067 if (off + olen > inode->i_size || off + olen < off)
3068 return -EINVAL;
3070 /* if we extend to eof, continue to block boundary */
3071 if (off + len == inode->i_size)
3072 *plen = len = ALIGN(inode->i_size, bs) - off;
3074 /* Check that we are block aligned - btrfs_clone() requires this */
3075 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3076 return -EINVAL;
3078 return 0;
3081 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3082 struct inode *dst, u64 dst_loff)
3084 int ret;
3085 u64 len = olen;
3086 struct cmp_pages cmp;
3087 bool same_inode = (src == dst);
3088 u64 same_lock_start = 0;
3089 u64 same_lock_len = 0;
3091 if (len == 0)
3092 return 0;
3094 if (same_inode)
3095 inode_lock(src);
3096 else
3097 btrfs_double_inode_lock(src, dst);
3099 ret = extent_same_check_offsets(src, loff, &len, olen);
3100 if (ret)
3101 goto out_unlock;
3103 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3104 if (ret)
3105 goto out_unlock;
3107 if (same_inode) {
3109 * Single inode case wants the same checks, except we
3110 * don't want our length pushed out past i_size as
3111 * comparing that data range makes no sense.
3113 * extent_same_check_offsets() will do this for an
3114 * unaligned length at i_size, so catch it here and
3115 * reject the request.
3117 * This effectively means we require aligned extents
3118 * for the single-inode case, whereas the other cases
3119 * allow an unaligned length so long as it ends at
3120 * i_size.
3122 if (len != olen) {
3123 ret = -EINVAL;
3124 goto out_unlock;
3127 /* Check for overlapping ranges */
3128 if (dst_loff + len > loff && dst_loff < loff + len) {
3129 ret = -EINVAL;
3130 goto out_unlock;
3133 same_lock_start = min_t(u64, loff, dst_loff);
3134 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3137 /* don't make the dst file partly checksummed */
3138 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3139 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3140 ret = -EINVAL;
3141 goto out_unlock;
3144 again:
3145 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3146 if (ret)
3147 goto out_unlock;
3149 if (same_inode)
3150 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3151 false);
3152 else
3153 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3154 false);
3156 * If one of the inodes has dirty pages in the respective range or
3157 * ordered extents, we need to flush dellaloc and wait for all ordered
3158 * extents in the range. We must unlock the pages and the ranges in the
3159 * io trees to avoid deadlocks when flushing delalloc (requires locking
3160 * pages) and when waiting for ordered extents to complete (they require
3161 * range locking).
3163 if (ret == -EAGAIN) {
3165 * Ranges in the io trees already unlocked. Now unlock all
3166 * pages before waiting for all IO to complete.
3168 btrfs_cmp_data_free(&cmp);
3169 if (same_inode) {
3170 btrfs_wait_ordered_range(src, same_lock_start,
3171 same_lock_len);
3172 } else {
3173 btrfs_wait_ordered_range(src, loff, len);
3174 btrfs_wait_ordered_range(dst, dst_loff, len);
3176 goto again;
3178 ASSERT(ret == 0);
3179 if (WARN_ON(ret)) {
3180 /* ranges in the io trees already unlocked */
3181 btrfs_cmp_data_free(&cmp);
3182 return ret;
3185 /* pass original length for comparison so we stay within i_size */
3186 ret = btrfs_cmp_data(olen, &cmp);
3187 if (ret == 0)
3188 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3190 if (same_inode)
3191 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3192 same_lock_start + same_lock_len - 1);
3193 else
3194 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3196 btrfs_cmp_data_free(&cmp);
3197 out_unlock:
3198 if (same_inode)
3199 inode_unlock(src);
3200 else
3201 btrfs_double_inode_unlock(src, dst);
3203 return ret;
3206 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3208 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3209 struct file *dst_file, u64 dst_loff)
3211 struct inode *src = file_inode(src_file);
3212 struct inode *dst = file_inode(dst_file);
3213 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3214 ssize_t res;
3216 if (olen > BTRFS_MAX_DEDUPE_LEN)
3217 olen = BTRFS_MAX_DEDUPE_LEN;
3219 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3221 * Btrfs does not support blocksize < page_size. As a
3222 * result, btrfs_cmp_data() won't correctly handle
3223 * this situation without an update.
3225 return -EINVAL;
3228 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3229 if (res)
3230 return res;
3231 return olen;
3234 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3235 struct inode *inode,
3236 u64 endoff,
3237 const u64 destoff,
3238 const u64 olen,
3239 int no_time_update)
3241 struct btrfs_root *root = BTRFS_I(inode)->root;
3242 int ret;
3244 inode_inc_iversion(inode);
3245 if (!no_time_update)
3246 inode->i_mtime = inode->i_ctime = current_time(inode);
3248 * We round up to the block size at eof when determining which
3249 * extents to clone above, but shouldn't round up the file size.
3251 if (endoff > destoff + olen)
3252 endoff = destoff + olen;
3253 if (endoff > inode->i_size)
3254 btrfs_i_size_write(BTRFS_I(inode), endoff);
3256 ret = btrfs_update_inode(trans, root, inode);
3257 if (ret) {
3258 btrfs_abort_transaction(trans, ret);
3259 btrfs_end_transaction(trans);
3260 goto out;
3262 ret = btrfs_end_transaction(trans);
3263 out:
3264 return ret;
3267 static void clone_update_extent_map(struct btrfs_inode *inode,
3268 const struct btrfs_trans_handle *trans,
3269 const struct btrfs_path *path,
3270 const u64 hole_offset,
3271 const u64 hole_len)
3273 struct extent_map_tree *em_tree = &inode->extent_tree;
3274 struct extent_map *em;
3275 int ret;
3277 em = alloc_extent_map();
3278 if (!em) {
3279 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3280 return;
3283 if (path) {
3284 struct btrfs_file_extent_item *fi;
3286 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3287 struct btrfs_file_extent_item);
3288 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3289 em->generation = -1;
3290 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3291 BTRFS_FILE_EXTENT_INLINE)
3292 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3293 &inode->runtime_flags);
3294 } else {
3295 em->start = hole_offset;
3296 em->len = hole_len;
3297 em->ram_bytes = em->len;
3298 em->orig_start = hole_offset;
3299 em->block_start = EXTENT_MAP_HOLE;
3300 em->block_len = 0;
3301 em->orig_block_len = 0;
3302 em->compress_type = BTRFS_COMPRESS_NONE;
3303 em->generation = trans->transid;
3306 while (1) {
3307 write_lock(&em_tree->lock);
3308 ret = add_extent_mapping(em_tree, em, 1);
3309 write_unlock(&em_tree->lock);
3310 if (ret != -EEXIST) {
3311 free_extent_map(em);
3312 break;
3314 btrfs_drop_extent_cache(inode, em->start,
3315 em->start + em->len - 1, 0);
3318 if (ret)
3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3323 * Make sure we do not end up inserting an inline extent into a file that has
3324 * already other (non-inline) extents. If a file has an inline extent it can
3325 * not have any other extents and the (single) inline extent must start at the
3326 * file offset 0. Failing to respect these rules will lead to file corruption,
3327 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3329 * We can have extents that have been already written to disk or we can have
3330 * dirty ranges still in delalloc, in which case the extent maps and items are
3331 * created only when we run delalloc, and the delalloc ranges might fall outside
3332 * the range we are currently locking in the inode's io tree. So we check the
3333 * inode's i_size because of that (i_size updates are done while holding the
3334 * i_mutex, which we are holding here).
3335 * We also check to see if the inode has a size not greater than "datal" but has
3336 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3337 * protected against such concurrent fallocate calls by the i_mutex).
3339 * If the file has no extents but a size greater than datal, do not allow the
3340 * copy because we would need turn the inline extent into a non-inline one (even
3341 * with NO_HOLES enabled). If we find our destination inode only has one inline
3342 * extent, just overwrite it with the source inline extent if its size is less
3343 * than the source extent's size, or we could copy the source inline extent's
3344 * data into the destination inode's inline extent if the later is greater then
3345 * the former.
3347 static int clone_copy_inline_extent(struct inode *dst,
3348 struct btrfs_trans_handle *trans,
3349 struct btrfs_path *path,
3350 struct btrfs_key *new_key,
3351 const u64 drop_start,
3352 const u64 datal,
3353 const u64 skip,
3354 const u64 size,
3355 char *inline_data)
3357 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3358 struct btrfs_root *root = BTRFS_I(dst)->root;
3359 const u64 aligned_end = ALIGN(new_key->offset + datal,
3360 fs_info->sectorsize);
3361 int ret;
3362 struct btrfs_key key;
3364 if (new_key->offset > 0)
3365 return -EOPNOTSUPP;
3367 key.objectid = btrfs_ino(BTRFS_I(dst));
3368 key.type = BTRFS_EXTENT_DATA_KEY;
3369 key.offset = 0;
3370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3371 if (ret < 0) {
3372 return ret;
3373 } else if (ret > 0) {
3374 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3375 ret = btrfs_next_leaf(root, path);
3376 if (ret < 0)
3377 return ret;
3378 else if (ret > 0)
3379 goto copy_inline_extent;
3381 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3382 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3383 key.type == BTRFS_EXTENT_DATA_KEY) {
3384 ASSERT(key.offset > 0);
3385 return -EOPNOTSUPP;
3387 } else if (i_size_read(dst) <= datal) {
3388 struct btrfs_file_extent_item *ei;
3389 u64 ext_len;
3392 * If the file size is <= datal, make sure there are no other
3393 * extents following (can happen do to an fallocate call with
3394 * the flag FALLOC_FL_KEEP_SIZE).
3396 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3397 struct btrfs_file_extent_item);
3399 * If it's an inline extent, it can not have other extents
3400 * following it.
3402 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3403 BTRFS_FILE_EXTENT_INLINE)
3404 goto copy_inline_extent;
3406 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3407 if (ext_len > aligned_end)
3408 return -EOPNOTSUPP;
3410 ret = btrfs_next_item(root, path);
3411 if (ret < 0) {
3412 return ret;
3413 } else if (ret == 0) {
3414 btrfs_item_key_to_cpu(path->nodes[0], &key,
3415 path->slots[0]);
3416 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3417 key.type == BTRFS_EXTENT_DATA_KEY)
3418 return -EOPNOTSUPP;
3422 copy_inline_extent:
3424 * We have no extent items, or we have an extent at offset 0 which may
3425 * or may not be inlined. All these cases are dealt the same way.
3427 if (i_size_read(dst) > datal) {
3429 * If the destination inode has an inline extent...
3430 * This would require copying the data from the source inline
3431 * extent into the beginning of the destination's inline extent.
3432 * But this is really complex, both extents can be compressed
3433 * or just one of them, which would require decompressing and
3434 * re-compressing data (which could increase the new compressed
3435 * size, not allowing the compressed data to fit anymore in an
3436 * inline extent).
3437 * So just don't support this case for now (it should be rare,
3438 * we are not really saving space when cloning inline extents).
3440 return -EOPNOTSUPP;
3443 btrfs_release_path(path);
3444 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3445 if (ret)
3446 return ret;
3447 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3448 if (ret)
3449 return ret;
3451 if (skip) {
3452 const u32 start = btrfs_file_extent_calc_inline_size(0);
3454 memmove(inline_data + start, inline_data + start + skip, datal);
3457 write_extent_buffer(path->nodes[0], inline_data,
3458 btrfs_item_ptr_offset(path->nodes[0],
3459 path->slots[0]),
3460 size);
3461 inode_add_bytes(dst, datal);
3463 return 0;
3467 * btrfs_clone() - clone a range from inode file to another
3469 * @src: Inode to clone from
3470 * @inode: Inode to clone to
3471 * @off: Offset within source to start clone from
3472 * @olen: Original length, passed by user, of range to clone
3473 * @olen_aligned: Block-aligned value of olen
3474 * @destoff: Offset within @inode to start clone
3475 * @no_time_update: Whether to update mtime/ctime on the target inode
3477 static int btrfs_clone(struct inode *src, struct inode *inode,
3478 const u64 off, const u64 olen, const u64 olen_aligned,
3479 const u64 destoff, int no_time_update)
3481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3482 struct btrfs_root *root = BTRFS_I(inode)->root;
3483 struct btrfs_path *path = NULL;
3484 struct extent_buffer *leaf;
3485 struct btrfs_trans_handle *trans;
3486 char *buf = NULL;
3487 struct btrfs_key key;
3488 u32 nritems;
3489 int slot;
3490 int ret;
3491 const u64 len = olen_aligned;
3492 u64 last_dest_end = destoff;
3494 ret = -ENOMEM;
3495 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3496 if (!buf)
3497 return ret;
3499 path = btrfs_alloc_path();
3500 if (!path) {
3501 kvfree(buf);
3502 return ret;
3505 path->reada = READA_FORWARD;
3506 /* clone data */
3507 key.objectid = btrfs_ino(BTRFS_I(src));
3508 key.type = BTRFS_EXTENT_DATA_KEY;
3509 key.offset = off;
3511 while (1) {
3512 u64 next_key_min_offset = key.offset + 1;
3515 * note the key will change type as we walk through the
3516 * tree.
3518 path->leave_spinning = 1;
3519 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3520 0, 0);
3521 if (ret < 0)
3522 goto out;
3524 * First search, if no extent item that starts at offset off was
3525 * found but the previous item is an extent item, it's possible
3526 * it might overlap our target range, therefore process it.
3528 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3529 btrfs_item_key_to_cpu(path->nodes[0], &key,
3530 path->slots[0] - 1);
3531 if (key.type == BTRFS_EXTENT_DATA_KEY)
3532 path->slots[0]--;
3535 nritems = btrfs_header_nritems(path->nodes[0]);
3536 process_slot:
3537 if (path->slots[0] >= nritems) {
3538 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3539 if (ret < 0)
3540 goto out;
3541 if (ret > 0)
3542 break;
3543 nritems = btrfs_header_nritems(path->nodes[0]);
3545 leaf = path->nodes[0];
3546 slot = path->slots[0];
3548 btrfs_item_key_to_cpu(leaf, &key, slot);
3549 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3550 key.objectid != btrfs_ino(BTRFS_I(src)))
3551 break;
3553 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3554 struct btrfs_file_extent_item *extent;
3555 int type;
3556 u32 size;
3557 struct btrfs_key new_key;
3558 u64 disko = 0, diskl = 0;
3559 u64 datao = 0, datal = 0;
3560 u8 comp;
3561 u64 drop_start;
3563 extent = btrfs_item_ptr(leaf, slot,
3564 struct btrfs_file_extent_item);
3565 comp = btrfs_file_extent_compression(leaf, extent);
3566 type = btrfs_file_extent_type(leaf, extent);
3567 if (type == BTRFS_FILE_EXTENT_REG ||
3568 type == BTRFS_FILE_EXTENT_PREALLOC) {
3569 disko = btrfs_file_extent_disk_bytenr(leaf,
3570 extent);
3571 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3572 extent);
3573 datao = btrfs_file_extent_offset(leaf, extent);
3574 datal = btrfs_file_extent_num_bytes(leaf,
3575 extent);
3576 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3577 /* take upper bound, may be compressed */
3578 datal = btrfs_file_extent_ram_bytes(leaf,
3579 extent);
3583 * The first search might have left us at an extent
3584 * item that ends before our target range's start, can
3585 * happen if we have holes and NO_HOLES feature enabled.
3587 if (key.offset + datal <= off) {
3588 path->slots[0]++;
3589 goto process_slot;
3590 } else if (key.offset >= off + len) {
3591 break;
3593 next_key_min_offset = key.offset + datal;
3594 size = btrfs_item_size_nr(leaf, slot);
3595 read_extent_buffer(leaf, buf,
3596 btrfs_item_ptr_offset(leaf, slot),
3597 size);
3599 btrfs_release_path(path);
3600 path->leave_spinning = 0;
3602 memcpy(&new_key, &key, sizeof(new_key));
3603 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3604 if (off <= key.offset)
3605 new_key.offset = key.offset + destoff - off;
3606 else
3607 new_key.offset = destoff;
3610 * Deal with a hole that doesn't have an extent item
3611 * that represents it (NO_HOLES feature enabled).
3612 * This hole is either in the middle of the cloning
3613 * range or at the beginning (fully overlaps it or
3614 * partially overlaps it).
3616 if (new_key.offset != last_dest_end)
3617 drop_start = last_dest_end;
3618 else
3619 drop_start = new_key.offset;
3622 * 1 - adjusting old extent (we may have to split it)
3623 * 1 - add new extent
3624 * 1 - inode update
3626 trans = btrfs_start_transaction(root, 3);
3627 if (IS_ERR(trans)) {
3628 ret = PTR_ERR(trans);
3629 goto out;
3632 if (type == BTRFS_FILE_EXTENT_REG ||
3633 type == BTRFS_FILE_EXTENT_PREALLOC) {
3635 * a | --- range to clone ---| b
3636 * | ------------- extent ------------- |
3639 /* subtract range b */
3640 if (key.offset + datal > off + len)
3641 datal = off + len - key.offset;
3643 /* subtract range a */
3644 if (off > key.offset) {
3645 datao += off - key.offset;
3646 datal -= off - key.offset;
3649 ret = btrfs_drop_extents(trans, root, inode,
3650 drop_start,
3651 new_key.offset + datal,
3653 if (ret) {
3654 if (ret != -EOPNOTSUPP)
3655 btrfs_abort_transaction(trans,
3656 ret);
3657 btrfs_end_transaction(trans);
3658 goto out;
3661 ret = btrfs_insert_empty_item(trans, root, path,
3662 &new_key, size);
3663 if (ret) {
3664 btrfs_abort_transaction(trans, ret);
3665 btrfs_end_transaction(trans);
3666 goto out;
3669 leaf = path->nodes[0];
3670 slot = path->slots[0];
3671 write_extent_buffer(leaf, buf,
3672 btrfs_item_ptr_offset(leaf, slot),
3673 size);
3675 extent = btrfs_item_ptr(leaf, slot,
3676 struct btrfs_file_extent_item);
3678 /* disko == 0 means it's a hole */
3679 if (!disko)
3680 datao = 0;
3682 btrfs_set_file_extent_offset(leaf, extent,
3683 datao);
3684 btrfs_set_file_extent_num_bytes(leaf, extent,
3685 datal);
3687 if (disko) {
3688 inode_add_bytes(inode, datal);
3689 ret = btrfs_inc_extent_ref(trans,
3690 root,
3691 disko, diskl, 0,
3692 root->root_key.objectid,
3693 btrfs_ino(BTRFS_I(inode)),
3694 new_key.offset - datao);
3695 if (ret) {
3696 btrfs_abort_transaction(trans,
3697 ret);
3698 btrfs_end_transaction(trans);
3699 goto out;
3703 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3704 u64 skip = 0;
3705 u64 trim = 0;
3707 if (off > key.offset) {
3708 skip = off - key.offset;
3709 new_key.offset += skip;
3712 if (key.offset + datal > off + len)
3713 trim = key.offset + datal - (off + len);
3715 if (comp && (skip || trim)) {
3716 ret = -EINVAL;
3717 btrfs_end_transaction(trans);
3718 goto out;
3720 size -= skip + trim;
3721 datal -= skip + trim;
3723 ret = clone_copy_inline_extent(inode,
3724 trans, path,
3725 &new_key,
3726 drop_start,
3727 datal,
3728 skip, size, buf);
3729 if (ret) {
3730 if (ret != -EOPNOTSUPP)
3731 btrfs_abort_transaction(trans,
3732 ret);
3733 btrfs_end_transaction(trans);
3734 goto out;
3736 leaf = path->nodes[0];
3737 slot = path->slots[0];
3740 /* If we have an implicit hole (NO_HOLES feature). */
3741 if (drop_start < new_key.offset)
3742 clone_update_extent_map(BTRFS_I(inode), trans,
3743 NULL, drop_start,
3744 new_key.offset - drop_start);
3746 clone_update_extent_map(BTRFS_I(inode), trans,
3747 path, 0, 0);
3749 btrfs_mark_buffer_dirty(leaf);
3750 btrfs_release_path(path);
3752 last_dest_end = ALIGN(new_key.offset + datal,
3753 fs_info->sectorsize);
3754 ret = clone_finish_inode_update(trans, inode,
3755 last_dest_end,
3756 destoff, olen,
3757 no_time_update);
3758 if (ret)
3759 goto out;
3760 if (new_key.offset + datal >= destoff + len)
3761 break;
3763 btrfs_release_path(path);
3764 key.offset = next_key_min_offset;
3766 if (fatal_signal_pending(current)) {
3767 ret = -EINTR;
3768 goto out;
3771 ret = 0;
3773 if (last_dest_end < destoff + len) {
3775 * We have an implicit hole (NO_HOLES feature is enabled) that
3776 * fully or partially overlaps our cloning range at its end.
3778 btrfs_release_path(path);
3781 * 1 - remove extent(s)
3782 * 1 - inode update
3784 trans = btrfs_start_transaction(root, 2);
3785 if (IS_ERR(trans)) {
3786 ret = PTR_ERR(trans);
3787 goto out;
3789 ret = btrfs_drop_extents(trans, root, inode,
3790 last_dest_end, destoff + len, 1);
3791 if (ret) {
3792 if (ret != -EOPNOTSUPP)
3793 btrfs_abort_transaction(trans, ret);
3794 btrfs_end_transaction(trans);
3795 goto out;
3797 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3798 last_dest_end,
3799 destoff + len - last_dest_end);
3800 ret = clone_finish_inode_update(trans, inode, destoff + len,
3801 destoff, olen, no_time_update);
3804 out:
3805 btrfs_free_path(path);
3806 kvfree(buf);
3807 return ret;
3810 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3811 u64 off, u64 olen, u64 destoff)
3813 struct inode *inode = file_inode(file);
3814 struct inode *src = file_inode(file_src);
3815 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3816 struct btrfs_root *root = BTRFS_I(inode)->root;
3817 int ret;
3818 u64 len = olen;
3819 u64 bs = fs_info->sb->s_blocksize;
3820 int same_inode = src == inode;
3823 * TODO:
3824 * - split compressed inline extents. annoying: we need to
3825 * decompress into destination's address_space (the file offset
3826 * may change, so source mapping won't do), then recompress (or
3827 * otherwise reinsert) a subrange.
3829 * - split destination inode's inline extents. The inline extents can
3830 * be either compressed or non-compressed.
3833 if (btrfs_root_readonly(root))
3834 return -EROFS;
3836 if (file_src->f_path.mnt != file->f_path.mnt ||
3837 src->i_sb != inode->i_sb)
3838 return -EXDEV;
3840 /* don't make the dst file partly checksummed */
3841 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3842 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3843 return -EINVAL;
3845 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3846 return -EISDIR;
3848 if (!same_inode) {
3849 btrfs_double_inode_lock(src, inode);
3850 } else {
3851 inode_lock(src);
3854 /* determine range to clone */
3855 ret = -EINVAL;
3856 if (off + len > src->i_size || off + len < off)
3857 goto out_unlock;
3858 if (len == 0)
3859 olen = len = src->i_size - off;
3860 /* if we extend to eof, continue to block boundary */
3861 if (off + len == src->i_size)
3862 len = ALIGN(src->i_size, bs) - off;
3864 if (len == 0) {
3865 ret = 0;
3866 goto out_unlock;
3869 /* verify the end result is block aligned */
3870 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3871 !IS_ALIGNED(destoff, bs))
3872 goto out_unlock;
3874 /* verify if ranges are overlapped within the same file */
3875 if (same_inode) {
3876 if (destoff + len > off && destoff < off + len)
3877 goto out_unlock;
3880 if (destoff > inode->i_size) {
3881 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3882 if (ret)
3883 goto out_unlock;
3887 * Lock the target range too. Right after we replace the file extent
3888 * items in the fs tree (which now point to the cloned data), we might
3889 * have a worker replace them with extent items relative to a write
3890 * operation that was issued before this clone operation (i.e. confront
3891 * with inode.c:btrfs_finish_ordered_io).
3893 if (same_inode) {
3894 u64 lock_start = min_t(u64, off, destoff);
3895 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3897 ret = lock_extent_range(src, lock_start, lock_len, true);
3898 } else {
3899 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3900 true);
3902 ASSERT(ret == 0);
3903 if (WARN_ON(ret)) {
3904 /* ranges in the io trees already unlocked */
3905 goto out_unlock;
3908 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3910 if (same_inode) {
3911 u64 lock_start = min_t(u64, off, destoff);
3912 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3914 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3915 } else {
3916 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3919 * Truncate page cache pages so that future reads will see the cloned
3920 * data immediately and not the previous data.
3922 truncate_inode_pages_range(&inode->i_data,
3923 round_down(destoff, PAGE_SIZE),
3924 round_up(destoff + len, PAGE_SIZE) - 1);
3925 out_unlock:
3926 if (!same_inode)
3927 btrfs_double_inode_unlock(src, inode);
3928 else
3929 inode_unlock(src);
3930 return ret;
3933 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3934 struct file *dst_file, loff_t destoff, u64 len)
3936 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3940 * there are many ways the trans_start and trans_end ioctls can lead
3941 * to deadlocks. They should only be used by applications that
3942 * basically own the machine, and have a very in depth understanding
3943 * of all the possible deadlocks and enospc problems.
3945 static long btrfs_ioctl_trans_start(struct file *file)
3947 struct inode *inode = file_inode(file);
3948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3949 struct btrfs_root *root = BTRFS_I(inode)->root;
3950 struct btrfs_trans_handle *trans;
3951 struct btrfs_file_private *private;
3952 int ret;
3953 static bool warned = false;
3955 ret = -EPERM;
3956 if (!capable(CAP_SYS_ADMIN))
3957 goto out;
3959 if (!warned) {
3960 btrfs_warn(fs_info,
3961 "Userspace transaction mechanism is considered "
3962 "deprecated and slated to be removed in 4.17. "
3963 "If you have a valid use case please "
3964 "speak up on the mailing list");
3965 WARN_ON(1);
3966 warned = true;
3969 ret = -EINPROGRESS;
3970 private = file->private_data;
3971 if (private && private->trans)
3972 goto out;
3973 if (!private) {
3974 private = kzalloc(sizeof(struct btrfs_file_private),
3975 GFP_KERNEL);
3976 if (!private)
3977 return -ENOMEM;
3978 file->private_data = private;
3981 ret = -EROFS;
3982 if (btrfs_root_readonly(root))
3983 goto out;
3985 ret = mnt_want_write_file(file);
3986 if (ret)
3987 goto out;
3989 atomic_inc(&fs_info->open_ioctl_trans);
3991 ret = -ENOMEM;
3992 trans = btrfs_start_ioctl_transaction(root);
3993 if (IS_ERR(trans))
3994 goto out_drop;
3996 private->trans = trans;
3997 return 0;
3999 out_drop:
4000 atomic_dec(&fs_info->open_ioctl_trans);
4001 mnt_drop_write_file(file);
4002 out:
4003 return ret;
4006 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4008 struct inode *inode = file_inode(file);
4009 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4010 struct btrfs_root *root = BTRFS_I(inode)->root;
4011 struct btrfs_root *new_root;
4012 struct btrfs_dir_item *di;
4013 struct btrfs_trans_handle *trans;
4014 struct btrfs_path *path;
4015 struct btrfs_key location;
4016 struct btrfs_disk_key disk_key;
4017 u64 objectid = 0;
4018 u64 dir_id;
4019 int ret;
4021 if (!capable(CAP_SYS_ADMIN))
4022 return -EPERM;
4024 ret = mnt_want_write_file(file);
4025 if (ret)
4026 return ret;
4028 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4029 ret = -EFAULT;
4030 goto out;
4033 if (!objectid)
4034 objectid = BTRFS_FS_TREE_OBJECTID;
4036 location.objectid = objectid;
4037 location.type = BTRFS_ROOT_ITEM_KEY;
4038 location.offset = (u64)-1;
4040 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4041 if (IS_ERR(new_root)) {
4042 ret = PTR_ERR(new_root);
4043 goto out;
4045 if (!is_fstree(new_root->objectid)) {
4046 ret = -ENOENT;
4047 goto out;
4050 path = btrfs_alloc_path();
4051 if (!path) {
4052 ret = -ENOMEM;
4053 goto out;
4055 path->leave_spinning = 1;
4057 trans = btrfs_start_transaction(root, 1);
4058 if (IS_ERR(trans)) {
4059 btrfs_free_path(path);
4060 ret = PTR_ERR(trans);
4061 goto out;
4064 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4065 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4066 dir_id, "default", 7, 1);
4067 if (IS_ERR_OR_NULL(di)) {
4068 btrfs_free_path(path);
4069 btrfs_end_transaction(trans);
4070 btrfs_err(fs_info,
4071 "Umm, you don't have the default diritem, this isn't going to work");
4072 ret = -ENOENT;
4073 goto out;
4076 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4077 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4078 btrfs_mark_buffer_dirty(path->nodes[0]);
4079 btrfs_free_path(path);
4081 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4082 btrfs_end_transaction(trans);
4083 out:
4084 mnt_drop_write_file(file);
4085 return ret;
4088 void btrfs_get_block_group_info(struct list_head *groups_list,
4089 struct btrfs_ioctl_space_info *space)
4091 struct btrfs_block_group_cache *block_group;
4093 space->total_bytes = 0;
4094 space->used_bytes = 0;
4095 space->flags = 0;
4096 list_for_each_entry(block_group, groups_list, list) {
4097 space->flags = block_group->flags;
4098 space->total_bytes += block_group->key.offset;
4099 space->used_bytes +=
4100 btrfs_block_group_used(&block_group->item);
4104 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4105 void __user *arg)
4107 struct btrfs_ioctl_space_args space_args;
4108 struct btrfs_ioctl_space_info space;
4109 struct btrfs_ioctl_space_info *dest;
4110 struct btrfs_ioctl_space_info *dest_orig;
4111 struct btrfs_ioctl_space_info __user *user_dest;
4112 struct btrfs_space_info *info;
4113 static const u64 types[] = {
4114 BTRFS_BLOCK_GROUP_DATA,
4115 BTRFS_BLOCK_GROUP_SYSTEM,
4116 BTRFS_BLOCK_GROUP_METADATA,
4117 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4119 int num_types = 4;
4120 int alloc_size;
4121 int ret = 0;
4122 u64 slot_count = 0;
4123 int i, c;
4125 if (copy_from_user(&space_args,
4126 (struct btrfs_ioctl_space_args __user *)arg,
4127 sizeof(space_args)))
4128 return -EFAULT;
4130 for (i = 0; i < num_types; i++) {
4131 struct btrfs_space_info *tmp;
4133 info = NULL;
4134 rcu_read_lock();
4135 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4136 list) {
4137 if (tmp->flags == types[i]) {
4138 info = tmp;
4139 break;
4142 rcu_read_unlock();
4144 if (!info)
4145 continue;
4147 down_read(&info->groups_sem);
4148 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4149 if (!list_empty(&info->block_groups[c]))
4150 slot_count++;
4152 up_read(&info->groups_sem);
4156 * Global block reserve, exported as a space_info
4158 slot_count++;
4160 /* space_slots == 0 means they are asking for a count */
4161 if (space_args.space_slots == 0) {
4162 space_args.total_spaces = slot_count;
4163 goto out;
4166 slot_count = min_t(u64, space_args.space_slots, slot_count);
4168 alloc_size = sizeof(*dest) * slot_count;
4170 /* we generally have at most 6 or so space infos, one for each raid
4171 * level. So, a whole page should be more than enough for everyone
4173 if (alloc_size > PAGE_SIZE)
4174 return -ENOMEM;
4176 space_args.total_spaces = 0;
4177 dest = kmalloc(alloc_size, GFP_KERNEL);
4178 if (!dest)
4179 return -ENOMEM;
4180 dest_orig = dest;
4182 /* now we have a buffer to copy into */
4183 for (i = 0; i < num_types; i++) {
4184 struct btrfs_space_info *tmp;
4186 if (!slot_count)
4187 break;
4189 info = NULL;
4190 rcu_read_lock();
4191 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4192 list) {
4193 if (tmp->flags == types[i]) {
4194 info = tmp;
4195 break;
4198 rcu_read_unlock();
4200 if (!info)
4201 continue;
4202 down_read(&info->groups_sem);
4203 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4204 if (!list_empty(&info->block_groups[c])) {
4205 btrfs_get_block_group_info(
4206 &info->block_groups[c], &space);
4207 memcpy(dest, &space, sizeof(space));
4208 dest++;
4209 space_args.total_spaces++;
4210 slot_count--;
4212 if (!slot_count)
4213 break;
4215 up_read(&info->groups_sem);
4219 * Add global block reserve
4221 if (slot_count) {
4222 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4224 spin_lock(&block_rsv->lock);
4225 space.total_bytes = block_rsv->size;
4226 space.used_bytes = block_rsv->size - block_rsv->reserved;
4227 spin_unlock(&block_rsv->lock);
4228 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4229 memcpy(dest, &space, sizeof(space));
4230 space_args.total_spaces++;
4233 user_dest = (struct btrfs_ioctl_space_info __user *)
4234 (arg + sizeof(struct btrfs_ioctl_space_args));
4236 if (copy_to_user(user_dest, dest_orig, alloc_size))
4237 ret = -EFAULT;
4239 kfree(dest_orig);
4240 out:
4241 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4242 ret = -EFAULT;
4244 return ret;
4248 * there are many ways the trans_start and trans_end ioctls can lead
4249 * to deadlocks. They should only be used by applications that
4250 * basically own the machine, and have a very in depth understanding
4251 * of all the possible deadlocks and enospc problems.
4253 long btrfs_ioctl_trans_end(struct file *file)
4255 struct inode *inode = file_inode(file);
4256 struct btrfs_root *root = BTRFS_I(inode)->root;
4257 struct btrfs_file_private *private = file->private_data;
4259 if (!private || !private->trans)
4260 return -EINVAL;
4262 btrfs_end_transaction(private->trans);
4263 private->trans = NULL;
4265 atomic_dec(&root->fs_info->open_ioctl_trans);
4267 mnt_drop_write_file(file);
4268 return 0;
4271 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4272 void __user *argp)
4274 struct btrfs_trans_handle *trans;
4275 u64 transid;
4276 int ret;
4278 trans = btrfs_attach_transaction_barrier(root);
4279 if (IS_ERR(trans)) {
4280 if (PTR_ERR(trans) != -ENOENT)
4281 return PTR_ERR(trans);
4283 /* No running transaction, don't bother */
4284 transid = root->fs_info->last_trans_committed;
4285 goto out;
4287 transid = trans->transid;
4288 ret = btrfs_commit_transaction_async(trans, 0);
4289 if (ret) {
4290 btrfs_end_transaction(trans);
4291 return ret;
4293 out:
4294 if (argp)
4295 if (copy_to_user(argp, &transid, sizeof(transid)))
4296 return -EFAULT;
4297 return 0;
4300 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4301 void __user *argp)
4303 u64 transid;
4305 if (argp) {
4306 if (copy_from_user(&transid, argp, sizeof(transid)))
4307 return -EFAULT;
4308 } else {
4309 transid = 0; /* current trans */
4311 return btrfs_wait_for_commit(fs_info, transid);
4314 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4316 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4317 struct btrfs_ioctl_scrub_args *sa;
4318 int ret;
4320 if (!capable(CAP_SYS_ADMIN))
4321 return -EPERM;
4323 sa = memdup_user(arg, sizeof(*sa));
4324 if (IS_ERR(sa))
4325 return PTR_ERR(sa);
4327 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4328 ret = mnt_want_write_file(file);
4329 if (ret)
4330 goto out;
4333 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4334 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4337 if (copy_to_user(arg, sa, sizeof(*sa)))
4338 ret = -EFAULT;
4340 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4341 mnt_drop_write_file(file);
4342 out:
4343 kfree(sa);
4344 return ret;
4347 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4349 if (!capable(CAP_SYS_ADMIN))
4350 return -EPERM;
4352 return btrfs_scrub_cancel(fs_info);
4355 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4356 void __user *arg)
4358 struct btrfs_ioctl_scrub_args *sa;
4359 int ret;
4361 if (!capable(CAP_SYS_ADMIN))
4362 return -EPERM;
4364 sa = memdup_user(arg, sizeof(*sa));
4365 if (IS_ERR(sa))
4366 return PTR_ERR(sa);
4368 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4370 if (copy_to_user(arg, sa, sizeof(*sa)))
4371 ret = -EFAULT;
4373 kfree(sa);
4374 return ret;
4377 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4378 void __user *arg)
4380 struct btrfs_ioctl_get_dev_stats *sa;
4381 int ret;
4383 sa = memdup_user(arg, sizeof(*sa));
4384 if (IS_ERR(sa))
4385 return PTR_ERR(sa);
4387 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4388 kfree(sa);
4389 return -EPERM;
4392 ret = btrfs_get_dev_stats(fs_info, sa);
4394 if (copy_to_user(arg, sa, sizeof(*sa)))
4395 ret = -EFAULT;
4397 kfree(sa);
4398 return ret;
4401 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4402 void __user *arg)
4404 struct btrfs_ioctl_dev_replace_args *p;
4405 int ret;
4407 if (!capable(CAP_SYS_ADMIN))
4408 return -EPERM;
4410 p = memdup_user(arg, sizeof(*p));
4411 if (IS_ERR(p))
4412 return PTR_ERR(p);
4414 switch (p->cmd) {
4415 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4416 if (sb_rdonly(fs_info->sb)) {
4417 ret = -EROFS;
4418 goto out;
4420 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4421 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4422 } else {
4423 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4424 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4426 break;
4427 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4428 btrfs_dev_replace_status(fs_info, p);
4429 ret = 0;
4430 break;
4431 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4432 ret = btrfs_dev_replace_cancel(fs_info, p);
4433 break;
4434 default:
4435 ret = -EINVAL;
4436 break;
4439 if (copy_to_user(arg, p, sizeof(*p)))
4440 ret = -EFAULT;
4441 out:
4442 kfree(p);
4443 return ret;
4446 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4448 int ret = 0;
4449 int i;
4450 u64 rel_ptr;
4451 int size;
4452 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4453 struct inode_fs_paths *ipath = NULL;
4454 struct btrfs_path *path;
4456 if (!capable(CAP_DAC_READ_SEARCH))
4457 return -EPERM;
4459 path = btrfs_alloc_path();
4460 if (!path) {
4461 ret = -ENOMEM;
4462 goto out;
4465 ipa = memdup_user(arg, sizeof(*ipa));
4466 if (IS_ERR(ipa)) {
4467 ret = PTR_ERR(ipa);
4468 ipa = NULL;
4469 goto out;
4472 size = min_t(u32, ipa->size, 4096);
4473 ipath = init_ipath(size, root, path);
4474 if (IS_ERR(ipath)) {
4475 ret = PTR_ERR(ipath);
4476 ipath = NULL;
4477 goto out;
4480 ret = paths_from_inode(ipa->inum, ipath);
4481 if (ret < 0)
4482 goto out;
4484 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4485 rel_ptr = ipath->fspath->val[i] -
4486 (u64)(unsigned long)ipath->fspath->val;
4487 ipath->fspath->val[i] = rel_ptr;
4490 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4491 ipath->fspath, size);
4492 if (ret) {
4493 ret = -EFAULT;
4494 goto out;
4497 out:
4498 btrfs_free_path(path);
4499 free_ipath(ipath);
4500 kfree(ipa);
4502 return ret;
4505 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4507 struct btrfs_data_container *inodes = ctx;
4508 const size_t c = 3 * sizeof(u64);
4510 if (inodes->bytes_left >= c) {
4511 inodes->bytes_left -= c;
4512 inodes->val[inodes->elem_cnt] = inum;
4513 inodes->val[inodes->elem_cnt + 1] = offset;
4514 inodes->val[inodes->elem_cnt + 2] = root;
4515 inodes->elem_cnt += 3;
4516 } else {
4517 inodes->bytes_missing += c - inodes->bytes_left;
4518 inodes->bytes_left = 0;
4519 inodes->elem_missed += 3;
4522 return 0;
4525 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4526 void __user *arg, int version)
4528 int ret = 0;
4529 int size;
4530 struct btrfs_ioctl_logical_ino_args *loi;
4531 struct btrfs_data_container *inodes = NULL;
4532 struct btrfs_path *path = NULL;
4533 bool ignore_offset;
4535 if (!capable(CAP_SYS_ADMIN))
4536 return -EPERM;
4538 loi = memdup_user(arg, sizeof(*loi));
4539 if (IS_ERR(loi))
4540 return PTR_ERR(loi);
4542 if (version == 1) {
4543 ignore_offset = false;
4544 size = min_t(u32, loi->size, SZ_64K);
4545 } else {
4546 /* All reserved bits must be 0 for now */
4547 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4548 ret = -EINVAL;
4549 goto out_loi;
4551 /* Only accept flags we have defined so far */
4552 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4553 ret = -EINVAL;
4554 goto out_loi;
4556 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4557 size = min_t(u32, loi->size, SZ_16M);
4560 path = btrfs_alloc_path();
4561 if (!path) {
4562 ret = -ENOMEM;
4563 goto out;
4566 inodes = init_data_container(size);
4567 if (IS_ERR(inodes)) {
4568 ret = PTR_ERR(inodes);
4569 inodes = NULL;
4570 goto out;
4573 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4574 build_ino_list, inodes, ignore_offset);
4575 if (ret == -EINVAL)
4576 ret = -ENOENT;
4577 if (ret < 0)
4578 goto out;
4580 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4581 size);
4582 if (ret)
4583 ret = -EFAULT;
4585 out:
4586 btrfs_free_path(path);
4587 kvfree(inodes);
4588 out_loi:
4589 kfree(loi);
4591 return ret;
4594 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4595 struct btrfs_ioctl_balance_args *bargs)
4597 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4599 bargs->flags = bctl->flags;
4601 if (atomic_read(&fs_info->balance_running))
4602 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4603 if (atomic_read(&fs_info->balance_pause_req))
4604 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4605 if (atomic_read(&fs_info->balance_cancel_req))
4606 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4608 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4609 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4610 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4612 if (lock) {
4613 spin_lock(&fs_info->balance_lock);
4614 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4615 spin_unlock(&fs_info->balance_lock);
4616 } else {
4617 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4621 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4623 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4624 struct btrfs_fs_info *fs_info = root->fs_info;
4625 struct btrfs_ioctl_balance_args *bargs;
4626 struct btrfs_balance_control *bctl;
4627 bool need_unlock; /* for mut. excl. ops lock */
4628 int ret;
4630 if (!capable(CAP_SYS_ADMIN))
4631 return -EPERM;
4633 ret = mnt_want_write_file(file);
4634 if (ret)
4635 return ret;
4637 again:
4638 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4639 mutex_lock(&fs_info->volume_mutex);
4640 mutex_lock(&fs_info->balance_mutex);
4641 need_unlock = true;
4642 goto locked;
4646 * mut. excl. ops lock is locked. Three possibilities:
4647 * (1) some other op is running
4648 * (2) balance is running
4649 * (3) balance is paused -- special case (think resume)
4651 mutex_lock(&fs_info->balance_mutex);
4652 if (fs_info->balance_ctl) {
4653 /* this is either (2) or (3) */
4654 if (!atomic_read(&fs_info->balance_running)) {
4655 mutex_unlock(&fs_info->balance_mutex);
4656 if (!mutex_trylock(&fs_info->volume_mutex))
4657 goto again;
4658 mutex_lock(&fs_info->balance_mutex);
4660 if (fs_info->balance_ctl &&
4661 !atomic_read(&fs_info->balance_running)) {
4662 /* this is (3) */
4663 need_unlock = false;
4664 goto locked;
4667 mutex_unlock(&fs_info->balance_mutex);
4668 mutex_unlock(&fs_info->volume_mutex);
4669 goto again;
4670 } else {
4671 /* this is (2) */
4672 mutex_unlock(&fs_info->balance_mutex);
4673 ret = -EINPROGRESS;
4674 goto out;
4676 } else {
4677 /* this is (1) */
4678 mutex_unlock(&fs_info->balance_mutex);
4679 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4680 goto out;
4683 locked:
4684 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4686 if (arg) {
4687 bargs = memdup_user(arg, sizeof(*bargs));
4688 if (IS_ERR(bargs)) {
4689 ret = PTR_ERR(bargs);
4690 goto out_unlock;
4693 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4694 if (!fs_info->balance_ctl) {
4695 ret = -ENOTCONN;
4696 goto out_bargs;
4699 bctl = fs_info->balance_ctl;
4700 spin_lock(&fs_info->balance_lock);
4701 bctl->flags |= BTRFS_BALANCE_RESUME;
4702 spin_unlock(&fs_info->balance_lock);
4704 goto do_balance;
4706 } else {
4707 bargs = NULL;
4710 if (fs_info->balance_ctl) {
4711 ret = -EINPROGRESS;
4712 goto out_bargs;
4715 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4716 if (!bctl) {
4717 ret = -ENOMEM;
4718 goto out_bargs;
4721 bctl->fs_info = fs_info;
4722 if (arg) {
4723 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4724 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4725 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4727 bctl->flags = bargs->flags;
4728 } else {
4729 /* balance everything - no filters */
4730 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4733 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4734 ret = -EINVAL;
4735 goto out_bctl;
4738 do_balance:
4740 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4741 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4742 * or, if restriper was paused all the way until unmount, in
4743 * free_fs_info. The flag is cleared in __cancel_balance.
4745 need_unlock = false;
4747 ret = btrfs_balance(bctl, bargs);
4748 bctl = NULL;
4750 if (arg) {
4751 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752 ret = -EFAULT;
4755 out_bctl:
4756 kfree(bctl);
4757 out_bargs:
4758 kfree(bargs);
4759 out_unlock:
4760 mutex_unlock(&fs_info->balance_mutex);
4761 mutex_unlock(&fs_info->volume_mutex);
4762 if (need_unlock)
4763 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4764 out:
4765 mnt_drop_write_file(file);
4766 return ret;
4769 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4771 if (!capable(CAP_SYS_ADMIN))
4772 return -EPERM;
4774 switch (cmd) {
4775 case BTRFS_BALANCE_CTL_PAUSE:
4776 return btrfs_pause_balance(fs_info);
4777 case BTRFS_BALANCE_CTL_CANCEL:
4778 return btrfs_cancel_balance(fs_info);
4781 return -EINVAL;
4784 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4785 void __user *arg)
4787 struct btrfs_ioctl_balance_args *bargs;
4788 int ret = 0;
4790 if (!capable(CAP_SYS_ADMIN))
4791 return -EPERM;
4793 mutex_lock(&fs_info->balance_mutex);
4794 if (!fs_info->balance_ctl) {
4795 ret = -ENOTCONN;
4796 goto out;
4799 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4800 if (!bargs) {
4801 ret = -ENOMEM;
4802 goto out;
4805 update_ioctl_balance_args(fs_info, 1, bargs);
4807 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4808 ret = -EFAULT;
4810 kfree(bargs);
4811 out:
4812 mutex_unlock(&fs_info->balance_mutex);
4813 return ret;
4816 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4818 struct inode *inode = file_inode(file);
4819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4820 struct btrfs_ioctl_quota_ctl_args *sa;
4821 struct btrfs_trans_handle *trans = NULL;
4822 int ret;
4823 int err;
4825 if (!capable(CAP_SYS_ADMIN))
4826 return -EPERM;
4828 ret = mnt_want_write_file(file);
4829 if (ret)
4830 return ret;
4832 sa = memdup_user(arg, sizeof(*sa));
4833 if (IS_ERR(sa)) {
4834 ret = PTR_ERR(sa);
4835 goto drop_write;
4838 down_write(&fs_info->subvol_sem);
4839 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4840 if (IS_ERR(trans)) {
4841 ret = PTR_ERR(trans);
4842 goto out;
4845 switch (sa->cmd) {
4846 case BTRFS_QUOTA_CTL_ENABLE:
4847 ret = btrfs_quota_enable(trans, fs_info);
4848 break;
4849 case BTRFS_QUOTA_CTL_DISABLE:
4850 ret = btrfs_quota_disable(trans, fs_info);
4851 break;
4852 default:
4853 ret = -EINVAL;
4854 break;
4857 err = btrfs_commit_transaction(trans);
4858 if (err && !ret)
4859 ret = err;
4860 out:
4861 kfree(sa);
4862 up_write(&fs_info->subvol_sem);
4863 drop_write:
4864 mnt_drop_write_file(file);
4865 return ret;
4868 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4870 struct inode *inode = file_inode(file);
4871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4872 struct btrfs_root *root = BTRFS_I(inode)->root;
4873 struct btrfs_ioctl_qgroup_assign_args *sa;
4874 struct btrfs_trans_handle *trans;
4875 int ret;
4876 int err;
4878 if (!capable(CAP_SYS_ADMIN))
4879 return -EPERM;
4881 ret = mnt_want_write_file(file);
4882 if (ret)
4883 return ret;
4885 sa = memdup_user(arg, sizeof(*sa));
4886 if (IS_ERR(sa)) {
4887 ret = PTR_ERR(sa);
4888 goto drop_write;
4891 trans = btrfs_join_transaction(root);
4892 if (IS_ERR(trans)) {
4893 ret = PTR_ERR(trans);
4894 goto out;
4897 if (sa->assign) {
4898 ret = btrfs_add_qgroup_relation(trans, fs_info,
4899 sa->src, sa->dst);
4900 } else {
4901 ret = btrfs_del_qgroup_relation(trans, fs_info,
4902 sa->src, sa->dst);
4905 /* update qgroup status and info */
4906 err = btrfs_run_qgroups(trans, fs_info);
4907 if (err < 0)
4908 btrfs_handle_fs_error(fs_info, err,
4909 "failed to update qgroup status and info");
4910 err = btrfs_end_transaction(trans);
4911 if (err && !ret)
4912 ret = err;
4914 out:
4915 kfree(sa);
4916 drop_write:
4917 mnt_drop_write_file(file);
4918 return ret;
4921 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4923 struct inode *inode = file_inode(file);
4924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4925 struct btrfs_root *root = BTRFS_I(inode)->root;
4926 struct btrfs_ioctl_qgroup_create_args *sa;
4927 struct btrfs_trans_handle *trans;
4928 int ret;
4929 int err;
4931 if (!capable(CAP_SYS_ADMIN))
4932 return -EPERM;
4934 ret = mnt_want_write_file(file);
4935 if (ret)
4936 return ret;
4938 sa = memdup_user(arg, sizeof(*sa));
4939 if (IS_ERR(sa)) {
4940 ret = PTR_ERR(sa);
4941 goto drop_write;
4944 if (!sa->qgroupid) {
4945 ret = -EINVAL;
4946 goto out;
4949 trans = btrfs_join_transaction(root);
4950 if (IS_ERR(trans)) {
4951 ret = PTR_ERR(trans);
4952 goto out;
4955 if (sa->create) {
4956 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4957 } else {
4958 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4961 err = btrfs_end_transaction(trans);
4962 if (err && !ret)
4963 ret = err;
4965 out:
4966 kfree(sa);
4967 drop_write:
4968 mnt_drop_write_file(file);
4969 return ret;
4972 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4974 struct inode *inode = file_inode(file);
4975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4976 struct btrfs_root *root = BTRFS_I(inode)->root;
4977 struct btrfs_ioctl_qgroup_limit_args *sa;
4978 struct btrfs_trans_handle *trans;
4979 int ret;
4980 int err;
4981 u64 qgroupid;
4983 if (!capable(CAP_SYS_ADMIN))
4984 return -EPERM;
4986 ret = mnt_want_write_file(file);
4987 if (ret)
4988 return ret;
4990 sa = memdup_user(arg, sizeof(*sa));
4991 if (IS_ERR(sa)) {
4992 ret = PTR_ERR(sa);
4993 goto drop_write;
4996 trans = btrfs_join_transaction(root);
4997 if (IS_ERR(trans)) {
4998 ret = PTR_ERR(trans);
4999 goto out;
5002 qgroupid = sa->qgroupid;
5003 if (!qgroupid) {
5004 /* take the current subvol as qgroup */
5005 qgroupid = root->root_key.objectid;
5008 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5010 err = btrfs_end_transaction(trans);
5011 if (err && !ret)
5012 ret = err;
5014 out:
5015 kfree(sa);
5016 drop_write:
5017 mnt_drop_write_file(file);
5018 return ret;
5021 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5023 struct inode *inode = file_inode(file);
5024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5025 struct btrfs_ioctl_quota_rescan_args *qsa;
5026 int ret;
5028 if (!capable(CAP_SYS_ADMIN))
5029 return -EPERM;
5031 ret = mnt_want_write_file(file);
5032 if (ret)
5033 return ret;
5035 qsa = memdup_user(arg, sizeof(*qsa));
5036 if (IS_ERR(qsa)) {
5037 ret = PTR_ERR(qsa);
5038 goto drop_write;
5041 if (qsa->flags) {
5042 ret = -EINVAL;
5043 goto out;
5046 ret = btrfs_qgroup_rescan(fs_info);
5048 out:
5049 kfree(qsa);
5050 drop_write:
5051 mnt_drop_write_file(file);
5052 return ret;
5055 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5057 struct inode *inode = file_inode(file);
5058 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5059 struct btrfs_ioctl_quota_rescan_args *qsa;
5060 int ret = 0;
5062 if (!capable(CAP_SYS_ADMIN))
5063 return -EPERM;
5065 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5066 if (!qsa)
5067 return -ENOMEM;
5069 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5070 qsa->flags = 1;
5071 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5074 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5075 ret = -EFAULT;
5077 kfree(qsa);
5078 return ret;
5081 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5083 struct inode *inode = file_inode(file);
5084 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5086 if (!capable(CAP_SYS_ADMIN))
5087 return -EPERM;
5089 return btrfs_qgroup_wait_for_completion(fs_info, true);
5092 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5093 struct btrfs_ioctl_received_subvol_args *sa)
5095 struct inode *inode = file_inode(file);
5096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5097 struct btrfs_root *root = BTRFS_I(inode)->root;
5098 struct btrfs_root_item *root_item = &root->root_item;
5099 struct btrfs_trans_handle *trans;
5100 struct timespec ct = current_time(inode);
5101 int ret = 0;
5102 int received_uuid_changed;
5104 if (!inode_owner_or_capable(inode))
5105 return -EPERM;
5107 ret = mnt_want_write_file(file);
5108 if (ret < 0)
5109 return ret;
5111 down_write(&fs_info->subvol_sem);
5113 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5114 ret = -EINVAL;
5115 goto out;
5118 if (btrfs_root_readonly(root)) {
5119 ret = -EROFS;
5120 goto out;
5124 * 1 - root item
5125 * 2 - uuid items (received uuid + subvol uuid)
5127 trans = btrfs_start_transaction(root, 3);
5128 if (IS_ERR(trans)) {
5129 ret = PTR_ERR(trans);
5130 trans = NULL;
5131 goto out;
5134 sa->rtransid = trans->transid;
5135 sa->rtime.sec = ct.tv_sec;
5136 sa->rtime.nsec = ct.tv_nsec;
5138 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5139 BTRFS_UUID_SIZE);
5140 if (received_uuid_changed &&
5141 !btrfs_is_empty_uuid(root_item->received_uuid))
5142 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5143 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5144 root->root_key.objectid);
5145 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5146 btrfs_set_root_stransid(root_item, sa->stransid);
5147 btrfs_set_root_rtransid(root_item, sa->rtransid);
5148 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5149 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5150 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5151 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5153 ret = btrfs_update_root(trans, fs_info->tree_root,
5154 &root->root_key, &root->root_item);
5155 if (ret < 0) {
5156 btrfs_end_transaction(trans);
5157 goto out;
5159 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5160 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5161 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5162 root->root_key.objectid);
5163 if (ret < 0 && ret != -EEXIST) {
5164 btrfs_abort_transaction(trans, ret);
5165 btrfs_end_transaction(trans);
5166 goto out;
5169 ret = btrfs_commit_transaction(trans);
5170 out:
5171 up_write(&fs_info->subvol_sem);
5172 mnt_drop_write_file(file);
5173 return ret;
5176 #ifdef CONFIG_64BIT
5177 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5178 void __user *arg)
5180 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5181 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5182 int ret = 0;
5184 args32 = memdup_user(arg, sizeof(*args32));
5185 if (IS_ERR(args32))
5186 return PTR_ERR(args32);
5188 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5189 if (!args64) {
5190 ret = -ENOMEM;
5191 goto out;
5194 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5195 args64->stransid = args32->stransid;
5196 args64->rtransid = args32->rtransid;
5197 args64->stime.sec = args32->stime.sec;
5198 args64->stime.nsec = args32->stime.nsec;
5199 args64->rtime.sec = args32->rtime.sec;
5200 args64->rtime.nsec = args32->rtime.nsec;
5201 args64->flags = args32->flags;
5203 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5204 if (ret)
5205 goto out;
5207 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5208 args32->stransid = args64->stransid;
5209 args32->rtransid = args64->rtransid;
5210 args32->stime.sec = args64->stime.sec;
5211 args32->stime.nsec = args64->stime.nsec;
5212 args32->rtime.sec = args64->rtime.sec;
5213 args32->rtime.nsec = args64->rtime.nsec;
5214 args32->flags = args64->flags;
5216 ret = copy_to_user(arg, args32, sizeof(*args32));
5217 if (ret)
5218 ret = -EFAULT;
5220 out:
5221 kfree(args32);
5222 kfree(args64);
5223 return ret;
5225 #endif
5227 static long btrfs_ioctl_set_received_subvol(struct file *file,
5228 void __user *arg)
5230 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5231 int ret = 0;
5233 sa = memdup_user(arg, sizeof(*sa));
5234 if (IS_ERR(sa))
5235 return PTR_ERR(sa);
5237 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5239 if (ret)
5240 goto out;
5242 ret = copy_to_user(arg, sa, sizeof(*sa));
5243 if (ret)
5244 ret = -EFAULT;
5246 out:
5247 kfree(sa);
5248 return ret;
5251 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5253 struct inode *inode = file_inode(file);
5254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5255 size_t len;
5256 int ret;
5257 char label[BTRFS_LABEL_SIZE];
5259 spin_lock(&fs_info->super_lock);
5260 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5261 spin_unlock(&fs_info->super_lock);
5263 len = strnlen(label, BTRFS_LABEL_SIZE);
5265 if (len == BTRFS_LABEL_SIZE) {
5266 btrfs_warn(fs_info,
5267 "label is too long, return the first %zu bytes",
5268 --len);
5271 ret = copy_to_user(arg, label, len);
5273 return ret ? -EFAULT : 0;
5276 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5278 struct inode *inode = file_inode(file);
5279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5280 struct btrfs_root *root = BTRFS_I(inode)->root;
5281 struct btrfs_super_block *super_block = fs_info->super_copy;
5282 struct btrfs_trans_handle *trans;
5283 char label[BTRFS_LABEL_SIZE];
5284 int ret;
5286 if (!capable(CAP_SYS_ADMIN))
5287 return -EPERM;
5289 if (copy_from_user(label, arg, sizeof(label)))
5290 return -EFAULT;
5292 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5293 btrfs_err(fs_info,
5294 "unable to set label with more than %d bytes",
5295 BTRFS_LABEL_SIZE - 1);
5296 return -EINVAL;
5299 ret = mnt_want_write_file(file);
5300 if (ret)
5301 return ret;
5303 trans = btrfs_start_transaction(root, 0);
5304 if (IS_ERR(trans)) {
5305 ret = PTR_ERR(trans);
5306 goto out_unlock;
5309 spin_lock(&fs_info->super_lock);
5310 strcpy(super_block->label, label);
5311 spin_unlock(&fs_info->super_lock);
5312 ret = btrfs_commit_transaction(trans);
5314 out_unlock:
5315 mnt_drop_write_file(file);
5316 return ret;
5319 #define INIT_FEATURE_FLAGS(suffix) \
5320 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5321 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5322 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5324 int btrfs_ioctl_get_supported_features(void __user *arg)
5326 static const struct btrfs_ioctl_feature_flags features[3] = {
5327 INIT_FEATURE_FLAGS(SUPP),
5328 INIT_FEATURE_FLAGS(SAFE_SET),
5329 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5332 if (copy_to_user(arg, &features, sizeof(features)))
5333 return -EFAULT;
5335 return 0;
5338 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5340 struct inode *inode = file_inode(file);
5341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5342 struct btrfs_super_block *super_block = fs_info->super_copy;
5343 struct btrfs_ioctl_feature_flags features;
5345 features.compat_flags = btrfs_super_compat_flags(super_block);
5346 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5347 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5349 if (copy_to_user(arg, &features, sizeof(features)))
5350 return -EFAULT;
5352 return 0;
5355 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5356 enum btrfs_feature_set set,
5357 u64 change_mask, u64 flags, u64 supported_flags,
5358 u64 safe_set, u64 safe_clear)
5360 const char *type = btrfs_feature_set_names[set];
5361 char *names;
5362 u64 disallowed, unsupported;
5363 u64 set_mask = flags & change_mask;
5364 u64 clear_mask = ~flags & change_mask;
5366 unsupported = set_mask & ~supported_flags;
5367 if (unsupported) {
5368 names = btrfs_printable_features(set, unsupported);
5369 if (names) {
5370 btrfs_warn(fs_info,
5371 "this kernel does not support the %s feature bit%s",
5372 names, strchr(names, ',') ? "s" : "");
5373 kfree(names);
5374 } else
5375 btrfs_warn(fs_info,
5376 "this kernel does not support %s bits 0x%llx",
5377 type, unsupported);
5378 return -EOPNOTSUPP;
5381 disallowed = set_mask & ~safe_set;
5382 if (disallowed) {
5383 names = btrfs_printable_features(set, disallowed);
5384 if (names) {
5385 btrfs_warn(fs_info,
5386 "can't set the %s feature bit%s while mounted",
5387 names, strchr(names, ',') ? "s" : "");
5388 kfree(names);
5389 } else
5390 btrfs_warn(fs_info,
5391 "can't set %s bits 0x%llx while mounted",
5392 type, disallowed);
5393 return -EPERM;
5396 disallowed = clear_mask & ~safe_clear;
5397 if (disallowed) {
5398 names = btrfs_printable_features(set, disallowed);
5399 if (names) {
5400 btrfs_warn(fs_info,
5401 "can't clear the %s feature bit%s while mounted",
5402 names, strchr(names, ',') ? "s" : "");
5403 kfree(names);
5404 } else
5405 btrfs_warn(fs_info,
5406 "can't clear %s bits 0x%llx while mounted",
5407 type, disallowed);
5408 return -EPERM;
5411 return 0;
5414 #define check_feature(fs_info, change_mask, flags, mask_base) \
5415 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5416 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5417 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5418 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5420 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5422 struct inode *inode = file_inode(file);
5423 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5424 struct btrfs_root *root = BTRFS_I(inode)->root;
5425 struct btrfs_super_block *super_block = fs_info->super_copy;
5426 struct btrfs_ioctl_feature_flags flags[2];
5427 struct btrfs_trans_handle *trans;
5428 u64 newflags;
5429 int ret;
5431 if (!capable(CAP_SYS_ADMIN))
5432 return -EPERM;
5434 if (copy_from_user(flags, arg, sizeof(flags)))
5435 return -EFAULT;
5437 /* Nothing to do */
5438 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5439 !flags[0].incompat_flags)
5440 return 0;
5442 ret = check_feature(fs_info, flags[0].compat_flags,
5443 flags[1].compat_flags, COMPAT);
5444 if (ret)
5445 return ret;
5447 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5448 flags[1].compat_ro_flags, COMPAT_RO);
5449 if (ret)
5450 return ret;
5452 ret = check_feature(fs_info, flags[0].incompat_flags,
5453 flags[1].incompat_flags, INCOMPAT);
5454 if (ret)
5455 return ret;
5457 ret = mnt_want_write_file(file);
5458 if (ret)
5459 return ret;
5461 trans = btrfs_start_transaction(root, 0);
5462 if (IS_ERR(trans)) {
5463 ret = PTR_ERR(trans);
5464 goto out_drop_write;
5467 spin_lock(&fs_info->super_lock);
5468 newflags = btrfs_super_compat_flags(super_block);
5469 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5470 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5471 btrfs_set_super_compat_flags(super_block, newflags);
5473 newflags = btrfs_super_compat_ro_flags(super_block);
5474 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5475 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5476 btrfs_set_super_compat_ro_flags(super_block, newflags);
5478 newflags = btrfs_super_incompat_flags(super_block);
5479 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5480 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5481 btrfs_set_super_incompat_flags(super_block, newflags);
5482 spin_unlock(&fs_info->super_lock);
5484 ret = btrfs_commit_transaction(trans);
5485 out_drop_write:
5486 mnt_drop_write_file(file);
5488 return ret;
5491 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5493 struct btrfs_ioctl_send_args *arg;
5494 int ret;
5496 if (compat) {
5497 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5498 struct btrfs_ioctl_send_args_32 args32;
5500 ret = copy_from_user(&args32, argp, sizeof(args32));
5501 if (ret)
5502 return -EFAULT;
5503 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5504 if (!arg)
5505 return -ENOMEM;
5506 arg->send_fd = args32.send_fd;
5507 arg->clone_sources_count = args32.clone_sources_count;
5508 arg->clone_sources = compat_ptr(args32.clone_sources);
5509 arg->parent_root = args32.parent_root;
5510 arg->flags = args32.flags;
5511 memcpy(arg->reserved, args32.reserved,
5512 sizeof(args32.reserved));
5513 #else
5514 return -ENOTTY;
5515 #endif
5516 } else {
5517 arg = memdup_user(argp, sizeof(*arg));
5518 if (IS_ERR(arg))
5519 return PTR_ERR(arg);
5521 ret = btrfs_ioctl_send(file, arg);
5522 kfree(arg);
5523 return ret;
5526 long btrfs_ioctl(struct file *file, unsigned int
5527 cmd, unsigned long arg)
5529 struct inode *inode = file_inode(file);
5530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5531 struct btrfs_root *root = BTRFS_I(inode)->root;
5532 void __user *argp = (void __user *)arg;
5534 switch (cmd) {
5535 case FS_IOC_GETFLAGS:
5536 return btrfs_ioctl_getflags(file, argp);
5537 case FS_IOC_SETFLAGS:
5538 return btrfs_ioctl_setflags(file, argp);
5539 case FS_IOC_GETVERSION:
5540 return btrfs_ioctl_getversion(file, argp);
5541 case FITRIM:
5542 return btrfs_ioctl_fitrim(file, argp);
5543 case BTRFS_IOC_SNAP_CREATE:
5544 return btrfs_ioctl_snap_create(file, argp, 0);
5545 case BTRFS_IOC_SNAP_CREATE_V2:
5546 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5547 case BTRFS_IOC_SUBVOL_CREATE:
5548 return btrfs_ioctl_snap_create(file, argp, 1);
5549 case BTRFS_IOC_SUBVOL_CREATE_V2:
5550 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5551 case BTRFS_IOC_SNAP_DESTROY:
5552 return btrfs_ioctl_snap_destroy(file, argp);
5553 case BTRFS_IOC_SUBVOL_GETFLAGS:
5554 return btrfs_ioctl_subvol_getflags(file, argp);
5555 case BTRFS_IOC_SUBVOL_SETFLAGS:
5556 return btrfs_ioctl_subvol_setflags(file, argp);
5557 case BTRFS_IOC_DEFAULT_SUBVOL:
5558 return btrfs_ioctl_default_subvol(file, argp);
5559 case BTRFS_IOC_DEFRAG:
5560 return btrfs_ioctl_defrag(file, NULL);
5561 case BTRFS_IOC_DEFRAG_RANGE:
5562 return btrfs_ioctl_defrag(file, argp);
5563 case BTRFS_IOC_RESIZE:
5564 return btrfs_ioctl_resize(file, argp);
5565 case BTRFS_IOC_ADD_DEV:
5566 return btrfs_ioctl_add_dev(fs_info, argp);
5567 case BTRFS_IOC_RM_DEV:
5568 return btrfs_ioctl_rm_dev(file, argp);
5569 case BTRFS_IOC_RM_DEV_V2:
5570 return btrfs_ioctl_rm_dev_v2(file, argp);
5571 case BTRFS_IOC_FS_INFO:
5572 return btrfs_ioctl_fs_info(fs_info, argp);
5573 case BTRFS_IOC_DEV_INFO:
5574 return btrfs_ioctl_dev_info(fs_info, argp);
5575 case BTRFS_IOC_BALANCE:
5576 return btrfs_ioctl_balance(file, NULL);
5577 case BTRFS_IOC_TRANS_START:
5578 return btrfs_ioctl_trans_start(file);
5579 case BTRFS_IOC_TRANS_END:
5580 return btrfs_ioctl_trans_end(file);
5581 case BTRFS_IOC_TREE_SEARCH:
5582 return btrfs_ioctl_tree_search(file, argp);
5583 case BTRFS_IOC_TREE_SEARCH_V2:
5584 return btrfs_ioctl_tree_search_v2(file, argp);
5585 case BTRFS_IOC_INO_LOOKUP:
5586 return btrfs_ioctl_ino_lookup(file, argp);
5587 case BTRFS_IOC_INO_PATHS:
5588 return btrfs_ioctl_ino_to_path(root, argp);
5589 case BTRFS_IOC_LOGICAL_INO:
5590 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5591 case BTRFS_IOC_LOGICAL_INO_V2:
5592 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5593 case BTRFS_IOC_SPACE_INFO:
5594 return btrfs_ioctl_space_info(fs_info, argp);
5595 case BTRFS_IOC_SYNC: {
5596 int ret;
5598 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5599 if (ret)
5600 return ret;
5601 ret = btrfs_sync_fs(inode->i_sb, 1);
5603 * The transaction thread may want to do more work,
5604 * namely it pokes the cleaner kthread that will start
5605 * processing uncleaned subvols.
5607 wake_up_process(fs_info->transaction_kthread);
5608 return ret;
5610 case BTRFS_IOC_START_SYNC:
5611 return btrfs_ioctl_start_sync(root, argp);
5612 case BTRFS_IOC_WAIT_SYNC:
5613 return btrfs_ioctl_wait_sync(fs_info, argp);
5614 case BTRFS_IOC_SCRUB:
5615 return btrfs_ioctl_scrub(file, argp);
5616 case BTRFS_IOC_SCRUB_CANCEL:
5617 return btrfs_ioctl_scrub_cancel(fs_info);
5618 case BTRFS_IOC_SCRUB_PROGRESS:
5619 return btrfs_ioctl_scrub_progress(fs_info, argp);
5620 case BTRFS_IOC_BALANCE_V2:
5621 return btrfs_ioctl_balance(file, argp);
5622 case BTRFS_IOC_BALANCE_CTL:
5623 return btrfs_ioctl_balance_ctl(fs_info, arg);
5624 case BTRFS_IOC_BALANCE_PROGRESS:
5625 return btrfs_ioctl_balance_progress(fs_info, argp);
5626 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5627 return btrfs_ioctl_set_received_subvol(file, argp);
5628 #ifdef CONFIG_64BIT
5629 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5630 return btrfs_ioctl_set_received_subvol_32(file, argp);
5631 #endif
5632 case BTRFS_IOC_SEND:
5633 return _btrfs_ioctl_send(file, argp, false);
5634 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5635 case BTRFS_IOC_SEND_32:
5636 return _btrfs_ioctl_send(file, argp, true);
5637 #endif
5638 case BTRFS_IOC_GET_DEV_STATS:
5639 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5640 case BTRFS_IOC_QUOTA_CTL:
5641 return btrfs_ioctl_quota_ctl(file, argp);
5642 case BTRFS_IOC_QGROUP_ASSIGN:
5643 return btrfs_ioctl_qgroup_assign(file, argp);
5644 case BTRFS_IOC_QGROUP_CREATE:
5645 return btrfs_ioctl_qgroup_create(file, argp);
5646 case BTRFS_IOC_QGROUP_LIMIT:
5647 return btrfs_ioctl_qgroup_limit(file, argp);
5648 case BTRFS_IOC_QUOTA_RESCAN:
5649 return btrfs_ioctl_quota_rescan(file, argp);
5650 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5651 return btrfs_ioctl_quota_rescan_status(file, argp);
5652 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5653 return btrfs_ioctl_quota_rescan_wait(file, argp);
5654 case BTRFS_IOC_DEV_REPLACE:
5655 return btrfs_ioctl_dev_replace(fs_info, argp);
5656 case BTRFS_IOC_GET_FSLABEL:
5657 return btrfs_ioctl_get_fslabel(file, argp);
5658 case BTRFS_IOC_SET_FSLABEL:
5659 return btrfs_ioctl_set_fslabel(file, argp);
5660 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5661 return btrfs_ioctl_get_supported_features(argp);
5662 case BTRFS_IOC_GET_FEATURES:
5663 return btrfs_ioctl_get_features(file, argp);
5664 case BTRFS_IOC_SET_FEATURES:
5665 return btrfs_ioctl_set_features(file, argp);
5668 return -ENOTTY;
5671 #ifdef CONFIG_COMPAT
5672 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5675 * These all access 32-bit values anyway so no further
5676 * handling is necessary.
5678 switch (cmd) {
5679 case FS_IOC32_GETFLAGS:
5680 cmd = FS_IOC_GETFLAGS;
5681 break;
5682 case FS_IOC32_SETFLAGS:
5683 cmd = FS_IOC_SETFLAGS;
5684 break;
5685 case FS_IOC32_GETVERSION:
5686 cmd = FS_IOC_GETVERSION;
5687 break;
5690 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5692 #endif