4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
28 static struct kmem_cache
*nat_entry_slab
;
29 static struct kmem_cache
*free_nid_slab
;
30 static struct kmem_cache
*nat_entry_set_slab
;
32 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
34 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
36 unsigned long avail_ram
;
37 unsigned long mem_size
= 0;
42 /* only uses low memory */
43 avail_ram
= val
.totalram
- val
.totalhigh
;
46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
48 if (type
== FREE_NIDS
) {
49 mem_size
= (nm_i
->nid_cnt
[FREE_NID
] *
50 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
51 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
52 } else if (type
== NAT_ENTRIES
) {
53 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
55 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
56 if (excess_cached_nats(sbi
))
58 } else if (type
== DIRTY_DENTS
) {
59 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
61 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
62 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
63 } else if (type
== INO_ENTRIES
) {
66 for (i
= 0; i
< MAX_INO_ENTRY
; i
++)
67 mem_size
+= sbi
->im
[i
].ino_num
*
68 sizeof(struct ino_entry
);
69 mem_size
>>= PAGE_SHIFT
;
70 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
71 } else if (type
== EXTENT_CACHE
) {
72 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
73 sizeof(struct extent_tree
) +
74 atomic_read(&sbi
->total_ext_node
) *
75 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
76 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
77 } else if (type
== INMEM_PAGES
) {
78 /* it allows 20% / total_ram for inmemory pages */
79 mem_size
= get_pages(sbi
, F2FS_INMEM_PAGES
);
80 res
= mem_size
< (val
.totalram
/ 5);
82 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
88 static void clear_node_page_dirty(struct page
*page
)
90 struct address_space
*mapping
= page
->mapping
;
91 unsigned int long flags
;
93 if (PageDirty(page
)) {
94 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
95 radix_tree_tag_clear(&mapping
->page_tree
,
98 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
100 clear_page_dirty_for_io(page
);
101 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
103 ClearPageUptodate(page
);
106 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
108 pgoff_t index
= current_nat_addr(sbi
, nid
);
109 return get_meta_page(sbi
, index
);
112 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
114 struct page
*src_page
;
115 struct page
*dst_page
;
120 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
122 src_off
= current_nat_addr(sbi
, nid
);
123 dst_off
= next_nat_addr(sbi
, src_off
);
125 /* get current nat block page with lock */
126 src_page
= get_meta_page(sbi
, src_off
);
127 dst_page
= grab_meta_page(sbi
, dst_off
);
128 f2fs_bug_on(sbi
, PageDirty(src_page
));
130 src_addr
= page_address(src_page
);
131 dst_addr
= page_address(dst_page
);
132 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
133 set_page_dirty(dst_page
);
134 f2fs_put_page(src_page
, 1);
136 set_to_next_nat(nm_i
, nid
);
141 static struct nat_entry
*__alloc_nat_entry(nid_t nid
, bool no_fail
)
143 struct nat_entry
*new;
146 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
148 new = kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
150 nat_set_nid(new, nid
);
156 static void __free_nat_entry(struct nat_entry
*e
)
158 kmem_cache_free(nat_entry_slab
, e
);
161 /* must be locked by nat_tree_lock */
162 static struct nat_entry
*__init_nat_entry(struct f2fs_nm_info
*nm_i
,
163 struct nat_entry
*ne
, struct f2fs_nat_entry
*raw_ne
, bool no_fail
)
166 f2fs_radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
);
167 else if (radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
))
171 node_info_from_raw_nat(&ne
->ni
, raw_ne
);
172 list_add_tail(&ne
->list
, &nm_i
->nat_entries
);
177 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
179 return radix_tree_lookup(&nm_i
->nat_root
, n
);
182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
183 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
185 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
188 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
191 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
196 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
197 struct nat_entry
*ne
)
199 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
200 struct nat_entry_set
*head
;
202 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
204 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
206 INIT_LIST_HEAD(&head
->entry_list
);
207 INIT_LIST_HEAD(&head
->set_list
);
210 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
213 if (get_nat_flag(ne
, IS_DIRTY
))
216 nm_i
->dirty_nat_cnt
++;
218 set_nat_flag(ne
, IS_DIRTY
, true);
220 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
221 list_del_init(&ne
->list
);
223 list_move_tail(&ne
->list
, &head
->entry_list
);
226 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
227 struct nat_entry_set
*set
, struct nat_entry
*ne
)
229 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
230 set_nat_flag(ne
, IS_DIRTY
, false);
232 nm_i
->dirty_nat_cnt
--;
235 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
236 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
238 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
242 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
244 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
248 down_read(&nm_i
->nat_tree_lock
);
249 e
= __lookup_nat_cache(nm_i
, nid
);
251 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
252 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
255 up_read(&nm_i
->nat_tree_lock
);
259 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
261 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
265 down_read(&nm_i
->nat_tree_lock
);
266 e
= __lookup_nat_cache(nm_i
, nid
);
267 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
269 up_read(&nm_i
->nat_tree_lock
);
273 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
275 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
277 bool need_update
= true;
279 down_read(&nm_i
->nat_tree_lock
);
280 e
= __lookup_nat_cache(nm_i
, ino
);
281 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
282 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
283 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
285 up_read(&nm_i
->nat_tree_lock
);
289 /* must be locked by nat_tree_lock */
290 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
291 struct f2fs_nat_entry
*ne
)
293 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
294 struct nat_entry
*new, *e
;
296 new = __alloc_nat_entry(nid
, false);
300 down_write(&nm_i
->nat_tree_lock
);
301 e
= __lookup_nat_cache(nm_i
, nid
);
303 e
= __init_nat_entry(nm_i
, new, ne
, false);
305 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
306 nat_get_blkaddr(e
) !=
307 le32_to_cpu(ne
->block_addr
) ||
308 nat_get_version(e
) != ne
->version
);
309 up_write(&nm_i
->nat_tree_lock
);
311 __free_nat_entry(new);
314 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
315 block_t new_blkaddr
, bool fsync_done
)
317 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
319 struct nat_entry
*new = __alloc_nat_entry(ni
->nid
, true);
321 down_write(&nm_i
->nat_tree_lock
);
322 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
324 e
= __init_nat_entry(nm_i
, new, NULL
, true);
325 copy_node_info(&e
->ni
, ni
);
326 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
327 } else if (new_blkaddr
== NEW_ADDR
) {
329 * when nid is reallocated,
330 * previous nat entry can be remained in nat cache.
331 * So, reinitialize it with new information.
333 copy_node_info(&e
->ni
, ni
);
334 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
336 /* let's free early to reduce memory consumption */
338 __free_nat_entry(new);
341 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
342 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
343 new_blkaddr
== NULL_ADDR
);
344 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
345 new_blkaddr
== NEW_ADDR
);
346 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
347 nat_get_blkaddr(e
) != NULL_ADDR
&&
348 new_blkaddr
== NEW_ADDR
);
350 /* increment version no as node is removed */
351 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
352 unsigned char version
= nat_get_version(e
);
353 nat_set_version(e
, inc_node_version(version
));
357 nat_set_blkaddr(e
, new_blkaddr
);
358 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
359 set_nat_flag(e
, IS_CHECKPOINTED
, false);
360 __set_nat_cache_dirty(nm_i
, e
);
362 /* update fsync_mark if its inode nat entry is still alive */
363 if (ni
->nid
!= ni
->ino
)
364 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
366 if (fsync_done
&& ni
->nid
== ni
->ino
)
367 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
368 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
370 up_write(&nm_i
->nat_tree_lock
);
373 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
375 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
378 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
381 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
382 struct nat_entry
*ne
;
383 ne
= list_first_entry(&nm_i
->nat_entries
,
384 struct nat_entry
, list
);
385 __del_from_nat_cache(nm_i
, ne
);
388 up_write(&nm_i
->nat_tree_lock
);
389 return nr
- nr_shrink
;
393 * This function always returns success
395 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
397 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
398 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
399 struct f2fs_journal
*journal
= curseg
->journal
;
400 nid_t start_nid
= START_NID(nid
);
401 struct f2fs_nat_block
*nat_blk
;
402 struct page
*page
= NULL
;
403 struct f2fs_nat_entry ne
;
410 /* Check nat cache */
411 down_read(&nm_i
->nat_tree_lock
);
412 e
= __lookup_nat_cache(nm_i
, nid
);
414 ni
->ino
= nat_get_ino(e
);
415 ni
->blk_addr
= nat_get_blkaddr(e
);
416 ni
->version
= nat_get_version(e
);
417 up_read(&nm_i
->nat_tree_lock
);
421 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
423 /* Check current segment summary */
424 down_read(&curseg
->journal_rwsem
);
425 i
= lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
427 ne
= nat_in_journal(journal
, i
);
428 node_info_from_raw_nat(ni
, &ne
);
430 up_read(&curseg
->journal_rwsem
);
432 up_read(&nm_i
->nat_tree_lock
);
436 /* Fill node_info from nat page */
437 index
= current_nat_addr(sbi
, nid
);
438 up_read(&nm_i
->nat_tree_lock
);
440 page
= get_meta_page(sbi
, index
);
441 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
442 ne
= nat_blk
->entries
[nid
- start_nid
];
443 node_info_from_raw_nat(ni
, &ne
);
444 f2fs_put_page(page
, 1);
446 /* cache nat entry */
447 cache_nat_entry(sbi
, nid
, &ne
);
451 * readahead MAX_RA_NODE number of node pages.
453 static void ra_node_pages(struct page
*parent
, int start
, int n
)
455 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
456 struct blk_plug plug
;
460 blk_start_plug(&plug
);
462 /* Then, try readahead for siblings of the desired node */
464 end
= min(end
, NIDS_PER_BLOCK
);
465 for (i
= start
; i
< end
; i
++) {
466 nid
= get_nid(parent
, i
, false);
467 ra_node_page(sbi
, nid
);
470 blk_finish_plug(&plug
);
473 pgoff_t
get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
475 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
476 const long direct_blks
= ADDRS_PER_BLOCK
;
477 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
478 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
479 int cur_level
= dn
->cur_level
;
480 int max_level
= dn
->max_level
;
486 while (max_level
-- > cur_level
)
487 skipped_unit
*= NIDS_PER_BLOCK
;
489 switch (dn
->max_level
) {
491 base
+= 2 * indirect_blks
;
493 base
+= 2 * direct_blks
;
495 base
+= direct_index
;
498 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
501 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
505 * The maximum depth is four.
506 * Offset[0] will have raw inode offset.
508 static int get_node_path(struct inode
*inode
, long block
,
509 int offset
[4], unsigned int noffset
[4])
511 const long direct_index
= ADDRS_PER_INODE(inode
);
512 const long direct_blks
= ADDRS_PER_BLOCK
;
513 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
514 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
515 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
521 if (block
< direct_index
) {
525 block
-= direct_index
;
526 if (block
< direct_blks
) {
527 offset
[n
++] = NODE_DIR1_BLOCK
;
533 block
-= direct_blks
;
534 if (block
< direct_blks
) {
535 offset
[n
++] = NODE_DIR2_BLOCK
;
541 block
-= direct_blks
;
542 if (block
< indirect_blks
) {
543 offset
[n
++] = NODE_IND1_BLOCK
;
545 offset
[n
++] = block
/ direct_blks
;
546 noffset
[n
] = 4 + offset
[n
- 1];
547 offset
[n
] = block
% direct_blks
;
551 block
-= indirect_blks
;
552 if (block
< indirect_blks
) {
553 offset
[n
++] = NODE_IND2_BLOCK
;
554 noffset
[n
] = 4 + dptrs_per_blk
;
555 offset
[n
++] = block
/ direct_blks
;
556 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
557 offset
[n
] = block
% direct_blks
;
561 block
-= indirect_blks
;
562 if (block
< dindirect_blks
) {
563 offset
[n
++] = NODE_DIND_BLOCK
;
564 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
565 offset
[n
++] = block
/ indirect_blks
;
566 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
567 offset
[n
- 1] * (dptrs_per_blk
+ 1);
568 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
569 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
570 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
572 offset
[n
] = block
% direct_blks
;
583 * Caller should call f2fs_put_dnode(dn).
584 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
585 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
586 * In the case of RDONLY_NODE, we don't need to care about mutex.
588 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
590 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
591 struct page
*npage
[4];
592 struct page
*parent
= NULL
;
594 unsigned int noffset
[4];
599 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
603 nids
[0] = dn
->inode
->i_ino
;
604 npage
[0] = dn
->inode_page
;
607 npage
[0] = get_node_page(sbi
, nids
[0]);
608 if (IS_ERR(npage
[0]))
609 return PTR_ERR(npage
[0]);
612 /* if inline_data is set, should not report any block indices */
613 if (f2fs_has_inline_data(dn
->inode
) && index
) {
615 f2fs_put_page(npage
[0], 1);
621 nids
[1] = get_nid(parent
, offset
[0], true);
622 dn
->inode_page
= npage
[0];
623 dn
->inode_page_locked
= true;
625 /* get indirect or direct nodes */
626 for (i
= 1; i
<= level
; i
++) {
629 if (!nids
[i
] && mode
== ALLOC_NODE
) {
631 if (!alloc_nid(sbi
, &(nids
[i
]))) {
637 npage
[i
] = new_node_page(dn
, noffset
[i
]);
638 if (IS_ERR(npage
[i
])) {
639 alloc_nid_failed(sbi
, nids
[i
]);
640 err
= PTR_ERR(npage
[i
]);
644 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
645 alloc_nid_done(sbi
, nids
[i
]);
647 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
648 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
649 if (IS_ERR(npage
[i
])) {
650 err
= PTR_ERR(npage
[i
]);
656 dn
->inode_page_locked
= false;
659 f2fs_put_page(parent
, 1);
663 npage
[i
] = get_node_page(sbi
, nids
[i
]);
664 if (IS_ERR(npage
[i
])) {
665 err
= PTR_ERR(npage
[i
]);
666 f2fs_put_page(npage
[0], 0);
672 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
675 dn
->nid
= nids
[level
];
676 dn
->ofs_in_node
= offset
[level
];
677 dn
->node_page
= npage
[level
];
678 dn
->data_blkaddr
= datablock_addr(dn
->inode
,
679 dn
->node_page
, dn
->ofs_in_node
);
683 f2fs_put_page(parent
, 1);
685 f2fs_put_page(npage
[0], 0);
687 dn
->inode_page
= NULL
;
688 dn
->node_page
= NULL
;
689 if (err
== -ENOENT
) {
691 dn
->max_level
= level
;
692 dn
->ofs_in_node
= offset
[level
];
697 static void truncate_node(struct dnode_of_data
*dn
)
699 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
702 get_node_info(sbi
, dn
->nid
, &ni
);
704 /* Deallocate node address */
705 invalidate_blocks(sbi
, ni
.blk_addr
);
706 dec_valid_node_count(sbi
, dn
->inode
, dn
->nid
== dn
->inode
->i_ino
);
707 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
709 if (dn
->nid
== dn
->inode
->i_ino
) {
710 remove_orphan_inode(sbi
, dn
->nid
);
711 dec_valid_inode_count(sbi
);
712 f2fs_inode_synced(dn
->inode
);
715 clear_node_page_dirty(dn
->node_page
);
716 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
718 f2fs_put_page(dn
->node_page
, 1);
720 invalidate_mapping_pages(NODE_MAPPING(sbi
),
721 dn
->node_page
->index
, dn
->node_page
->index
);
723 dn
->node_page
= NULL
;
724 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
727 static int truncate_dnode(struct dnode_of_data
*dn
)
734 /* get direct node */
735 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
736 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
738 else if (IS_ERR(page
))
739 return PTR_ERR(page
);
741 /* Make dnode_of_data for parameter */
742 dn
->node_page
= page
;
744 truncate_data_blocks(dn
);
749 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
752 struct dnode_of_data rdn
= *dn
;
754 struct f2fs_node
*rn
;
756 unsigned int child_nofs
;
761 return NIDS_PER_BLOCK
+ 1;
763 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
765 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
767 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
768 return PTR_ERR(page
);
771 ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
773 rn
= F2FS_NODE(page
);
775 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
776 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
780 ret
= truncate_dnode(&rdn
);
783 if (set_nid(page
, i
, 0, false))
784 dn
->node_changed
= true;
787 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
788 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
789 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
790 if (child_nid
== 0) {
791 child_nofs
+= NIDS_PER_BLOCK
+ 1;
795 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
796 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
797 if (set_nid(page
, i
, 0, false))
798 dn
->node_changed
= true;
800 } else if (ret
< 0 && ret
!= -ENOENT
) {
808 /* remove current indirect node */
809 dn
->node_page
= page
;
813 f2fs_put_page(page
, 1);
815 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
819 f2fs_put_page(page
, 1);
820 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
824 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
825 struct f2fs_inode
*ri
, int *offset
, int depth
)
827 struct page
*pages
[2];
834 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
838 /* get indirect nodes in the path */
839 for (i
= 0; i
< idx
+ 1; i
++) {
840 /* reference count'll be increased */
841 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
842 if (IS_ERR(pages
[i
])) {
843 err
= PTR_ERR(pages
[i
]);
847 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
850 ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
852 /* free direct nodes linked to a partial indirect node */
853 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
854 child_nid
= get_nid(pages
[idx
], i
, false);
858 err
= truncate_dnode(dn
);
861 if (set_nid(pages
[idx
], i
, 0, false))
862 dn
->node_changed
= true;
865 if (offset
[idx
+ 1] == 0) {
866 dn
->node_page
= pages
[idx
];
870 f2fs_put_page(pages
[idx
], 1);
876 for (i
= idx
; i
>= 0; i
--)
877 f2fs_put_page(pages
[i
], 1);
879 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
885 * All the block addresses of data and nodes should be nullified.
887 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
889 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
890 int err
= 0, cont
= 1;
891 int level
, offset
[4], noffset
[4];
892 unsigned int nofs
= 0;
893 struct f2fs_inode
*ri
;
894 struct dnode_of_data dn
;
897 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
899 level
= get_node_path(inode
, from
, offset
, noffset
);
903 page
= get_node_page(sbi
, inode
->i_ino
);
905 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
906 return PTR_ERR(page
);
909 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
912 ri
= F2FS_INODE(page
);
920 if (!offset
[level
- 1])
922 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
923 if (err
< 0 && err
!= -ENOENT
)
925 nofs
+= 1 + NIDS_PER_BLOCK
;
928 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
929 if (!offset
[level
- 1])
931 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
932 if (err
< 0 && err
!= -ENOENT
)
941 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
943 case NODE_DIR1_BLOCK
:
944 case NODE_DIR2_BLOCK
:
945 err
= truncate_dnode(&dn
);
948 case NODE_IND1_BLOCK
:
949 case NODE_IND2_BLOCK
:
950 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
953 case NODE_DIND_BLOCK
:
954 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
961 if (err
< 0 && err
!= -ENOENT
)
963 if (offset
[1] == 0 &&
964 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
966 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
967 f2fs_wait_on_page_writeback(page
, NODE
, true);
968 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
969 set_page_dirty(page
);
977 f2fs_put_page(page
, 0);
978 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
979 return err
> 0 ? 0 : err
;
982 /* caller must lock inode page */
983 int truncate_xattr_node(struct inode
*inode
)
985 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
986 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
987 struct dnode_of_data dn
;
993 npage
= get_node_page(sbi
, nid
);
995 return PTR_ERR(npage
);
997 f2fs_i_xnid_write(inode
, 0);
999 set_new_dnode(&dn
, inode
, NULL
, npage
, nid
);
1005 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1008 int remove_inode_page(struct inode
*inode
)
1010 struct dnode_of_data dn
;
1013 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1014 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
1018 err
= truncate_xattr_node(inode
);
1020 f2fs_put_dnode(&dn
);
1024 /* remove potential inline_data blocks */
1025 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1026 S_ISLNK(inode
->i_mode
))
1027 truncate_data_blocks_range(&dn
, 1);
1029 /* 0 is possible, after f2fs_new_inode() has failed */
1030 f2fs_bug_on(F2FS_I_SB(inode
),
1031 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 8);
1033 /* will put inode & node pages */
1038 struct page
*new_inode_page(struct inode
*inode
)
1040 struct dnode_of_data dn
;
1042 /* allocate inode page for new inode */
1043 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1045 /* caller should f2fs_put_page(page, 1); */
1046 return new_node_page(&dn
, 0);
1049 struct page
*new_node_page(struct dnode_of_data
*dn
, unsigned int ofs
)
1051 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1052 struct node_info new_ni
;
1056 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1057 return ERR_PTR(-EPERM
);
1059 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1061 return ERR_PTR(-ENOMEM
);
1063 if (unlikely((err
= inc_valid_node_count(sbi
, dn
->inode
, !ofs
))))
1066 #ifdef CONFIG_F2FS_CHECK_FS
1067 get_node_info(sbi
, dn
->nid
, &new_ni
);
1068 f2fs_bug_on(sbi
, new_ni
.blk_addr
!= NULL_ADDR
);
1070 new_ni
.nid
= dn
->nid
;
1071 new_ni
.ino
= dn
->inode
->i_ino
;
1072 new_ni
.blk_addr
= NULL_ADDR
;
1075 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1077 f2fs_wait_on_page_writeback(page
, NODE
, true);
1078 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1079 set_cold_node(dn
->inode
, page
);
1080 if (!PageUptodate(page
))
1081 SetPageUptodate(page
);
1082 if (set_page_dirty(page
))
1083 dn
->node_changed
= true;
1085 if (f2fs_has_xattr_block(ofs
))
1086 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1089 inc_valid_inode_count(sbi
);
1093 clear_node_page_dirty(page
);
1094 f2fs_put_page(page
, 1);
1095 return ERR_PTR(err
);
1099 * Caller should do after getting the following values.
1100 * 0: f2fs_put_page(page, 0)
1101 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1103 static int read_node_page(struct page
*page
, int op_flags
)
1105 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1106 struct node_info ni
;
1107 struct f2fs_io_info fio
= {
1111 .op_flags
= op_flags
,
1113 .encrypted_page
= NULL
,
1116 if (PageUptodate(page
))
1119 get_node_info(sbi
, page
->index
, &ni
);
1121 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1122 ClearPageUptodate(page
);
1126 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1127 return f2fs_submit_page_bio(&fio
);
1131 * Readahead a node page
1133 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1140 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1143 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->page_tree
, nid
);
1148 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1152 err
= read_node_page(apage
, REQ_RAHEAD
);
1153 f2fs_put_page(apage
, err
? 1 : 0);
1156 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1157 struct page
*parent
, int start
)
1163 return ERR_PTR(-ENOENT
);
1164 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1166 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1168 return ERR_PTR(-ENOMEM
);
1170 err
= read_node_page(page
, 0);
1172 f2fs_put_page(page
, 1);
1173 return ERR_PTR(err
);
1174 } else if (err
== LOCKED_PAGE
) {
1180 ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1184 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1185 f2fs_put_page(page
, 1);
1189 if (unlikely(!PageUptodate(page
))) {
1194 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1199 if(unlikely(nid
!= nid_of_node(page
))) {
1200 f2fs_msg(sbi
->sb
, KERN_WARNING
, "inconsistent node block, "
1201 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1202 nid
, nid_of_node(page
), ino_of_node(page
),
1203 ofs_of_node(page
), cpver_of_node(page
),
1204 next_blkaddr_of_node(page
));
1207 ClearPageUptodate(page
);
1208 f2fs_put_page(page
, 1);
1209 return ERR_PTR(err
);
1214 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1216 return __get_node_page(sbi
, nid
, NULL
, 0);
1219 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1221 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1222 nid_t nid
= get_nid(parent
, start
, false);
1224 return __get_node_page(sbi
, nid
, parent
, start
);
1227 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1229 struct inode
*inode
;
1233 /* should flush inline_data before evict_inode */
1234 inode
= ilookup(sbi
->sb
, ino
);
1238 page
= f2fs_pagecache_get_page(inode
->i_mapping
, 0,
1239 FGP_LOCK
|FGP_NOWAIT
, 0);
1243 if (!PageUptodate(page
))
1246 if (!PageDirty(page
))
1249 if (!clear_page_dirty_for_io(page
))
1252 ret
= f2fs_write_inline_data(inode
, page
);
1253 inode_dec_dirty_pages(inode
);
1254 remove_dirty_inode(inode
);
1256 set_page_dirty(page
);
1258 f2fs_put_page(page
, 1);
1263 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1266 struct pagevec pvec
;
1267 struct page
*last_page
= NULL
;
1270 pagevec_init(&pvec
);
1273 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1274 PAGECACHE_TAG_DIRTY
))) {
1277 for (i
= 0; i
< nr_pages
; i
++) {
1278 struct page
*page
= pvec
.pages
[i
];
1280 if (unlikely(f2fs_cp_error(sbi
))) {
1281 f2fs_put_page(last_page
, 0);
1282 pagevec_release(&pvec
);
1283 return ERR_PTR(-EIO
);
1286 if (!IS_DNODE(page
) || !is_cold_node(page
))
1288 if (ino_of_node(page
) != ino
)
1293 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1298 if (ino_of_node(page
) != ino
)
1299 goto continue_unlock
;
1301 if (!PageDirty(page
)) {
1302 /* someone wrote it for us */
1303 goto continue_unlock
;
1307 f2fs_put_page(last_page
, 0);
1313 pagevec_release(&pvec
);
1319 static int __write_node_page(struct page
*page
, bool atomic
, bool *submitted
,
1320 struct writeback_control
*wbc
, bool do_balance
,
1321 enum iostat_type io_type
)
1323 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1325 struct node_info ni
;
1326 struct f2fs_io_info fio
= {
1328 .ino
= ino_of_node(page
),
1331 .op_flags
= wbc_to_write_flags(wbc
),
1333 .encrypted_page
= NULL
,
1339 trace_f2fs_writepage(page
, NODE
);
1341 if (unlikely(f2fs_cp_error(sbi
))) {
1342 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1347 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1350 /* get old block addr of this node page */
1351 nid
= nid_of_node(page
);
1352 f2fs_bug_on(sbi
, page
->index
!= nid
);
1354 if (wbc
->for_reclaim
) {
1355 if (!down_read_trylock(&sbi
->node_write
))
1358 down_read(&sbi
->node_write
);
1361 get_node_info(sbi
, nid
, &ni
);
1363 /* This page is already truncated */
1364 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1365 ClearPageUptodate(page
);
1366 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1367 up_read(&sbi
->node_write
);
1372 if (atomic
&& !test_opt(sbi
, NOBARRIER
))
1373 fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
1375 set_page_writeback(page
);
1376 fio
.old_blkaddr
= ni
.blk_addr
;
1377 write_node_page(nid
, &fio
);
1378 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1379 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1380 up_read(&sbi
->node_write
);
1382 if (wbc
->for_reclaim
) {
1383 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
, 0,
1390 if (unlikely(f2fs_cp_error(sbi
))) {
1391 f2fs_submit_merged_write(sbi
, NODE
);
1395 *submitted
= fio
.submitted
;
1398 f2fs_balance_fs(sbi
, false);
1402 redirty_page_for_writepage(wbc
, page
);
1403 return AOP_WRITEPAGE_ACTIVATE
;
1406 void move_node_page(struct page
*node_page
, int gc_type
)
1408 if (gc_type
== FG_GC
) {
1409 struct writeback_control wbc
= {
1410 .sync_mode
= WB_SYNC_ALL
,
1415 set_page_dirty(node_page
);
1416 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1418 f2fs_bug_on(F2FS_P_SB(node_page
), PageWriteback(node_page
));
1419 if (!clear_page_dirty_for_io(node_page
))
1422 if (__write_node_page(node_page
, false, NULL
,
1423 &wbc
, false, FS_GC_NODE_IO
))
1424 unlock_page(node_page
);
1427 /* set page dirty and write it */
1428 if (!PageWriteback(node_page
))
1429 set_page_dirty(node_page
);
1432 unlock_page(node_page
);
1434 f2fs_put_page(node_page
, 0);
1437 static int f2fs_write_node_page(struct page
*page
,
1438 struct writeback_control
*wbc
)
1440 return __write_node_page(page
, false, NULL
, wbc
, false, FS_NODE_IO
);
1443 int fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1444 struct writeback_control
*wbc
, bool atomic
)
1447 pgoff_t last_idx
= ULONG_MAX
;
1448 struct pagevec pvec
;
1450 struct page
*last_page
= NULL
;
1451 bool marked
= false;
1452 nid_t ino
= inode
->i_ino
;
1456 last_page
= last_fsync_dnode(sbi
, ino
);
1457 if (IS_ERR_OR_NULL(last_page
))
1458 return PTR_ERR_OR_ZERO(last_page
);
1461 pagevec_init(&pvec
);
1464 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1465 PAGECACHE_TAG_DIRTY
))) {
1468 for (i
= 0; i
< nr_pages
; i
++) {
1469 struct page
*page
= pvec
.pages
[i
];
1470 bool submitted
= false;
1472 if (unlikely(f2fs_cp_error(sbi
))) {
1473 f2fs_put_page(last_page
, 0);
1474 pagevec_release(&pvec
);
1479 if (!IS_DNODE(page
) || !is_cold_node(page
))
1481 if (ino_of_node(page
) != ino
)
1486 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1491 if (ino_of_node(page
) != ino
)
1492 goto continue_unlock
;
1494 if (!PageDirty(page
) && page
!= last_page
) {
1495 /* someone wrote it for us */
1496 goto continue_unlock
;
1499 f2fs_wait_on_page_writeback(page
, NODE
, true);
1500 BUG_ON(PageWriteback(page
));
1502 set_fsync_mark(page
, 0);
1503 set_dentry_mark(page
, 0);
1505 if (!atomic
|| page
== last_page
) {
1506 set_fsync_mark(page
, 1);
1507 if (IS_INODE(page
)) {
1508 if (is_inode_flag_set(inode
,
1510 update_inode(inode
, page
);
1511 set_dentry_mark(page
,
1512 need_dentry_mark(sbi
, ino
));
1514 /* may be written by other thread */
1515 if (!PageDirty(page
))
1516 set_page_dirty(page
);
1519 if (!clear_page_dirty_for_io(page
))
1520 goto continue_unlock
;
1522 ret
= __write_node_page(page
, atomic
&&
1524 &submitted
, wbc
, true,
1528 f2fs_put_page(last_page
, 0);
1530 } else if (submitted
) {
1531 last_idx
= page
->index
;
1534 if (page
== last_page
) {
1535 f2fs_put_page(page
, 0);
1540 pagevec_release(&pvec
);
1546 if (!ret
&& atomic
&& !marked
) {
1547 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1548 "Retry to write fsync mark: ino=%u, idx=%lx",
1549 ino
, last_page
->index
);
1550 lock_page(last_page
);
1551 f2fs_wait_on_page_writeback(last_page
, NODE
, true);
1552 set_page_dirty(last_page
);
1553 unlock_page(last_page
);
1557 if (last_idx
!= ULONG_MAX
)
1558 f2fs_submit_merged_write_cond(sbi
, NULL
, ino
, last_idx
, NODE
);
1559 return ret
? -EIO
: 0;
1562 int sync_node_pages(struct f2fs_sb_info
*sbi
, struct writeback_control
*wbc
,
1563 bool do_balance
, enum iostat_type io_type
)
1566 struct pagevec pvec
;
1572 pagevec_init(&pvec
);
1577 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1578 PAGECACHE_TAG_DIRTY
))) {
1581 for (i
= 0; i
< nr_pages
; i
++) {
1582 struct page
*page
= pvec
.pages
[i
];
1583 bool submitted
= false;
1586 * flushing sequence with step:
1591 if (step
== 0 && IS_DNODE(page
))
1593 if (step
== 1 && (!IS_DNODE(page
) ||
1594 is_cold_node(page
)))
1596 if (step
== 2 && (!IS_DNODE(page
) ||
1597 !is_cold_node(page
)))
1600 if (!trylock_page(page
))
1603 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1609 if (!PageDirty(page
)) {
1610 /* someone wrote it for us */
1611 goto continue_unlock
;
1614 /* flush inline_data */
1615 if (is_inline_node(page
)) {
1616 clear_inline_node(page
);
1618 flush_inline_data(sbi
, ino_of_node(page
));
1622 f2fs_wait_on_page_writeback(page
, NODE
, true);
1624 BUG_ON(PageWriteback(page
));
1625 if (!clear_page_dirty_for_io(page
))
1626 goto continue_unlock
;
1628 set_fsync_mark(page
, 0);
1629 set_dentry_mark(page
, 0);
1631 ret
= __write_node_page(page
, false, &submitted
,
1632 wbc
, do_balance
, io_type
);
1638 if (--wbc
->nr_to_write
== 0)
1641 pagevec_release(&pvec
);
1644 if (wbc
->nr_to_write
== 0) {
1656 f2fs_submit_merged_write(sbi
, NODE
);
1658 if (unlikely(f2fs_cp_error(sbi
)))
1663 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1666 struct pagevec pvec
;
1670 pagevec_init(&pvec
);
1672 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1673 PAGECACHE_TAG_WRITEBACK
))) {
1676 for (i
= 0; i
< nr_pages
; i
++) {
1677 struct page
*page
= pvec
.pages
[i
];
1679 if (ino
&& ino_of_node(page
) == ino
) {
1680 f2fs_wait_on_page_writeback(page
, NODE
, true);
1681 if (TestClearPageError(page
))
1685 pagevec_release(&pvec
);
1689 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1695 static int f2fs_write_node_pages(struct address_space
*mapping
,
1696 struct writeback_control
*wbc
)
1698 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1699 struct blk_plug plug
;
1702 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1705 /* balancing f2fs's metadata in background */
1706 f2fs_balance_fs_bg(sbi
);
1708 /* collect a number of dirty node pages and write together */
1709 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1712 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1714 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1715 wbc
->sync_mode
= WB_SYNC_NONE
;
1716 blk_start_plug(&plug
);
1717 sync_node_pages(sbi
, wbc
, true, FS_NODE_IO
);
1718 blk_finish_plug(&plug
);
1719 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1723 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1724 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1728 static int f2fs_set_node_page_dirty(struct page
*page
)
1730 trace_f2fs_set_page_dirty(page
, NODE
);
1732 if (!PageUptodate(page
))
1733 SetPageUptodate(page
);
1734 if (!PageDirty(page
)) {
1735 f2fs_set_page_dirty_nobuffers(page
);
1736 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1737 SetPagePrivate(page
);
1738 f2fs_trace_pid(page
);
1745 * Structure of the f2fs node operations
1747 const struct address_space_operations f2fs_node_aops
= {
1748 .writepage
= f2fs_write_node_page
,
1749 .writepages
= f2fs_write_node_pages
,
1750 .set_page_dirty
= f2fs_set_node_page_dirty
,
1751 .invalidatepage
= f2fs_invalidate_page
,
1752 .releasepage
= f2fs_release_page
,
1753 #ifdef CONFIG_MIGRATION
1754 .migratepage
= f2fs_migrate_page
,
1758 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1761 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1764 static int __insert_free_nid(struct f2fs_sb_info
*sbi
,
1765 struct free_nid
*i
, enum nid_state state
)
1767 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1769 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
1773 f2fs_bug_on(sbi
, state
!= i
->state
);
1774 nm_i
->nid_cnt
[state
]++;
1775 if (state
== FREE_NID
)
1776 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1780 static void __remove_free_nid(struct f2fs_sb_info
*sbi
,
1781 struct free_nid
*i
, enum nid_state state
)
1783 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1785 f2fs_bug_on(sbi
, state
!= i
->state
);
1786 nm_i
->nid_cnt
[state
]--;
1787 if (state
== FREE_NID
)
1789 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1792 static void __move_free_nid(struct f2fs_sb_info
*sbi
, struct free_nid
*i
,
1793 enum nid_state org_state
, enum nid_state dst_state
)
1795 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1797 f2fs_bug_on(sbi
, org_state
!= i
->state
);
1798 i
->state
= dst_state
;
1799 nm_i
->nid_cnt
[org_state
]--;
1800 nm_i
->nid_cnt
[dst_state
]++;
1802 switch (dst_state
) {
1807 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1814 static void update_free_nid_bitmap(struct f2fs_sb_info
*sbi
, nid_t nid
,
1815 bool set
, bool build
)
1817 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1818 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(nid
);
1819 unsigned int nid_ofs
= nid
- START_NID(nid
);
1821 if (!test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
1825 if (test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
1827 __set_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
1828 nm_i
->free_nid_count
[nat_ofs
]++;
1830 if (!test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
1832 __clear_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
1834 nm_i
->free_nid_count
[nat_ofs
]--;
1838 /* return if the nid is recognized as free */
1839 static bool add_free_nid(struct f2fs_sb_info
*sbi
,
1840 nid_t nid
, bool build
, bool update
)
1842 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1843 struct free_nid
*i
, *e
;
1844 struct nat_entry
*ne
;
1848 /* 0 nid should not be used */
1849 if (unlikely(nid
== 0))
1852 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1854 i
->state
= FREE_NID
;
1856 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
1858 spin_lock(&nm_i
->nid_list_lock
);
1866 * - __insert_nid_to_list(PREALLOC_NID)
1867 * - f2fs_balance_fs_bg
1869 * - __build_free_nids
1872 * - __lookup_nat_cache
1874 * - init_inode_metadata
1879 * - __remove_nid_from_list(PREALLOC_NID)
1880 * - __insert_nid_to_list(FREE_NID)
1882 ne
= __lookup_nat_cache(nm_i
, nid
);
1883 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1884 nat_get_blkaddr(ne
) != NULL_ADDR
))
1887 e
= __lookup_free_nid_list(nm_i
, nid
);
1889 if (e
->state
== FREE_NID
)
1895 err
= __insert_free_nid(sbi
, i
, FREE_NID
);
1898 update_free_nid_bitmap(sbi
, nid
, ret
, build
);
1900 nm_i
->available_nids
++;
1902 spin_unlock(&nm_i
->nid_list_lock
);
1903 radix_tree_preload_end();
1906 kmem_cache_free(free_nid_slab
, i
);
1910 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
1912 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1914 bool need_free
= false;
1916 spin_lock(&nm_i
->nid_list_lock
);
1917 i
= __lookup_free_nid_list(nm_i
, nid
);
1918 if (i
&& i
->state
== FREE_NID
) {
1919 __remove_free_nid(sbi
, i
, FREE_NID
);
1922 spin_unlock(&nm_i
->nid_list_lock
);
1925 kmem_cache_free(free_nid_slab
, i
);
1928 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1929 struct page
*nat_page
, nid_t start_nid
)
1931 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1932 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1934 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(start_nid
);
1937 __set_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
);
1939 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1941 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1942 if (unlikely(start_nid
>= nm_i
->max_nid
))
1945 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1946 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1947 if (blk_addr
== NULL_ADDR
) {
1948 add_free_nid(sbi
, start_nid
, true, true);
1950 spin_lock(&NM_I(sbi
)->nid_list_lock
);
1951 update_free_nid_bitmap(sbi
, start_nid
, false, true);
1952 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
1957 static void scan_curseg_cache(struct f2fs_sb_info
*sbi
)
1959 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1960 struct f2fs_journal
*journal
= curseg
->journal
;
1963 down_read(&curseg
->journal_rwsem
);
1964 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1968 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
1969 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1970 if (addr
== NULL_ADDR
)
1971 add_free_nid(sbi
, nid
, true, false);
1973 remove_free_nid(sbi
, nid
);
1975 up_read(&curseg
->journal_rwsem
);
1978 static void scan_free_nid_bits(struct f2fs_sb_info
*sbi
)
1980 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1981 unsigned int i
, idx
;
1984 down_read(&nm_i
->nat_tree_lock
);
1986 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
1987 if (!test_bit_le(i
, nm_i
->nat_block_bitmap
))
1989 if (!nm_i
->free_nid_count
[i
])
1991 for (idx
= 0; idx
< NAT_ENTRY_PER_BLOCK
; idx
++) {
1992 idx
= find_next_bit_le(nm_i
->free_nid_bitmap
[i
],
1993 NAT_ENTRY_PER_BLOCK
, idx
);
1994 if (idx
>= NAT_ENTRY_PER_BLOCK
)
1997 nid
= i
* NAT_ENTRY_PER_BLOCK
+ idx
;
1998 add_free_nid(sbi
, nid
, true, false);
2000 if (nm_i
->nid_cnt
[FREE_NID
] >= MAX_FREE_NIDS
)
2005 scan_curseg_cache(sbi
);
2007 up_read(&nm_i
->nat_tree_lock
);
2010 static void __build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2012 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2014 nid_t nid
= nm_i
->next_scan_nid
;
2016 if (unlikely(nid
>= nm_i
->max_nid
))
2019 /* Enough entries */
2020 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2023 if (!sync
&& !available_free_memory(sbi
, FREE_NIDS
))
2027 /* try to find free nids in free_nid_bitmap */
2028 scan_free_nid_bits(sbi
);
2030 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2034 /* readahead nat pages to be scanned */
2035 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
2038 down_read(&nm_i
->nat_tree_lock
);
2041 if (!test_bit_le(NAT_BLOCK_OFFSET(nid
),
2042 nm_i
->nat_block_bitmap
)) {
2043 struct page
*page
= get_current_nat_page(sbi
, nid
);
2045 scan_nat_page(sbi
, page
, nid
);
2046 f2fs_put_page(page
, 1);
2049 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
2050 if (unlikely(nid
>= nm_i
->max_nid
))
2053 if (++i
>= FREE_NID_PAGES
)
2057 /* go to the next free nat pages to find free nids abundantly */
2058 nm_i
->next_scan_nid
= nid
;
2060 /* find free nids from current sum_pages */
2061 scan_curseg_cache(sbi
);
2063 up_read(&nm_i
->nat_tree_lock
);
2065 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
2066 nm_i
->ra_nid_pages
, META_NAT
, false);
2069 void build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2071 mutex_lock(&NM_I(sbi
)->build_lock
);
2072 __build_free_nids(sbi
, sync
, mount
);
2073 mutex_unlock(&NM_I(sbi
)->build_lock
);
2077 * If this function returns success, caller can obtain a new nid
2078 * from second parameter of this function.
2079 * The returned nid could be used ino as well as nid when inode is created.
2081 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
2083 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2084 struct free_nid
*i
= NULL
;
2086 #ifdef CONFIG_F2FS_FAULT_INJECTION
2087 if (time_to_inject(sbi
, FAULT_ALLOC_NID
)) {
2088 f2fs_show_injection_info(FAULT_ALLOC_NID
);
2092 spin_lock(&nm_i
->nid_list_lock
);
2094 if (unlikely(nm_i
->available_nids
== 0)) {
2095 spin_unlock(&nm_i
->nid_list_lock
);
2099 /* We should not use stale free nids created by build_free_nids */
2100 if (nm_i
->nid_cnt
[FREE_NID
] && !on_build_free_nids(nm_i
)) {
2101 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
2102 i
= list_first_entry(&nm_i
->free_nid_list
,
2103 struct free_nid
, list
);
2106 __move_free_nid(sbi
, i
, FREE_NID
, PREALLOC_NID
);
2107 nm_i
->available_nids
--;
2109 update_free_nid_bitmap(sbi
, *nid
, false, false);
2111 spin_unlock(&nm_i
->nid_list_lock
);
2114 spin_unlock(&nm_i
->nid_list_lock
);
2116 /* Let's scan nat pages and its caches to get free nids */
2117 build_free_nids(sbi
, true, false);
2122 * alloc_nid() should be called prior to this function.
2124 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
2126 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2129 spin_lock(&nm_i
->nid_list_lock
);
2130 i
= __lookup_free_nid_list(nm_i
, nid
);
2131 f2fs_bug_on(sbi
, !i
);
2132 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2133 spin_unlock(&nm_i
->nid_list_lock
);
2135 kmem_cache_free(free_nid_slab
, i
);
2139 * alloc_nid() should be called prior to this function.
2141 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
2143 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2145 bool need_free
= false;
2150 spin_lock(&nm_i
->nid_list_lock
);
2151 i
= __lookup_free_nid_list(nm_i
, nid
);
2152 f2fs_bug_on(sbi
, !i
);
2154 if (!available_free_memory(sbi
, FREE_NIDS
)) {
2155 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2158 __move_free_nid(sbi
, i
, PREALLOC_NID
, FREE_NID
);
2161 nm_i
->available_nids
++;
2163 update_free_nid_bitmap(sbi
, nid
, true, false);
2165 spin_unlock(&nm_i
->nid_list_lock
);
2168 kmem_cache_free(free_nid_slab
, i
);
2171 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
2173 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2174 struct free_nid
*i
, *next
;
2177 if (nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2180 if (!mutex_trylock(&nm_i
->build_lock
))
2183 spin_lock(&nm_i
->nid_list_lock
);
2184 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
2185 if (nr_shrink
<= 0 ||
2186 nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2189 __remove_free_nid(sbi
, i
, FREE_NID
);
2190 kmem_cache_free(free_nid_slab
, i
);
2193 spin_unlock(&nm_i
->nid_list_lock
);
2194 mutex_unlock(&nm_i
->build_lock
);
2196 return nr
- nr_shrink
;
2199 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
2201 void *src_addr
, *dst_addr
;
2204 struct f2fs_inode
*ri
;
2206 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2207 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2209 ri
= F2FS_INODE(page
);
2210 if (ri
->i_inline
& F2FS_INLINE_XATTR
) {
2211 set_inode_flag(inode
, FI_INLINE_XATTR
);
2213 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2217 dst_addr
= inline_xattr_addr(inode
, ipage
);
2218 src_addr
= inline_xattr_addr(inode
, page
);
2219 inline_size
= inline_xattr_size(inode
);
2221 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
2222 memcpy(dst_addr
, src_addr
, inline_size
);
2224 update_inode(inode
, ipage
);
2225 f2fs_put_page(ipage
, 1);
2228 int recover_xattr_data(struct inode
*inode
, struct page
*page
)
2230 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2231 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2233 struct dnode_of_data dn
;
2234 struct node_info ni
;
2240 /* 1: invalidate the previous xattr nid */
2241 get_node_info(sbi
, prev_xnid
, &ni
);
2242 invalidate_blocks(sbi
, ni
.blk_addr
);
2243 dec_valid_node_count(sbi
, inode
, false);
2244 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2247 /* 2: update xattr nid in inode */
2248 if (!alloc_nid(sbi
, &new_xnid
))
2251 set_new_dnode(&dn
, inode
, NULL
, NULL
, new_xnid
);
2252 xpage
= new_node_page(&dn
, XATTR_NODE_OFFSET
);
2253 if (IS_ERR(xpage
)) {
2254 alloc_nid_failed(sbi
, new_xnid
);
2255 return PTR_ERR(xpage
);
2258 alloc_nid_done(sbi
, new_xnid
);
2259 update_inode_page(inode
);
2261 /* 3: update and set xattr node page dirty */
2262 memcpy(F2FS_NODE(xpage
), F2FS_NODE(page
), VALID_XATTR_BLOCK_SIZE
);
2264 set_page_dirty(xpage
);
2265 f2fs_put_page(xpage
, 1);
2270 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2272 struct f2fs_inode
*src
, *dst
;
2273 nid_t ino
= ino_of_node(page
);
2274 struct node_info old_ni
, new_ni
;
2277 get_node_info(sbi
, ino
, &old_ni
);
2279 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2282 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2284 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2288 /* Should not use this inode from free nid list */
2289 remove_free_nid(sbi
, ino
);
2291 if (!PageUptodate(ipage
))
2292 SetPageUptodate(ipage
);
2293 fill_node_footer(ipage
, ino
, ino
, 0, true);
2295 src
= F2FS_INODE(page
);
2296 dst
= F2FS_INODE(ipage
);
2298 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2300 dst
->i_blocks
= cpu_to_le64(1);
2301 dst
->i_links
= cpu_to_le32(1);
2302 dst
->i_xattr_nid
= 0;
2303 dst
->i_inline
= src
->i_inline
& (F2FS_INLINE_XATTR
| F2FS_EXTRA_ATTR
);
2304 if (dst
->i_inline
& F2FS_EXTRA_ATTR
) {
2305 dst
->i_extra_isize
= src
->i_extra_isize
;
2307 if (f2fs_sb_has_flexible_inline_xattr(sbi
->sb
) &&
2308 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2309 i_inline_xattr_size
))
2310 dst
->i_inline_xattr_size
= src
->i_inline_xattr_size
;
2312 if (f2fs_sb_has_project_quota(sbi
->sb
) &&
2313 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2315 dst
->i_projid
= src
->i_projid
;
2321 if (unlikely(inc_valid_node_count(sbi
, NULL
, true)))
2323 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2324 inc_valid_inode_count(sbi
);
2325 set_page_dirty(ipage
);
2326 f2fs_put_page(ipage
, 1);
2330 void restore_node_summary(struct f2fs_sb_info
*sbi
,
2331 unsigned int segno
, struct f2fs_summary_block
*sum
)
2333 struct f2fs_node
*rn
;
2334 struct f2fs_summary
*sum_entry
;
2336 int i
, idx
, last_offset
, nrpages
;
2338 /* scan the node segment */
2339 last_offset
= sbi
->blocks_per_seg
;
2340 addr
= START_BLOCK(sbi
, segno
);
2341 sum_entry
= &sum
->entries
[0];
2343 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2344 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2346 /* readahead node pages */
2347 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2349 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2350 struct page
*page
= get_tmp_page(sbi
, idx
);
2352 rn
= F2FS_NODE(page
);
2353 sum_entry
->nid
= rn
->footer
.nid
;
2354 sum_entry
->version
= 0;
2355 sum_entry
->ofs_in_node
= 0;
2357 f2fs_put_page(page
, 1);
2360 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2365 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2367 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2368 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2369 struct f2fs_journal
*journal
= curseg
->journal
;
2372 down_write(&curseg
->journal_rwsem
);
2373 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2374 struct nat_entry
*ne
;
2375 struct f2fs_nat_entry raw_ne
;
2376 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2378 raw_ne
= nat_in_journal(journal
, i
);
2380 ne
= __lookup_nat_cache(nm_i
, nid
);
2382 ne
= __alloc_nat_entry(nid
, true);
2383 __init_nat_entry(nm_i
, ne
, &raw_ne
, true);
2387 * if a free nat in journal has not been used after last
2388 * checkpoint, we should remove it from available nids,
2389 * since later we will add it again.
2391 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2392 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2393 spin_lock(&nm_i
->nid_list_lock
);
2394 nm_i
->available_nids
--;
2395 spin_unlock(&nm_i
->nid_list_lock
);
2398 __set_nat_cache_dirty(nm_i
, ne
);
2400 update_nats_in_cursum(journal
, -i
);
2401 up_write(&curseg
->journal_rwsem
);
2404 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2405 struct list_head
*head
, int max
)
2407 struct nat_entry_set
*cur
;
2409 if (nes
->entry_cnt
>= max
)
2412 list_for_each_entry(cur
, head
, set_list
) {
2413 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2414 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2419 list_add_tail(&nes
->set_list
, head
);
2422 static void __update_nat_bits(struct f2fs_sb_info
*sbi
, nid_t start_nid
,
2425 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2426 unsigned int nat_index
= start_nid
/ NAT_ENTRY_PER_BLOCK
;
2427 struct f2fs_nat_block
*nat_blk
= page_address(page
);
2431 if (!enabled_nat_bits(sbi
, NULL
))
2434 if (nat_index
== 0) {
2438 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++) {
2439 if (nat_blk
->entries
[i
].block_addr
!= NULL_ADDR
)
2443 __set_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2444 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2448 __clear_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2449 if (valid
== NAT_ENTRY_PER_BLOCK
)
2450 __set_bit_le(nat_index
, nm_i
->full_nat_bits
);
2452 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2455 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2456 struct nat_entry_set
*set
, struct cp_control
*cpc
)
2458 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2459 struct f2fs_journal
*journal
= curseg
->journal
;
2460 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2461 bool to_journal
= true;
2462 struct f2fs_nat_block
*nat_blk
;
2463 struct nat_entry
*ne
, *cur
;
2464 struct page
*page
= NULL
;
2467 * there are two steps to flush nat entries:
2468 * #1, flush nat entries to journal in current hot data summary block.
2469 * #2, flush nat entries to nat page.
2471 if (enabled_nat_bits(sbi
, cpc
) ||
2472 !__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2476 down_write(&curseg
->journal_rwsem
);
2478 page
= get_next_nat_page(sbi
, start_nid
);
2479 nat_blk
= page_address(page
);
2480 f2fs_bug_on(sbi
, !nat_blk
);
2483 /* flush dirty nats in nat entry set */
2484 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2485 struct f2fs_nat_entry
*raw_ne
;
2486 nid_t nid
= nat_get_nid(ne
);
2489 f2fs_bug_on(sbi
, nat_get_blkaddr(ne
) == NEW_ADDR
);
2492 offset
= lookup_journal_in_cursum(journal
,
2493 NAT_JOURNAL
, nid
, 1);
2494 f2fs_bug_on(sbi
, offset
< 0);
2495 raw_ne
= &nat_in_journal(journal
, offset
);
2496 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2498 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2500 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2502 __clear_nat_cache_dirty(NM_I(sbi
), set
, ne
);
2503 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2504 add_free_nid(sbi
, nid
, false, true);
2506 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2507 update_free_nid_bitmap(sbi
, nid
, false, false);
2508 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2513 up_write(&curseg
->journal_rwsem
);
2515 __update_nat_bits(sbi
, start_nid
, page
);
2516 f2fs_put_page(page
, 1);
2519 /* Allow dirty nats by node block allocation in write_begin */
2520 if (!set
->entry_cnt
) {
2521 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2522 kmem_cache_free(nat_entry_set_slab
, set
);
2527 * This function is called during the checkpointing process.
2529 void flush_nat_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2531 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2532 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2533 struct f2fs_journal
*journal
= curseg
->journal
;
2534 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2535 struct nat_entry_set
*set
, *tmp
;
2540 if (!nm_i
->dirty_nat_cnt
)
2543 down_write(&nm_i
->nat_tree_lock
);
2546 * if there are no enough space in journal to store dirty nat
2547 * entries, remove all entries from journal and merge them
2548 * into nat entry set.
2550 if (enabled_nat_bits(sbi
, cpc
) ||
2551 !__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2552 remove_nats_in_journal(sbi
);
2554 while ((found
= __gang_lookup_nat_set(nm_i
,
2555 set_idx
, SETVEC_SIZE
, setvec
))) {
2557 set_idx
= setvec
[found
- 1]->set
+ 1;
2558 for (idx
= 0; idx
< found
; idx
++)
2559 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2560 MAX_NAT_JENTRIES(journal
));
2563 /* flush dirty nats in nat entry set */
2564 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2565 __flush_nat_entry_set(sbi
, set
, cpc
);
2567 up_write(&nm_i
->nat_tree_lock
);
2568 /* Allow dirty nats by node block allocation in write_begin */
2571 static int __get_nat_bitmaps(struct f2fs_sb_info
*sbi
)
2573 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2574 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2575 unsigned int nat_bits_bytes
= nm_i
->nat_blocks
/ BITS_PER_BYTE
;
2577 __u64 cp_ver
= cur_cp_version(ckpt
);
2578 block_t nat_bits_addr
;
2580 if (!enabled_nat_bits(sbi
, NULL
))
2583 nm_i
->nat_bits_blocks
= F2FS_BYTES_TO_BLK((nat_bits_bytes
<< 1) + 8 +
2585 nm_i
->nat_bits
= f2fs_kzalloc(sbi
,
2586 nm_i
->nat_bits_blocks
<< F2FS_BLKSIZE_BITS
, GFP_KERNEL
);
2587 if (!nm_i
->nat_bits
)
2590 nat_bits_addr
= __start_cp_addr(sbi
) + sbi
->blocks_per_seg
-
2591 nm_i
->nat_bits_blocks
;
2592 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++) {
2593 struct page
*page
= get_meta_page(sbi
, nat_bits_addr
++);
2595 memcpy(nm_i
->nat_bits
+ (i
<< F2FS_BLKSIZE_BITS
),
2596 page_address(page
), F2FS_BLKSIZE
);
2597 f2fs_put_page(page
, 1);
2600 cp_ver
|= (cur_cp_crc(ckpt
) << 32);
2601 if (cpu_to_le64(cp_ver
) != *(__le64
*)nm_i
->nat_bits
) {
2602 disable_nat_bits(sbi
, true);
2606 nm_i
->full_nat_bits
= nm_i
->nat_bits
+ 8;
2607 nm_i
->empty_nat_bits
= nm_i
->full_nat_bits
+ nat_bits_bytes
;
2609 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Found nat_bits in checkpoint");
2613 static inline void load_free_nid_bitmap(struct f2fs_sb_info
*sbi
)
2615 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2617 nid_t nid
, last_nid
;
2619 if (!enabled_nat_bits(sbi
, NULL
))
2622 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2623 i
= find_next_bit_le(nm_i
->empty_nat_bits
, nm_i
->nat_blocks
, i
);
2624 if (i
>= nm_i
->nat_blocks
)
2627 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2629 nid
= i
* NAT_ENTRY_PER_BLOCK
;
2630 last_nid
= nid
+ NAT_ENTRY_PER_BLOCK
;
2632 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2633 for (; nid
< last_nid
; nid
++)
2634 update_free_nid_bitmap(sbi
, nid
, true, true);
2635 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2638 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2639 i
= find_next_bit_le(nm_i
->full_nat_bits
, nm_i
->nat_blocks
, i
);
2640 if (i
>= nm_i
->nat_blocks
)
2643 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2647 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2649 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2650 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2651 unsigned char *version_bitmap
;
2652 unsigned int nat_segs
;
2655 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2657 /* segment_count_nat includes pair segment so divide to 2. */
2658 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2659 nm_i
->nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2660 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nm_i
->nat_blocks
;
2662 /* not used nids: 0, node, meta, (and root counted as valid node) */
2663 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
2664 sbi
->nquota_files
- F2FS_RESERVED_NODE_NUM
;
2665 nm_i
->nid_cnt
[FREE_NID
] = 0;
2666 nm_i
->nid_cnt
[PREALLOC_NID
] = 0;
2668 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2669 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2670 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2672 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2673 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2674 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2675 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2676 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2678 mutex_init(&nm_i
->build_lock
);
2679 spin_lock_init(&nm_i
->nid_list_lock
);
2680 init_rwsem(&nm_i
->nat_tree_lock
);
2682 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2683 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2684 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2685 if (!version_bitmap
)
2688 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2690 if (!nm_i
->nat_bitmap
)
2693 err
= __get_nat_bitmaps(sbi
);
2697 #ifdef CONFIG_F2FS_CHECK_FS
2698 nm_i
->nat_bitmap_mir
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2700 if (!nm_i
->nat_bitmap_mir
)
2707 static int init_free_nid_cache(struct f2fs_sb_info
*sbi
)
2709 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2711 nm_i
->free_nid_bitmap
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
*
2712 NAT_ENTRY_BITMAP_SIZE
, GFP_KERNEL
);
2713 if (!nm_i
->free_nid_bitmap
)
2716 nm_i
->nat_block_bitmap
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
/ 8,
2718 if (!nm_i
->nat_block_bitmap
)
2721 nm_i
->free_nid_count
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
*
2722 sizeof(unsigned short), GFP_KERNEL
);
2723 if (!nm_i
->free_nid_count
)
2728 int build_node_manager(struct f2fs_sb_info
*sbi
)
2732 sbi
->nm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_nm_info
),
2737 err
= init_node_manager(sbi
);
2741 err
= init_free_nid_cache(sbi
);
2745 /* load free nid status from nat_bits table */
2746 load_free_nid_bitmap(sbi
);
2748 build_free_nids(sbi
, true, true);
2752 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2754 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2755 struct free_nid
*i
, *next_i
;
2756 struct nat_entry
*natvec
[NATVEC_SIZE
];
2757 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2764 /* destroy free nid list */
2765 spin_lock(&nm_i
->nid_list_lock
);
2766 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2767 __remove_free_nid(sbi
, i
, FREE_NID
);
2768 spin_unlock(&nm_i
->nid_list_lock
);
2769 kmem_cache_free(free_nid_slab
, i
);
2770 spin_lock(&nm_i
->nid_list_lock
);
2772 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID
]);
2773 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[PREALLOC_NID
]);
2774 f2fs_bug_on(sbi
, !list_empty(&nm_i
->free_nid_list
));
2775 spin_unlock(&nm_i
->nid_list_lock
);
2777 /* destroy nat cache */
2778 down_write(&nm_i
->nat_tree_lock
);
2779 while ((found
= __gang_lookup_nat_cache(nm_i
,
2780 nid
, NATVEC_SIZE
, natvec
))) {
2783 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2784 for (idx
= 0; idx
< found
; idx
++)
2785 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2787 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2789 /* destroy nat set cache */
2791 while ((found
= __gang_lookup_nat_set(nm_i
,
2792 nid
, SETVEC_SIZE
, setvec
))) {
2795 nid
= setvec
[found
- 1]->set
+ 1;
2796 for (idx
= 0; idx
< found
; idx
++) {
2797 /* entry_cnt is not zero, when cp_error was occurred */
2798 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2799 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2800 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2803 up_write(&nm_i
->nat_tree_lock
);
2805 kvfree(nm_i
->nat_block_bitmap
);
2806 kvfree(nm_i
->free_nid_bitmap
);
2807 kvfree(nm_i
->free_nid_count
);
2809 kfree(nm_i
->nat_bitmap
);
2810 kfree(nm_i
->nat_bits
);
2811 #ifdef CONFIG_F2FS_CHECK_FS
2812 kfree(nm_i
->nat_bitmap_mir
);
2814 sbi
->nm_info
= NULL
;
2818 int __init
create_node_manager_caches(void)
2820 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2821 sizeof(struct nat_entry
));
2822 if (!nat_entry_slab
)
2825 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2826 sizeof(struct free_nid
));
2828 goto destroy_nat_entry
;
2830 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2831 sizeof(struct nat_entry_set
));
2832 if (!nat_entry_set_slab
)
2833 goto destroy_free_nid
;
2837 kmem_cache_destroy(free_nid_slab
);
2839 kmem_cache_destroy(nat_entry_slab
);
2844 void destroy_node_manager_caches(void)
2846 kmem_cache_destroy(nat_entry_set_slab
);
2847 kmem_cache_destroy(free_nid_slab
);
2848 kmem_cache_destroy(nat_entry_slab
);