2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * Written by Ryusuke Konishi.
19 * linux/fs/ext2/super.c
21 * Copyright (C) 1992, 1993, 1994, 1995
22 * Remy Card (card@masi.ibp.fr)
23 * Laboratoire MASI - Institut Blaise Pascal
24 * Universite Pierre et Marie Curie (Paris VI)
28 * linux/fs/minix/inode.c
30 * Copyright (C) 1991, 1992 Linus Torvalds
32 * Big-endian to little-endian byte-swapping/bitmaps by
33 * David S. Miller (davem@caip.rutgers.edu), 1995
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
64 MODULE_LICENSE("GPL");
66 static struct kmem_cache
*nilfs_inode_cachep
;
67 struct kmem_cache
*nilfs_transaction_cachep
;
68 struct kmem_cache
*nilfs_segbuf_cachep
;
69 struct kmem_cache
*nilfs_btree_path_cache
;
71 static int nilfs_setup_super(struct super_block
*sb
, int is_mount
);
72 static int nilfs_remount(struct super_block
*sb
, int *flags
, char *data
);
74 void __nilfs_msg(struct super_block
*sb
, const char *level
, const char *fmt
,
84 printk("%sNILFS (%s): %pV\n", level
, sb
->s_id
, &vaf
);
86 printk("%sNILFS: %pV\n", level
, &vaf
);
90 static void nilfs_set_error(struct super_block
*sb
)
92 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
93 struct nilfs_super_block
**sbp
;
95 down_write(&nilfs
->ns_sem
);
96 if (!(nilfs
->ns_mount_state
& NILFS_ERROR_FS
)) {
97 nilfs
->ns_mount_state
|= NILFS_ERROR_FS
;
98 sbp
= nilfs_prepare_super(sb
, 0);
100 sbp
[0]->s_state
|= cpu_to_le16(NILFS_ERROR_FS
);
102 sbp
[1]->s_state
|= cpu_to_le16(NILFS_ERROR_FS
);
103 nilfs_commit_super(sb
, NILFS_SB_COMMIT_ALL
);
106 up_write(&nilfs
->ns_sem
);
110 * __nilfs_error() - report failure condition on a filesystem
112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
113 * reporting an error message. This function should be called when
114 * NILFS detects incoherences or defects of meta data on disk.
116 * This implements the body of nilfs_error() macro. Normally,
117 * nilfs_error() should be used. As for sustainable errors such as a
118 * single-shot I/O error, nilfs_msg() should be used instead.
120 * Callers should not add a trailing newline since this will do it.
122 void __nilfs_error(struct super_block
*sb
, const char *function
,
123 const char *fmt
, ...)
125 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
126 struct va_format vaf
;
134 printk(KERN_CRIT
"NILFS error (device %s): %s: %pV\n",
135 sb
->s_id
, function
, &vaf
);
139 if (!sb_rdonly(sb
)) {
142 if (nilfs_test_opt(nilfs
, ERRORS_RO
)) {
143 printk(KERN_CRIT
"Remounting filesystem read-only\n");
144 sb
->s_flags
|= SB_RDONLY
;
148 if (nilfs_test_opt(nilfs
, ERRORS_PANIC
))
149 panic("NILFS (device %s): panic forced after error\n",
153 struct inode
*nilfs_alloc_inode(struct super_block
*sb
)
155 struct nilfs_inode_info
*ii
;
157 ii
= kmem_cache_alloc(nilfs_inode_cachep
, GFP_NOFS
);
163 nilfs_mapping_init(&ii
->i_btnode_cache
, &ii
->vfs_inode
);
164 return &ii
->vfs_inode
;
167 static void nilfs_i_callback(struct rcu_head
*head
)
169 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
171 if (nilfs_is_metadata_file_inode(inode
))
172 nilfs_mdt_destroy(inode
);
174 kmem_cache_free(nilfs_inode_cachep
, NILFS_I(inode
));
177 void nilfs_destroy_inode(struct inode
*inode
)
179 call_rcu(&inode
->i_rcu
, nilfs_i_callback
);
182 static int nilfs_sync_super(struct super_block
*sb
, int flag
)
184 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
188 set_buffer_dirty(nilfs
->ns_sbh
[0]);
189 if (nilfs_test_opt(nilfs
, BARRIER
)) {
190 err
= __sync_dirty_buffer(nilfs
->ns_sbh
[0],
191 REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
193 err
= sync_dirty_buffer(nilfs
->ns_sbh
[0]);
197 nilfs_msg(sb
, KERN_ERR
, "unable to write superblock: err=%d",
199 if (err
== -EIO
&& nilfs
->ns_sbh
[1]) {
201 * sbp[0] points to newer log than sbp[1],
202 * so copy sbp[0] to sbp[1] to take over sbp[0].
204 memcpy(nilfs
->ns_sbp
[1], nilfs
->ns_sbp
[0],
206 nilfs_fall_back_super_block(nilfs
);
210 struct nilfs_super_block
*sbp
= nilfs
->ns_sbp
[0];
212 nilfs
->ns_sbwcount
++;
215 * The latest segment becomes trailable from the position
216 * written in superblock.
218 clear_nilfs_discontinued(nilfs
);
220 /* update GC protection for recent segments */
221 if (nilfs
->ns_sbh
[1]) {
222 if (flag
== NILFS_SB_COMMIT_ALL
) {
223 set_buffer_dirty(nilfs
->ns_sbh
[1]);
224 if (sync_dirty_buffer(nilfs
->ns_sbh
[1]) < 0)
227 if (le64_to_cpu(nilfs
->ns_sbp
[1]->s_last_cno
) <
228 le64_to_cpu(nilfs
->ns_sbp
[0]->s_last_cno
))
229 sbp
= nilfs
->ns_sbp
[1];
232 spin_lock(&nilfs
->ns_last_segment_lock
);
233 nilfs
->ns_prot_seq
= le64_to_cpu(sbp
->s_last_seq
);
234 spin_unlock(&nilfs
->ns_last_segment_lock
);
240 void nilfs_set_log_cursor(struct nilfs_super_block
*sbp
,
241 struct the_nilfs
*nilfs
)
243 sector_t nfreeblocks
;
245 /* nilfs->ns_sem must be locked by the caller. */
246 nilfs_count_free_blocks(nilfs
, &nfreeblocks
);
247 sbp
->s_free_blocks_count
= cpu_to_le64(nfreeblocks
);
249 spin_lock(&nilfs
->ns_last_segment_lock
);
250 sbp
->s_last_seq
= cpu_to_le64(nilfs
->ns_last_seq
);
251 sbp
->s_last_pseg
= cpu_to_le64(nilfs
->ns_last_pseg
);
252 sbp
->s_last_cno
= cpu_to_le64(nilfs
->ns_last_cno
);
253 spin_unlock(&nilfs
->ns_last_segment_lock
);
256 struct nilfs_super_block
**nilfs_prepare_super(struct super_block
*sb
,
259 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
260 struct nilfs_super_block
**sbp
= nilfs
->ns_sbp
;
262 /* nilfs->ns_sem must be locked by the caller. */
263 if (sbp
[0]->s_magic
!= cpu_to_le16(NILFS_SUPER_MAGIC
)) {
265 sbp
[1]->s_magic
== cpu_to_le16(NILFS_SUPER_MAGIC
)) {
266 memcpy(sbp
[0], sbp
[1], nilfs
->ns_sbsize
);
268 nilfs_msg(sb
, KERN_CRIT
, "superblock broke");
272 sbp
[1]->s_magic
!= cpu_to_le16(NILFS_SUPER_MAGIC
)) {
273 memcpy(sbp
[1], sbp
[0], nilfs
->ns_sbsize
);
277 nilfs_swap_super_block(nilfs
);
282 int nilfs_commit_super(struct super_block
*sb
, int flag
)
284 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
285 struct nilfs_super_block
**sbp
= nilfs
->ns_sbp
;
288 /* nilfs->ns_sem must be locked by the caller. */
289 t
= ktime_get_real_seconds();
290 nilfs
->ns_sbwtime
= t
;
291 sbp
[0]->s_wtime
= cpu_to_le64(t
);
293 sbp
[0]->s_sum
= cpu_to_le32(crc32_le(nilfs
->ns_crc_seed
,
294 (unsigned char *)sbp
[0],
296 if (flag
== NILFS_SB_COMMIT_ALL
&& sbp
[1]) {
297 sbp
[1]->s_wtime
= sbp
[0]->s_wtime
;
299 sbp
[1]->s_sum
= cpu_to_le32(crc32_le(nilfs
->ns_crc_seed
,
300 (unsigned char *)sbp
[1],
303 clear_nilfs_sb_dirty(nilfs
);
304 nilfs
->ns_flushed_device
= 1;
305 /* make sure store to ns_flushed_device cannot be reordered */
307 return nilfs_sync_super(sb
, flag
);
311 * nilfs_cleanup_super() - write filesystem state for cleanup
312 * @sb: super block instance to be unmounted or degraded to read-only
314 * This function restores state flags in the on-disk super block.
315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
316 * filesystem was not clean previously.
318 int nilfs_cleanup_super(struct super_block
*sb
)
320 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
321 struct nilfs_super_block
**sbp
;
322 int flag
= NILFS_SB_COMMIT
;
325 sbp
= nilfs_prepare_super(sb
, 0);
327 sbp
[0]->s_state
= cpu_to_le16(nilfs
->ns_mount_state
);
328 nilfs_set_log_cursor(sbp
[0], nilfs
);
329 if (sbp
[1] && sbp
[0]->s_last_cno
== sbp
[1]->s_last_cno
) {
331 * make the "clean" flag also to the opposite
332 * super block if both super blocks point to
333 * the same checkpoint.
335 sbp
[1]->s_state
= sbp
[0]->s_state
;
336 flag
= NILFS_SB_COMMIT_ALL
;
338 ret
= nilfs_commit_super(sb
, flag
);
344 * nilfs_move_2nd_super - relocate secondary super block
345 * @sb: super block instance
346 * @sb2off: new offset of the secondary super block (in bytes)
348 static int nilfs_move_2nd_super(struct super_block
*sb
, loff_t sb2off
)
350 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
351 struct buffer_head
*nsbh
;
352 struct nilfs_super_block
*nsbp
;
353 sector_t blocknr
, newblocknr
;
354 unsigned long offset
;
355 int sb2i
; /* array index of the secondary superblock */
358 /* nilfs->ns_sem must be locked by the caller. */
359 if (nilfs
->ns_sbh
[1] &&
360 nilfs
->ns_sbh
[1]->b_blocknr
> nilfs
->ns_first_data_block
) {
362 blocknr
= nilfs
->ns_sbh
[1]->b_blocknr
;
363 } else if (nilfs
->ns_sbh
[0]->b_blocknr
> nilfs
->ns_first_data_block
) {
365 blocknr
= nilfs
->ns_sbh
[0]->b_blocknr
;
370 if (sb2i
>= 0 && (u64
)blocknr
<< nilfs
->ns_blocksize_bits
== sb2off
)
371 goto out
; /* super block location is unchanged */
373 /* Get new super block buffer */
374 newblocknr
= sb2off
>> nilfs
->ns_blocksize_bits
;
375 offset
= sb2off
& (nilfs
->ns_blocksize
- 1);
376 nsbh
= sb_getblk(sb
, newblocknr
);
378 nilfs_msg(sb
, KERN_WARNING
,
379 "unable to move secondary superblock to block %llu",
380 (unsigned long long)newblocknr
);
384 nsbp
= (void *)nsbh
->b_data
+ offset
;
385 memset(nsbp
, 0, nilfs
->ns_blocksize
);
388 memcpy(nsbp
, nilfs
->ns_sbp
[sb2i
], nilfs
->ns_sbsize
);
389 brelse(nilfs
->ns_sbh
[sb2i
]);
390 nilfs
->ns_sbh
[sb2i
] = nsbh
;
391 nilfs
->ns_sbp
[sb2i
] = nsbp
;
392 } else if (nilfs
->ns_sbh
[0]->b_blocknr
< nilfs
->ns_first_data_block
) {
393 /* secondary super block will be restored to index 1 */
394 nilfs
->ns_sbh
[1] = nsbh
;
395 nilfs
->ns_sbp
[1] = nsbp
;
404 * nilfs_resize_fs - resize the filesystem
405 * @sb: super block instance
406 * @newsize: new size of the filesystem (in bytes)
408 int nilfs_resize_fs(struct super_block
*sb
, __u64 newsize
)
410 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
411 struct nilfs_super_block
**sbp
;
412 __u64 devsize
, newnsegs
;
417 devsize
= i_size_read(sb
->s_bdev
->bd_inode
);
418 if (newsize
> devsize
)
422 * Write lock is required to protect some functions depending
423 * on the number of segments, the number of reserved segments,
426 down_write(&nilfs
->ns_segctor_sem
);
428 sb2off
= NILFS_SB2_OFFSET_BYTES(newsize
);
429 newnsegs
= sb2off
>> nilfs
->ns_blocksize_bits
;
430 do_div(newnsegs
, nilfs
->ns_blocks_per_segment
);
432 ret
= nilfs_sufile_resize(nilfs
->ns_sufile
, newnsegs
);
433 up_write(&nilfs
->ns_segctor_sem
);
437 ret
= nilfs_construct_segment(sb
);
441 down_write(&nilfs
->ns_sem
);
442 nilfs_move_2nd_super(sb
, sb2off
);
444 sbp
= nilfs_prepare_super(sb
, 0);
446 nilfs_set_log_cursor(sbp
[0], nilfs
);
448 * Drop NILFS_RESIZE_FS flag for compatibility with
449 * mount-time resize which may be implemented in a
452 sbp
[0]->s_state
= cpu_to_le16(le16_to_cpu(sbp
[0]->s_state
) &
454 sbp
[0]->s_dev_size
= cpu_to_le64(newsize
);
455 sbp
[0]->s_nsegments
= cpu_to_le64(nilfs
->ns_nsegments
);
457 memcpy(sbp
[1], sbp
[0], nilfs
->ns_sbsize
);
458 ret
= nilfs_commit_super(sb
, NILFS_SB_COMMIT_ALL
);
460 up_write(&nilfs
->ns_sem
);
463 * Reset the range of allocatable segments last. This order
464 * is important in the case of expansion because the secondary
465 * superblock must be protected from log write until migration
469 nilfs_sufile_set_alloc_range(nilfs
->ns_sufile
, 0, newnsegs
- 1);
474 static void nilfs_put_super(struct super_block
*sb
)
476 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
478 nilfs_detach_log_writer(sb
);
480 if (!sb_rdonly(sb
)) {
481 down_write(&nilfs
->ns_sem
);
482 nilfs_cleanup_super(sb
);
483 up_write(&nilfs
->ns_sem
);
486 iput(nilfs
->ns_sufile
);
487 iput(nilfs
->ns_cpfile
);
490 destroy_nilfs(nilfs
);
491 sb
->s_fs_info
= NULL
;
494 static int nilfs_sync_fs(struct super_block
*sb
, int wait
)
496 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
497 struct nilfs_super_block
**sbp
;
500 /* This function is called when super block should be written back */
502 err
= nilfs_construct_segment(sb
);
504 down_write(&nilfs
->ns_sem
);
505 if (nilfs_sb_dirty(nilfs
)) {
506 sbp
= nilfs_prepare_super(sb
, nilfs_sb_will_flip(nilfs
));
508 nilfs_set_log_cursor(sbp
[0], nilfs
);
509 nilfs_commit_super(sb
, NILFS_SB_COMMIT
);
512 up_write(&nilfs
->ns_sem
);
515 err
= nilfs_flush_device(nilfs
);
520 int nilfs_attach_checkpoint(struct super_block
*sb
, __u64 cno
, int curr_mnt
,
521 struct nilfs_root
**rootp
)
523 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
524 struct nilfs_root
*root
;
525 struct nilfs_checkpoint
*raw_cp
;
526 struct buffer_head
*bh_cp
;
529 root
= nilfs_find_or_create_root(
530 nilfs
, curr_mnt
? NILFS_CPTREE_CURRENT_CNO
: cno
);
535 goto reuse
; /* already attached checkpoint */
537 down_read(&nilfs
->ns_segctor_sem
);
538 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, cno
, 0, &raw_cp
,
540 up_read(&nilfs
->ns_segctor_sem
);
542 if (err
== -ENOENT
|| err
== -EINVAL
) {
543 nilfs_msg(sb
, KERN_ERR
,
544 "Invalid checkpoint (checkpoint number=%llu)",
545 (unsigned long long)cno
);
551 err
= nilfs_ifile_read(sb
, root
, nilfs
->ns_inode_size
,
552 &raw_cp
->cp_ifile_inode
, &root
->ifile
);
556 atomic64_set(&root
->inodes_count
,
557 le64_to_cpu(raw_cp
->cp_inodes_count
));
558 atomic64_set(&root
->blocks_count
,
559 le64_to_cpu(raw_cp
->cp_blocks_count
));
561 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, cno
, bh_cp
);
568 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, cno
, bh_cp
);
570 nilfs_put_root(root
);
575 static int nilfs_freeze(struct super_block
*sb
)
577 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
583 /* Mark super block clean */
584 down_write(&nilfs
->ns_sem
);
585 err
= nilfs_cleanup_super(sb
);
586 up_write(&nilfs
->ns_sem
);
590 static int nilfs_unfreeze(struct super_block
*sb
)
592 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
597 down_write(&nilfs
->ns_sem
);
598 nilfs_setup_super(sb
, false);
599 up_write(&nilfs
->ns_sem
);
603 static int nilfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
605 struct super_block
*sb
= dentry
->d_sb
;
606 struct nilfs_root
*root
= NILFS_I(d_inode(dentry
))->i_root
;
607 struct the_nilfs
*nilfs
= root
->nilfs
;
608 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
609 unsigned long long blocks
;
610 unsigned long overhead
;
611 unsigned long nrsvblocks
;
612 sector_t nfreeblocks
;
613 u64 nmaxinodes
, nfreeinodes
;
617 * Compute all of the segment blocks
619 * The blocks before first segment and after last segment
622 blocks
= nilfs
->ns_blocks_per_segment
* nilfs
->ns_nsegments
623 - nilfs
->ns_first_data_block
;
624 nrsvblocks
= nilfs
->ns_nrsvsegs
* nilfs
->ns_blocks_per_segment
;
627 * Compute the overhead
629 * When distributing meta data blocks outside segment structure,
630 * We must count them as the overhead.
634 err
= nilfs_count_free_blocks(nilfs
, &nfreeblocks
);
638 err
= nilfs_ifile_count_free_inodes(root
->ifile
,
639 &nmaxinodes
, &nfreeinodes
);
641 nilfs_msg(sb
, KERN_WARNING
,
642 "failed to count free inodes: err=%d", err
);
643 if (err
== -ERANGE
) {
645 * If nilfs_palloc_count_max_entries() returns
646 * -ERANGE error code then we simply treat
647 * curent inodes count as maximum possible and
648 * zero as free inodes value.
650 nmaxinodes
= atomic64_read(&root
->inodes_count
);
657 buf
->f_type
= NILFS_SUPER_MAGIC
;
658 buf
->f_bsize
= sb
->s_blocksize
;
659 buf
->f_blocks
= blocks
- overhead
;
660 buf
->f_bfree
= nfreeblocks
;
661 buf
->f_bavail
= (buf
->f_bfree
>= nrsvblocks
) ?
662 (buf
->f_bfree
- nrsvblocks
) : 0;
663 buf
->f_files
= nmaxinodes
;
664 buf
->f_ffree
= nfreeinodes
;
665 buf
->f_namelen
= NILFS_NAME_LEN
;
666 buf
->f_fsid
.val
[0] = (u32
)id
;
667 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
672 static int nilfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
674 struct super_block
*sb
= dentry
->d_sb
;
675 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
676 struct nilfs_root
*root
= NILFS_I(d_inode(dentry
))->i_root
;
678 if (!nilfs_test_opt(nilfs
, BARRIER
))
679 seq_puts(seq
, ",nobarrier");
680 if (root
->cno
!= NILFS_CPTREE_CURRENT_CNO
)
681 seq_printf(seq
, ",cp=%llu", (unsigned long long)root
->cno
);
682 if (nilfs_test_opt(nilfs
, ERRORS_PANIC
))
683 seq_puts(seq
, ",errors=panic");
684 if (nilfs_test_opt(nilfs
, ERRORS_CONT
))
685 seq_puts(seq
, ",errors=continue");
686 if (nilfs_test_opt(nilfs
, STRICT_ORDER
))
687 seq_puts(seq
, ",order=strict");
688 if (nilfs_test_opt(nilfs
, NORECOVERY
))
689 seq_puts(seq
, ",norecovery");
690 if (nilfs_test_opt(nilfs
, DISCARD
))
691 seq_puts(seq
, ",discard");
696 static const struct super_operations nilfs_sops
= {
697 .alloc_inode
= nilfs_alloc_inode
,
698 .destroy_inode
= nilfs_destroy_inode
,
699 .dirty_inode
= nilfs_dirty_inode
,
700 .evict_inode
= nilfs_evict_inode
,
701 .put_super
= nilfs_put_super
,
702 .sync_fs
= nilfs_sync_fs
,
703 .freeze_fs
= nilfs_freeze
,
704 .unfreeze_fs
= nilfs_unfreeze
,
705 .statfs
= nilfs_statfs
,
706 .remount_fs
= nilfs_remount
,
707 .show_options
= nilfs_show_options
711 Opt_err_cont
, Opt_err_panic
, Opt_err_ro
,
712 Opt_barrier
, Opt_nobarrier
, Opt_snapshot
, Opt_order
, Opt_norecovery
,
713 Opt_discard
, Opt_nodiscard
, Opt_err
,
716 static match_table_t tokens
= {
717 {Opt_err_cont
, "errors=continue"},
718 {Opt_err_panic
, "errors=panic"},
719 {Opt_err_ro
, "errors=remount-ro"},
720 {Opt_barrier
, "barrier"},
721 {Opt_nobarrier
, "nobarrier"},
722 {Opt_snapshot
, "cp=%u"},
723 {Opt_order
, "order=%s"},
724 {Opt_norecovery
, "norecovery"},
725 {Opt_discard
, "discard"},
726 {Opt_nodiscard
, "nodiscard"},
730 static int parse_options(char *options
, struct super_block
*sb
, int is_remount
)
732 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
734 substring_t args
[MAX_OPT_ARGS
];
739 while ((p
= strsep(&options
, ",")) != NULL
) {
745 token
= match_token(p
, tokens
, args
);
748 nilfs_set_opt(nilfs
, BARRIER
);
751 nilfs_clear_opt(nilfs
, BARRIER
);
754 if (strcmp(args
[0].from
, "relaxed") == 0)
755 /* Ordered data semantics */
756 nilfs_clear_opt(nilfs
, STRICT_ORDER
);
757 else if (strcmp(args
[0].from
, "strict") == 0)
758 /* Strict in-order semantics */
759 nilfs_set_opt(nilfs
, STRICT_ORDER
);
764 nilfs_write_opt(nilfs
, ERROR_MODE
, ERRORS_PANIC
);
767 nilfs_write_opt(nilfs
, ERROR_MODE
, ERRORS_RO
);
770 nilfs_write_opt(nilfs
, ERROR_MODE
, ERRORS_CONT
);
774 nilfs_msg(sb
, KERN_ERR
,
775 "\"%s\" option is invalid for remount",
781 nilfs_set_opt(nilfs
, NORECOVERY
);
784 nilfs_set_opt(nilfs
, DISCARD
);
787 nilfs_clear_opt(nilfs
, DISCARD
);
790 nilfs_msg(sb
, KERN_ERR
,
791 "unrecognized mount option \"%s\"", p
);
799 nilfs_set_default_options(struct super_block
*sb
,
800 struct nilfs_super_block
*sbp
)
802 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
804 nilfs
->ns_mount_opt
=
805 NILFS_MOUNT_ERRORS_RO
| NILFS_MOUNT_BARRIER
;
808 static int nilfs_setup_super(struct super_block
*sb
, int is_mount
)
810 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
811 struct nilfs_super_block
**sbp
;
815 /* nilfs->ns_sem must be locked by the caller. */
816 sbp
= nilfs_prepare_super(sb
, 0);
821 goto skip_mount_setup
;
823 max_mnt_count
= le16_to_cpu(sbp
[0]->s_max_mnt_count
);
824 mnt_count
= le16_to_cpu(sbp
[0]->s_mnt_count
);
826 if (nilfs
->ns_mount_state
& NILFS_ERROR_FS
) {
827 nilfs_msg(sb
, KERN_WARNING
, "mounting fs with errors");
829 } else if (max_mnt_count
>= 0 && mnt_count
>= max_mnt_count
) {
830 nilfs_msg(sb
, KERN_WARNING
, "maximal mount count reached");
834 sbp
[0]->s_max_mnt_count
= cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT
);
836 sbp
[0]->s_mnt_count
= cpu_to_le16(mnt_count
+ 1);
837 sbp
[0]->s_mtime
= cpu_to_le64(get_seconds());
841 cpu_to_le16(le16_to_cpu(sbp
[0]->s_state
) & ~NILFS_VALID_FS
);
842 /* synchronize sbp[1] with sbp[0] */
844 memcpy(sbp
[1], sbp
[0], nilfs
->ns_sbsize
);
845 return nilfs_commit_super(sb
, NILFS_SB_COMMIT_ALL
);
848 struct nilfs_super_block
*nilfs_read_super_block(struct super_block
*sb
,
849 u64 pos
, int blocksize
,
850 struct buffer_head
**pbh
)
852 unsigned long long sb_index
= pos
;
853 unsigned long offset
;
855 offset
= do_div(sb_index
, blocksize
);
856 *pbh
= sb_bread(sb
, sb_index
);
859 return (struct nilfs_super_block
*)((char *)(*pbh
)->b_data
+ offset
);
862 int nilfs_store_magic_and_option(struct super_block
*sb
,
863 struct nilfs_super_block
*sbp
,
866 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
868 sb
->s_magic
= le16_to_cpu(sbp
->s_magic
);
870 /* FS independent flags */
871 #ifdef NILFS_ATIME_DISABLE
872 sb
->s_flags
|= SB_NOATIME
;
875 nilfs_set_default_options(sb
, sbp
);
877 nilfs
->ns_resuid
= le16_to_cpu(sbp
->s_def_resuid
);
878 nilfs
->ns_resgid
= le16_to_cpu(sbp
->s_def_resgid
);
879 nilfs
->ns_interval
= le32_to_cpu(sbp
->s_c_interval
);
880 nilfs
->ns_watermark
= le32_to_cpu(sbp
->s_c_block_max
);
882 return !parse_options(data
, sb
, 0) ? -EINVAL
: 0;
885 int nilfs_check_feature_compatibility(struct super_block
*sb
,
886 struct nilfs_super_block
*sbp
)
890 features
= le64_to_cpu(sbp
->s_feature_incompat
) &
891 ~NILFS_FEATURE_INCOMPAT_SUPP
;
893 nilfs_msg(sb
, KERN_ERR
,
894 "couldn't mount because of unsupported optional features (%llx)",
895 (unsigned long long)features
);
898 features
= le64_to_cpu(sbp
->s_feature_compat_ro
) &
899 ~NILFS_FEATURE_COMPAT_RO_SUPP
;
900 if (!sb_rdonly(sb
) && features
) {
901 nilfs_msg(sb
, KERN_ERR
,
902 "couldn't mount RDWR because of unsupported optional features (%llx)",
903 (unsigned long long)features
);
909 static int nilfs_get_root_dentry(struct super_block
*sb
,
910 struct nilfs_root
*root
,
911 struct dentry
**root_dentry
)
914 struct dentry
*dentry
;
917 inode
= nilfs_iget(sb
, root
, NILFS_ROOT_INO
);
919 ret
= PTR_ERR(inode
);
920 nilfs_msg(sb
, KERN_ERR
, "error %d getting root inode", ret
);
923 if (!S_ISDIR(inode
->i_mode
) || !inode
->i_blocks
|| !inode
->i_size
) {
925 nilfs_msg(sb
, KERN_ERR
, "corrupt root inode");
930 if (root
->cno
== NILFS_CPTREE_CURRENT_CNO
) {
931 dentry
= d_find_alias(inode
);
933 dentry
= d_make_root(inode
);
942 dentry
= d_obtain_root(inode
);
943 if (IS_ERR(dentry
)) {
944 ret
= PTR_ERR(dentry
);
948 *root_dentry
= dentry
;
953 nilfs_msg(sb
, KERN_ERR
, "error %d getting root dentry", ret
);
957 static int nilfs_attach_snapshot(struct super_block
*s
, __u64 cno
,
958 struct dentry
**root_dentry
)
960 struct the_nilfs
*nilfs
= s
->s_fs_info
;
961 struct nilfs_root
*root
;
964 mutex_lock(&nilfs
->ns_snapshot_mount_mutex
);
966 down_read(&nilfs
->ns_segctor_sem
);
967 ret
= nilfs_cpfile_is_snapshot(nilfs
->ns_cpfile
, cno
);
968 up_read(&nilfs
->ns_segctor_sem
);
970 ret
= (ret
== -ENOENT
) ? -EINVAL
: ret
;
973 nilfs_msg(s
, KERN_ERR
,
974 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
975 (unsigned long long)cno
);
980 ret
= nilfs_attach_checkpoint(s
, cno
, false, &root
);
982 nilfs_msg(s
, KERN_ERR
,
983 "error %d while loading snapshot (checkpoint number=%llu)",
984 ret
, (unsigned long long)cno
);
987 ret
= nilfs_get_root_dentry(s
, root
, root_dentry
);
988 nilfs_put_root(root
);
990 mutex_unlock(&nilfs
->ns_snapshot_mount_mutex
);
995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
996 * @root_dentry: root dentry of the tree to be shrunk
998 * This function returns true if the tree was in-use.
1000 static bool nilfs_tree_is_busy(struct dentry
*root_dentry
)
1002 shrink_dcache_parent(root_dentry
);
1003 return d_count(root_dentry
) > 1;
1006 int nilfs_checkpoint_is_mounted(struct super_block
*sb
, __u64 cno
)
1008 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
1009 struct nilfs_root
*root
;
1010 struct inode
*inode
;
1011 struct dentry
*dentry
;
1014 if (cno
> nilfs
->ns_cno
)
1017 if (cno
>= nilfs_last_cno(nilfs
))
1018 return true; /* protect recent checkpoints */
1021 root
= nilfs_lookup_root(nilfs
, cno
);
1023 inode
= nilfs_ilookup(sb
, root
, NILFS_ROOT_INO
);
1025 dentry
= d_find_alias(inode
);
1027 ret
= nilfs_tree_is_busy(dentry
);
1032 nilfs_put_root(root
);
1038 * nilfs_fill_super() - initialize a super block instance
1040 * @data: mount options
1041 * @silent: silent mode flag
1043 * This function is called exclusively by nilfs->ns_mount_mutex.
1044 * So, the recovery process is protected from other simultaneous mounts.
1047 nilfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1049 struct the_nilfs
*nilfs
;
1050 struct nilfs_root
*fsroot
;
1054 nilfs
= alloc_nilfs(sb
);
1058 sb
->s_fs_info
= nilfs
;
1060 err
= init_nilfs(nilfs
, sb
, (char *)data
);
1064 sb
->s_op
= &nilfs_sops
;
1065 sb
->s_export_op
= &nilfs_export_ops
;
1067 sb
->s_time_gran
= 1;
1068 sb
->s_max_links
= NILFS_LINK_MAX
;
1070 sb
->s_bdi
= bdi_get(sb
->s_bdev
->bd_bdi
);
1072 err
= load_nilfs(nilfs
, sb
);
1076 cno
= nilfs_last_cno(nilfs
);
1077 err
= nilfs_attach_checkpoint(sb
, cno
, true, &fsroot
);
1079 nilfs_msg(sb
, KERN_ERR
,
1080 "error %d while loading last checkpoint (checkpoint number=%llu)",
1081 err
, (unsigned long long)cno
);
1085 if (!sb_rdonly(sb
)) {
1086 err
= nilfs_attach_log_writer(sb
, fsroot
);
1088 goto failed_checkpoint
;
1091 err
= nilfs_get_root_dentry(sb
, fsroot
, &sb
->s_root
);
1093 goto failed_segctor
;
1095 nilfs_put_root(fsroot
);
1097 if (!sb_rdonly(sb
)) {
1098 down_write(&nilfs
->ns_sem
);
1099 nilfs_setup_super(sb
, true);
1100 up_write(&nilfs
->ns_sem
);
1106 nilfs_detach_log_writer(sb
);
1109 nilfs_put_root(fsroot
);
1112 iput(nilfs
->ns_sufile
);
1113 iput(nilfs
->ns_cpfile
);
1114 iput(nilfs
->ns_dat
);
1117 destroy_nilfs(nilfs
);
1121 static int nilfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1123 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
1124 unsigned long old_sb_flags
;
1125 unsigned long old_mount_opt
;
1128 sync_filesystem(sb
);
1129 old_sb_flags
= sb
->s_flags
;
1130 old_mount_opt
= nilfs
->ns_mount_opt
;
1132 if (!parse_options(data
, sb
, 1)) {
1136 sb
->s_flags
= (sb
->s_flags
& ~SB_POSIXACL
);
1140 if (!nilfs_valid_fs(nilfs
)) {
1141 nilfs_msg(sb
, KERN_WARNING
,
1142 "couldn't remount because the filesystem is in an incomplete recovery state");
1146 if ((bool)(*flags
& SB_RDONLY
) == sb_rdonly(sb
))
1148 if (*flags
& SB_RDONLY
) {
1149 /* Shutting down log writer */
1150 nilfs_detach_log_writer(sb
);
1151 sb
->s_flags
|= SB_RDONLY
;
1154 * Remounting a valid RW partition RDONLY, so set
1155 * the RDONLY flag and then mark the partition as valid again.
1157 down_write(&nilfs
->ns_sem
);
1158 nilfs_cleanup_super(sb
);
1159 up_write(&nilfs
->ns_sem
);
1162 struct nilfs_root
*root
;
1165 * Mounting a RDONLY partition read-write, so reread and
1166 * store the current valid flag. (It may have been changed
1167 * by fsck since we originally mounted the partition.)
1169 down_read(&nilfs
->ns_sem
);
1170 features
= le64_to_cpu(nilfs
->ns_sbp
[0]->s_feature_compat_ro
) &
1171 ~NILFS_FEATURE_COMPAT_RO_SUPP
;
1172 up_read(&nilfs
->ns_sem
);
1174 nilfs_msg(sb
, KERN_WARNING
,
1175 "couldn't remount RDWR because of unsupported optional features (%llx)",
1176 (unsigned long long)features
);
1181 sb
->s_flags
&= ~SB_RDONLY
;
1183 root
= NILFS_I(d_inode(sb
->s_root
))->i_root
;
1184 err
= nilfs_attach_log_writer(sb
, root
);
1188 down_write(&nilfs
->ns_sem
);
1189 nilfs_setup_super(sb
, true);
1190 up_write(&nilfs
->ns_sem
);
1196 sb
->s_flags
= old_sb_flags
;
1197 nilfs
->ns_mount_opt
= old_mount_opt
;
1201 struct nilfs_super_data
{
1202 struct block_device
*bdev
;
1207 static int nilfs_parse_snapshot_option(const char *option
,
1208 const substring_t
*arg
,
1209 struct nilfs_super_data
*sd
)
1211 unsigned long long val
;
1212 const char *msg
= NULL
;
1215 if (!(sd
->flags
& SB_RDONLY
)) {
1216 msg
= "read-only option is not specified";
1220 err
= kstrtoull(arg
->from
, 0, &val
);
1223 msg
= "too large checkpoint number";
1225 msg
= "malformed argument";
1227 } else if (val
== 0) {
1228 msg
= "invalid checkpoint number 0";
1235 nilfs_msg(NULL
, KERN_ERR
, "invalid option \"%s\": %s", option
, msg
);
1240 * nilfs_identify - pre-read mount options needed to identify mount instance
1241 * @data: mount options
1242 * @sd: nilfs_super_data
1244 static int nilfs_identify(char *data
, struct nilfs_super_data
*sd
)
1246 char *p
, *options
= data
;
1247 substring_t args
[MAX_OPT_ARGS
];
1252 p
= strsep(&options
, ",");
1253 if (p
!= NULL
&& *p
) {
1254 token
= match_token(p
, tokens
, args
);
1255 if (token
== Opt_snapshot
)
1256 ret
= nilfs_parse_snapshot_option(p
, &args
[0],
1261 BUG_ON(options
== data
);
1262 *(options
- 1) = ',';
1267 static int nilfs_set_bdev_super(struct super_block
*s
, void *data
)
1270 s
->s_dev
= s
->s_bdev
->bd_dev
;
1274 static int nilfs_test_bdev_super(struct super_block
*s
, void *data
)
1276 return (void *)s
->s_bdev
== data
;
1279 static struct dentry
*
1280 nilfs_mount(struct file_system_type
*fs_type
, int flags
,
1281 const char *dev_name
, void *data
)
1283 struct nilfs_super_data sd
;
1284 struct super_block
*s
;
1285 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1286 struct dentry
*root_dentry
;
1287 int err
, s_new
= false;
1289 if (!(flags
& SB_RDONLY
))
1290 mode
|= FMODE_WRITE
;
1292 sd
.bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1293 if (IS_ERR(sd
.bdev
))
1294 return ERR_CAST(sd
.bdev
);
1298 if (nilfs_identify((char *)data
, &sd
)) {
1304 * once the super is inserted into the list by sget, s_umount
1305 * will protect the lockfs code from trying to start a snapshot
1306 * while we are mounting
1308 mutex_lock(&sd
.bdev
->bd_fsfreeze_mutex
);
1309 if (sd
.bdev
->bd_fsfreeze_count
> 0) {
1310 mutex_unlock(&sd
.bdev
->bd_fsfreeze_mutex
);
1314 s
= sget(fs_type
, nilfs_test_bdev_super
, nilfs_set_bdev_super
, flags
,
1316 mutex_unlock(&sd
.bdev
->bd_fsfreeze_mutex
);
1325 /* New superblock instance created */
1327 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", sd
.bdev
);
1328 sb_set_blocksize(s
, block_size(sd
.bdev
));
1330 err
= nilfs_fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1334 s
->s_flags
|= SB_ACTIVE
;
1335 } else if (!sd
.cno
) {
1336 if (nilfs_tree_is_busy(s
->s_root
)) {
1337 if ((flags
^ s
->s_flags
) & SB_RDONLY
) {
1338 nilfs_msg(s
, KERN_ERR
,
1339 "the device already has a %s mount.",
1340 sb_rdonly(s
) ? "read-only" : "read/write");
1346 * Try remount to setup mount states if the current
1347 * tree is not mounted and only snapshots use this sb.
1349 err
= nilfs_remount(s
, &flags
, data
);
1356 err
= nilfs_attach_snapshot(s
, sd
.cno
, &root_dentry
);
1360 root_dentry
= dget(s
->s_root
);
1364 blkdev_put(sd
.bdev
, mode
);
1369 deactivate_locked_super(s
);
1373 blkdev_put(sd
.bdev
, mode
);
1374 return ERR_PTR(err
);
1377 struct file_system_type nilfs_fs_type
= {
1378 .owner
= THIS_MODULE
,
1380 .mount
= nilfs_mount
,
1381 .kill_sb
= kill_block_super
,
1382 .fs_flags
= FS_REQUIRES_DEV
,
1384 MODULE_ALIAS_FS("nilfs2");
1386 static void nilfs_inode_init_once(void *obj
)
1388 struct nilfs_inode_info
*ii
= obj
;
1390 INIT_LIST_HEAD(&ii
->i_dirty
);
1391 #ifdef CONFIG_NILFS_XATTR
1392 init_rwsem(&ii
->xattr_sem
);
1394 address_space_init_once(&ii
->i_btnode_cache
);
1395 ii
->i_bmap
= &ii
->i_bmap_data
;
1396 inode_init_once(&ii
->vfs_inode
);
1399 static void nilfs_segbuf_init_once(void *obj
)
1401 memset(obj
, 0, sizeof(struct nilfs_segment_buffer
));
1404 static void nilfs_destroy_cachep(void)
1407 * Make sure all delayed rcu free inodes are flushed before we
1412 kmem_cache_destroy(nilfs_inode_cachep
);
1413 kmem_cache_destroy(nilfs_transaction_cachep
);
1414 kmem_cache_destroy(nilfs_segbuf_cachep
);
1415 kmem_cache_destroy(nilfs_btree_path_cache
);
1418 static int __init
nilfs_init_cachep(void)
1420 nilfs_inode_cachep
= kmem_cache_create("nilfs2_inode_cache",
1421 sizeof(struct nilfs_inode_info
), 0,
1422 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
,
1423 nilfs_inode_init_once
);
1424 if (!nilfs_inode_cachep
)
1427 nilfs_transaction_cachep
= kmem_cache_create("nilfs2_transaction_cache",
1428 sizeof(struct nilfs_transaction_info
), 0,
1429 SLAB_RECLAIM_ACCOUNT
, NULL
);
1430 if (!nilfs_transaction_cachep
)
1433 nilfs_segbuf_cachep
= kmem_cache_create("nilfs2_segbuf_cache",
1434 sizeof(struct nilfs_segment_buffer
), 0,
1435 SLAB_RECLAIM_ACCOUNT
, nilfs_segbuf_init_once
);
1436 if (!nilfs_segbuf_cachep
)
1439 nilfs_btree_path_cache
= kmem_cache_create("nilfs2_btree_path_cache",
1440 sizeof(struct nilfs_btree_path
) * NILFS_BTREE_LEVEL_MAX
,
1442 if (!nilfs_btree_path_cache
)
1448 nilfs_destroy_cachep();
1452 static int __init
init_nilfs_fs(void)
1456 err
= nilfs_init_cachep();
1460 err
= nilfs_sysfs_init();
1464 err
= register_filesystem(&nilfs_fs_type
);
1466 goto deinit_sysfs_entry
;
1468 printk(KERN_INFO
"NILFS version 2 loaded\n");
1474 nilfs_destroy_cachep();
1479 static void __exit
exit_nilfs_fs(void)
1481 nilfs_destroy_cachep();
1483 unregister_filesystem(&nilfs_fs_type
);
1486 module_init(init_nilfs_fs
)
1487 module_exit(exit_nilfs_fs
)