Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / fs / xfs / libxfs / xfs_btree.c
blob79ee4a1951d14b6649585167cd6cb5cc05977d68
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_alloc.h"
37 #include "xfs_log.h"
40 * Cursor allocation zone.
42 kmem_zone_t *xfs_btree_cur_zone;
45 * Btree magic numbers.
47 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
48 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
49 XFS_FIBT_MAGIC, 0 },
50 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
51 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
52 XFS_REFC_CRC_MAGIC }
55 uint32_t
56 xfs_btree_magic(
57 int crc,
58 xfs_btnum_t btnum)
60 uint32_t magic = xfs_magics[crc][btnum];
62 /* Ensure we asked for crc for crc-only magics. */
63 ASSERT(magic != 0);
64 return magic;
68 * Check a long btree block header. Return the address of the failing check,
69 * or NULL if everything is ok.
71 xfs_failaddr_t
72 __xfs_btree_check_lblock(
73 struct xfs_btree_cur *cur,
74 struct xfs_btree_block *block,
75 int level,
76 struct xfs_buf *bp)
78 struct xfs_mount *mp = cur->bc_mp;
79 xfs_btnum_t btnum = cur->bc_btnum;
80 int crc = xfs_sb_version_hascrc(&mp->m_sb);
82 if (crc) {
83 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
84 return __this_address;
85 if (block->bb_u.l.bb_blkno !=
86 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
87 return __this_address;
88 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
89 return __this_address;
92 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
93 return __this_address;
94 if (be16_to_cpu(block->bb_level) != level)
95 return __this_address;
96 if (be16_to_cpu(block->bb_numrecs) >
97 cur->bc_ops->get_maxrecs(cur, level))
98 return __this_address;
99 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
100 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
101 level + 1))
102 return __this_address;
103 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
104 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
105 level + 1))
106 return __this_address;
108 return NULL;
111 /* Check a long btree block header. */
112 static int
113 xfs_btree_check_lblock(
114 struct xfs_btree_cur *cur,
115 struct xfs_btree_block *block,
116 int level,
117 struct xfs_buf *bp)
119 struct xfs_mount *mp = cur->bc_mp;
120 xfs_failaddr_t fa;
122 fa = __xfs_btree_check_lblock(cur, block, level, bp);
123 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
124 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
125 if (bp)
126 trace_xfs_btree_corrupt(bp, _RET_IP_);
127 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
128 return -EFSCORRUPTED;
130 return 0;
134 * Check a short btree block header. Return the address of the failing check,
135 * or NULL if everything is ok.
137 xfs_failaddr_t
138 __xfs_btree_check_sblock(
139 struct xfs_btree_cur *cur,
140 struct xfs_btree_block *block,
141 int level,
142 struct xfs_buf *bp)
144 struct xfs_mount *mp = cur->bc_mp;
145 xfs_btnum_t btnum = cur->bc_btnum;
146 int crc = xfs_sb_version_hascrc(&mp->m_sb);
148 if (crc) {
149 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
150 return __this_address;
151 if (block->bb_u.s.bb_blkno !=
152 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
153 return __this_address;
156 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
157 return __this_address;
158 if (be16_to_cpu(block->bb_level) != level)
159 return __this_address;
160 if (be16_to_cpu(block->bb_numrecs) >
161 cur->bc_ops->get_maxrecs(cur, level))
162 return __this_address;
163 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
164 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
165 level + 1))
166 return __this_address;
167 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
168 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
169 level + 1))
170 return __this_address;
172 return NULL;
175 /* Check a short btree block header. */
176 STATIC int
177 xfs_btree_check_sblock(
178 struct xfs_btree_cur *cur,
179 struct xfs_btree_block *block,
180 int level,
181 struct xfs_buf *bp)
183 struct xfs_mount *mp = cur->bc_mp;
184 xfs_failaddr_t fa;
186 fa = __xfs_btree_check_sblock(cur, block, level, bp);
187 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
188 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
189 if (bp)
190 trace_xfs_btree_corrupt(bp, _RET_IP_);
191 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
192 return -EFSCORRUPTED;
194 return 0;
198 * Debug routine: check that block header is ok.
201 xfs_btree_check_block(
202 struct xfs_btree_cur *cur, /* btree cursor */
203 struct xfs_btree_block *block, /* generic btree block pointer */
204 int level, /* level of the btree block */
205 struct xfs_buf *bp) /* buffer containing block, if any */
207 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
208 return xfs_btree_check_lblock(cur, block, level, bp);
209 else
210 return xfs_btree_check_sblock(cur, block, level, bp);
213 /* Check that this long pointer is valid and points within the fs. */
214 bool
215 xfs_btree_check_lptr(
216 struct xfs_btree_cur *cur,
217 xfs_fsblock_t fsbno,
218 int level)
220 if (level <= 0)
221 return false;
222 return xfs_verify_fsbno(cur->bc_mp, fsbno);
225 /* Check that this short pointer is valid and points within the AG. */
226 bool
227 xfs_btree_check_sptr(
228 struct xfs_btree_cur *cur,
229 xfs_agblock_t agbno,
230 int level)
232 if (level <= 0)
233 return false;
234 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
237 #ifdef DEBUG
239 * Check that a given (indexed) btree pointer at a certain level of a
240 * btree is valid and doesn't point past where it should.
242 static int
243 xfs_btree_check_ptr(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_ptr *ptr,
246 int index,
247 int level)
249 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
250 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 xfs_btree_check_lptr(cur,
252 be64_to_cpu((&ptr->l)[index]), level));
253 } else {
254 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
255 xfs_btree_check_sptr(cur,
256 be32_to_cpu((&ptr->s)[index]), level));
259 return 0;
261 #endif
264 * Calculate CRC on the whole btree block and stuff it into the
265 * long-form btree header.
267 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
268 * it into the buffer so recovery knows what the last modification was that made
269 * it to disk.
271 void
272 xfs_btree_lblock_calc_crc(
273 struct xfs_buf *bp)
275 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
276 struct xfs_buf_log_item *bip = bp->b_log_item;
278 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
279 return;
280 if (bip)
281 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
282 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
285 bool
286 xfs_btree_lblock_verify_crc(
287 struct xfs_buf *bp)
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_mount *mp = bp->b_target->bt_mount;
292 if (xfs_sb_version_hascrc(&mp->m_sb)) {
293 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
294 return false;
295 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
298 return true;
302 * Calculate CRC on the whole btree block and stuff it into the
303 * short-form btree header.
305 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
306 * it into the buffer so recovery knows what the last modification was that made
307 * it to disk.
309 void
310 xfs_btree_sblock_calc_crc(
311 struct xfs_buf *bp)
313 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
314 struct xfs_buf_log_item *bip = bp->b_log_item;
316 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
317 return;
318 if (bip)
319 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
320 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
323 bool
324 xfs_btree_sblock_verify_crc(
325 struct xfs_buf *bp)
327 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
328 struct xfs_mount *mp = bp->b_target->bt_mount;
330 if (xfs_sb_version_hascrc(&mp->m_sb)) {
331 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
332 return __this_address;
333 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
336 return true;
339 static int
340 xfs_btree_free_block(
341 struct xfs_btree_cur *cur,
342 struct xfs_buf *bp)
344 int error;
346 error = cur->bc_ops->free_block(cur, bp);
347 if (!error) {
348 xfs_trans_binval(cur->bc_tp, bp);
349 XFS_BTREE_STATS_INC(cur, free);
351 return error;
355 * Delete the btree cursor.
357 void
358 xfs_btree_del_cursor(
359 xfs_btree_cur_t *cur, /* btree cursor */
360 int error) /* del because of error */
362 int i; /* btree level */
365 * Clear the buffer pointers, and release the buffers.
366 * If we're doing this in the face of an error, we
367 * need to make sure to inspect all of the entries
368 * in the bc_bufs array for buffers to be unlocked.
369 * This is because some of the btree code works from
370 * level n down to 0, and if we get an error along
371 * the way we won't have initialized all the entries
372 * down to 0.
374 for (i = 0; i < cur->bc_nlevels; i++) {
375 if (cur->bc_bufs[i])
376 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
377 else if (!error)
378 break;
381 * Can't free a bmap cursor without having dealt with the
382 * allocated indirect blocks' accounting.
384 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
385 cur->bc_private.b.allocated == 0);
387 * Free the cursor.
389 kmem_zone_free(xfs_btree_cur_zone, cur);
393 * Duplicate the btree cursor.
394 * Allocate a new one, copy the record, re-get the buffers.
396 int /* error */
397 xfs_btree_dup_cursor(
398 xfs_btree_cur_t *cur, /* input cursor */
399 xfs_btree_cur_t **ncur) /* output cursor */
401 xfs_buf_t *bp; /* btree block's buffer pointer */
402 int error; /* error return value */
403 int i; /* level number of btree block */
404 xfs_mount_t *mp; /* mount structure for filesystem */
405 xfs_btree_cur_t *new; /* new cursor value */
406 xfs_trans_t *tp; /* transaction pointer, can be NULL */
408 tp = cur->bc_tp;
409 mp = cur->bc_mp;
412 * Allocate a new cursor like the old one.
414 new = cur->bc_ops->dup_cursor(cur);
417 * Copy the record currently in the cursor.
419 new->bc_rec = cur->bc_rec;
422 * For each level current, re-get the buffer and copy the ptr value.
424 for (i = 0; i < new->bc_nlevels; i++) {
425 new->bc_ptrs[i] = cur->bc_ptrs[i];
426 new->bc_ra[i] = cur->bc_ra[i];
427 bp = cur->bc_bufs[i];
428 if (bp) {
429 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
430 XFS_BUF_ADDR(bp), mp->m_bsize,
431 0, &bp,
432 cur->bc_ops->buf_ops);
433 if (error) {
434 xfs_btree_del_cursor(new, error);
435 *ncur = NULL;
436 return error;
439 new->bc_bufs[i] = bp;
441 *ncur = new;
442 return 0;
446 * XFS btree block layout and addressing:
448 * There are two types of blocks in the btree: leaf and non-leaf blocks.
450 * The leaf record start with a header then followed by records containing
451 * the values. A non-leaf block also starts with the same header, and
452 * then first contains lookup keys followed by an equal number of pointers
453 * to the btree blocks at the previous level.
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
457 * +--------+-------+-------+-------+-------+-------+-------+
459 * +--------+-------+-------+-------+-------+-------+-------+
460 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
461 * +--------+-------+-------+-------+-------+-------+-------+
463 * The header is called struct xfs_btree_block for reasons better left unknown
464 * and comes in different versions for short (32bit) and long (64bit) block
465 * pointers. The record and key structures are defined by the btree instances
466 * and opaque to the btree core. The block pointers are simple disk endian
467 * integers, available in a short (32bit) and long (64bit) variant.
469 * The helpers below calculate the offset of a given record, key or pointer
470 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
471 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
472 * inside the btree block is done using indices starting at one, not zero!
474 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
475 * overlapping intervals. In such a tree, records are still sorted lowest to
476 * highest and indexed by the smallest key value that refers to the record.
477 * However, nodes are different: each pointer has two associated keys -- one
478 * indexing the lowest key available in the block(s) below (the same behavior
479 * as the key in a regular btree) and another indexing the highest key
480 * available in the block(s) below. Because records are /not/ sorted by the
481 * highest key, all leaf block updates require us to compute the highest key
482 * that matches any record in the leaf and to recursively update the high keys
483 * in the nodes going further up in the tree, if necessary. Nodes look like
484 * this:
486 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
487 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
488 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
490 * To perform an interval query on an overlapped tree, perform the usual
491 * depth-first search and use the low and high keys to decide if we can skip
492 * that particular node. If a leaf node is reached, return the records that
493 * intersect the interval. Note that an interval query may return numerous
494 * entries. For a non-overlapped tree, simply search for the record associated
495 * with the lowest key and iterate forward until a non-matching record is
496 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
497 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
498 * more detail.
500 * Why do we care about overlapping intervals? Let's say you have a bunch of
501 * reverse mapping records on a reflink filesystem:
503 * 1: +- file A startblock B offset C length D -----------+
504 * 2: +- file E startblock F offset G length H --------------+
505 * 3: +- file I startblock F offset J length K --+
506 * 4: +- file L... --+
508 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
509 * we'd simply increment the length of record 1. But how do we find the record
510 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
511 * record 3 because the keys are ordered first by startblock. An interval
512 * query would return records 1 and 2 because they both overlap (B+D-1), and
513 * from that we can pick out record 1 as the appropriate left neighbor.
515 * In the non-overlapped case you can do a LE lookup and decrement the cursor
516 * because a record's interval must end before the next record.
520 * Return size of the btree block header for this btree instance.
522 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
524 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 return XFS_BTREE_LBLOCK_CRC_LEN;
527 return XFS_BTREE_LBLOCK_LEN;
529 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
530 return XFS_BTREE_SBLOCK_CRC_LEN;
531 return XFS_BTREE_SBLOCK_LEN;
535 * Return size of btree block pointers for this btree instance.
537 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
539 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
540 sizeof(__be64) : sizeof(__be32);
544 * Calculate offset of the n-th record in a btree block.
546 STATIC size_t
547 xfs_btree_rec_offset(
548 struct xfs_btree_cur *cur,
549 int n)
551 return xfs_btree_block_len(cur) +
552 (n - 1) * cur->bc_ops->rec_len;
556 * Calculate offset of the n-th key in a btree block.
558 STATIC size_t
559 xfs_btree_key_offset(
560 struct xfs_btree_cur *cur,
561 int n)
563 return xfs_btree_block_len(cur) +
564 (n - 1) * cur->bc_ops->key_len;
568 * Calculate offset of the n-th high key in a btree block.
570 STATIC size_t
571 xfs_btree_high_key_offset(
572 struct xfs_btree_cur *cur,
573 int n)
575 return xfs_btree_block_len(cur) +
576 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
580 * Calculate offset of the n-th block pointer in a btree block.
582 STATIC size_t
583 xfs_btree_ptr_offset(
584 struct xfs_btree_cur *cur,
585 int n,
586 int level)
588 return xfs_btree_block_len(cur) +
589 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
590 (n - 1) * xfs_btree_ptr_len(cur);
594 * Return a pointer to the n-th record in the btree block.
596 union xfs_btree_rec *
597 xfs_btree_rec_addr(
598 struct xfs_btree_cur *cur,
599 int n,
600 struct xfs_btree_block *block)
602 return (union xfs_btree_rec *)
603 ((char *)block + xfs_btree_rec_offset(cur, n));
607 * Return a pointer to the n-th key in the btree block.
609 union xfs_btree_key *
610 xfs_btree_key_addr(
611 struct xfs_btree_cur *cur,
612 int n,
613 struct xfs_btree_block *block)
615 return (union xfs_btree_key *)
616 ((char *)block + xfs_btree_key_offset(cur, n));
620 * Return a pointer to the n-th high key in the btree block.
622 union xfs_btree_key *
623 xfs_btree_high_key_addr(
624 struct xfs_btree_cur *cur,
625 int n,
626 struct xfs_btree_block *block)
628 return (union xfs_btree_key *)
629 ((char *)block + xfs_btree_high_key_offset(cur, n));
633 * Return a pointer to the n-th block pointer in the btree block.
635 union xfs_btree_ptr *
636 xfs_btree_ptr_addr(
637 struct xfs_btree_cur *cur,
638 int n,
639 struct xfs_btree_block *block)
641 int level = xfs_btree_get_level(block);
643 ASSERT(block->bb_level != 0);
645 return (union xfs_btree_ptr *)
646 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
650 * Get the root block which is stored in the inode.
652 * For now this btree implementation assumes the btree root is always
653 * stored in the if_broot field of an inode fork.
655 STATIC struct xfs_btree_block *
656 xfs_btree_get_iroot(
657 struct xfs_btree_cur *cur)
659 struct xfs_ifork *ifp;
661 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
662 return (struct xfs_btree_block *)ifp->if_broot;
666 * Retrieve the block pointer from the cursor at the given level.
667 * This may be an inode btree root or from a buffer.
669 struct xfs_btree_block * /* generic btree block pointer */
670 xfs_btree_get_block(
671 struct xfs_btree_cur *cur, /* btree cursor */
672 int level, /* level in btree */
673 struct xfs_buf **bpp) /* buffer containing the block */
675 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
676 (level == cur->bc_nlevels - 1)) {
677 *bpp = NULL;
678 return xfs_btree_get_iroot(cur);
681 *bpp = cur->bc_bufs[level];
682 return XFS_BUF_TO_BLOCK(*bpp);
686 * Get a buffer for the block, return it with no data read.
687 * Long-form addressing.
689 xfs_buf_t * /* buffer for fsbno */
690 xfs_btree_get_bufl(
691 xfs_mount_t *mp, /* file system mount point */
692 xfs_trans_t *tp, /* transaction pointer */
693 xfs_fsblock_t fsbno, /* file system block number */
694 uint lock) /* lock flags for get_buf */
696 xfs_daddr_t d; /* real disk block address */
698 ASSERT(fsbno != NULLFSBLOCK);
699 d = XFS_FSB_TO_DADDR(mp, fsbno);
700 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
704 * Get a buffer for the block, return it with no data read.
705 * Short-form addressing.
707 xfs_buf_t * /* buffer for agno/agbno */
708 xfs_btree_get_bufs(
709 xfs_mount_t *mp, /* file system mount point */
710 xfs_trans_t *tp, /* transaction pointer */
711 xfs_agnumber_t agno, /* allocation group number */
712 xfs_agblock_t agbno, /* allocation group block number */
713 uint lock) /* lock flags for get_buf */
715 xfs_daddr_t d; /* real disk block address */
717 ASSERT(agno != NULLAGNUMBER);
718 ASSERT(agbno != NULLAGBLOCK);
719 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
720 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
724 * Check for the cursor referring to the last block at the given level.
726 int /* 1=is last block, 0=not last block */
727 xfs_btree_islastblock(
728 xfs_btree_cur_t *cur, /* btree cursor */
729 int level) /* level to check */
731 struct xfs_btree_block *block; /* generic btree block pointer */
732 xfs_buf_t *bp; /* buffer containing block */
734 block = xfs_btree_get_block(cur, level, &bp);
735 xfs_btree_check_block(cur, block, level, bp);
736 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
737 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
738 else
739 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
743 * Change the cursor to point to the first record at the given level.
744 * Other levels are unaffected.
746 STATIC int /* success=1, failure=0 */
747 xfs_btree_firstrec(
748 xfs_btree_cur_t *cur, /* btree cursor */
749 int level) /* level to change */
751 struct xfs_btree_block *block; /* generic btree block pointer */
752 xfs_buf_t *bp; /* buffer containing block */
755 * Get the block pointer for this level.
757 block = xfs_btree_get_block(cur, level, &bp);
758 if (xfs_btree_check_block(cur, block, level, bp))
759 return 0;
761 * It's empty, there is no such record.
763 if (!block->bb_numrecs)
764 return 0;
766 * Set the ptr value to 1, that's the first record/key.
768 cur->bc_ptrs[level] = 1;
769 return 1;
773 * Change the cursor to point to the last record in the current block
774 * at the given level. Other levels are unaffected.
776 STATIC int /* success=1, failure=0 */
777 xfs_btree_lastrec(
778 xfs_btree_cur_t *cur, /* btree cursor */
779 int level) /* level to change */
781 struct xfs_btree_block *block; /* generic btree block pointer */
782 xfs_buf_t *bp; /* buffer containing block */
785 * Get the block pointer for this level.
787 block = xfs_btree_get_block(cur, level, &bp);
788 if (xfs_btree_check_block(cur, block, level, bp))
789 return 0;
791 * It's empty, there is no such record.
793 if (!block->bb_numrecs)
794 return 0;
796 * Set the ptr value to numrecs, that's the last record/key.
798 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
799 return 1;
803 * Compute first and last byte offsets for the fields given.
804 * Interprets the offsets table, which contains struct field offsets.
806 void
807 xfs_btree_offsets(
808 int64_t fields, /* bitmask of fields */
809 const short *offsets, /* table of field offsets */
810 int nbits, /* number of bits to inspect */
811 int *first, /* output: first byte offset */
812 int *last) /* output: last byte offset */
814 int i; /* current bit number */
815 int64_t imask; /* mask for current bit number */
817 ASSERT(fields != 0);
819 * Find the lowest bit, so the first byte offset.
821 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
822 if (imask & fields) {
823 *first = offsets[i];
824 break;
828 * Find the highest bit, so the last byte offset.
830 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
831 if (imask & fields) {
832 *last = offsets[i + 1] - 1;
833 break;
839 * Get a buffer for the block, return it read in.
840 * Long-form addressing.
843 xfs_btree_read_bufl(
844 struct xfs_mount *mp, /* file system mount point */
845 struct xfs_trans *tp, /* transaction pointer */
846 xfs_fsblock_t fsbno, /* file system block number */
847 uint lock, /* lock flags for read_buf */
848 struct xfs_buf **bpp, /* buffer for fsbno */
849 int refval, /* ref count value for buffer */
850 const struct xfs_buf_ops *ops)
852 struct xfs_buf *bp; /* return value */
853 xfs_daddr_t d; /* real disk block address */
854 int error;
856 if (!xfs_verify_fsbno(mp, fsbno))
857 return -EFSCORRUPTED;
858 d = XFS_FSB_TO_DADDR(mp, fsbno);
859 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
860 mp->m_bsize, lock, &bp, ops);
861 if (error)
862 return error;
863 if (bp)
864 xfs_buf_set_ref(bp, refval);
865 *bpp = bp;
866 return 0;
870 * Read-ahead the block, don't wait for it, don't return a buffer.
871 * Long-form addressing.
873 /* ARGSUSED */
874 void
875 xfs_btree_reada_bufl(
876 struct xfs_mount *mp, /* file system mount point */
877 xfs_fsblock_t fsbno, /* file system block number */
878 xfs_extlen_t count, /* count of filesystem blocks */
879 const struct xfs_buf_ops *ops)
881 xfs_daddr_t d;
883 ASSERT(fsbno != NULLFSBLOCK);
884 d = XFS_FSB_TO_DADDR(mp, fsbno);
885 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
889 * Read-ahead the block, don't wait for it, don't return a buffer.
890 * Short-form addressing.
892 /* ARGSUSED */
893 void
894 xfs_btree_reada_bufs(
895 struct xfs_mount *mp, /* file system mount point */
896 xfs_agnumber_t agno, /* allocation group number */
897 xfs_agblock_t agbno, /* allocation group block number */
898 xfs_extlen_t count, /* count of filesystem blocks */
899 const struct xfs_buf_ops *ops)
901 xfs_daddr_t d;
903 ASSERT(agno != NULLAGNUMBER);
904 ASSERT(agbno != NULLAGBLOCK);
905 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
906 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
909 STATIC int
910 xfs_btree_readahead_lblock(
911 struct xfs_btree_cur *cur,
912 int lr,
913 struct xfs_btree_block *block)
915 int rval = 0;
916 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
917 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
919 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
920 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
921 cur->bc_ops->buf_ops);
922 rval++;
925 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
926 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
927 cur->bc_ops->buf_ops);
928 rval++;
931 return rval;
934 STATIC int
935 xfs_btree_readahead_sblock(
936 struct xfs_btree_cur *cur,
937 int lr,
938 struct xfs_btree_block *block)
940 int rval = 0;
941 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
942 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
945 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
946 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
947 left, 1, cur->bc_ops->buf_ops);
948 rval++;
951 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
952 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
953 right, 1, cur->bc_ops->buf_ops);
954 rval++;
957 return rval;
961 * Read-ahead btree blocks, at the given level.
962 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
964 STATIC int
965 xfs_btree_readahead(
966 struct xfs_btree_cur *cur, /* btree cursor */
967 int lev, /* level in btree */
968 int lr) /* left/right bits */
970 struct xfs_btree_block *block;
973 * No readahead needed if we are at the root level and the
974 * btree root is stored in the inode.
976 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
977 (lev == cur->bc_nlevels - 1))
978 return 0;
980 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
981 return 0;
983 cur->bc_ra[lev] |= lr;
984 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
986 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
987 return xfs_btree_readahead_lblock(cur, lr, block);
988 return xfs_btree_readahead_sblock(cur, lr, block);
991 STATIC xfs_daddr_t
992 xfs_btree_ptr_to_daddr(
993 struct xfs_btree_cur *cur,
994 union xfs_btree_ptr *ptr)
996 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
997 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
999 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1000 } else {
1001 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
1002 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
1004 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1005 be32_to_cpu(ptr->s));
1010 * Readahead @count btree blocks at the given @ptr location.
1012 * We don't need to care about long or short form btrees here as we have a
1013 * method of converting the ptr directly to a daddr available to us.
1015 STATIC void
1016 xfs_btree_readahead_ptr(
1017 struct xfs_btree_cur *cur,
1018 union xfs_btree_ptr *ptr,
1019 xfs_extlen_t count)
1021 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1022 xfs_btree_ptr_to_daddr(cur, ptr),
1023 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1027 * Set the buffer for level "lev" in the cursor to bp, releasing
1028 * any previous buffer.
1030 STATIC void
1031 xfs_btree_setbuf(
1032 xfs_btree_cur_t *cur, /* btree cursor */
1033 int lev, /* level in btree */
1034 xfs_buf_t *bp) /* new buffer to set */
1036 struct xfs_btree_block *b; /* btree block */
1038 if (cur->bc_bufs[lev])
1039 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1040 cur->bc_bufs[lev] = bp;
1041 cur->bc_ra[lev] = 0;
1043 b = XFS_BUF_TO_BLOCK(bp);
1044 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1045 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1046 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1047 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1048 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1049 } else {
1050 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1051 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1052 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1053 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1057 bool
1058 xfs_btree_ptr_is_null(
1059 struct xfs_btree_cur *cur,
1060 union xfs_btree_ptr *ptr)
1062 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1063 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1064 else
1065 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1068 STATIC void
1069 xfs_btree_set_ptr_null(
1070 struct xfs_btree_cur *cur,
1071 union xfs_btree_ptr *ptr)
1073 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1074 ptr->l = cpu_to_be64(NULLFSBLOCK);
1075 else
1076 ptr->s = cpu_to_be32(NULLAGBLOCK);
1080 * Get/set/init sibling pointers
1082 void
1083 xfs_btree_get_sibling(
1084 struct xfs_btree_cur *cur,
1085 struct xfs_btree_block *block,
1086 union xfs_btree_ptr *ptr,
1087 int lr)
1089 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1091 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1092 if (lr == XFS_BB_RIGHTSIB)
1093 ptr->l = block->bb_u.l.bb_rightsib;
1094 else
1095 ptr->l = block->bb_u.l.bb_leftsib;
1096 } else {
1097 if (lr == XFS_BB_RIGHTSIB)
1098 ptr->s = block->bb_u.s.bb_rightsib;
1099 else
1100 ptr->s = block->bb_u.s.bb_leftsib;
1104 STATIC void
1105 xfs_btree_set_sibling(
1106 struct xfs_btree_cur *cur,
1107 struct xfs_btree_block *block,
1108 union xfs_btree_ptr *ptr,
1109 int lr)
1111 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1113 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1114 if (lr == XFS_BB_RIGHTSIB)
1115 block->bb_u.l.bb_rightsib = ptr->l;
1116 else
1117 block->bb_u.l.bb_leftsib = ptr->l;
1118 } else {
1119 if (lr == XFS_BB_RIGHTSIB)
1120 block->bb_u.s.bb_rightsib = ptr->s;
1121 else
1122 block->bb_u.s.bb_leftsib = ptr->s;
1126 void
1127 xfs_btree_init_block_int(
1128 struct xfs_mount *mp,
1129 struct xfs_btree_block *buf,
1130 xfs_daddr_t blkno,
1131 xfs_btnum_t btnum,
1132 __u16 level,
1133 __u16 numrecs,
1134 __u64 owner,
1135 unsigned int flags)
1137 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1138 __u32 magic = xfs_btree_magic(crc, btnum);
1140 buf->bb_magic = cpu_to_be32(magic);
1141 buf->bb_level = cpu_to_be16(level);
1142 buf->bb_numrecs = cpu_to_be16(numrecs);
1144 if (flags & XFS_BTREE_LONG_PTRS) {
1145 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1146 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1147 if (crc) {
1148 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1149 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1150 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1151 buf->bb_u.l.bb_pad = 0;
1152 buf->bb_u.l.bb_lsn = 0;
1154 } else {
1155 /* owner is a 32 bit value on short blocks */
1156 __u32 __owner = (__u32)owner;
1158 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1159 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1160 if (crc) {
1161 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1162 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1163 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1164 buf->bb_u.s.bb_lsn = 0;
1169 void
1170 xfs_btree_init_block(
1171 struct xfs_mount *mp,
1172 struct xfs_buf *bp,
1173 xfs_btnum_t btnum,
1174 __u16 level,
1175 __u16 numrecs,
1176 __u64 owner,
1177 unsigned int flags)
1179 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1180 btnum, level, numrecs, owner, flags);
1183 STATIC void
1184 xfs_btree_init_block_cur(
1185 struct xfs_btree_cur *cur,
1186 struct xfs_buf *bp,
1187 int level,
1188 int numrecs)
1190 __u64 owner;
1193 * we can pull the owner from the cursor right now as the different
1194 * owners align directly with the pointer size of the btree. This may
1195 * change in future, but is safe for current users of the generic btree
1196 * code.
1198 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1199 owner = cur->bc_private.b.ip->i_ino;
1200 else
1201 owner = cur->bc_private.a.agno;
1203 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1204 cur->bc_btnum, level, numrecs,
1205 owner, cur->bc_flags);
1209 * Return true if ptr is the last record in the btree and
1210 * we need to track updates to this record. The decision
1211 * will be further refined in the update_lastrec method.
1213 STATIC int
1214 xfs_btree_is_lastrec(
1215 struct xfs_btree_cur *cur,
1216 struct xfs_btree_block *block,
1217 int level)
1219 union xfs_btree_ptr ptr;
1221 if (level > 0)
1222 return 0;
1223 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1224 return 0;
1226 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1227 if (!xfs_btree_ptr_is_null(cur, &ptr))
1228 return 0;
1229 return 1;
1232 STATIC void
1233 xfs_btree_buf_to_ptr(
1234 struct xfs_btree_cur *cur,
1235 struct xfs_buf *bp,
1236 union xfs_btree_ptr *ptr)
1238 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1239 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1240 XFS_BUF_ADDR(bp)));
1241 else {
1242 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1243 XFS_BUF_ADDR(bp)));
1247 STATIC void
1248 xfs_btree_set_refs(
1249 struct xfs_btree_cur *cur,
1250 struct xfs_buf *bp)
1252 switch (cur->bc_btnum) {
1253 case XFS_BTNUM_BNO:
1254 case XFS_BTNUM_CNT:
1255 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1256 break;
1257 case XFS_BTNUM_INO:
1258 case XFS_BTNUM_FINO:
1259 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1260 break;
1261 case XFS_BTNUM_BMAP:
1262 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1263 break;
1264 case XFS_BTNUM_RMAP:
1265 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1266 break;
1267 case XFS_BTNUM_REFC:
1268 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1269 break;
1270 default:
1271 ASSERT(0);
1275 STATIC int
1276 xfs_btree_get_buf_block(
1277 struct xfs_btree_cur *cur,
1278 union xfs_btree_ptr *ptr,
1279 int flags,
1280 struct xfs_btree_block **block,
1281 struct xfs_buf **bpp)
1283 struct xfs_mount *mp = cur->bc_mp;
1284 xfs_daddr_t d;
1286 /* need to sort out how callers deal with failures first */
1287 ASSERT(!(flags & XBF_TRYLOCK));
1289 d = xfs_btree_ptr_to_daddr(cur, ptr);
1290 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1291 mp->m_bsize, flags);
1293 if (!*bpp)
1294 return -ENOMEM;
1296 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1297 *block = XFS_BUF_TO_BLOCK(*bpp);
1298 return 0;
1302 * Read in the buffer at the given ptr and return the buffer and
1303 * the block pointer within the buffer.
1305 STATIC int
1306 xfs_btree_read_buf_block(
1307 struct xfs_btree_cur *cur,
1308 union xfs_btree_ptr *ptr,
1309 int flags,
1310 struct xfs_btree_block **block,
1311 struct xfs_buf **bpp)
1313 struct xfs_mount *mp = cur->bc_mp;
1314 xfs_daddr_t d;
1315 int error;
1317 /* need to sort out how callers deal with failures first */
1318 ASSERT(!(flags & XBF_TRYLOCK));
1320 d = xfs_btree_ptr_to_daddr(cur, ptr);
1321 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1322 mp->m_bsize, flags, bpp,
1323 cur->bc_ops->buf_ops);
1324 if (error)
1325 return error;
1327 xfs_btree_set_refs(cur, *bpp);
1328 *block = XFS_BUF_TO_BLOCK(*bpp);
1329 return 0;
1333 * Copy keys from one btree block to another.
1335 STATIC void
1336 xfs_btree_copy_keys(
1337 struct xfs_btree_cur *cur,
1338 union xfs_btree_key *dst_key,
1339 union xfs_btree_key *src_key,
1340 int numkeys)
1342 ASSERT(numkeys >= 0);
1343 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1347 * Copy records from one btree block to another.
1349 STATIC void
1350 xfs_btree_copy_recs(
1351 struct xfs_btree_cur *cur,
1352 union xfs_btree_rec *dst_rec,
1353 union xfs_btree_rec *src_rec,
1354 int numrecs)
1356 ASSERT(numrecs >= 0);
1357 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1361 * Copy block pointers from one btree block to another.
1363 STATIC void
1364 xfs_btree_copy_ptrs(
1365 struct xfs_btree_cur *cur,
1366 union xfs_btree_ptr *dst_ptr,
1367 union xfs_btree_ptr *src_ptr,
1368 int numptrs)
1370 ASSERT(numptrs >= 0);
1371 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1375 * Shift keys one index left/right inside a single btree block.
1377 STATIC void
1378 xfs_btree_shift_keys(
1379 struct xfs_btree_cur *cur,
1380 union xfs_btree_key *key,
1381 int dir,
1382 int numkeys)
1384 char *dst_key;
1386 ASSERT(numkeys >= 0);
1387 ASSERT(dir == 1 || dir == -1);
1389 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1390 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1394 * Shift records one index left/right inside a single btree block.
1396 STATIC void
1397 xfs_btree_shift_recs(
1398 struct xfs_btree_cur *cur,
1399 union xfs_btree_rec *rec,
1400 int dir,
1401 int numrecs)
1403 char *dst_rec;
1405 ASSERT(numrecs >= 0);
1406 ASSERT(dir == 1 || dir == -1);
1408 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1409 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1413 * Shift block pointers one index left/right inside a single btree block.
1415 STATIC void
1416 xfs_btree_shift_ptrs(
1417 struct xfs_btree_cur *cur,
1418 union xfs_btree_ptr *ptr,
1419 int dir,
1420 int numptrs)
1422 char *dst_ptr;
1424 ASSERT(numptrs >= 0);
1425 ASSERT(dir == 1 || dir == -1);
1427 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1428 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1432 * Log key values from the btree block.
1434 STATIC void
1435 xfs_btree_log_keys(
1436 struct xfs_btree_cur *cur,
1437 struct xfs_buf *bp,
1438 int first,
1439 int last)
1441 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1444 if (bp) {
1445 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1446 xfs_trans_log_buf(cur->bc_tp, bp,
1447 xfs_btree_key_offset(cur, first),
1448 xfs_btree_key_offset(cur, last + 1) - 1);
1449 } else {
1450 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1451 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1454 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1458 * Log record values from the btree block.
1460 void
1461 xfs_btree_log_recs(
1462 struct xfs_btree_cur *cur,
1463 struct xfs_buf *bp,
1464 int first,
1465 int last)
1467 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1468 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1470 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1471 xfs_trans_log_buf(cur->bc_tp, bp,
1472 xfs_btree_rec_offset(cur, first),
1473 xfs_btree_rec_offset(cur, last + 1) - 1);
1475 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1479 * Log block pointer fields from a btree block (nonleaf).
1481 STATIC void
1482 xfs_btree_log_ptrs(
1483 struct xfs_btree_cur *cur, /* btree cursor */
1484 struct xfs_buf *bp, /* buffer containing btree block */
1485 int first, /* index of first pointer to log */
1486 int last) /* index of last pointer to log */
1488 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1489 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1491 if (bp) {
1492 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1493 int level = xfs_btree_get_level(block);
1495 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1496 xfs_trans_log_buf(cur->bc_tp, bp,
1497 xfs_btree_ptr_offset(cur, first, level),
1498 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1499 } else {
1500 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1501 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1504 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1508 * Log fields from a btree block header.
1510 void
1511 xfs_btree_log_block(
1512 struct xfs_btree_cur *cur, /* btree cursor */
1513 struct xfs_buf *bp, /* buffer containing btree block */
1514 int fields) /* mask of fields: XFS_BB_... */
1516 int first; /* first byte offset logged */
1517 int last; /* last byte offset logged */
1518 static const short soffsets[] = { /* table of offsets (short) */
1519 offsetof(struct xfs_btree_block, bb_magic),
1520 offsetof(struct xfs_btree_block, bb_level),
1521 offsetof(struct xfs_btree_block, bb_numrecs),
1522 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1523 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1524 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1525 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1526 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1527 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1528 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1529 XFS_BTREE_SBLOCK_CRC_LEN
1531 static const short loffsets[] = { /* table of offsets (long) */
1532 offsetof(struct xfs_btree_block, bb_magic),
1533 offsetof(struct xfs_btree_block, bb_level),
1534 offsetof(struct xfs_btree_block, bb_numrecs),
1535 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1536 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1537 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1538 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1539 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1540 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1541 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1542 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1543 XFS_BTREE_LBLOCK_CRC_LEN
1546 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1547 XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1549 if (bp) {
1550 int nbits;
1552 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1554 * We don't log the CRC when updating a btree
1555 * block but instead recreate it during log
1556 * recovery. As the log buffers have checksums
1557 * of their own this is safe and avoids logging a crc
1558 * update in a lot of places.
1560 if (fields == XFS_BB_ALL_BITS)
1561 fields = XFS_BB_ALL_BITS_CRC;
1562 nbits = XFS_BB_NUM_BITS_CRC;
1563 } else {
1564 nbits = XFS_BB_NUM_BITS;
1566 xfs_btree_offsets(fields,
1567 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1568 loffsets : soffsets,
1569 nbits, &first, &last);
1570 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1571 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1572 } else {
1573 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1574 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1577 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1581 * Increment cursor by one record at the level.
1582 * For nonzero levels the leaf-ward information is untouched.
1584 int /* error */
1585 xfs_btree_increment(
1586 struct xfs_btree_cur *cur,
1587 int level,
1588 int *stat) /* success/failure */
1590 struct xfs_btree_block *block;
1591 union xfs_btree_ptr ptr;
1592 struct xfs_buf *bp;
1593 int error; /* error return value */
1594 int lev;
1596 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1597 XFS_BTREE_TRACE_ARGI(cur, level);
1599 ASSERT(level < cur->bc_nlevels);
1601 /* Read-ahead to the right at this level. */
1602 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1604 /* Get a pointer to the btree block. */
1605 block = xfs_btree_get_block(cur, level, &bp);
1607 #ifdef DEBUG
1608 error = xfs_btree_check_block(cur, block, level, bp);
1609 if (error)
1610 goto error0;
1611 #endif
1613 /* We're done if we remain in the block after the increment. */
1614 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1615 goto out1;
1617 /* Fail if we just went off the right edge of the tree. */
1618 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1619 if (xfs_btree_ptr_is_null(cur, &ptr))
1620 goto out0;
1622 XFS_BTREE_STATS_INC(cur, increment);
1625 * March up the tree incrementing pointers.
1626 * Stop when we don't go off the right edge of a block.
1628 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1629 block = xfs_btree_get_block(cur, lev, &bp);
1631 #ifdef DEBUG
1632 error = xfs_btree_check_block(cur, block, lev, bp);
1633 if (error)
1634 goto error0;
1635 #endif
1637 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1638 break;
1640 /* Read-ahead the right block for the next loop. */
1641 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1645 * If we went off the root then we are either seriously
1646 * confused or have the tree root in an inode.
1648 if (lev == cur->bc_nlevels) {
1649 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1650 goto out0;
1651 ASSERT(0);
1652 error = -EFSCORRUPTED;
1653 goto error0;
1655 ASSERT(lev < cur->bc_nlevels);
1658 * Now walk back down the tree, fixing up the cursor's buffer
1659 * pointers and key numbers.
1661 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1662 union xfs_btree_ptr *ptrp;
1664 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1665 --lev;
1666 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1667 if (error)
1668 goto error0;
1670 xfs_btree_setbuf(cur, lev, bp);
1671 cur->bc_ptrs[lev] = 1;
1673 out1:
1674 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1675 *stat = 1;
1676 return 0;
1678 out0:
1679 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1680 *stat = 0;
1681 return 0;
1683 error0:
1684 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1685 return error;
1689 * Decrement cursor by one record at the level.
1690 * For nonzero levels the leaf-ward information is untouched.
1692 int /* error */
1693 xfs_btree_decrement(
1694 struct xfs_btree_cur *cur,
1695 int level,
1696 int *stat) /* success/failure */
1698 struct xfs_btree_block *block;
1699 xfs_buf_t *bp;
1700 int error; /* error return value */
1701 int lev;
1702 union xfs_btree_ptr ptr;
1704 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1705 XFS_BTREE_TRACE_ARGI(cur, level);
1707 ASSERT(level < cur->bc_nlevels);
1709 /* Read-ahead to the left at this level. */
1710 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1712 /* We're done if we remain in the block after the decrement. */
1713 if (--cur->bc_ptrs[level] > 0)
1714 goto out1;
1716 /* Get a pointer to the btree block. */
1717 block = xfs_btree_get_block(cur, level, &bp);
1719 #ifdef DEBUG
1720 error = xfs_btree_check_block(cur, block, level, bp);
1721 if (error)
1722 goto error0;
1723 #endif
1725 /* Fail if we just went off the left edge of the tree. */
1726 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1727 if (xfs_btree_ptr_is_null(cur, &ptr))
1728 goto out0;
1730 XFS_BTREE_STATS_INC(cur, decrement);
1733 * March up the tree decrementing pointers.
1734 * Stop when we don't go off the left edge of a block.
1736 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1737 if (--cur->bc_ptrs[lev] > 0)
1738 break;
1739 /* Read-ahead the left block for the next loop. */
1740 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1744 * If we went off the root then we are seriously confused.
1745 * or the root of the tree is in an inode.
1747 if (lev == cur->bc_nlevels) {
1748 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1749 goto out0;
1750 ASSERT(0);
1751 error = -EFSCORRUPTED;
1752 goto error0;
1754 ASSERT(lev < cur->bc_nlevels);
1757 * Now walk back down the tree, fixing up the cursor's buffer
1758 * pointers and key numbers.
1760 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1761 union xfs_btree_ptr *ptrp;
1763 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1764 --lev;
1765 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1766 if (error)
1767 goto error0;
1768 xfs_btree_setbuf(cur, lev, bp);
1769 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1771 out1:
1772 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1773 *stat = 1;
1774 return 0;
1776 out0:
1777 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1778 *stat = 0;
1779 return 0;
1781 error0:
1782 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1783 return error;
1787 xfs_btree_lookup_get_block(
1788 struct xfs_btree_cur *cur, /* btree cursor */
1789 int level, /* level in the btree */
1790 union xfs_btree_ptr *pp, /* ptr to btree block */
1791 struct xfs_btree_block **blkp) /* return btree block */
1793 struct xfs_buf *bp; /* buffer pointer for btree block */
1794 int error = 0;
1796 /* special case the root block if in an inode */
1797 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1798 (level == cur->bc_nlevels - 1)) {
1799 *blkp = xfs_btree_get_iroot(cur);
1800 return 0;
1804 * If the old buffer at this level for the disk address we are
1805 * looking for re-use it.
1807 * Otherwise throw it away and get a new one.
1809 bp = cur->bc_bufs[level];
1810 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1811 *blkp = XFS_BUF_TO_BLOCK(bp);
1812 return 0;
1815 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1816 if (error)
1817 return error;
1819 /* Check the inode owner since the verifiers don't. */
1820 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1821 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1822 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1823 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1824 cur->bc_private.b.ip->i_ino)
1825 goto out_bad;
1827 /* Did we get the level we were looking for? */
1828 if (be16_to_cpu((*blkp)->bb_level) != level)
1829 goto out_bad;
1831 /* Check that internal nodes have at least one record. */
1832 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1833 goto out_bad;
1835 xfs_btree_setbuf(cur, level, bp);
1836 return 0;
1838 out_bad:
1839 *blkp = NULL;
1840 xfs_trans_brelse(cur->bc_tp, bp);
1841 return -EFSCORRUPTED;
1845 * Get current search key. For level 0 we don't actually have a key
1846 * structure so we make one up from the record. For all other levels
1847 * we just return the right key.
1849 STATIC union xfs_btree_key *
1850 xfs_lookup_get_search_key(
1851 struct xfs_btree_cur *cur,
1852 int level,
1853 int keyno,
1854 struct xfs_btree_block *block,
1855 union xfs_btree_key *kp)
1857 if (level == 0) {
1858 cur->bc_ops->init_key_from_rec(kp,
1859 xfs_btree_rec_addr(cur, keyno, block));
1860 return kp;
1863 return xfs_btree_key_addr(cur, keyno, block);
1867 * Lookup the record. The cursor is made to point to it, based on dir.
1868 * stat is set to 0 if can't find any such record, 1 for success.
1870 int /* error */
1871 xfs_btree_lookup(
1872 struct xfs_btree_cur *cur, /* btree cursor */
1873 xfs_lookup_t dir, /* <=, ==, or >= */
1874 int *stat) /* success/failure */
1876 struct xfs_btree_block *block; /* current btree block */
1877 int64_t diff; /* difference for the current key */
1878 int error; /* error return value */
1879 int keyno; /* current key number */
1880 int level; /* level in the btree */
1881 union xfs_btree_ptr *pp; /* ptr to btree block */
1882 union xfs_btree_ptr ptr; /* ptr to btree block */
1884 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1885 XFS_BTREE_TRACE_ARGI(cur, dir);
1887 XFS_BTREE_STATS_INC(cur, lookup);
1889 /* No such thing as a zero-level tree. */
1890 if (cur->bc_nlevels == 0)
1891 return -EFSCORRUPTED;
1893 block = NULL;
1894 keyno = 0;
1896 /* initialise start pointer from cursor */
1897 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1898 pp = &ptr;
1901 * Iterate over each level in the btree, starting at the root.
1902 * For each level above the leaves, find the key we need, based
1903 * on the lookup record, then follow the corresponding block
1904 * pointer down to the next level.
1906 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1907 /* Get the block we need to do the lookup on. */
1908 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1909 if (error)
1910 goto error0;
1912 if (diff == 0) {
1914 * If we already had a key match at a higher level, we
1915 * know we need to use the first entry in this block.
1917 keyno = 1;
1918 } else {
1919 /* Otherwise search this block. Do a binary search. */
1921 int high; /* high entry number */
1922 int low; /* low entry number */
1924 /* Set low and high entry numbers, 1-based. */
1925 low = 1;
1926 high = xfs_btree_get_numrecs(block);
1927 if (!high) {
1928 /* Block is empty, must be an empty leaf. */
1929 ASSERT(level == 0 && cur->bc_nlevels == 1);
1931 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1932 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1933 *stat = 0;
1934 return 0;
1937 /* Binary search the block. */
1938 while (low <= high) {
1939 union xfs_btree_key key;
1940 union xfs_btree_key *kp;
1942 XFS_BTREE_STATS_INC(cur, compare);
1944 /* keyno is average of low and high. */
1945 keyno = (low + high) >> 1;
1947 /* Get current search key */
1948 kp = xfs_lookup_get_search_key(cur, level,
1949 keyno, block, &key);
1952 * Compute difference to get next direction:
1953 * - less than, move right
1954 * - greater than, move left
1955 * - equal, we're done
1957 diff = cur->bc_ops->key_diff(cur, kp);
1958 if (diff < 0)
1959 low = keyno + 1;
1960 else if (diff > 0)
1961 high = keyno - 1;
1962 else
1963 break;
1968 * If there are more levels, set up for the next level
1969 * by getting the block number and filling in the cursor.
1971 if (level > 0) {
1973 * If we moved left, need the previous key number,
1974 * unless there isn't one.
1976 if (diff > 0 && --keyno < 1)
1977 keyno = 1;
1978 pp = xfs_btree_ptr_addr(cur, keyno, block);
1980 #ifdef DEBUG
1981 error = xfs_btree_check_ptr(cur, pp, 0, level);
1982 if (error)
1983 goto error0;
1984 #endif
1985 cur->bc_ptrs[level] = keyno;
1989 /* Done with the search. See if we need to adjust the results. */
1990 if (dir != XFS_LOOKUP_LE && diff < 0) {
1991 keyno++;
1993 * If ge search and we went off the end of the block, but it's
1994 * not the last block, we're in the wrong block.
1996 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1997 if (dir == XFS_LOOKUP_GE &&
1998 keyno > xfs_btree_get_numrecs(block) &&
1999 !xfs_btree_ptr_is_null(cur, &ptr)) {
2000 int i;
2002 cur->bc_ptrs[0] = keyno;
2003 error = xfs_btree_increment(cur, 0, &i);
2004 if (error)
2005 goto error0;
2006 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
2007 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2008 *stat = 1;
2009 return 0;
2011 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2012 keyno--;
2013 cur->bc_ptrs[0] = keyno;
2015 /* Return if we succeeded or not. */
2016 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2017 *stat = 0;
2018 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2019 *stat = 1;
2020 else
2021 *stat = 0;
2022 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2023 return 0;
2025 error0:
2026 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2027 return error;
2030 /* Find the high key storage area from a regular key. */
2031 union xfs_btree_key *
2032 xfs_btree_high_key_from_key(
2033 struct xfs_btree_cur *cur,
2034 union xfs_btree_key *key)
2036 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2037 return (union xfs_btree_key *)((char *)key +
2038 (cur->bc_ops->key_len / 2));
2041 /* Determine the low (and high if overlapped) keys of a leaf block */
2042 STATIC void
2043 xfs_btree_get_leaf_keys(
2044 struct xfs_btree_cur *cur,
2045 struct xfs_btree_block *block,
2046 union xfs_btree_key *key)
2048 union xfs_btree_key max_hkey;
2049 union xfs_btree_key hkey;
2050 union xfs_btree_rec *rec;
2051 union xfs_btree_key *high;
2052 int n;
2054 rec = xfs_btree_rec_addr(cur, 1, block);
2055 cur->bc_ops->init_key_from_rec(key, rec);
2057 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2059 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2060 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2061 rec = xfs_btree_rec_addr(cur, n, block);
2062 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2063 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2064 > 0)
2065 max_hkey = hkey;
2068 high = xfs_btree_high_key_from_key(cur, key);
2069 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2073 /* Determine the low (and high if overlapped) keys of a node block */
2074 STATIC void
2075 xfs_btree_get_node_keys(
2076 struct xfs_btree_cur *cur,
2077 struct xfs_btree_block *block,
2078 union xfs_btree_key *key)
2080 union xfs_btree_key *hkey;
2081 union xfs_btree_key *max_hkey;
2082 union xfs_btree_key *high;
2083 int n;
2085 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2086 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2087 cur->bc_ops->key_len / 2);
2089 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2090 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2091 hkey = xfs_btree_high_key_addr(cur, n, block);
2092 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2093 max_hkey = hkey;
2096 high = xfs_btree_high_key_from_key(cur, key);
2097 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2098 } else {
2099 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2100 cur->bc_ops->key_len);
2104 /* Derive the keys for any btree block. */
2105 void
2106 xfs_btree_get_keys(
2107 struct xfs_btree_cur *cur,
2108 struct xfs_btree_block *block,
2109 union xfs_btree_key *key)
2111 if (be16_to_cpu(block->bb_level) == 0)
2112 xfs_btree_get_leaf_keys(cur, block, key);
2113 else
2114 xfs_btree_get_node_keys(cur, block, key);
2118 * Decide if we need to update the parent keys of a btree block. For
2119 * a standard btree this is only necessary if we're updating the first
2120 * record/key. For an overlapping btree, we must always update the
2121 * keys because the highest key can be in any of the records or keys
2122 * in the block.
2124 static inline bool
2125 xfs_btree_needs_key_update(
2126 struct xfs_btree_cur *cur,
2127 int ptr)
2129 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2133 * Update the low and high parent keys of the given level, progressing
2134 * towards the root. If force_all is false, stop if the keys for a given
2135 * level do not need updating.
2137 STATIC int
2138 __xfs_btree_updkeys(
2139 struct xfs_btree_cur *cur,
2140 int level,
2141 struct xfs_btree_block *block,
2142 struct xfs_buf *bp0,
2143 bool force_all)
2145 union xfs_btree_key key; /* keys from current level */
2146 union xfs_btree_key *lkey; /* keys from the next level up */
2147 union xfs_btree_key *hkey;
2148 union xfs_btree_key *nlkey; /* keys from the next level up */
2149 union xfs_btree_key *nhkey;
2150 struct xfs_buf *bp;
2151 int ptr;
2153 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2155 /* Exit if there aren't any parent levels to update. */
2156 if (level + 1 >= cur->bc_nlevels)
2157 return 0;
2159 trace_xfs_btree_updkeys(cur, level, bp0);
2161 lkey = &key;
2162 hkey = xfs_btree_high_key_from_key(cur, lkey);
2163 xfs_btree_get_keys(cur, block, lkey);
2164 for (level++; level < cur->bc_nlevels; level++) {
2165 #ifdef DEBUG
2166 int error;
2167 #endif
2168 block = xfs_btree_get_block(cur, level, &bp);
2169 trace_xfs_btree_updkeys(cur, level, bp);
2170 #ifdef DEBUG
2171 error = xfs_btree_check_block(cur, block, level, bp);
2172 if (error) {
2173 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2174 return error;
2176 #endif
2177 ptr = cur->bc_ptrs[level];
2178 nlkey = xfs_btree_key_addr(cur, ptr, block);
2179 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2180 if (!force_all &&
2181 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2182 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2183 break;
2184 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2185 xfs_btree_log_keys(cur, bp, ptr, ptr);
2186 if (level + 1 >= cur->bc_nlevels)
2187 break;
2188 xfs_btree_get_node_keys(cur, block, lkey);
2191 return 0;
2194 /* Update all the keys from some level in cursor back to the root. */
2195 STATIC int
2196 xfs_btree_updkeys_force(
2197 struct xfs_btree_cur *cur,
2198 int level)
2200 struct xfs_buf *bp;
2201 struct xfs_btree_block *block;
2203 block = xfs_btree_get_block(cur, level, &bp);
2204 return __xfs_btree_updkeys(cur, level, block, bp, true);
2208 * Update the parent keys of the given level, progressing towards the root.
2210 STATIC int
2211 xfs_btree_update_keys(
2212 struct xfs_btree_cur *cur,
2213 int level)
2215 struct xfs_btree_block *block;
2216 struct xfs_buf *bp;
2217 union xfs_btree_key *kp;
2218 union xfs_btree_key key;
2219 int ptr;
2221 ASSERT(level >= 0);
2223 block = xfs_btree_get_block(cur, level, &bp);
2224 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2225 return __xfs_btree_updkeys(cur, level, block, bp, false);
2227 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2228 XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2231 * Go up the tree from this level toward the root.
2232 * At each level, update the key value to the value input.
2233 * Stop when we reach a level where the cursor isn't pointing
2234 * at the first entry in the block.
2236 xfs_btree_get_keys(cur, block, &key);
2237 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2238 #ifdef DEBUG
2239 int error;
2240 #endif
2241 block = xfs_btree_get_block(cur, level, &bp);
2242 #ifdef DEBUG
2243 error = xfs_btree_check_block(cur, block, level, bp);
2244 if (error) {
2245 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2246 return error;
2248 #endif
2249 ptr = cur->bc_ptrs[level];
2250 kp = xfs_btree_key_addr(cur, ptr, block);
2251 xfs_btree_copy_keys(cur, kp, &key, 1);
2252 xfs_btree_log_keys(cur, bp, ptr, ptr);
2255 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2256 return 0;
2260 * Update the record referred to by cur to the value in the
2261 * given record. This either works (return 0) or gets an
2262 * EFSCORRUPTED error.
2265 xfs_btree_update(
2266 struct xfs_btree_cur *cur,
2267 union xfs_btree_rec *rec)
2269 struct xfs_btree_block *block;
2270 struct xfs_buf *bp;
2271 int error;
2272 int ptr;
2273 union xfs_btree_rec *rp;
2275 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2276 XFS_BTREE_TRACE_ARGR(cur, rec);
2278 /* Pick up the current block. */
2279 block = xfs_btree_get_block(cur, 0, &bp);
2281 #ifdef DEBUG
2282 error = xfs_btree_check_block(cur, block, 0, bp);
2283 if (error)
2284 goto error0;
2285 #endif
2286 /* Get the address of the rec to be updated. */
2287 ptr = cur->bc_ptrs[0];
2288 rp = xfs_btree_rec_addr(cur, ptr, block);
2290 /* Fill in the new contents and log them. */
2291 xfs_btree_copy_recs(cur, rp, rec, 1);
2292 xfs_btree_log_recs(cur, bp, ptr, ptr);
2295 * If we are tracking the last record in the tree and
2296 * we are at the far right edge of the tree, update it.
2298 if (xfs_btree_is_lastrec(cur, block, 0)) {
2299 cur->bc_ops->update_lastrec(cur, block, rec,
2300 ptr, LASTREC_UPDATE);
2303 /* Pass new key value up to our parent. */
2304 if (xfs_btree_needs_key_update(cur, ptr)) {
2305 error = xfs_btree_update_keys(cur, 0);
2306 if (error)
2307 goto error0;
2310 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2311 return 0;
2313 error0:
2314 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2315 return error;
2319 * Move 1 record left from cur/level if possible.
2320 * Update cur to reflect the new path.
2322 STATIC int /* error */
2323 xfs_btree_lshift(
2324 struct xfs_btree_cur *cur,
2325 int level,
2326 int *stat) /* success/failure */
2328 struct xfs_buf *lbp; /* left buffer pointer */
2329 struct xfs_btree_block *left; /* left btree block */
2330 int lrecs; /* left record count */
2331 struct xfs_buf *rbp; /* right buffer pointer */
2332 struct xfs_btree_block *right; /* right btree block */
2333 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2334 int rrecs; /* right record count */
2335 union xfs_btree_ptr lptr; /* left btree pointer */
2336 union xfs_btree_key *rkp = NULL; /* right btree key */
2337 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2338 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2339 int error; /* error return value */
2340 int i;
2342 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2343 XFS_BTREE_TRACE_ARGI(cur, level);
2345 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2346 level == cur->bc_nlevels - 1)
2347 goto out0;
2349 /* Set up variables for this block as "right". */
2350 right = xfs_btree_get_block(cur, level, &rbp);
2352 #ifdef DEBUG
2353 error = xfs_btree_check_block(cur, right, level, rbp);
2354 if (error)
2355 goto error0;
2356 #endif
2358 /* If we've got no left sibling then we can't shift an entry left. */
2359 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2360 if (xfs_btree_ptr_is_null(cur, &lptr))
2361 goto out0;
2364 * If the cursor entry is the one that would be moved, don't
2365 * do it... it's too complicated.
2367 if (cur->bc_ptrs[level] <= 1)
2368 goto out0;
2370 /* Set up the left neighbor as "left". */
2371 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2372 if (error)
2373 goto error0;
2375 /* If it's full, it can't take another entry. */
2376 lrecs = xfs_btree_get_numrecs(left);
2377 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2378 goto out0;
2380 rrecs = xfs_btree_get_numrecs(right);
2383 * We add one entry to the left side and remove one for the right side.
2384 * Account for it here, the changes will be updated on disk and logged
2385 * later.
2387 lrecs++;
2388 rrecs--;
2390 XFS_BTREE_STATS_INC(cur, lshift);
2391 XFS_BTREE_STATS_ADD(cur, moves, 1);
2394 * If non-leaf, copy a key and a ptr to the left block.
2395 * Log the changes to the left block.
2397 if (level > 0) {
2398 /* It's a non-leaf. Move keys and pointers. */
2399 union xfs_btree_key *lkp; /* left btree key */
2400 union xfs_btree_ptr *lpp; /* left address pointer */
2402 lkp = xfs_btree_key_addr(cur, lrecs, left);
2403 rkp = xfs_btree_key_addr(cur, 1, right);
2405 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2406 rpp = xfs_btree_ptr_addr(cur, 1, right);
2407 #ifdef DEBUG
2408 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2409 if (error)
2410 goto error0;
2411 #endif
2412 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2413 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2415 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2416 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2418 ASSERT(cur->bc_ops->keys_inorder(cur,
2419 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2420 } else {
2421 /* It's a leaf. Move records. */
2422 union xfs_btree_rec *lrp; /* left record pointer */
2424 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2425 rrp = xfs_btree_rec_addr(cur, 1, right);
2427 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2428 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2430 ASSERT(cur->bc_ops->recs_inorder(cur,
2431 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2434 xfs_btree_set_numrecs(left, lrecs);
2435 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2437 xfs_btree_set_numrecs(right, rrecs);
2438 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2441 * Slide the contents of right down one entry.
2443 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2444 if (level > 0) {
2445 /* It's a nonleaf. operate on keys and ptrs */
2446 #ifdef DEBUG
2447 int i; /* loop index */
2449 for (i = 0; i < rrecs; i++) {
2450 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2451 if (error)
2452 goto error0;
2454 #endif
2455 xfs_btree_shift_keys(cur,
2456 xfs_btree_key_addr(cur, 2, right),
2457 -1, rrecs);
2458 xfs_btree_shift_ptrs(cur,
2459 xfs_btree_ptr_addr(cur, 2, right),
2460 -1, rrecs);
2462 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2463 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2464 } else {
2465 /* It's a leaf. operate on records */
2466 xfs_btree_shift_recs(cur,
2467 xfs_btree_rec_addr(cur, 2, right),
2468 -1, rrecs);
2469 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2473 * Using a temporary cursor, update the parent key values of the
2474 * block on the left.
2476 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2477 error = xfs_btree_dup_cursor(cur, &tcur);
2478 if (error)
2479 goto error0;
2480 i = xfs_btree_firstrec(tcur, level);
2481 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2483 error = xfs_btree_decrement(tcur, level, &i);
2484 if (error)
2485 goto error1;
2487 /* Update the parent high keys of the left block, if needed. */
2488 error = xfs_btree_update_keys(tcur, level);
2489 if (error)
2490 goto error1;
2492 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2495 /* Update the parent keys of the right block. */
2496 error = xfs_btree_update_keys(cur, level);
2497 if (error)
2498 goto error0;
2500 /* Slide the cursor value left one. */
2501 cur->bc_ptrs[level]--;
2503 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2504 *stat = 1;
2505 return 0;
2507 out0:
2508 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2509 *stat = 0;
2510 return 0;
2512 error0:
2513 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2514 return error;
2516 error1:
2517 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2518 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2519 return error;
2523 * Move 1 record right from cur/level if possible.
2524 * Update cur to reflect the new path.
2526 STATIC int /* error */
2527 xfs_btree_rshift(
2528 struct xfs_btree_cur *cur,
2529 int level,
2530 int *stat) /* success/failure */
2532 struct xfs_buf *lbp; /* left buffer pointer */
2533 struct xfs_btree_block *left; /* left btree block */
2534 struct xfs_buf *rbp; /* right buffer pointer */
2535 struct xfs_btree_block *right; /* right btree block */
2536 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2537 union xfs_btree_ptr rptr; /* right block pointer */
2538 union xfs_btree_key *rkp; /* right btree key */
2539 int rrecs; /* right record count */
2540 int lrecs; /* left record count */
2541 int error; /* error return value */
2542 int i; /* loop counter */
2544 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2545 XFS_BTREE_TRACE_ARGI(cur, level);
2547 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2548 (level == cur->bc_nlevels - 1))
2549 goto out0;
2551 /* Set up variables for this block as "left". */
2552 left = xfs_btree_get_block(cur, level, &lbp);
2554 #ifdef DEBUG
2555 error = xfs_btree_check_block(cur, left, level, lbp);
2556 if (error)
2557 goto error0;
2558 #endif
2560 /* If we've got no right sibling then we can't shift an entry right. */
2561 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2562 if (xfs_btree_ptr_is_null(cur, &rptr))
2563 goto out0;
2566 * If the cursor entry is the one that would be moved, don't
2567 * do it... it's too complicated.
2569 lrecs = xfs_btree_get_numrecs(left);
2570 if (cur->bc_ptrs[level] >= lrecs)
2571 goto out0;
2573 /* Set up the right neighbor as "right". */
2574 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2575 if (error)
2576 goto error0;
2578 /* If it's full, it can't take another entry. */
2579 rrecs = xfs_btree_get_numrecs(right);
2580 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2581 goto out0;
2583 XFS_BTREE_STATS_INC(cur, rshift);
2584 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2587 * Make a hole at the start of the right neighbor block, then
2588 * copy the last left block entry to the hole.
2590 if (level > 0) {
2591 /* It's a nonleaf. make a hole in the keys and ptrs */
2592 union xfs_btree_key *lkp;
2593 union xfs_btree_ptr *lpp;
2594 union xfs_btree_ptr *rpp;
2596 lkp = xfs_btree_key_addr(cur, lrecs, left);
2597 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2598 rkp = xfs_btree_key_addr(cur, 1, right);
2599 rpp = xfs_btree_ptr_addr(cur, 1, right);
2601 #ifdef DEBUG
2602 for (i = rrecs - 1; i >= 0; i--) {
2603 error = xfs_btree_check_ptr(cur, rpp, i, level);
2604 if (error)
2605 goto error0;
2607 #endif
2609 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2610 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2612 #ifdef DEBUG
2613 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2614 if (error)
2615 goto error0;
2616 #endif
2618 /* Now put the new data in, and log it. */
2619 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2620 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2622 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2623 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2625 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2626 xfs_btree_key_addr(cur, 2, right)));
2627 } else {
2628 /* It's a leaf. make a hole in the records */
2629 union xfs_btree_rec *lrp;
2630 union xfs_btree_rec *rrp;
2632 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2633 rrp = xfs_btree_rec_addr(cur, 1, right);
2635 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2637 /* Now put the new data in, and log it. */
2638 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2639 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2643 * Decrement and log left's numrecs, bump and log right's numrecs.
2645 xfs_btree_set_numrecs(left, --lrecs);
2646 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2648 xfs_btree_set_numrecs(right, ++rrecs);
2649 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2652 * Using a temporary cursor, update the parent key values of the
2653 * block on the right.
2655 error = xfs_btree_dup_cursor(cur, &tcur);
2656 if (error)
2657 goto error0;
2658 i = xfs_btree_lastrec(tcur, level);
2659 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2661 error = xfs_btree_increment(tcur, level, &i);
2662 if (error)
2663 goto error1;
2665 /* Update the parent high keys of the left block, if needed. */
2666 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2667 error = xfs_btree_update_keys(cur, level);
2668 if (error)
2669 goto error1;
2672 /* Update the parent keys of the right block. */
2673 error = xfs_btree_update_keys(tcur, level);
2674 if (error)
2675 goto error1;
2677 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2679 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2680 *stat = 1;
2681 return 0;
2683 out0:
2684 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2685 *stat = 0;
2686 return 0;
2688 error0:
2689 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2690 return error;
2692 error1:
2693 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2694 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2695 return error;
2699 * Split cur/level block in half.
2700 * Return new block number and the key to its first
2701 * record (to be inserted into parent).
2703 STATIC int /* error */
2704 __xfs_btree_split(
2705 struct xfs_btree_cur *cur,
2706 int level,
2707 union xfs_btree_ptr *ptrp,
2708 union xfs_btree_key *key,
2709 struct xfs_btree_cur **curp,
2710 int *stat) /* success/failure */
2712 union xfs_btree_ptr lptr; /* left sibling block ptr */
2713 struct xfs_buf *lbp; /* left buffer pointer */
2714 struct xfs_btree_block *left; /* left btree block */
2715 union xfs_btree_ptr rptr; /* right sibling block ptr */
2716 struct xfs_buf *rbp; /* right buffer pointer */
2717 struct xfs_btree_block *right; /* right btree block */
2718 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2719 struct xfs_buf *rrbp; /* right-right buffer pointer */
2720 struct xfs_btree_block *rrblock; /* right-right btree block */
2721 int lrecs;
2722 int rrecs;
2723 int src_index;
2724 int error; /* error return value */
2725 #ifdef DEBUG
2726 int i;
2727 #endif
2729 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2730 XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2732 XFS_BTREE_STATS_INC(cur, split);
2734 /* Set up left block (current one). */
2735 left = xfs_btree_get_block(cur, level, &lbp);
2737 #ifdef DEBUG
2738 error = xfs_btree_check_block(cur, left, level, lbp);
2739 if (error)
2740 goto error0;
2741 #endif
2743 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2745 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2746 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2747 if (error)
2748 goto error0;
2749 if (*stat == 0)
2750 goto out0;
2751 XFS_BTREE_STATS_INC(cur, alloc);
2753 /* Set up the new block as "right". */
2754 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2755 if (error)
2756 goto error0;
2758 /* Fill in the btree header for the new right block. */
2759 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2762 * Split the entries between the old and the new block evenly.
2763 * Make sure that if there's an odd number of entries now, that
2764 * each new block will have the same number of entries.
2766 lrecs = xfs_btree_get_numrecs(left);
2767 rrecs = lrecs / 2;
2768 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2769 rrecs++;
2770 src_index = (lrecs - rrecs + 1);
2772 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2774 /* Adjust numrecs for the later get_*_keys() calls. */
2775 lrecs -= rrecs;
2776 xfs_btree_set_numrecs(left, lrecs);
2777 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2780 * Copy btree block entries from the left block over to the
2781 * new block, the right. Update the right block and log the
2782 * changes.
2784 if (level > 0) {
2785 /* It's a non-leaf. Move keys and pointers. */
2786 union xfs_btree_key *lkp; /* left btree key */
2787 union xfs_btree_ptr *lpp; /* left address pointer */
2788 union xfs_btree_key *rkp; /* right btree key */
2789 union xfs_btree_ptr *rpp; /* right address pointer */
2791 lkp = xfs_btree_key_addr(cur, src_index, left);
2792 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2793 rkp = xfs_btree_key_addr(cur, 1, right);
2794 rpp = xfs_btree_ptr_addr(cur, 1, right);
2796 #ifdef DEBUG
2797 for (i = src_index; i < rrecs; i++) {
2798 error = xfs_btree_check_ptr(cur, lpp, i, level);
2799 if (error)
2800 goto error0;
2802 #endif
2804 /* Copy the keys & pointers to the new block. */
2805 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2806 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2808 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2809 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2811 /* Stash the keys of the new block for later insertion. */
2812 xfs_btree_get_node_keys(cur, right, key);
2813 } else {
2814 /* It's a leaf. Move records. */
2815 union xfs_btree_rec *lrp; /* left record pointer */
2816 union xfs_btree_rec *rrp; /* right record pointer */
2818 lrp = xfs_btree_rec_addr(cur, src_index, left);
2819 rrp = xfs_btree_rec_addr(cur, 1, right);
2821 /* Copy records to the new block. */
2822 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2823 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2825 /* Stash the keys of the new block for later insertion. */
2826 xfs_btree_get_leaf_keys(cur, right, key);
2830 * Find the left block number by looking in the buffer.
2831 * Adjust sibling pointers.
2833 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2834 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2835 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2836 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2838 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2839 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2842 * If there's a block to the new block's right, make that block
2843 * point back to right instead of to left.
2845 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2846 error = xfs_btree_read_buf_block(cur, &rrptr,
2847 0, &rrblock, &rrbp);
2848 if (error)
2849 goto error0;
2850 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2851 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2854 /* Update the parent high keys of the left block, if needed. */
2855 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2856 error = xfs_btree_update_keys(cur, level);
2857 if (error)
2858 goto error0;
2862 * If the cursor is really in the right block, move it there.
2863 * If it's just pointing past the last entry in left, then we'll
2864 * insert there, so don't change anything in that case.
2866 if (cur->bc_ptrs[level] > lrecs + 1) {
2867 xfs_btree_setbuf(cur, level, rbp);
2868 cur->bc_ptrs[level] -= lrecs;
2871 * If there are more levels, we'll need another cursor which refers
2872 * the right block, no matter where this cursor was.
2874 if (level + 1 < cur->bc_nlevels) {
2875 error = xfs_btree_dup_cursor(cur, curp);
2876 if (error)
2877 goto error0;
2878 (*curp)->bc_ptrs[level + 1]++;
2880 *ptrp = rptr;
2881 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2882 *stat = 1;
2883 return 0;
2884 out0:
2885 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2886 *stat = 0;
2887 return 0;
2889 error0:
2890 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2891 return error;
2894 struct xfs_btree_split_args {
2895 struct xfs_btree_cur *cur;
2896 int level;
2897 union xfs_btree_ptr *ptrp;
2898 union xfs_btree_key *key;
2899 struct xfs_btree_cur **curp;
2900 int *stat; /* success/failure */
2901 int result;
2902 bool kswapd; /* allocation in kswapd context */
2903 struct completion *done;
2904 struct work_struct work;
2908 * Stack switching interfaces for allocation
2910 static void
2911 xfs_btree_split_worker(
2912 struct work_struct *work)
2914 struct xfs_btree_split_args *args = container_of(work,
2915 struct xfs_btree_split_args, work);
2916 unsigned long pflags;
2917 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2920 * we are in a transaction context here, but may also be doing work
2921 * in kswapd context, and hence we may need to inherit that state
2922 * temporarily to ensure that we don't block waiting for memory reclaim
2923 * in any way.
2925 if (args->kswapd)
2926 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2928 current_set_flags_nested(&pflags, new_pflags);
2930 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2931 args->key, args->curp, args->stat);
2932 complete(args->done);
2934 current_restore_flags_nested(&pflags, new_pflags);
2938 * BMBT split requests often come in with little stack to work on. Push
2939 * them off to a worker thread so there is lots of stack to use. For the other
2940 * btree types, just call directly to avoid the context switch overhead here.
2942 STATIC int /* error */
2943 xfs_btree_split(
2944 struct xfs_btree_cur *cur,
2945 int level,
2946 union xfs_btree_ptr *ptrp,
2947 union xfs_btree_key *key,
2948 struct xfs_btree_cur **curp,
2949 int *stat) /* success/failure */
2951 struct xfs_btree_split_args args;
2952 DECLARE_COMPLETION_ONSTACK(done);
2954 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2955 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2957 args.cur = cur;
2958 args.level = level;
2959 args.ptrp = ptrp;
2960 args.key = key;
2961 args.curp = curp;
2962 args.stat = stat;
2963 args.done = &done;
2964 args.kswapd = current_is_kswapd();
2965 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2966 queue_work(xfs_alloc_wq, &args.work);
2967 wait_for_completion(&done);
2968 destroy_work_on_stack(&args.work);
2969 return args.result;
2974 * Copy the old inode root contents into a real block and make the
2975 * broot point to it.
2977 int /* error */
2978 xfs_btree_new_iroot(
2979 struct xfs_btree_cur *cur, /* btree cursor */
2980 int *logflags, /* logging flags for inode */
2981 int *stat) /* return status - 0 fail */
2983 struct xfs_buf *cbp; /* buffer for cblock */
2984 struct xfs_btree_block *block; /* btree block */
2985 struct xfs_btree_block *cblock; /* child btree block */
2986 union xfs_btree_key *ckp; /* child key pointer */
2987 union xfs_btree_ptr *cpp; /* child ptr pointer */
2988 union xfs_btree_key *kp; /* pointer to btree key */
2989 union xfs_btree_ptr *pp; /* pointer to block addr */
2990 union xfs_btree_ptr nptr; /* new block addr */
2991 int level; /* btree level */
2992 int error; /* error return code */
2993 #ifdef DEBUG
2994 int i; /* loop counter */
2995 #endif
2997 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2998 XFS_BTREE_STATS_INC(cur, newroot);
3000 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3002 level = cur->bc_nlevels - 1;
3004 block = xfs_btree_get_iroot(cur);
3005 pp = xfs_btree_ptr_addr(cur, 1, block);
3007 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3008 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3009 if (error)
3010 goto error0;
3011 if (*stat == 0) {
3012 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3013 return 0;
3015 XFS_BTREE_STATS_INC(cur, alloc);
3017 /* Copy the root into a real block. */
3018 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
3019 if (error)
3020 goto error0;
3023 * we can't just memcpy() the root in for CRC enabled btree blocks.
3024 * In that case have to also ensure the blkno remains correct
3026 memcpy(cblock, block, xfs_btree_block_len(cur));
3027 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3028 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3029 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
3030 else
3031 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
3034 be16_add_cpu(&block->bb_level, 1);
3035 xfs_btree_set_numrecs(block, 1);
3036 cur->bc_nlevels++;
3037 cur->bc_ptrs[level + 1] = 1;
3039 kp = xfs_btree_key_addr(cur, 1, block);
3040 ckp = xfs_btree_key_addr(cur, 1, cblock);
3041 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3043 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3044 #ifdef DEBUG
3045 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3046 error = xfs_btree_check_ptr(cur, pp, i, level);
3047 if (error)
3048 goto error0;
3050 #endif
3051 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3053 #ifdef DEBUG
3054 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3055 if (error)
3056 goto error0;
3057 #endif
3058 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3060 xfs_iroot_realloc(cur->bc_private.b.ip,
3061 1 - xfs_btree_get_numrecs(cblock),
3062 cur->bc_private.b.whichfork);
3064 xfs_btree_setbuf(cur, level, cbp);
3067 * Do all this logging at the end so that
3068 * the root is at the right level.
3070 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3071 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3072 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3074 *logflags |=
3075 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3076 *stat = 1;
3077 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3078 return 0;
3079 error0:
3080 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3081 return error;
3085 * Allocate a new root block, fill it in.
3087 STATIC int /* error */
3088 xfs_btree_new_root(
3089 struct xfs_btree_cur *cur, /* btree cursor */
3090 int *stat) /* success/failure */
3092 struct xfs_btree_block *block; /* one half of the old root block */
3093 struct xfs_buf *bp; /* buffer containing block */
3094 int error; /* error return value */
3095 struct xfs_buf *lbp; /* left buffer pointer */
3096 struct xfs_btree_block *left; /* left btree block */
3097 struct xfs_buf *nbp; /* new (root) buffer */
3098 struct xfs_btree_block *new; /* new (root) btree block */
3099 int nptr; /* new value for key index, 1 or 2 */
3100 struct xfs_buf *rbp; /* right buffer pointer */
3101 struct xfs_btree_block *right; /* right btree block */
3102 union xfs_btree_ptr rptr;
3103 union xfs_btree_ptr lptr;
3105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3106 XFS_BTREE_STATS_INC(cur, newroot);
3108 /* initialise our start point from the cursor */
3109 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3111 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3112 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3113 if (error)
3114 goto error0;
3115 if (*stat == 0)
3116 goto out0;
3117 XFS_BTREE_STATS_INC(cur, alloc);
3119 /* Set up the new block. */
3120 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3121 if (error)
3122 goto error0;
3124 /* Set the root in the holding structure increasing the level by 1. */
3125 cur->bc_ops->set_root(cur, &lptr, 1);
3128 * At the previous root level there are now two blocks: the old root,
3129 * and the new block generated when it was split. We don't know which
3130 * one the cursor is pointing at, so we set up variables "left" and
3131 * "right" for each case.
3133 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3135 #ifdef DEBUG
3136 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3137 if (error)
3138 goto error0;
3139 #endif
3141 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3142 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3143 /* Our block is left, pick up the right block. */
3144 lbp = bp;
3145 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3146 left = block;
3147 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3148 if (error)
3149 goto error0;
3150 bp = rbp;
3151 nptr = 1;
3152 } else {
3153 /* Our block is right, pick up the left block. */
3154 rbp = bp;
3155 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3156 right = block;
3157 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3158 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3159 if (error)
3160 goto error0;
3161 bp = lbp;
3162 nptr = 2;
3165 /* Fill in the new block's btree header and log it. */
3166 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3167 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3168 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3169 !xfs_btree_ptr_is_null(cur, &rptr));
3171 /* Fill in the key data in the new root. */
3172 if (xfs_btree_get_level(left) > 0) {
3174 * Get the keys for the left block's keys and put them directly
3175 * in the parent block. Do the same for the right block.
3177 xfs_btree_get_node_keys(cur, left,
3178 xfs_btree_key_addr(cur, 1, new));
3179 xfs_btree_get_node_keys(cur, right,
3180 xfs_btree_key_addr(cur, 2, new));
3181 } else {
3183 * Get the keys for the left block's records and put them
3184 * directly in the parent block. Do the same for the right
3185 * block.
3187 xfs_btree_get_leaf_keys(cur, left,
3188 xfs_btree_key_addr(cur, 1, new));
3189 xfs_btree_get_leaf_keys(cur, right,
3190 xfs_btree_key_addr(cur, 2, new));
3192 xfs_btree_log_keys(cur, nbp, 1, 2);
3194 /* Fill in the pointer data in the new root. */
3195 xfs_btree_copy_ptrs(cur,
3196 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3197 xfs_btree_copy_ptrs(cur,
3198 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3199 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3201 /* Fix up the cursor. */
3202 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3203 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3204 cur->bc_nlevels++;
3205 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3206 *stat = 1;
3207 return 0;
3208 error0:
3209 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3210 return error;
3211 out0:
3212 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3213 *stat = 0;
3214 return 0;
3217 STATIC int
3218 xfs_btree_make_block_unfull(
3219 struct xfs_btree_cur *cur, /* btree cursor */
3220 int level, /* btree level */
3221 int numrecs,/* # of recs in block */
3222 int *oindex,/* old tree index */
3223 int *index, /* new tree index */
3224 union xfs_btree_ptr *nptr, /* new btree ptr */
3225 struct xfs_btree_cur **ncur, /* new btree cursor */
3226 union xfs_btree_key *key, /* key of new block */
3227 int *stat)
3229 int error = 0;
3231 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3232 level == cur->bc_nlevels - 1) {
3233 struct xfs_inode *ip = cur->bc_private.b.ip;
3235 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3236 /* A root block that can be made bigger. */
3237 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3238 *stat = 1;
3239 } else {
3240 /* A root block that needs replacing */
3241 int logflags = 0;
3243 error = xfs_btree_new_iroot(cur, &logflags, stat);
3244 if (error || *stat == 0)
3245 return error;
3247 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3250 return 0;
3253 /* First, try shifting an entry to the right neighbor. */
3254 error = xfs_btree_rshift(cur, level, stat);
3255 if (error || *stat)
3256 return error;
3258 /* Next, try shifting an entry to the left neighbor. */
3259 error = xfs_btree_lshift(cur, level, stat);
3260 if (error)
3261 return error;
3263 if (*stat) {
3264 *oindex = *index = cur->bc_ptrs[level];
3265 return 0;
3269 * Next, try splitting the current block in half.
3271 * If this works we have to re-set our variables because we
3272 * could be in a different block now.
3274 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3275 if (error || *stat == 0)
3276 return error;
3279 *index = cur->bc_ptrs[level];
3280 return 0;
3284 * Insert one record/level. Return information to the caller
3285 * allowing the next level up to proceed if necessary.
3287 STATIC int
3288 xfs_btree_insrec(
3289 struct xfs_btree_cur *cur, /* btree cursor */
3290 int level, /* level to insert record at */
3291 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3292 union xfs_btree_rec *rec, /* record to insert */
3293 union xfs_btree_key *key, /* i/o: block key for ptrp */
3294 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3295 int *stat) /* success/failure */
3297 struct xfs_btree_block *block; /* btree block */
3298 struct xfs_buf *bp; /* buffer for block */
3299 union xfs_btree_ptr nptr; /* new block ptr */
3300 struct xfs_btree_cur *ncur; /* new btree cursor */
3301 union xfs_btree_key nkey; /* new block key */
3302 union xfs_btree_key *lkey;
3303 int optr; /* old key/record index */
3304 int ptr; /* key/record index */
3305 int numrecs;/* number of records */
3306 int error; /* error return value */
3307 #ifdef DEBUG
3308 int i;
3309 #endif
3310 xfs_daddr_t old_bn;
3312 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3313 XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3315 ncur = NULL;
3316 lkey = &nkey;
3319 * If we have an external root pointer, and we've made it to the
3320 * root level, allocate a new root block and we're done.
3322 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3323 (level >= cur->bc_nlevels)) {
3324 error = xfs_btree_new_root(cur, stat);
3325 xfs_btree_set_ptr_null(cur, ptrp);
3327 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3328 return error;
3331 /* If we're off the left edge, return failure. */
3332 ptr = cur->bc_ptrs[level];
3333 if (ptr == 0) {
3334 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3335 *stat = 0;
3336 return 0;
3339 optr = ptr;
3341 XFS_BTREE_STATS_INC(cur, insrec);
3343 /* Get pointers to the btree buffer and block. */
3344 block = xfs_btree_get_block(cur, level, &bp);
3345 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3346 numrecs = xfs_btree_get_numrecs(block);
3348 #ifdef DEBUG
3349 error = xfs_btree_check_block(cur, block, level, bp);
3350 if (error)
3351 goto error0;
3353 /* Check that the new entry is being inserted in the right place. */
3354 if (ptr <= numrecs) {
3355 if (level == 0) {
3356 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3357 xfs_btree_rec_addr(cur, ptr, block)));
3358 } else {
3359 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3360 xfs_btree_key_addr(cur, ptr, block)));
3363 #endif
3366 * If the block is full, we can't insert the new entry until we
3367 * make the block un-full.
3369 xfs_btree_set_ptr_null(cur, &nptr);
3370 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3371 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3372 &optr, &ptr, &nptr, &ncur, lkey, stat);
3373 if (error || *stat == 0)
3374 goto error0;
3378 * The current block may have changed if the block was
3379 * previously full and we have just made space in it.
3381 block = xfs_btree_get_block(cur, level, &bp);
3382 numrecs = xfs_btree_get_numrecs(block);
3384 #ifdef DEBUG
3385 error = xfs_btree_check_block(cur, block, level, bp);
3386 if (error)
3387 return error;
3388 #endif
3391 * At this point we know there's room for our new entry in the block
3392 * we're pointing at.
3394 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3396 if (level > 0) {
3397 /* It's a nonleaf. make a hole in the keys and ptrs */
3398 union xfs_btree_key *kp;
3399 union xfs_btree_ptr *pp;
3401 kp = xfs_btree_key_addr(cur, ptr, block);
3402 pp = xfs_btree_ptr_addr(cur, ptr, block);
3404 #ifdef DEBUG
3405 for (i = numrecs - ptr; i >= 0; i--) {
3406 error = xfs_btree_check_ptr(cur, pp, i, level);
3407 if (error)
3408 return error;
3410 #endif
3412 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3413 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3415 #ifdef DEBUG
3416 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3417 if (error)
3418 goto error0;
3419 #endif
3421 /* Now put the new data in, bump numrecs and log it. */
3422 xfs_btree_copy_keys(cur, kp, key, 1);
3423 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3424 numrecs++;
3425 xfs_btree_set_numrecs(block, numrecs);
3426 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3427 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3428 #ifdef DEBUG
3429 if (ptr < numrecs) {
3430 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3431 xfs_btree_key_addr(cur, ptr + 1, block)));
3433 #endif
3434 } else {
3435 /* It's a leaf. make a hole in the records */
3436 union xfs_btree_rec *rp;
3438 rp = xfs_btree_rec_addr(cur, ptr, block);
3440 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3442 /* Now put the new data in, bump numrecs and log it. */
3443 xfs_btree_copy_recs(cur, rp, rec, 1);
3444 xfs_btree_set_numrecs(block, ++numrecs);
3445 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3446 #ifdef DEBUG
3447 if (ptr < numrecs) {
3448 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3449 xfs_btree_rec_addr(cur, ptr + 1, block)));
3451 #endif
3454 /* Log the new number of records in the btree header. */
3455 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3458 * If we just inserted into a new tree block, we have to
3459 * recalculate nkey here because nkey is out of date.
3461 * Otherwise we're just updating an existing block (having shoved
3462 * some records into the new tree block), so use the regular key
3463 * update mechanism.
3465 if (bp && bp->b_bn != old_bn) {
3466 xfs_btree_get_keys(cur, block, lkey);
3467 } else if (xfs_btree_needs_key_update(cur, optr)) {
3468 error = xfs_btree_update_keys(cur, level);
3469 if (error)
3470 goto error0;
3474 * If we are tracking the last record in the tree and
3475 * we are at the far right edge of the tree, update it.
3477 if (xfs_btree_is_lastrec(cur, block, level)) {
3478 cur->bc_ops->update_lastrec(cur, block, rec,
3479 ptr, LASTREC_INSREC);
3483 * Return the new block number, if any.
3484 * If there is one, give back a record value and a cursor too.
3486 *ptrp = nptr;
3487 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3488 xfs_btree_copy_keys(cur, key, lkey, 1);
3489 *curp = ncur;
3492 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3493 *stat = 1;
3494 return 0;
3496 error0:
3497 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3498 return error;
3502 * Insert the record at the point referenced by cur.
3504 * A multi-level split of the tree on insert will invalidate the original
3505 * cursor. All callers of this function should assume that the cursor is
3506 * no longer valid and revalidate it.
3509 xfs_btree_insert(
3510 struct xfs_btree_cur *cur,
3511 int *stat)
3513 int error; /* error return value */
3514 int i; /* result value, 0 for failure */
3515 int level; /* current level number in btree */
3516 union xfs_btree_ptr nptr; /* new block number (split result) */
3517 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3518 struct xfs_btree_cur *pcur; /* previous level's cursor */
3519 union xfs_btree_key bkey; /* key of block to insert */
3520 union xfs_btree_key *key;
3521 union xfs_btree_rec rec; /* record to insert */
3523 level = 0;
3524 ncur = NULL;
3525 pcur = cur;
3526 key = &bkey;
3528 xfs_btree_set_ptr_null(cur, &nptr);
3530 /* Make a key out of the record data to be inserted, and save it. */
3531 cur->bc_ops->init_rec_from_cur(cur, &rec);
3532 cur->bc_ops->init_key_from_rec(key, &rec);
3535 * Loop going up the tree, starting at the leaf level.
3536 * Stop when we don't get a split block, that must mean that
3537 * the insert is finished with this level.
3539 do {
3541 * Insert nrec/nptr into this level of the tree.
3542 * Note if we fail, nptr will be null.
3544 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3545 &ncur, &i);
3546 if (error) {
3547 if (pcur != cur)
3548 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3549 goto error0;
3552 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3553 level++;
3556 * See if the cursor we just used is trash.
3557 * Can't trash the caller's cursor, but otherwise we should
3558 * if ncur is a new cursor or we're about to be done.
3560 if (pcur != cur &&
3561 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3562 /* Save the state from the cursor before we trash it */
3563 if (cur->bc_ops->update_cursor)
3564 cur->bc_ops->update_cursor(pcur, cur);
3565 cur->bc_nlevels = pcur->bc_nlevels;
3566 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3568 /* If we got a new cursor, switch to it. */
3569 if (ncur) {
3570 pcur = ncur;
3571 ncur = NULL;
3573 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3575 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3576 *stat = i;
3577 return 0;
3578 error0:
3579 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3580 return error;
3584 * Try to merge a non-leaf block back into the inode root.
3586 * Note: the killroot names comes from the fact that we're effectively
3587 * killing the old root block. But because we can't just delete the
3588 * inode we have to copy the single block it was pointing to into the
3589 * inode.
3591 STATIC int
3592 xfs_btree_kill_iroot(
3593 struct xfs_btree_cur *cur)
3595 int whichfork = cur->bc_private.b.whichfork;
3596 struct xfs_inode *ip = cur->bc_private.b.ip;
3597 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3598 struct xfs_btree_block *block;
3599 struct xfs_btree_block *cblock;
3600 union xfs_btree_key *kp;
3601 union xfs_btree_key *ckp;
3602 union xfs_btree_ptr *pp;
3603 union xfs_btree_ptr *cpp;
3604 struct xfs_buf *cbp;
3605 int level;
3606 int index;
3607 int numrecs;
3608 int error;
3609 #ifdef DEBUG
3610 union xfs_btree_ptr ptr;
3611 int i;
3612 #endif
3614 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3616 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3617 ASSERT(cur->bc_nlevels > 1);
3620 * Don't deal with the root block needs to be a leaf case.
3621 * We're just going to turn the thing back into extents anyway.
3623 level = cur->bc_nlevels - 1;
3624 if (level == 1)
3625 goto out0;
3628 * Give up if the root has multiple children.
3630 block = xfs_btree_get_iroot(cur);
3631 if (xfs_btree_get_numrecs(block) != 1)
3632 goto out0;
3634 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3635 numrecs = xfs_btree_get_numrecs(cblock);
3638 * Only do this if the next level will fit.
3639 * Then the data must be copied up to the inode,
3640 * instead of freeing the root you free the next level.
3642 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3643 goto out0;
3645 XFS_BTREE_STATS_INC(cur, killroot);
3647 #ifdef DEBUG
3648 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3649 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3650 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3651 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3652 #endif
3654 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3655 if (index) {
3656 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3657 cur->bc_private.b.whichfork);
3658 block = ifp->if_broot;
3661 be16_add_cpu(&block->bb_numrecs, index);
3662 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3664 kp = xfs_btree_key_addr(cur, 1, block);
3665 ckp = xfs_btree_key_addr(cur, 1, cblock);
3666 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3668 pp = xfs_btree_ptr_addr(cur, 1, block);
3669 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3670 #ifdef DEBUG
3671 for (i = 0; i < numrecs; i++) {
3672 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3673 if (error) {
3674 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3675 return error;
3678 #endif
3679 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3681 error = xfs_btree_free_block(cur, cbp);
3682 if (error) {
3683 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3684 return error;
3687 cur->bc_bufs[level - 1] = NULL;
3688 be16_add_cpu(&block->bb_level, -1);
3689 xfs_trans_log_inode(cur->bc_tp, ip,
3690 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3691 cur->bc_nlevels--;
3692 out0:
3693 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3694 return 0;
3698 * Kill the current root node, and replace it with it's only child node.
3700 STATIC int
3701 xfs_btree_kill_root(
3702 struct xfs_btree_cur *cur,
3703 struct xfs_buf *bp,
3704 int level,
3705 union xfs_btree_ptr *newroot)
3707 int error;
3709 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3710 XFS_BTREE_STATS_INC(cur, killroot);
3713 * Update the root pointer, decreasing the level by 1 and then
3714 * free the old root.
3716 cur->bc_ops->set_root(cur, newroot, -1);
3718 error = xfs_btree_free_block(cur, bp);
3719 if (error) {
3720 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3721 return error;
3724 cur->bc_bufs[level] = NULL;
3725 cur->bc_ra[level] = 0;
3726 cur->bc_nlevels--;
3728 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3729 return 0;
3732 STATIC int
3733 xfs_btree_dec_cursor(
3734 struct xfs_btree_cur *cur,
3735 int level,
3736 int *stat)
3738 int error;
3739 int i;
3741 if (level > 0) {
3742 error = xfs_btree_decrement(cur, level, &i);
3743 if (error)
3744 return error;
3747 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3748 *stat = 1;
3749 return 0;
3753 * Single level of the btree record deletion routine.
3754 * Delete record pointed to by cur/level.
3755 * Remove the record from its block then rebalance the tree.
3756 * Return 0 for error, 1 for done, 2 to go on to the next level.
3758 STATIC int /* error */
3759 xfs_btree_delrec(
3760 struct xfs_btree_cur *cur, /* btree cursor */
3761 int level, /* level removing record from */
3762 int *stat) /* fail/done/go-on */
3764 struct xfs_btree_block *block; /* btree block */
3765 union xfs_btree_ptr cptr; /* current block ptr */
3766 struct xfs_buf *bp; /* buffer for block */
3767 int error; /* error return value */
3768 int i; /* loop counter */
3769 union xfs_btree_ptr lptr; /* left sibling block ptr */
3770 struct xfs_buf *lbp; /* left buffer pointer */
3771 struct xfs_btree_block *left; /* left btree block */
3772 int lrecs = 0; /* left record count */
3773 int ptr; /* key/record index */
3774 union xfs_btree_ptr rptr; /* right sibling block ptr */
3775 struct xfs_buf *rbp; /* right buffer pointer */
3776 struct xfs_btree_block *right; /* right btree block */
3777 struct xfs_btree_block *rrblock; /* right-right btree block */
3778 struct xfs_buf *rrbp; /* right-right buffer pointer */
3779 int rrecs = 0; /* right record count */
3780 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3781 int numrecs; /* temporary numrec count */
3783 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3784 XFS_BTREE_TRACE_ARGI(cur, level);
3786 tcur = NULL;
3788 /* Get the index of the entry being deleted, check for nothing there. */
3789 ptr = cur->bc_ptrs[level];
3790 if (ptr == 0) {
3791 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3792 *stat = 0;
3793 return 0;
3796 /* Get the buffer & block containing the record or key/ptr. */
3797 block = xfs_btree_get_block(cur, level, &bp);
3798 numrecs = xfs_btree_get_numrecs(block);
3800 #ifdef DEBUG
3801 error = xfs_btree_check_block(cur, block, level, bp);
3802 if (error)
3803 goto error0;
3804 #endif
3806 /* Fail if we're off the end of the block. */
3807 if (ptr > numrecs) {
3808 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3809 *stat = 0;
3810 return 0;
3813 XFS_BTREE_STATS_INC(cur, delrec);
3814 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3816 /* Excise the entries being deleted. */
3817 if (level > 0) {
3818 /* It's a nonleaf. operate on keys and ptrs */
3819 union xfs_btree_key *lkp;
3820 union xfs_btree_ptr *lpp;
3822 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3823 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3825 #ifdef DEBUG
3826 for (i = 0; i < numrecs - ptr; i++) {
3827 error = xfs_btree_check_ptr(cur, lpp, i, level);
3828 if (error)
3829 goto error0;
3831 #endif
3833 if (ptr < numrecs) {
3834 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3835 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3836 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3837 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3839 } else {
3840 /* It's a leaf. operate on records */
3841 if (ptr < numrecs) {
3842 xfs_btree_shift_recs(cur,
3843 xfs_btree_rec_addr(cur, ptr + 1, block),
3844 -1, numrecs - ptr);
3845 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3850 * Decrement and log the number of entries in the block.
3852 xfs_btree_set_numrecs(block, --numrecs);
3853 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3856 * If we are tracking the last record in the tree and
3857 * we are at the far right edge of the tree, update it.
3859 if (xfs_btree_is_lastrec(cur, block, level)) {
3860 cur->bc_ops->update_lastrec(cur, block, NULL,
3861 ptr, LASTREC_DELREC);
3865 * We're at the root level. First, shrink the root block in-memory.
3866 * Try to get rid of the next level down. If we can't then there's
3867 * nothing left to do.
3869 if (level == cur->bc_nlevels - 1) {
3870 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3871 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3872 cur->bc_private.b.whichfork);
3874 error = xfs_btree_kill_iroot(cur);
3875 if (error)
3876 goto error0;
3878 error = xfs_btree_dec_cursor(cur, level, stat);
3879 if (error)
3880 goto error0;
3881 *stat = 1;
3882 return 0;
3886 * If this is the root level, and there's only one entry left,
3887 * and it's NOT the leaf level, then we can get rid of this
3888 * level.
3890 if (numrecs == 1 && level > 0) {
3891 union xfs_btree_ptr *pp;
3893 * pp is still set to the first pointer in the block.
3894 * Make it the new root of the btree.
3896 pp = xfs_btree_ptr_addr(cur, 1, block);
3897 error = xfs_btree_kill_root(cur, bp, level, pp);
3898 if (error)
3899 goto error0;
3900 } else if (level > 0) {
3901 error = xfs_btree_dec_cursor(cur, level, stat);
3902 if (error)
3903 goto error0;
3905 *stat = 1;
3906 return 0;
3910 * If we deleted the leftmost entry in the block, update the
3911 * key values above us in the tree.
3913 if (xfs_btree_needs_key_update(cur, ptr)) {
3914 error = xfs_btree_update_keys(cur, level);
3915 if (error)
3916 goto error0;
3920 * If the number of records remaining in the block is at least
3921 * the minimum, we're done.
3923 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3924 error = xfs_btree_dec_cursor(cur, level, stat);
3925 if (error)
3926 goto error0;
3927 return 0;
3931 * Otherwise, we have to move some records around to keep the
3932 * tree balanced. Look at the left and right sibling blocks to
3933 * see if we can re-balance by moving only one record.
3935 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3936 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3938 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3940 * One child of root, need to get a chance to copy its contents
3941 * into the root and delete it. Can't go up to next level,
3942 * there's nothing to delete there.
3944 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3945 xfs_btree_ptr_is_null(cur, &lptr) &&
3946 level == cur->bc_nlevels - 2) {
3947 error = xfs_btree_kill_iroot(cur);
3948 if (!error)
3949 error = xfs_btree_dec_cursor(cur, level, stat);
3950 if (error)
3951 goto error0;
3952 return 0;
3956 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3957 !xfs_btree_ptr_is_null(cur, &lptr));
3960 * Duplicate the cursor so our btree manipulations here won't
3961 * disrupt the next level up.
3963 error = xfs_btree_dup_cursor(cur, &tcur);
3964 if (error)
3965 goto error0;
3968 * If there's a right sibling, see if it's ok to shift an entry
3969 * out of it.
3971 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3973 * Move the temp cursor to the last entry in the next block.
3974 * Actually any entry but the first would suffice.
3976 i = xfs_btree_lastrec(tcur, level);
3977 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3979 error = xfs_btree_increment(tcur, level, &i);
3980 if (error)
3981 goto error0;
3982 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3984 i = xfs_btree_lastrec(tcur, level);
3985 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3987 /* Grab a pointer to the block. */
3988 right = xfs_btree_get_block(tcur, level, &rbp);
3989 #ifdef DEBUG
3990 error = xfs_btree_check_block(tcur, right, level, rbp);
3991 if (error)
3992 goto error0;
3993 #endif
3994 /* Grab the current block number, for future use. */
3995 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3998 * If right block is full enough so that removing one entry
3999 * won't make it too empty, and left-shifting an entry out
4000 * of right to us works, we're done.
4002 if (xfs_btree_get_numrecs(right) - 1 >=
4003 cur->bc_ops->get_minrecs(tcur, level)) {
4004 error = xfs_btree_lshift(tcur, level, &i);
4005 if (error)
4006 goto error0;
4007 if (i) {
4008 ASSERT(xfs_btree_get_numrecs(block) >=
4009 cur->bc_ops->get_minrecs(tcur, level));
4011 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4012 tcur = NULL;
4014 error = xfs_btree_dec_cursor(cur, level, stat);
4015 if (error)
4016 goto error0;
4017 return 0;
4022 * Otherwise, grab the number of records in right for
4023 * future reference, and fix up the temp cursor to point
4024 * to our block again (last record).
4026 rrecs = xfs_btree_get_numrecs(right);
4027 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4028 i = xfs_btree_firstrec(tcur, level);
4029 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4031 error = xfs_btree_decrement(tcur, level, &i);
4032 if (error)
4033 goto error0;
4034 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4039 * If there's a left sibling, see if it's ok to shift an entry
4040 * out of it.
4042 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4044 * Move the temp cursor to the first entry in the
4045 * previous block.
4047 i = xfs_btree_firstrec(tcur, level);
4048 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4050 error = xfs_btree_decrement(tcur, level, &i);
4051 if (error)
4052 goto error0;
4053 i = xfs_btree_firstrec(tcur, level);
4054 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4056 /* Grab a pointer to the block. */
4057 left = xfs_btree_get_block(tcur, level, &lbp);
4058 #ifdef DEBUG
4059 error = xfs_btree_check_block(cur, left, level, lbp);
4060 if (error)
4061 goto error0;
4062 #endif
4063 /* Grab the current block number, for future use. */
4064 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4067 * If left block is full enough so that removing one entry
4068 * won't make it too empty, and right-shifting an entry out
4069 * of left to us works, we're done.
4071 if (xfs_btree_get_numrecs(left) - 1 >=
4072 cur->bc_ops->get_minrecs(tcur, level)) {
4073 error = xfs_btree_rshift(tcur, level, &i);
4074 if (error)
4075 goto error0;
4076 if (i) {
4077 ASSERT(xfs_btree_get_numrecs(block) >=
4078 cur->bc_ops->get_minrecs(tcur, level));
4079 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4080 tcur = NULL;
4081 if (level == 0)
4082 cur->bc_ptrs[0]++;
4083 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4084 *stat = 1;
4085 return 0;
4090 * Otherwise, grab the number of records in right for
4091 * future reference.
4093 lrecs = xfs_btree_get_numrecs(left);
4096 /* Delete the temp cursor, we're done with it. */
4097 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4098 tcur = NULL;
4100 /* If here, we need to do a join to keep the tree balanced. */
4101 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4103 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4104 lrecs + xfs_btree_get_numrecs(block) <=
4105 cur->bc_ops->get_maxrecs(cur, level)) {
4107 * Set "right" to be the starting block,
4108 * "left" to be the left neighbor.
4110 rptr = cptr;
4111 right = block;
4112 rbp = bp;
4113 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4114 if (error)
4115 goto error0;
4118 * If that won't work, see if we can join with the right neighbor block.
4120 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4121 rrecs + xfs_btree_get_numrecs(block) <=
4122 cur->bc_ops->get_maxrecs(cur, level)) {
4124 * Set "left" to be the starting block,
4125 * "right" to be the right neighbor.
4127 lptr = cptr;
4128 left = block;
4129 lbp = bp;
4130 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4131 if (error)
4132 goto error0;
4135 * Otherwise, we can't fix the imbalance.
4136 * Just return. This is probably a logic error, but it's not fatal.
4138 } else {
4139 error = xfs_btree_dec_cursor(cur, level, stat);
4140 if (error)
4141 goto error0;
4142 return 0;
4145 rrecs = xfs_btree_get_numrecs(right);
4146 lrecs = xfs_btree_get_numrecs(left);
4149 * We're now going to join "left" and "right" by moving all the stuff
4150 * in "right" to "left" and deleting "right".
4152 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4153 if (level > 0) {
4154 /* It's a non-leaf. Move keys and pointers. */
4155 union xfs_btree_key *lkp; /* left btree key */
4156 union xfs_btree_ptr *lpp; /* left address pointer */
4157 union xfs_btree_key *rkp; /* right btree key */
4158 union xfs_btree_ptr *rpp; /* right address pointer */
4160 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4161 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4162 rkp = xfs_btree_key_addr(cur, 1, right);
4163 rpp = xfs_btree_ptr_addr(cur, 1, right);
4164 #ifdef DEBUG
4165 for (i = 1; i < rrecs; i++) {
4166 error = xfs_btree_check_ptr(cur, rpp, i, level);
4167 if (error)
4168 goto error0;
4170 #endif
4171 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4172 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4174 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4175 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4176 } else {
4177 /* It's a leaf. Move records. */
4178 union xfs_btree_rec *lrp; /* left record pointer */
4179 union xfs_btree_rec *rrp; /* right record pointer */
4181 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4182 rrp = xfs_btree_rec_addr(cur, 1, right);
4184 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4185 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4188 XFS_BTREE_STATS_INC(cur, join);
4191 * Fix up the number of records and right block pointer in the
4192 * surviving block, and log it.
4194 xfs_btree_set_numrecs(left, lrecs + rrecs);
4195 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4196 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4197 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4199 /* If there is a right sibling, point it to the remaining block. */
4200 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4201 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4202 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4203 if (error)
4204 goto error0;
4205 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4206 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4209 /* Free the deleted block. */
4210 error = xfs_btree_free_block(cur, rbp);
4211 if (error)
4212 goto error0;
4215 * If we joined with the left neighbor, set the buffer in the
4216 * cursor to the left block, and fix up the index.
4218 if (bp != lbp) {
4219 cur->bc_bufs[level] = lbp;
4220 cur->bc_ptrs[level] += lrecs;
4221 cur->bc_ra[level] = 0;
4224 * If we joined with the right neighbor and there's a level above
4225 * us, increment the cursor at that level.
4227 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4228 (level + 1 < cur->bc_nlevels)) {
4229 error = xfs_btree_increment(cur, level + 1, &i);
4230 if (error)
4231 goto error0;
4235 * Readjust the ptr at this level if it's not a leaf, since it's
4236 * still pointing at the deletion point, which makes the cursor
4237 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4238 * We can't use decrement because it would change the next level up.
4240 if (level > 0)
4241 cur->bc_ptrs[level]--;
4244 * We combined blocks, so we have to update the parent keys if the
4245 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4246 * points to the old block so that the caller knows which record to
4247 * delete. Therefore, the caller must be savvy enough to call updkeys
4248 * for us if we return stat == 2. The other exit points from this
4249 * function don't require deletions further up the tree, so they can
4250 * call updkeys directly.
4253 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4254 /* Return value means the next level up has something to do. */
4255 *stat = 2;
4256 return 0;
4258 error0:
4259 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4260 if (tcur)
4261 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4262 return error;
4266 * Delete the record pointed to by cur.
4267 * The cursor refers to the place where the record was (could be inserted)
4268 * when the operation returns.
4270 int /* error */
4271 xfs_btree_delete(
4272 struct xfs_btree_cur *cur,
4273 int *stat) /* success/failure */
4275 int error; /* error return value */
4276 int level;
4277 int i;
4278 bool joined = false;
4280 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4283 * Go up the tree, starting at leaf level.
4285 * If 2 is returned then a join was done; go to the next level.
4286 * Otherwise we are done.
4288 for (level = 0, i = 2; i == 2; level++) {
4289 error = xfs_btree_delrec(cur, level, &i);
4290 if (error)
4291 goto error0;
4292 if (i == 2)
4293 joined = true;
4297 * If we combined blocks as part of deleting the record, delrec won't
4298 * have updated the parent high keys so we have to do that here.
4300 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4301 error = xfs_btree_updkeys_force(cur, 0);
4302 if (error)
4303 goto error0;
4306 if (i == 0) {
4307 for (level = 1; level < cur->bc_nlevels; level++) {
4308 if (cur->bc_ptrs[level] == 0) {
4309 error = xfs_btree_decrement(cur, level, &i);
4310 if (error)
4311 goto error0;
4312 break;
4317 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4318 *stat = i;
4319 return 0;
4320 error0:
4321 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4322 return error;
4326 * Get the data from the pointed-to record.
4328 int /* error */
4329 xfs_btree_get_rec(
4330 struct xfs_btree_cur *cur, /* btree cursor */
4331 union xfs_btree_rec **recp, /* output: btree record */
4332 int *stat) /* output: success/failure */
4334 struct xfs_btree_block *block; /* btree block */
4335 struct xfs_buf *bp; /* buffer pointer */
4336 int ptr; /* record number */
4337 #ifdef DEBUG
4338 int error; /* error return value */
4339 #endif
4341 ptr = cur->bc_ptrs[0];
4342 block = xfs_btree_get_block(cur, 0, &bp);
4344 #ifdef DEBUG
4345 error = xfs_btree_check_block(cur, block, 0, bp);
4346 if (error)
4347 return error;
4348 #endif
4351 * Off the right end or left end, return failure.
4353 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4354 *stat = 0;
4355 return 0;
4359 * Point to the record and extract its data.
4361 *recp = xfs_btree_rec_addr(cur, ptr, block);
4362 *stat = 1;
4363 return 0;
4366 /* Visit a block in a btree. */
4367 STATIC int
4368 xfs_btree_visit_block(
4369 struct xfs_btree_cur *cur,
4370 int level,
4371 xfs_btree_visit_blocks_fn fn,
4372 void *data)
4374 struct xfs_btree_block *block;
4375 struct xfs_buf *bp;
4376 union xfs_btree_ptr rptr;
4377 int error;
4379 /* do right sibling readahead */
4380 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4381 block = xfs_btree_get_block(cur, level, &bp);
4383 /* process the block */
4384 error = fn(cur, level, data);
4385 if (error)
4386 return error;
4388 /* now read rh sibling block for next iteration */
4389 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4390 if (xfs_btree_ptr_is_null(cur, &rptr))
4391 return -ENOENT;
4393 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4397 /* Visit every block in a btree. */
4399 xfs_btree_visit_blocks(
4400 struct xfs_btree_cur *cur,
4401 xfs_btree_visit_blocks_fn fn,
4402 void *data)
4404 union xfs_btree_ptr lptr;
4405 int level;
4406 struct xfs_btree_block *block = NULL;
4407 int error = 0;
4409 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4411 /* for each level */
4412 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4413 /* grab the left hand block */
4414 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4415 if (error)
4416 return error;
4418 /* readahead the left most block for the next level down */
4419 if (level > 0) {
4420 union xfs_btree_ptr *ptr;
4422 ptr = xfs_btree_ptr_addr(cur, 1, block);
4423 xfs_btree_readahead_ptr(cur, ptr, 1);
4425 /* save for the next iteration of the loop */
4426 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4429 /* for each buffer in the level */
4430 do {
4431 error = xfs_btree_visit_block(cur, level, fn, data);
4432 } while (!error);
4434 if (error != -ENOENT)
4435 return error;
4438 return 0;
4442 * Change the owner of a btree.
4444 * The mechanism we use here is ordered buffer logging. Because we don't know
4445 * how many buffers were are going to need to modify, we don't really want to
4446 * have to make transaction reservations for the worst case of every buffer in a
4447 * full size btree as that may be more space that we can fit in the log....
4449 * We do the btree walk in the most optimal manner possible - we have sibling
4450 * pointers so we can just walk all the blocks on each level from left to right
4451 * in a single pass, and then move to the next level and do the same. We can
4452 * also do readahead on the sibling pointers to get IO moving more quickly,
4453 * though for slow disks this is unlikely to make much difference to performance
4454 * as the amount of CPU work we have to do before moving to the next block is
4455 * relatively small.
4457 * For each btree block that we load, modify the owner appropriately, set the
4458 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4459 * we mark the region we change dirty so that if the buffer is relogged in
4460 * a subsequent transaction the changes we make here as an ordered buffer are
4461 * correctly relogged in that transaction. If we are in recovery context, then
4462 * just queue the modified buffer as delayed write buffer so the transaction
4463 * recovery completion writes the changes to disk.
4465 struct xfs_btree_block_change_owner_info {
4466 uint64_t new_owner;
4467 struct list_head *buffer_list;
4470 static int
4471 xfs_btree_block_change_owner(
4472 struct xfs_btree_cur *cur,
4473 int level,
4474 void *data)
4476 struct xfs_btree_block_change_owner_info *bbcoi = data;
4477 struct xfs_btree_block *block;
4478 struct xfs_buf *bp;
4480 /* modify the owner */
4481 block = xfs_btree_get_block(cur, level, &bp);
4482 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4483 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4484 return 0;
4485 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4486 } else {
4487 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4488 return 0;
4489 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4493 * If the block is a root block hosted in an inode, we might not have a
4494 * buffer pointer here and we shouldn't attempt to log the change as the
4495 * information is already held in the inode and discarded when the root
4496 * block is formatted into the on-disk inode fork. We still change it,
4497 * though, so everything is consistent in memory.
4499 if (!bp) {
4500 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4501 ASSERT(level == cur->bc_nlevels - 1);
4502 return 0;
4505 if (cur->bc_tp) {
4506 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4507 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4508 return -EAGAIN;
4510 } else {
4511 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4514 return 0;
4518 xfs_btree_change_owner(
4519 struct xfs_btree_cur *cur,
4520 uint64_t new_owner,
4521 struct list_head *buffer_list)
4523 struct xfs_btree_block_change_owner_info bbcoi;
4525 bbcoi.new_owner = new_owner;
4526 bbcoi.buffer_list = buffer_list;
4528 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4529 &bbcoi);
4532 /* Verify the v5 fields of a long-format btree block. */
4533 xfs_failaddr_t
4534 xfs_btree_lblock_v5hdr_verify(
4535 struct xfs_buf *bp,
4536 uint64_t owner)
4538 struct xfs_mount *mp = bp->b_target->bt_mount;
4539 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4541 if (!xfs_sb_version_hascrc(&mp->m_sb))
4542 return __this_address;
4543 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4544 return __this_address;
4545 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4546 return __this_address;
4547 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4548 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4549 return __this_address;
4550 return NULL;
4553 /* Verify a long-format btree block. */
4554 xfs_failaddr_t
4555 xfs_btree_lblock_verify(
4556 struct xfs_buf *bp,
4557 unsigned int max_recs)
4559 struct xfs_mount *mp = bp->b_target->bt_mount;
4560 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4562 /* numrecs verification */
4563 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4564 return __this_address;
4566 /* sibling pointer verification */
4567 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4568 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4569 return __this_address;
4570 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4571 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4572 return __this_address;
4574 return NULL;
4578 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4579 * btree block
4581 * @bp: buffer containing the btree block
4582 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4583 * @pag_max_level: pointer to the per-ag max level field
4585 xfs_failaddr_t
4586 xfs_btree_sblock_v5hdr_verify(
4587 struct xfs_buf *bp)
4589 struct xfs_mount *mp = bp->b_target->bt_mount;
4590 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4591 struct xfs_perag *pag = bp->b_pag;
4593 if (!xfs_sb_version_hascrc(&mp->m_sb))
4594 return __this_address;
4595 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4596 return __this_address;
4597 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4598 return __this_address;
4599 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4600 return __this_address;
4601 return NULL;
4605 * xfs_btree_sblock_verify() -- verify a short-format btree block
4607 * @bp: buffer containing the btree block
4608 * @max_recs: maximum records allowed in this btree node
4610 xfs_failaddr_t
4611 xfs_btree_sblock_verify(
4612 struct xfs_buf *bp,
4613 unsigned int max_recs)
4615 struct xfs_mount *mp = bp->b_target->bt_mount;
4616 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4617 xfs_agblock_t agno;
4619 /* numrecs verification */
4620 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4621 return __this_address;
4623 /* sibling pointer verification */
4624 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4625 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4626 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4627 return __this_address;
4628 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4629 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4630 return __this_address;
4632 return NULL;
4636 * Calculate the number of btree levels needed to store a given number of
4637 * records in a short-format btree.
4639 uint
4640 xfs_btree_compute_maxlevels(
4641 struct xfs_mount *mp,
4642 uint *limits,
4643 unsigned long len)
4645 uint level;
4646 unsigned long maxblocks;
4648 maxblocks = (len + limits[0] - 1) / limits[0];
4649 for (level = 1; maxblocks > 1; level++)
4650 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4651 return level;
4655 * Query a regular btree for all records overlapping a given interval.
4656 * Start with a LE lookup of the key of low_rec and return all records
4657 * until we find a record with a key greater than the key of high_rec.
4659 STATIC int
4660 xfs_btree_simple_query_range(
4661 struct xfs_btree_cur *cur,
4662 union xfs_btree_key *low_key,
4663 union xfs_btree_key *high_key,
4664 xfs_btree_query_range_fn fn,
4665 void *priv)
4667 union xfs_btree_rec *recp;
4668 union xfs_btree_key rec_key;
4669 int64_t diff;
4670 int stat;
4671 bool firstrec = true;
4672 int error;
4674 ASSERT(cur->bc_ops->init_high_key_from_rec);
4675 ASSERT(cur->bc_ops->diff_two_keys);
4678 * Find the leftmost record. The btree cursor must be set
4679 * to the low record used to generate low_key.
4681 stat = 0;
4682 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4683 if (error)
4684 goto out;
4686 /* Nothing? See if there's anything to the right. */
4687 if (!stat) {
4688 error = xfs_btree_increment(cur, 0, &stat);
4689 if (error)
4690 goto out;
4693 while (stat) {
4694 /* Find the record. */
4695 error = xfs_btree_get_rec(cur, &recp, &stat);
4696 if (error || !stat)
4697 break;
4699 /* Skip if high_key(rec) < low_key. */
4700 if (firstrec) {
4701 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4702 firstrec = false;
4703 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4704 &rec_key);
4705 if (diff > 0)
4706 goto advloop;
4709 /* Stop if high_key < low_key(rec). */
4710 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4711 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4712 if (diff > 0)
4713 break;
4715 /* Callback */
4716 error = fn(cur, recp, priv);
4717 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4718 break;
4720 advloop:
4721 /* Move on to the next record. */
4722 error = xfs_btree_increment(cur, 0, &stat);
4723 if (error)
4724 break;
4727 out:
4728 return error;
4732 * Query an overlapped interval btree for all records overlapping a given
4733 * interval. This function roughly follows the algorithm given in
4734 * "Interval Trees" of _Introduction to Algorithms_, which is section
4735 * 14.3 in the 2nd and 3rd editions.
4737 * First, generate keys for the low and high records passed in.
4739 * For any leaf node, generate the high and low keys for the record.
4740 * If the record keys overlap with the query low/high keys, pass the
4741 * record to the function iterator.
4743 * For any internal node, compare the low and high keys of each
4744 * pointer against the query low/high keys. If there's an overlap,
4745 * follow the pointer.
4747 * As an optimization, we stop scanning a block when we find a low key
4748 * that is greater than the query's high key.
4750 STATIC int
4751 xfs_btree_overlapped_query_range(
4752 struct xfs_btree_cur *cur,
4753 union xfs_btree_key *low_key,
4754 union xfs_btree_key *high_key,
4755 xfs_btree_query_range_fn fn,
4756 void *priv)
4758 union xfs_btree_ptr ptr;
4759 union xfs_btree_ptr *pp;
4760 union xfs_btree_key rec_key;
4761 union xfs_btree_key rec_hkey;
4762 union xfs_btree_key *lkp;
4763 union xfs_btree_key *hkp;
4764 union xfs_btree_rec *recp;
4765 struct xfs_btree_block *block;
4766 int64_t ldiff;
4767 int64_t hdiff;
4768 int level;
4769 struct xfs_buf *bp;
4770 int i;
4771 int error;
4773 /* Load the root of the btree. */
4774 level = cur->bc_nlevels - 1;
4775 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4776 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4777 if (error)
4778 return error;
4779 xfs_btree_get_block(cur, level, &bp);
4780 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4781 #ifdef DEBUG
4782 error = xfs_btree_check_block(cur, block, level, bp);
4783 if (error)
4784 goto out;
4785 #endif
4786 cur->bc_ptrs[level] = 1;
4788 while (level < cur->bc_nlevels) {
4789 block = xfs_btree_get_block(cur, level, &bp);
4791 /* End of node, pop back towards the root. */
4792 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4793 pop_up:
4794 if (level < cur->bc_nlevels - 1)
4795 cur->bc_ptrs[level + 1]++;
4796 level++;
4797 continue;
4800 if (level == 0) {
4801 /* Handle a leaf node. */
4802 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4804 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4805 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4806 low_key);
4808 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4809 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4810 &rec_key);
4813 * If (record's high key >= query's low key) and
4814 * (query's high key >= record's low key), then
4815 * this record overlaps the query range; callback.
4817 if (ldiff >= 0 && hdiff >= 0) {
4818 error = fn(cur, recp, priv);
4819 if (error < 0 ||
4820 error == XFS_BTREE_QUERY_RANGE_ABORT)
4821 break;
4822 } else if (hdiff < 0) {
4823 /* Record is larger than high key; pop. */
4824 goto pop_up;
4826 cur->bc_ptrs[level]++;
4827 continue;
4830 /* Handle an internal node. */
4831 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4832 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4833 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4835 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4836 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4839 * If (pointer's high key >= query's low key) and
4840 * (query's high key >= pointer's low key), then
4841 * this record overlaps the query range; follow pointer.
4843 if (ldiff >= 0 && hdiff >= 0) {
4844 level--;
4845 error = xfs_btree_lookup_get_block(cur, level, pp,
4846 &block);
4847 if (error)
4848 goto out;
4849 xfs_btree_get_block(cur, level, &bp);
4850 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4851 #ifdef DEBUG
4852 error = xfs_btree_check_block(cur, block, level, bp);
4853 if (error)
4854 goto out;
4855 #endif
4856 cur->bc_ptrs[level] = 1;
4857 continue;
4858 } else if (hdiff < 0) {
4859 /* The low key is larger than the upper range; pop. */
4860 goto pop_up;
4862 cur->bc_ptrs[level]++;
4865 out:
4867 * If we don't end this function with the cursor pointing at a record
4868 * block, a subsequent non-error cursor deletion will not release
4869 * node-level buffers, causing a buffer leak. This is quite possible
4870 * with a zero-results range query, so release the buffers if we
4871 * failed to return any results.
4873 if (cur->bc_bufs[0] == NULL) {
4874 for (i = 0; i < cur->bc_nlevels; i++) {
4875 if (cur->bc_bufs[i]) {
4876 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4877 cur->bc_bufs[i] = NULL;
4878 cur->bc_ptrs[i] = 0;
4879 cur->bc_ra[i] = 0;
4884 return error;
4888 * Query a btree for all records overlapping a given interval of keys. The
4889 * supplied function will be called with each record found; return one of the
4890 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4891 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4892 * negative error code.
4895 xfs_btree_query_range(
4896 struct xfs_btree_cur *cur,
4897 union xfs_btree_irec *low_rec,
4898 union xfs_btree_irec *high_rec,
4899 xfs_btree_query_range_fn fn,
4900 void *priv)
4902 union xfs_btree_rec rec;
4903 union xfs_btree_key low_key;
4904 union xfs_btree_key high_key;
4906 /* Find the keys of both ends of the interval. */
4907 cur->bc_rec = *high_rec;
4908 cur->bc_ops->init_rec_from_cur(cur, &rec);
4909 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4911 cur->bc_rec = *low_rec;
4912 cur->bc_ops->init_rec_from_cur(cur, &rec);
4913 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4915 /* Enforce low key < high key. */
4916 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4917 return -EINVAL;
4919 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4920 return xfs_btree_simple_query_range(cur, &low_key,
4921 &high_key, fn, priv);
4922 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4923 fn, priv);
4926 /* Query a btree for all records. */
4928 xfs_btree_query_all(
4929 struct xfs_btree_cur *cur,
4930 xfs_btree_query_range_fn fn,
4931 void *priv)
4933 union xfs_btree_key low_key;
4934 union xfs_btree_key high_key;
4936 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4937 memset(&low_key, 0, sizeof(low_key));
4938 memset(&high_key, 0xFF, sizeof(high_key));
4940 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4944 * Calculate the number of blocks needed to store a given number of records
4945 * in a short-format (per-AG metadata) btree.
4947 xfs_extlen_t
4948 xfs_btree_calc_size(
4949 struct xfs_mount *mp,
4950 uint *limits,
4951 unsigned long long len)
4953 int level;
4954 int maxrecs;
4955 xfs_extlen_t rval;
4957 maxrecs = limits[0];
4958 for (level = 0, rval = 0; len > 1; level++) {
4959 len += maxrecs - 1;
4960 do_div(len, maxrecs);
4961 maxrecs = limits[1];
4962 rval += len;
4964 return rval;
4967 static int
4968 xfs_btree_count_blocks_helper(
4969 struct xfs_btree_cur *cur,
4970 int level,
4971 void *data)
4973 xfs_extlen_t *blocks = data;
4974 (*blocks)++;
4976 return 0;
4979 /* Count the blocks in a btree and return the result in *blocks. */
4981 xfs_btree_count_blocks(
4982 struct xfs_btree_cur *cur,
4983 xfs_extlen_t *blocks)
4985 *blocks = 0;
4986 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4987 blocks);
4990 /* Compare two btree pointers. */
4991 int64_t
4992 xfs_btree_diff_two_ptrs(
4993 struct xfs_btree_cur *cur,
4994 const union xfs_btree_ptr *a,
4995 const union xfs_btree_ptr *b)
4997 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4998 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4999 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5002 /* If there's an extent, we're done. */
5003 STATIC int
5004 xfs_btree_has_record_helper(
5005 struct xfs_btree_cur *cur,
5006 union xfs_btree_rec *rec,
5007 void *priv)
5009 return XFS_BTREE_QUERY_RANGE_ABORT;
5012 /* Is there a record covering a given range of keys? */
5014 xfs_btree_has_record(
5015 struct xfs_btree_cur *cur,
5016 union xfs_btree_irec *low,
5017 union xfs_btree_irec *high,
5018 bool *exists)
5020 int error;
5022 error = xfs_btree_query_range(cur, low, high,
5023 &xfs_btree_has_record_helper, NULL);
5024 if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
5025 *exists = true;
5026 return 0;
5028 *exists = false;
5029 return error;