Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / fs / xfs / xfs_trans_buf.c
blob653ce379d36bf4798d350932fcd857f5635f0976
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
33 * Check to see if a buffer matching the given parameters is already
34 * a part of the given transaction.
36 STATIC struct xfs_buf *
37 xfs_trans_buf_item_match(
38 struct xfs_trans *tp,
39 struct xfs_buftarg *target,
40 struct xfs_buf_map *map,
41 int nmaps)
43 struct xfs_log_item_desc *lidp;
44 struct xfs_buf_log_item *blip;
45 int len = 0;
46 int i;
48 for (i = 0; i < nmaps; i++)
49 len += map[i].bm_len;
51 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
52 blip = (struct xfs_buf_log_item *)lidp->lid_item;
53 if (blip->bli_item.li_type == XFS_LI_BUF &&
54 blip->bli_buf->b_target == target &&
55 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
56 blip->bli_buf->b_length == len) {
57 ASSERT(blip->bli_buf->b_map_count == nmaps);
58 return blip->bli_buf;
62 return NULL;
66 * Add the locked buffer to the transaction.
68 * The buffer must be locked, and it cannot be associated with any
69 * transaction.
71 * If the buffer does not yet have a buf log item associated with it,
72 * then allocate one for it. Then add the buf item to the transaction.
74 STATIC void
75 _xfs_trans_bjoin(
76 struct xfs_trans *tp,
77 struct xfs_buf *bp,
78 int reset_recur)
80 struct xfs_buf_log_item *bip;
82 ASSERT(bp->b_transp == NULL);
85 * The xfs_buf_log_item pointer is stored in b_log_item. If
86 * it doesn't have one yet, then allocate one and initialize it.
87 * The checks to see if one is there are in xfs_buf_item_init().
89 xfs_buf_item_init(bp, tp->t_mountp);
90 bip = bp->b_log_item;
91 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
92 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
93 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
94 if (reset_recur)
95 bip->bli_recur = 0;
98 * Take a reference for this transaction on the buf item.
100 atomic_inc(&bip->bli_refcount);
103 * Get a log_item_desc to point at the new item.
105 xfs_trans_add_item(tp, &bip->bli_item);
108 * Initialize b_fsprivate2 so we can find it with incore_match()
109 * in xfs_trans_get_buf() and friends above.
111 bp->b_transp = tp;
115 void
116 xfs_trans_bjoin(
117 struct xfs_trans *tp,
118 struct xfs_buf *bp)
120 _xfs_trans_bjoin(tp, bp, 0);
121 trace_xfs_trans_bjoin(bp->b_log_item);
125 * Get and lock the buffer for the caller if it is not already
126 * locked within the given transaction. If it is already locked
127 * within the transaction, just increment its lock recursion count
128 * and return a pointer to it.
130 * If the transaction pointer is NULL, make this just a normal
131 * get_buf() call.
133 struct xfs_buf *
134 xfs_trans_get_buf_map(
135 struct xfs_trans *tp,
136 struct xfs_buftarg *target,
137 struct xfs_buf_map *map,
138 int nmaps,
139 xfs_buf_flags_t flags)
141 xfs_buf_t *bp;
142 struct xfs_buf_log_item *bip;
144 if (!tp)
145 return xfs_buf_get_map(target, map, nmaps, flags);
148 * If we find the buffer in the cache with this transaction
149 * pointer in its b_fsprivate2 field, then we know we already
150 * have it locked. In this case we just increment the lock
151 * recursion count and return the buffer to the caller.
153 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154 if (bp != NULL) {
155 ASSERT(xfs_buf_islocked(bp));
156 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157 xfs_buf_stale(bp);
158 bp->b_flags |= XBF_DONE;
161 ASSERT(bp->b_transp == tp);
162 bip = bp->b_log_item;
163 ASSERT(bip != NULL);
164 ASSERT(atomic_read(&bip->bli_refcount) > 0);
165 bip->bli_recur++;
166 trace_xfs_trans_get_buf_recur(bip);
167 return bp;
170 bp = xfs_buf_get_map(target, map, nmaps, flags);
171 if (bp == NULL) {
172 return NULL;
175 ASSERT(!bp->b_error);
177 _xfs_trans_bjoin(tp, bp, 1);
178 trace_xfs_trans_get_buf(bp->b_log_item);
179 return bp;
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
190 xfs_buf_t *
191 xfs_trans_getsb(
192 xfs_trans_t *tp,
193 struct xfs_mount *mp,
194 int flags)
196 xfs_buf_t *bp;
197 struct xfs_buf_log_item *bip;
200 * Default to just trying to lock the superblock buffer
201 * if tp is NULL.
203 if (tp == NULL)
204 return xfs_getsb(mp, flags);
207 * If the superblock buffer already has this transaction
208 * pointer in its b_fsprivate2 field, then we know we already
209 * have it locked. In this case we just increment the lock
210 * recursion count and return the buffer to the caller.
212 bp = mp->m_sb_bp;
213 if (bp->b_transp == tp) {
214 bip = bp->b_log_item;
215 ASSERT(bip != NULL);
216 ASSERT(atomic_read(&bip->bli_refcount) > 0);
217 bip->bli_recur++;
218 trace_xfs_trans_getsb_recur(bip);
219 return bp;
222 bp = xfs_getsb(mp, flags);
223 if (bp == NULL)
224 return NULL;
226 _xfs_trans_bjoin(tp, bp, 1);
227 trace_xfs_trans_getsb(bp->b_log_item);
228 return bp;
232 * Get and lock the buffer for the caller if it is not already
233 * locked within the given transaction. If it has not yet been
234 * read in, read it from disk. If it is already locked
235 * within the transaction and already read in, just increment its
236 * lock recursion count and return a pointer to it.
238 * If the transaction pointer is NULL, make this just a normal
239 * read_buf() call.
242 xfs_trans_read_buf_map(
243 struct xfs_mount *mp,
244 struct xfs_trans *tp,
245 struct xfs_buftarg *target,
246 struct xfs_buf_map *map,
247 int nmaps,
248 xfs_buf_flags_t flags,
249 struct xfs_buf **bpp,
250 const struct xfs_buf_ops *ops)
252 struct xfs_buf *bp = NULL;
253 struct xfs_buf_log_item *bip;
254 int error;
256 *bpp = NULL;
258 * If we find the buffer in the cache with this transaction
259 * pointer in its b_fsprivate2 field, then we know we already
260 * have it locked. If it is already read in we just increment
261 * the lock recursion count and return the buffer to the caller.
262 * If the buffer is not yet read in, then we read it in, increment
263 * the lock recursion count, and return it to the caller.
265 if (tp)
266 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
267 if (bp) {
268 ASSERT(xfs_buf_islocked(bp));
269 ASSERT(bp->b_transp == tp);
270 ASSERT(bp->b_log_item != NULL);
271 ASSERT(!bp->b_error);
272 ASSERT(bp->b_flags & XBF_DONE);
275 * We never locked this buf ourselves, so we shouldn't
276 * brelse it either. Just get out.
278 if (XFS_FORCED_SHUTDOWN(mp)) {
279 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
280 return -EIO;
283 bip = bp->b_log_item;
284 bip->bli_recur++;
286 ASSERT(atomic_read(&bip->bli_refcount) > 0);
287 trace_xfs_trans_read_buf_recur(bip);
288 *bpp = bp;
289 return 0;
292 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
293 if (!bp) {
294 if (!(flags & XBF_TRYLOCK))
295 return -ENOMEM;
296 return tp ? 0 : -EAGAIN;
300 * If we've had a read error, then the contents of the buffer are
301 * invalid and should not be used. To ensure that a followup read tries
302 * to pull the buffer from disk again, we clear the XBF_DONE flag and
303 * mark the buffer stale. This ensures that anyone who has a current
304 * reference to the buffer will interpret it's contents correctly and
305 * future cache lookups will also treat it as an empty, uninitialised
306 * buffer.
308 if (bp->b_error) {
309 error = bp->b_error;
310 if (!XFS_FORCED_SHUTDOWN(mp))
311 xfs_buf_ioerror_alert(bp, __func__);
312 bp->b_flags &= ~XBF_DONE;
313 xfs_buf_stale(bp);
315 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
316 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
317 xfs_buf_relse(bp);
319 /* bad CRC means corrupted metadata */
320 if (error == -EFSBADCRC)
321 error = -EFSCORRUPTED;
322 return error;
325 if (XFS_FORCED_SHUTDOWN(mp)) {
326 xfs_buf_relse(bp);
327 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
328 return -EIO;
331 if (tp) {
332 _xfs_trans_bjoin(tp, bp, 1);
333 trace_xfs_trans_read_buf(bp->b_log_item);
335 *bpp = bp;
336 return 0;
341 * Release the buffer bp which was previously acquired with one of the
342 * xfs_trans_... buffer allocation routines if the buffer has not
343 * been modified within this transaction. If the buffer is modified
344 * within this transaction, do decrement the recursion count but do
345 * not release the buffer even if the count goes to 0. If the buffer is not
346 * modified within the transaction, decrement the recursion count and
347 * release the buffer if the recursion count goes to 0.
349 * If the buffer is to be released and it was not modified before
350 * this transaction began, then free the buf_log_item associated with it.
352 * If the transaction pointer is NULL, make this just a normal
353 * brelse() call.
355 void
356 xfs_trans_brelse(
357 xfs_trans_t *tp,
358 xfs_buf_t *bp)
360 struct xfs_buf_log_item *bip;
361 int freed;
364 * Default to a normal brelse() call if the tp is NULL.
366 if (tp == NULL) {
367 ASSERT(bp->b_transp == NULL);
368 xfs_buf_relse(bp);
369 return;
372 ASSERT(bp->b_transp == tp);
373 bip = bp->b_log_item;
374 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
375 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
376 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
377 ASSERT(atomic_read(&bip->bli_refcount) > 0);
379 trace_xfs_trans_brelse(bip);
382 * If the release is just for a recursive lock,
383 * then decrement the count and return.
385 if (bip->bli_recur > 0) {
386 bip->bli_recur--;
387 return;
391 * If the buffer is dirty within this transaction, we can't
392 * release it until we commit.
394 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
395 return;
398 * If the buffer has been invalidated, then we can't release
399 * it until the transaction commits to disk unless it is re-dirtied
400 * as part of this transaction. This prevents us from pulling
401 * the item from the AIL before we should.
403 if (bip->bli_flags & XFS_BLI_STALE)
404 return;
406 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
409 * Free up the log item descriptor tracking the released item.
411 xfs_trans_del_item(&bip->bli_item);
414 * Clear the hold flag in the buf log item if it is set.
415 * We wouldn't want the next user of the buffer to
416 * get confused.
418 if (bip->bli_flags & XFS_BLI_HOLD) {
419 bip->bli_flags &= ~XFS_BLI_HOLD;
423 * Drop our reference to the buf log item.
425 freed = atomic_dec_and_test(&bip->bli_refcount);
428 * If the buf item is not tracking data in the log, then we must free it
429 * before releasing the buffer back to the free pool.
431 * If the fs has shutdown and we dropped the last reference, it may fall
432 * on us to release a (possibly dirty) bli if it never made it to the
433 * AIL (e.g., the aborted unpin already happened and didn't release it
434 * due to our reference). Since we're already shutdown and need xa_lock,
435 * just force remove from the AIL and release the bli here.
437 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) {
438 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR);
439 xfs_buf_item_relse(bp);
440 } else if (!(bip->bli_flags & XFS_BLI_DIRTY)) {
441 /***
442 ASSERT(bp->b_pincount == 0);
443 ***/
444 ASSERT(atomic_read(&bip->bli_refcount) == 0);
445 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
446 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
447 xfs_buf_item_relse(bp);
450 bp->b_transp = NULL;
451 xfs_buf_relse(bp);
455 * Mark the buffer as not needing to be unlocked when the buf item's
456 * iop_unlock() routine is called. The buffer must already be locked
457 * and associated with the given transaction.
459 /* ARGSUSED */
460 void
461 xfs_trans_bhold(
462 xfs_trans_t *tp,
463 xfs_buf_t *bp)
465 struct xfs_buf_log_item *bip = bp->b_log_item;
467 ASSERT(bp->b_transp == tp);
468 ASSERT(bip != NULL);
469 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
470 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
471 ASSERT(atomic_read(&bip->bli_refcount) > 0);
473 bip->bli_flags |= XFS_BLI_HOLD;
474 trace_xfs_trans_bhold(bip);
478 * Cancel the previous buffer hold request made on this buffer
479 * for this transaction.
481 void
482 xfs_trans_bhold_release(
483 xfs_trans_t *tp,
484 xfs_buf_t *bp)
486 struct xfs_buf_log_item *bip = bp->b_log_item;
488 ASSERT(bp->b_transp == tp);
489 ASSERT(bip != NULL);
490 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
492 ASSERT(atomic_read(&bip->bli_refcount) > 0);
493 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
495 bip->bli_flags &= ~XFS_BLI_HOLD;
496 trace_xfs_trans_bhold_release(bip);
500 * Mark a buffer dirty in the transaction.
502 void
503 xfs_trans_dirty_buf(
504 struct xfs_trans *tp,
505 struct xfs_buf *bp)
507 struct xfs_buf_log_item *bip = bp->b_log_item;
509 ASSERT(bp->b_transp == tp);
510 ASSERT(bip != NULL);
511 ASSERT(bp->b_iodone == NULL ||
512 bp->b_iodone == xfs_buf_iodone_callbacks);
515 * Mark the buffer as needing to be written out eventually,
516 * and set its iodone function to remove the buffer's buf log
517 * item from the AIL and free it when the buffer is flushed
518 * to disk. See xfs_buf_attach_iodone() for more details
519 * on li_cb and xfs_buf_iodone_callbacks().
520 * If we end up aborting this transaction, we trap this buffer
521 * inside the b_bdstrat callback so that this won't get written to
522 * disk.
524 bp->b_flags |= XBF_DONE;
526 ASSERT(atomic_read(&bip->bli_refcount) > 0);
527 bp->b_iodone = xfs_buf_iodone_callbacks;
528 bip->bli_item.li_cb = xfs_buf_iodone;
531 * If we invalidated the buffer within this transaction, then
532 * cancel the invalidation now that we're dirtying the buffer
533 * again. There are no races with the code in xfs_buf_item_unpin(),
534 * because we have a reference to the buffer this entire time.
536 if (bip->bli_flags & XFS_BLI_STALE) {
537 bip->bli_flags &= ~XFS_BLI_STALE;
538 ASSERT(bp->b_flags & XBF_STALE);
539 bp->b_flags &= ~XBF_STALE;
540 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
542 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
544 tp->t_flags |= XFS_TRANS_DIRTY;
545 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
549 * This is called to mark bytes first through last inclusive of the given
550 * buffer as needing to be logged when the transaction is committed.
551 * The buffer must already be associated with the given transaction.
553 * First and last are numbers relative to the beginning of this buffer,
554 * so the first byte in the buffer is numbered 0 regardless of the
555 * value of b_blkno.
557 void
558 xfs_trans_log_buf(
559 struct xfs_trans *tp,
560 struct xfs_buf *bp,
561 uint first,
562 uint last)
564 struct xfs_buf_log_item *bip = bp->b_log_item;
566 ASSERT(first <= last && last < BBTOB(bp->b_length));
567 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
569 xfs_trans_dirty_buf(tp, bp);
571 trace_xfs_trans_log_buf(bip);
572 xfs_buf_item_log(bip, first, last);
577 * Invalidate a buffer that is being used within a transaction.
579 * Typically this is because the blocks in the buffer are being freed, so we
580 * need to prevent it from being written out when we're done. Allowing it
581 * to be written again might overwrite data in the free blocks if they are
582 * reallocated to a file.
584 * We prevent the buffer from being written out by marking it stale. We can't
585 * get rid of the buf log item at this point because the buffer may still be
586 * pinned by another transaction. If that is the case, then we'll wait until
587 * the buffer is committed to disk for the last time (we can tell by the ref
588 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
589 * keep the buffer locked so that the buffer and buf log item are not reused.
591 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
592 * the buf item. This will be used at recovery time to determine that copies
593 * of the buffer in the log before this should not be replayed.
595 * We mark the item descriptor and the transaction dirty so that we'll hold
596 * the buffer until after the commit.
598 * Since we're invalidating the buffer, we also clear the state about which
599 * parts of the buffer have been logged. We also clear the flag indicating
600 * that this is an inode buffer since the data in the buffer will no longer
601 * be valid.
603 * We set the stale bit in the buffer as well since we're getting rid of it.
605 void
606 xfs_trans_binval(
607 xfs_trans_t *tp,
608 xfs_buf_t *bp)
610 struct xfs_buf_log_item *bip = bp->b_log_item;
611 int i;
613 ASSERT(bp->b_transp == tp);
614 ASSERT(bip != NULL);
615 ASSERT(atomic_read(&bip->bli_refcount) > 0);
617 trace_xfs_trans_binval(bip);
619 if (bip->bli_flags & XFS_BLI_STALE) {
621 * If the buffer is already invalidated, then
622 * just return.
624 ASSERT(bp->b_flags & XBF_STALE);
625 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
626 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
627 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
628 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
629 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
630 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
631 return;
634 xfs_buf_stale(bp);
636 bip->bli_flags |= XFS_BLI_STALE;
637 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
638 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
639 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
640 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
641 for (i = 0; i < bip->bli_format_count; i++) {
642 memset(bip->bli_formats[i].blf_data_map, 0,
643 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
645 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
646 tp->t_flags |= XFS_TRANS_DIRTY;
650 * This call is used to indicate that the buffer contains on-disk inodes which
651 * must be handled specially during recovery. They require special handling
652 * because only the di_next_unlinked from the inodes in the buffer should be
653 * recovered. The rest of the data in the buffer is logged via the inodes
654 * themselves.
656 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
657 * transferred to the buffer's log format structure so that we'll know what to
658 * do at recovery time.
660 void
661 xfs_trans_inode_buf(
662 xfs_trans_t *tp,
663 xfs_buf_t *bp)
665 struct xfs_buf_log_item *bip = bp->b_log_item;
667 ASSERT(bp->b_transp == tp);
668 ASSERT(bip != NULL);
669 ASSERT(atomic_read(&bip->bli_refcount) > 0);
671 bip->bli_flags |= XFS_BLI_INODE_BUF;
672 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
676 * This call is used to indicate that the buffer is going to
677 * be staled and was an inode buffer. This means it gets
678 * special processing during unpin - where any inodes
679 * associated with the buffer should be removed from ail.
680 * There is also special processing during recovery,
681 * any replay of the inodes in the buffer needs to be
682 * prevented as the buffer may have been reused.
684 void
685 xfs_trans_stale_inode_buf(
686 xfs_trans_t *tp,
687 xfs_buf_t *bp)
689 struct xfs_buf_log_item *bip = bp->b_log_item;
691 ASSERT(bp->b_transp == tp);
692 ASSERT(bip != NULL);
693 ASSERT(atomic_read(&bip->bli_refcount) > 0);
695 bip->bli_flags |= XFS_BLI_STALE_INODE;
696 bip->bli_item.li_cb = xfs_buf_iodone;
697 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
701 * Mark the buffer as being one which contains newly allocated
702 * inodes. We need to make sure that even if this buffer is
703 * relogged as an 'inode buf' we still recover all of the inode
704 * images in the face of a crash. This works in coordination with
705 * xfs_buf_item_committed() to ensure that the buffer remains in the
706 * AIL at its original location even after it has been relogged.
708 /* ARGSUSED */
709 void
710 xfs_trans_inode_alloc_buf(
711 xfs_trans_t *tp,
712 xfs_buf_t *bp)
714 struct xfs_buf_log_item *bip = bp->b_log_item;
716 ASSERT(bp->b_transp == tp);
717 ASSERT(bip != NULL);
718 ASSERT(atomic_read(&bip->bli_refcount) > 0);
720 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
721 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
725 * Mark the buffer as ordered for this transaction. This means that the contents
726 * of the buffer are not recorded in the transaction but it is tracked in the
727 * AIL as though it was. This allows us to record logical changes in
728 * transactions rather than the physical changes we make to the buffer without
729 * changing writeback ordering constraints of metadata buffers.
731 bool
732 xfs_trans_ordered_buf(
733 struct xfs_trans *tp,
734 struct xfs_buf *bp)
736 struct xfs_buf_log_item *bip = bp->b_log_item;
738 ASSERT(bp->b_transp == tp);
739 ASSERT(bip != NULL);
740 ASSERT(atomic_read(&bip->bli_refcount) > 0);
742 if (xfs_buf_item_dirty_format(bip))
743 return false;
745 bip->bli_flags |= XFS_BLI_ORDERED;
746 trace_xfs_buf_item_ordered(bip);
749 * We don't log a dirty range of an ordered buffer but it still needs
750 * to be marked dirty and that it has been logged.
752 xfs_trans_dirty_buf(tp, bp);
753 return true;
757 * Set the type of the buffer for log recovery so that it can correctly identify
758 * and hence attach the correct buffer ops to the buffer after replay.
760 void
761 xfs_trans_buf_set_type(
762 struct xfs_trans *tp,
763 struct xfs_buf *bp,
764 enum xfs_blft type)
766 struct xfs_buf_log_item *bip = bp->b_log_item;
768 if (!tp)
769 return;
771 ASSERT(bp->b_transp == tp);
772 ASSERT(bip != NULL);
773 ASSERT(atomic_read(&bip->bli_refcount) > 0);
775 xfs_blft_to_flags(&bip->__bli_format, type);
778 void
779 xfs_trans_buf_copy_type(
780 struct xfs_buf *dst_bp,
781 struct xfs_buf *src_bp)
783 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
784 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
785 enum xfs_blft type;
787 type = xfs_blft_from_flags(&sbip->__bli_format);
788 xfs_blft_to_flags(&dbip->__bli_format, type);
792 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
793 * dquots. However, unlike in inode buffer recovery, dquot buffers get
794 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
795 * The only thing that makes dquot buffers different from regular
796 * buffers is that we must not replay dquot bufs when recovering
797 * if a _corresponding_ quotaoff has happened. We also have to distinguish
798 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
799 * can be turned off independently.
801 /* ARGSUSED */
802 void
803 xfs_trans_dquot_buf(
804 xfs_trans_t *tp,
805 xfs_buf_t *bp,
806 uint type)
808 struct xfs_buf_log_item *bip = bp->b_log_item;
810 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
811 type == XFS_BLF_PDQUOT_BUF ||
812 type == XFS_BLF_GDQUOT_BUF);
814 bip->__bli_format.blf_flags |= type;
816 switch (type) {
817 case XFS_BLF_UDQUOT_BUF:
818 type = XFS_BLFT_UDQUOT_BUF;
819 break;
820 case XFS_BLF_PDQUOT_BUF:
821 type = XFS_BLFT_PDQUOT_BUF;
822 break;
823 case XFS_BLF_GDQUOT_BUF:
824 type = XFS_BLFT_GDQUOT_BUF;
825 break;
826 default:
827 type = XFS_BLFT_UNKNOWN_BUF;
828 break;
831 xfs_trans_buf_set_type(tp, bp, type);