1 /* SPDX-License-Identifier: GPL-2.0 */
3 * You SHOULD NOT be including this unless you're vsyscall
4 * handling code or timekeeping internal code!
7 #ifndef _LINUX_TIMEKEEPER_INTERNAL_H
8 #define _LINUX_TIMEKEEPER_INTERNAL_H
10 #include <linux/clocksource.h>
11 #include <linux/jiffies.h>
12 #include <linux/time.h>
15 * struct tk_read_base - base structure for timekeeping readout
16 * @clock: Current clocksource used for timekeeping.
17 * @mask: Bitmask for two's complement subtraction of non 64bit clocks
18 * @cycle_last: @clock cycle value at last update
19 * @mult: (NTP adjusted) multiplier for scaled math conversion
20 * @shift: Shift value for scaled math conversion
21 * @xtime_nsec: Shifted (fractional) nano seconds offset for readout
22 * @base: ktime_t (nanoseconds) base time for readout
23 * @base_real: Nanoseconds base value for clock REALTIME readout
25 * This struct has size 56 byte on 64 bit. Together with a seqcount it
26 * occupies a single 64byte cache line.
28 * The struct is separate from struct timekeeper as it is also used
29 * for a fast NMI safe accessors.
31 * @base_real is for the fast NMI safe accessor to allow reading clock
32 * realtime from any context.
35 struct clocksource
*clock
;
46 * struct timekeeper - Structure holding internal timekeeping values.
47 * @tkr_mono: The readout base structure for CLOCK_MONOTONIC
48 * @tkr_raw: The readout base structure for CLOCK_MONOTONIC_RAW
49 * @xtime_sec: Current CLOCK_REALTIME time in seconds
50 * @ktime_sec: Current CLOCK_MONOTONIC time in seconds
51 * @wall_to_monotonic: CLOCK_REALTIME to CLOCK_MONOTONIC offset
52 * @offs_real: Offset clock monotonic -> clock realtime
53 * @offs_boot: Offset clock monotonic -> clock boottime
54 * @offs_tai: Offset clock monotonic -> clock tai
55 * @tai_offset: The current UTC to TAI offset in seconds
56 * @clock_was_set_seq: The sequence number of clock was set events
57 * @cs_was_changed_seq: The sequence number of clocksource change events
58 * @next_leap_ktime: CLOCK_MONOTONIC time value of a pending leap-second
59 * @raw_sec: CLOCK_MONOTONIC_RAW time in seconds
60 * @cycle_interval: Number of clock cycles in one NTP interval
61 * @xtime_interval: Number of clock shifted nano seconds in one NTP
63 * @xtime_remainder: Shifted nano seconds left over when rounding
65 * @raw_interval: Shifted raw nano seconds accumulated per NTP interval.
66 * @ntp_error: Difference between accumulated time and NTP time in ntp
67 * shifted nano seconds.
68 * @ntp_error_shift: Shift conversion between clock shifted nano seconds and
69 * ntp shifted nano seconds.
70 * @last_warning: Warning ratelimiter (DEBUG_TIMEKEEPING)
71 * @underflow_seen: Underflow warning flag (DEBUG_TIMEKEEPING)
72 * @overflow_seen: Overflow warning flag (DEBUG_TIMEKEEPING)
74 * Note: For timespec(64) based interfaces wall_to_monotonic is what
75 * we need to add to xtime (or xtime corrected for sub jiffie times)
76 * to get to monotonic time. Monotonic is pegged at zero at system
77 * boot time, so wall_to_monotonic will be negative, however, we will
78 * ALWAYS keep the tv_nsec part positive so we can use the usual
81 * wall_to_monotonic is moved after resume from suspend for the
82 * monotonic time not to jump. We need to add total_sleep_time to
83 * wall_to_monotonic to get the real boot based time offset.
85 * wall_to_monotonic is no longer the boot time, getboottime must be
89 struct tk_read_base tkr_mono
;
90 struct tk_read_base tkr_raw
;
92 unsigned long ktime_sec
;
93 struct timespec64 wall_to_monotonic
;
98 unsigned int clock_was_set_seq
;
99 u8 cs_was_changed_seq
;
100 ktime_t next_leap_ktime
;
103 /* The following members are for timekeeping internal use */
108 /* The ntp_tick_length() value currently being used.
109 * This cached copy ensures we consistently apply the tick
110 * length for an entire tick, as ntp_tick_length may change
111 * mid-tick, and we don't want to apply that new value to
112 * the tick in progress.
115 /* Difference between accumulated time and NTP time in ntp
116 * shifted nano seconds. */
120 #ifdef CONFIG_DEBUG_TIMEKEEPING
123 * These simple flag variables are managed
124 * without locks, which is racy, but they are
125 * ok since we don't really care about being
126 * super precise about how many events were
127 * seen, just that a problem was observed.
134 #ifdef CONFIG_GENERIC_TIME_VSYSCALL
136 extern void update_vsyscall(struct timekeeper
*tk
);
137 extern void update_vsyscall_tz(void);
141 static inline void update_vsyscall(struct timekeeper
*tk
)
144 static inline void update_vsyscall_tz(void)
149 #endif /* _LINUX_TIMEKEEPER_INTERNAL_H */