Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / sound / pci / ctxfi / cthw20k2.c
blobb866d6b2c9236d440d742cfac2ba652a7d2ab333
1 /**
2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
4 * This source file is released under GPL v2 license (no other versions).
5 * See the COPYING file included in the main directory of this source
6 * distribution for the license terms and conditions.
8 * @File cthw20k2.c
10 * @Brief
11 * This file contains the implementation of hardware access method for 20k2.
13 * @Author Liu Chun
14 * @Date May 14 2008
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
29 struct hw20k2 {
30 struct hw hw;
31 /* for i2c */
32 unsigned char dev_id;
33 unsigned char addr_size;
34 unsigned char data_size;
36 int mic_source;
39 static u32 hw_read_20kx(struct hw *hw, u32 reg);
40 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
43 * Type definition block.
44 * The layout of control structures can be directly applied on 20k2 chip.
48 * SRC control block definitions.
51 /* SRC resource control block */
52 #define SRCCTL_STATE 0x00000007
53 #define SRCCTL_BM 0x00000008
54 #define SRCCTL_RSR 0x00000030
55 #define SRCCTL_SF 0x000001C0
56 #define SRCCTL_WR 0x00000200
57 #define SRCCTL_PM 0x00000400
58 #define SRCCTL_ROM 0x00001800
59 #define SRCCTL_VO 0x00002000
60 #define SRCCTL_ST 0x00004000
61 #define SRCCTL_IE 0x00008000
62 #define SRCCTL_ILSZ 0x000F0000
63 #define SRCCTL_BP 0x00100000
65 #define SRCCCR_CISZ 0x000007FF
66 #define SRCCCR_CWA 0x001FF800
67 #define SRCCCR_D 0x00200000
68 #define SRCCCR_RS 0x01C00000
69 #define SRCCCR_NAL 0x3E000000
70 #define SRCCCR_RA 0xC0000000
72 #define SRCCA_CA 0x0FFFFFFF
73 #define SRCCA_RS 0xE0000000
75 #define SRCSA_SA 0x0FFFFFFF
77 #define SRCLA_LA 0x0FFFFFFF
79 /* Mixer Parameter Ring ram Low and Hight register.
80 * Fixed-point value in 8.24 format for parameter channel */
81 #define MPRLH_PITCH 0xFFFFFFFF
83 /* SRC resource register dirty flags */
84 union src_dirty {
85 struct {
86 u16 ctl:1;
87 u16 ccr:1;
88 u16 sa:1;
89 u16 la:1;
90 u16 ca:1;
91 u16 mpr:1;
92 u16 czbfs:1; /* Clear Z-Buffers */
93 u16 rsv:9;
94 } bf;
95 u16 data;
98 struct src_rsc_ctrl_blk {
99 unsigned int ctl;
100 unsigned int ccr;
101 unsigned int ca;
102 unsigned int sa;
103 unsigned int la;
104 unsigned int mpr;
105 union src_dirty dirty;
108 /* SRC manager control block */
109 union src_mgr_dirty {
110 struct {
111 u16 enb0:1;
112 u16 enb1:1;
113 u16 enb2:1;
114 u16 enb3:1;
115 u16 enb4:1;
116 u16 enb5:1;
117 u16 enb6:1;
118 u16 enb7:1;
119 u16 enbsa:1;
120 u16 rsv:7;
121 } bf;
122 u16 data;
125 struct src_mgr_ctrl_blk {
126 unsigned int enbsa;
127 unsigned int enb[8];
128 union src_mgr_dirty dirty;
131 /* SRCIMP manager control block */
132 #define SRCAIM_ARC 0x00000FFF
133 #define SRCAIM_NXT 0x00FF0000
134 #define SRCAIM_SRC 0xFF000000
136 struct srcimap {
137 unsigned int srcaim;
138 unsigned int idx;
141 /* SRCIMP manager register dirty flags */
142 union srcimp_mgr_dirty {
143 struct {
144 u16 srcimap:1;
145 u16 rsv:15;
146 } bf;
147 u16 data;
150 struct srcimp_mgr_ctrl_blk {
151 struct srcimap srcimap;
152 union srcimp_mgr_dirty dirty;
156 * Function implementation block.
159 static int src_get_rsc_ctrl_blk(void **rblk)
161 struct src_rsc_ctrl_blk *blk;
163 *rblk = NULL;
164 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
165 if (!blk)
166 return -ENOMEM;
168 *rblk = blk;
170 return 0;
173 static int src_put_rsc_ctrl_blk(void *blk)
175 kfree(blk);
177 return 0;
180 static int src_set_state(void *blk, unsigned int state)
182 struct src_rsc_ctrl_blk *ctl = blk;
184 set_field(&ctl->ctl, SRCCTL_STATE, state);
185 ctl->dirty.bf.ctl = 1;
186 return 0;
189 static int src_set_bm(void *blk, unsigned int bm)
191 struct src_rsc_ctrl_blk *ctl = blk;
193 set_field(&ctl->ctl, SRCCTL_BM, bm);
194 ctl->dirty.bf.ctl = 1;
195 return 0;
198 static int src_set_rsr(void *blk, unsigned int rsr)
200 struct src_rsc_ctrl_blk *ctl = blk;
202 set_field(&ctl->ctl, SRCCTL_RSR, rsr);
203 ctl->dirty.bf.ctl = 1;
204 return 0;
207 static int src_set_sf(void *blk, unsigned int sf)
209 struct src_rsc_ctrl_blk *ctl = blk;
211 set_field(&ctl->ctl, SRCCTL_SF, sf);
212 ctl->dirty.bf.ctl = 1;
213 return 0;
216 static int src_set_wr(void *blk, unsigned int wr)
218 struct src_rsc_ctrl_blk *ctl = blk;
220 set_field(&ctl->ctl, SRCCTL_WR, wr);
221 ctl->dirty.bf.ctl = 1;
222 return 0;
225 static int src_set_pm(void *blk, unsigned int pm)
227 struct src_rsc_ctrl_blk *ctl = blk;
229 set_field(&ctl->ctl, SRCCTL_PM, pm);
230 ctl->dirty.bf.ctl = 1;
231 return 0;
234 static int src_set_rom(void *blk, unsigned int rom)
236 struct src_rsc_ctrl_blk *ctl = blk;
238 set_field(&ctl->ctl, SRCCTL_ROM, rom);
239 ctl->dirty.bf.ctl = 1;
240 return 0;
243 static int src_set_vo(void *blk, unsigned int vo)
245 struct src_rsc_ctrl_blk *ctl = blk;
247 set_field(&ctl->ctl, SRCCTL_VO, vo);
248 ctl->dirty.bf.ctl = 1;
249 return 0;
252 static int src_set_st(void *blk, unsigned int st)
254 struct src_rsc_ctrl_blk *ctl = blk;
256 set_field(&ctl->ctl, SRCCTL_ST, st);
257 ctl->dirty.bf.ctl = 1;
258 return 0;
261 static int src_set_ie(void *blk, unsigned int ie)
263 struct src_rsc_ctrl_blk *ctl = blk;
265 set_field(&ctl->ctl, SRCCTL_IE, ie);
266 ctl->dirty.bf.ctl = 1;
267 return 0;
270 static int src_set_ilsz(void *blk, unsigned int ilsz)
272 struct src_rsc_ctrl_blk *ctl = blk;
274 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
275 ctl->dirty.bf.ctl = 1;
276 return 0;
279 static int src_set_bp(void *blk, unsigned int bp)
281 struct src_rsc_ctrl_blk *ctl = blk;
283 set_field(&ctl->ctl, SRCCTL_BP, bp);
284 ctl->dirty.bf.ctl = 1;
285 return 0;
288 static int src_set_cisz(void *blk, unsigned int cisz)
290 struct src_rsc_ctrl_blk *ctl = blk;
292 set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
293 ctl->dirty.bf.ccr = 1;
294 return 0;
297 static int src_set_ca(void *blk, unsigned int ca)
299 struct src_rsc_ctrl_blk *ctl = blk;
301 set_field(&ctl->ca, SRCCA_CA, ca);
302 ctl->dirty.bf.ca = 1;
303 return 0;
306 static int src_set_sa(void *blk, unsigned int sa)
308 struct src_rsc_ctrl_blk *ctl = blk;
310 set_field(&ctl->sa, SRCSA_SA, sa);
311 ctl->dirty.bf.sa = 1;
312 return 0;
315 static int src_set_la(void *blk, unsigned int la)
317 struct src_rsc_ctrl_blk *ctl = blk;
319 set_field(&ctl->la, SRCLA_LA, la);
320 ctl->dirty.bf.la = 1;
321 return 0;
324 static int src_set_pitch(void *blk, unsigned int pitch)
326 struct src_rsc_ctrl_blk *ctl = blk;
328 set_field(&ctl->mpr, MPRLH_PITCH, pitch);
329 ctl->dirty.bf.mpr = 1;
330 return 0;
333 static int src_set_clear_zbufs(void *blk, unsigned int clear)
335 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
336 return 0;
339 static int src_set_dirty(void *blk, unsigned int flags)
341 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
342 return 0;
345 static int src_set_dirty_all(void *blk)
347 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
348 return 0;
351 #define AR_SLOT_SIZE 4096
352 #define AR_SLOT_BLOCK_SIZE 16
353 #define AR_PTS_PITCH 6
354 #define AR_PARAM_SRC_OFFSET 0x60
356 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
358 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
359 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
363 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
365 struct src_rsc_ctrl_blk *ctl = blk;
366 int i;
368 if (ctl->dirty.bf.czbfs) {
369 /* Clear Z-Buffer registers */
370 for (i = 0; i < 8; i++)
371 hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
373 for (i = 0; i < 4; i++)
374 hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
376 for (i = 0; i < 8; i++)
377 hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
379 ctl->dirty.bf.czbfs = 0;
381 if (ctl->dirty.bf.mpr) {
382 /* Take the parameter mixer resource in the same group as that
383 * the idx src is in for simplicity. Unlike src, all conjugate
384 * parameter mixer resources must be programmed for
385 * corresponding conjugate src resources. */
386 unsigned int pm_idx = src_param_pitch_mixer(idx);
387 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
388 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
389 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
390 ctl->dirty.bf.mpr = 0;
392 if (ctl->dirty.bf.sa) {
393 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
394 ctl->dirty.bf.sa = 0;
396 if (ctl->dirty.bf.la) {
397 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
398 ctl->dirty.bf.la = 0;
400 if (ctl->dirty.bf.ca) {
401 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
402 ctl->dirty.bf.ca = 0;
405 /* Write srccf register */
406 hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
408 if (ctl->dirty.bf.ccr) {
409 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
410 ctl->dirty.bf.ccr = 0;
412 if (ctl->dirty.bf.ctl) {
413 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
414 ctl->dirty.bf.ctl = 0;
417 return 0;
420 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
422 struct src_rsc_ctrl_blk *ctl = blk;
424 ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
425 ctl->dirty.bf.ca = 0;
427 return get_field(ctl->ca, SRCCA_CA);
430 static unsigned int src_get_dirty(void *blk)
432 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
435 static unsigned int src_dirty_conj_mask(void)
437 return 0x20;
440 static int src_mgr_enbs_src(void *blk, unsigned int idx)
442 ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
443 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
444 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
445 return 0;
448 static int src_mgr_enb_src(void *blk, unsigned int idx)
450 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
452 return 0;
455 static int src_mgr_dsb_src(void *blk, unsigned int idx)
457 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
458 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
459 return 0;
462 static int src_mgr_commit_write(struct hw *hw, void *blk)
464 struct src_mgr_ctrl_blk *ctl = blk;
465 int i;
466 unsigned int ret;
468 if (ctl->dirty.bf.enbsa) {
469 do {
470 ret = hw_read_20kx(hw, SRC_ENBSTAT);
471 } while (ret & 0x1);
472 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
473 ctl->dirty.bf.enbsa = 0;
475 for (i = 0; i < 8; i++) {
476 if ((ctl->dirty.data & (0x1 << i))) {
477 hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
478 ctl->dirty.data &= ~(0x1 << i);
482 return 0;
485 static int src_mgr_get_ctrl_blk(void **rblk)
487 struct src_mgr_ctrl_blk *blk;
489 *rblk = NULL;
490 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
491 if (!blk)
492 return -ENOMEM;
494 *rblk = blk;
496 return 0;
499 static int src_mgr_put_ctrl_blk(void *blk)
501 kfree(blk);
503 return 0;
506 static int srcimp_mgr_get_ctrl_blk(void **rblk)
508 struct srcimp_mgr_ctrl_blk *blk;
510 *rblk = NULL;
511 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
512 if (!blk)
513 return -ENOMEM;
515 *rblk = blk;
517 return 0;
520 static int srcimp_mgr_put_ctrl_blk(void *blk)
522 kfree(blk);
524 return 0;
527 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
529 struct srcimp_mgr_ctrl_blk *ctl = blk;
531 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
532 ctl->dirty.bf.srcimap = 1;
533 return 0;
536 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
538 struct srcimp_mgr_ctrl_blk *ctl = blk;
540 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
541 ctl->dirty.bf.srcimap = 1;
542 return 0;
545 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
547 struct srcimp_mgr_ctrl_blk *ctl = blk;
549 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
550 ctl->dirty.bf.srcimap = 1;
551 return 0;
554 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
556 ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
557 ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
558 return 0;
561 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
563 struct srcimp_mgr_ctrl_blk *ctl = blk;
565 if (ctl->dirty.bf.srcimap) {
566 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
567 ctl->srcimap.srcaim);
568 ctl->dirty.bf.srcimap = 0;
571 return 0;
575 * AMIXER control block definitions.
578 #define AMOPLO_M 0x00000003
579 #define AMOPLO_IV 0x00000004
580 #define AMOPLO_X 0x0003FFF0
581 #define AMOPLO_Y 0xFFFC0000
583 #define AMOPHI_SADR 0x000000FF
584 #define AMOPHI_SE 0x80000000
586 /* AMIXER resource register dirty flags */
587 union amixer_dirty {
588 struct {
589 u16 amoplo:1;
590 u16 amophi:1;
591 u16 rsv:14;
592 } bf;
593 u16 data;
596 /* AMIXER resource control block */
597 struct amixer_rsc_ctrl_blk {
598 unsigned int amoplo;
599 unsigned int amophi;
600 union amixer_dirty dirty;
603 static int amixer_set_mode(void *blk, unsigned int mode)
605 struct amixer_rsc_ctrl_blk *ctl = blk;
607 set_field(&ctl->amoplo, AMOPLO_M, mode);
608 ctl->dirty.bf.amoplo = 1;
609 return 0;
612 static int amixer_set_iv(void *blk, unsigned int iv)
614 struct amixer_rsc_ctrl_blk *ctl = blk;
616 set_field(&ctl->amoplo, AMOPLO_IV, iv);
617 ctl->dirty.bf.amoplo = 1;
618 return 0;
621 static int amixer_set_x(void *blk, unsigned int x)
623 struct amixer_rsc_ctrl_blk *ctl = blk;
625 set_field(&ctl->amoplo, AMOPLO_X, x);
626 ctl->dirty.bf.amoplo = 1;
627 return 0;
630 static int amixer_set_y(void *blk, unsigned int y)
632 struct amixer_rsc_ctrl_blk *ctl = blk;
634 set_field(&ctl->amoplo, AMOPLO_Y, y);
635 ctl->dirty.bf.amoplo = 1;
636 return 0;
639 static int amixer_set_sadr(void *blk, unsigned int sadr)
641 struct amixer_rsc_ctrl_blk *ctl = blk;
643 set_field(&ctl->amophi, AMOPHI_SADR, sadr);
644 ctl->dirty.bf.amophi = 1;
645 return 0;
648 static int amixer_set_se(void *blk, unsigned int se)
650 struct amixer_rsc_ctrl_blk *ctl = blk;
652 set_field(&ctl->amophi, AMOPHI_SE, se);
653 ctl->dirty.bf.amophi = 1;
654 return 0;
657 static int amixer_set_dirty(void *blk, unsigned int flags)
659 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
660 return 0;
663 static int amixer_set_dirty_all(void *blk)
665 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
666 return 0;
669 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
671 struct amixer_rsc_ctrl_blk *ctl = blk;
673 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
674 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
675 ctl->dirty.bf.amoplo = 0;
676 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
677 ctl->dirty.bf.amophi = 0;
680 return 0;
683 static int amixer_get_y(void *blk)
685 struct amixer_rsc_ctrl_blk *ctl = blk;
687 return get_field(ctl->amoplo, AMOPLO_Y);
690 static unsigned int amixer_get_dirty(void *blk)
692 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
695 static int amixer_rsc_get_ctrl_blk(void **rblk)
697 struct amixer_rsc_ctrl_blk *blk;
699 *rblk = NULL;
700 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
701 if (!blk)
702 return -ENOMEM;
704 *rblk = blk;
706 return 0;
709 static int amixer_rsc_put_ctrl_blk(void *blk)
711 kfree(blk);
713 return 0;
716 static int amixer_mgr_get_ctrl_blk(void **rblk)
718 *rblk = NULL;
720 return 0;
723 static int amixer_mgr_put_ctrl_blk(void *blk)
725 return 0;
729 * DAIO control block definitions.
732 /* Receiver Sample Rate Tracker Control register */
733 #define SRTCTL_SRCO 0x000000FF
734 #define SRTCTL_SRCM 0x0000FF00
735 #define SRTCTL_RSR 0x00030000
736 #define SRTCTL_DRAT 0x00300000
737 #define SRTCTL_EC 0x01000000
738 #define SRTCTL_ET 0x10000000
740 /* DAIO Receiver register dirty flags */
741 union dai_dirty {
742 struct {
743 u16 srt:1;
744 u16 rsv:15;
745 } bf;
746 u16 data;
749 /* DAIO Receiver control block */
750 struct dai_ctrl_blk {
751 unsigned int srt;
752 union dai_dirty dirty;
755 /* Audio Input Mapper RAM */
756 #define AIM_ARC 0x00000FFF
757 #define AIM_NXT 0x007F0000
759 struct daoimap {
760 unsigned int aim;
761 unsigned int idx;
764 /* Audio Transmitter Control and Status register */
765 #define ATXCTL_EN 0x00000001
766 #define ATXCTL_MODE 0x00000010
767 #define ATXCTL_CD 0x00000020
768 #define ATXCTL_RAW 0x00000100
769 #define ATXCTL_MT 0x00000200
770 #define ATXCTL_NUC 0x00003000
771 #define ATXCTL_BEN 0x00010000
772 #define ATXCTL_BMUX 0x00700000
773 #define ATXCTL_B24 0x01000000
774 #define ATXCTL_CPF 0x02000000
775 #define ATXCTL_RIV 0x10000000
776 #define ATXCTL_LIV 0x20000000
777 #define ATXCTL_RSAT 0x40000000
778 #define ATXCTL_LSAT 0x80000000
780 /* XDIF Transmitter register dirty flags */
781 union dao_dirty {
782 struct {
783 u16 atxcsl:1;
784 u16 rsv:15;
785 } bf;
786 u16 data;
789 /* XDIF Transmitter control block */
790 struct dao_ctrl_blk {
791 /* XDIF Transmitter Channel Status Low Register */
792 unsigned int atxcsl;
793 union dao_dirty dirty;
796 /* Audio Receiver Control register */
797 #define ARXCTL_EN 0x00000001
799 /* DAIO manager register dirty flags */
800 union daio_mgr_dirty {
801 struct {
802 u32 atxctl:8;
803 u32 arxctl:8;
804 u32 daoimap:1;
805 u32 rsv:15;
806 } bf;
807 u32 data;
810 /* DAIO manager control block */
811 struct daio_mgr_ctrl_blk {
812 struct daoimap daoimap;
813 unsigned int txctl[8];
814 unsigned int rxctl[8];
815 union daio_mgr_dirty dirty;
818 static int dai_srt_set_srco(void *blk, unsigned int src)
820 struct dai_ctrl_blk *ctl = blk;
822 set_field(&ctl->srt, SRTCTL_SRCO, src);
823 ctl->dirty.bf.srt = 1;
824 return 0;
827 static int dai_srt_set_srcm(void *blk, unsigned int src)
829 struct dai_ctrl_blk *ctl = blk;
831 set_field(&ctl->srt, SRTCTL_SRCM, src);
832 ctl->dirty.bf.srt = 1;
833 return 0;
836 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
838 struct dai_ctrl_blk *ctl = blk;
840 set_field(&ctl->srt, SRTCTL_RSR, rsr);
841 ctl->dirty.bf.srt = 1;
842 return 0;
845 static int dai_srt_set_drat(void *blk, unsigned int drat)
847 struct dai_ctrl_blk *ctl = blk;
849 set_field(&ctl->srt, SRTCTL_DRAT, drat);
850 ctl->dirty.bf.srt = 1;
851 return 0;
854 static int dai_srt_set_ec(void *blk, unsigned int ec)
856 struct dai_ctrl_blk *ctl = blk;
858 set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
859 ctl->dirty.bf.srt = 1;
860 return 0;
863 static int dai_srt_set_et(void *blk, unsigned int et)
865 struct dai_ctrl_blk *ctl = blk;
867 set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
868 ctl->dirty.bf.srt = 1;
869 return 0;
872 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
874 struct dai_ctrl_blk *ctl = blk;
876 if (ctl->dirty.bf.srt) {
877 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
878 ctl->dirty.bf.srt = 0;
881 return 0;
884 static int dai_get_ctrl_blk(void **rblk)
886 struct dai_ctrl_blk *blk;
888 *rblk = NULL;
889 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
890 if (!blk)
891 return -ENOMEM;
893 *rblk = blk;
895 return 0;
898 static int dai_put_ctrl_blk(void *blk)
900 kfree(blk);
902 return 0;
905 static int dao_set_spos(void *blk, unsigned int spos)
907 ((struct dao_ctrl_blk *)blk)->atxcsl = spos;
908 ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
909 return 0;
912 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
914 struct dao_ctrl_blk *ctl = blk;
916 if (ctl->dirty.bf.atxcsl) {
917 if (idx < 4) {
918 /* S/PDIF SPOSx */
919 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
920 ctl->atxcsl);
922 ctl->dirty.bf.atxcsl = 0;
925 return 0;
928 static int dao_get_spos(void *blk, unsigned int *spos)
930 *spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
931 return 0;
934 static int dao_get_ctrl_blk(void **rblk)
936 struct dao_ctrl_blk *blk;
938 *rblk = NULL;
939 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
940 if (!blk)
941 return -ENOMEM;
943 *rblk = blk;
945 return 0;
948 static int dao_put_ctrl_blk(void *blk)
950 kfree(blk);
952 return 0;
955 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
957 struct daio_mgr_ctrl_blk *ctl = blk;
959 set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
960 ctl->dirty.bf.arxctl |= (0x1 << idx);
961 return 0;
964 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
966 struct daio_mgr_ctrl_blk *ctl = blk;
968 set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
970 ctl->dirty.bf.arxctl |= (0x1 << idx);
971 return 0;
974 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
976 struct daio_mgr_ctrl_blk *ctl = blk;
978 set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
979 ctl->dirty.bf.atxctl |= (0x1 << idx);
980 return 0;
983 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
985 struct daio_mgr_ctrl_blk *ctl = blk;
987 set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
988 ctl->dirty.bf.atxctl |= (0x1 << idx);
989 return 0;
992 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
994 struct daio_mgr_ctrl_blk *ctl = blk;
996 if (idx < 4) {
997 /* S/PDIF output */
998 switch ((conf & 0x7)) {
999 case 1:
1000 set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1001 break;
1002 case 2:
1003 set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1004 break;
1005 case 4:
1006 set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1007 break;
1008 case 8:
1009 set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1010 break;
1011 default:
1012 break;
1014 /* CDIF */
1015 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1016 /* Non-audio */
1017 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1018 /* Non-audio */
1019 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1020 set_field(&ctl->txctl[idx], ATXCTL_RAW,
1021 ((conf >> 3) & 0x1) ? 0 : 0);
1022 ctl->dirty.bf.atxctl |= (0x1 << idx);
1023 } else {
1024 /* I2S output */
1025 /*idx %= 4; */
1027 return 0;
1030 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1032 struct daio_mgr_ctrl_blk *ctl = blk;
1034 set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1035 ctl->dirty.bf.daoimap = 1;
1036 return 0;
1039 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1041 struct daio_mgr_ctrl_blk *ctl = blk;
1043 set_field(&ctl->daoimap.aim, AIM_NXT, next);
1044 ctl->dirty.bf.daoimap = 1;
1045 return 0;
1048 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1050 ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1051 ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1052 return 0;
1055 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1057 struct daio_mgr_ctrl_blk *ctl = blk;
1058 unsigned int data;
1059 int i;
1061 for (i = 0; i < 8; i++) {
1062 if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1063 data = ctl->txctl[i];
1064 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1065 ctl->dirty.bf.atxctl &= ~(0x1 << i);
1066 mdelay(1);
1068 if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1069 data = ctl->rxctl[i];
1070 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1071 ctl->dirty.bf.arxctl &= ~(0x1 << i);
1072 mdelay(1);
1075 if (ctl->dirty.bf.daoimap) {
1076 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1077 ctl->daoimap.aim);
1078 ctl->dirty.bf.daoimap = 0;
1081 return 0;
1084 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1086 struct daio_mgr_ctrl_blk *blk;
1087 int i;
1089 *rblk = NULL;
1090 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1091 if (!blk)
1092 return -ENOMEM;
1094 for (i = 0; i < 8; i++) {
1095 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1096 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1099 *rblk = blk;
1101 return 0;
1104 static int daio_mgr_put_ctrl_blk(void *blk)
1106 kfree(blk);
1108 return 0;
1111 /* Timer interrupt */
1112 static int set_timer_irq(struct hw *hw, int enable)
1114 hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1115 return 0;
1118 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1120 if (ticks)
1121 ticks |= TIMR_IE | TIMR_IP;
1122 hw_write_20kx(hw, TIMR, ticks);
1123 return 0;
1126 static unsigned int get_wc(struct hw *hw)
1128 return hw_read_20kx(hw, WC);
1131 /* Card hardware initialization block */
1132 struct dac_conf {
1133 unsigned int msr; /* master sample rate in rsrs */
1136 struct adc_conf {
1137 unsigned int msr; /* master sample rate in rsrs */
1138 unsigned char input; /* the input source of ADC */
1139 unsigned char mic20db; /* boost mic by 20db if input is microphone */
1142 struct daio_conf {
1143 unsigned int msr; /* master sample rate in rsrs */
1146 struct trn_conf {
1147 unsigned long vm_pgt_phys;
1150 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1152 u32 data;
1153 int i;
1155 /* Program I2S with proper sample rate and enable the correct I2S
1156 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1157 if (1 == info->msr) {
1158 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1159 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1160 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1161 } else if (2 == info->msr) {
1162 if (hw->model != CTSB1270) {
1163 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1164 } else {
1165 /* PCM4220 on Titanium HD is different. */
1166 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1168 /* Specify all playing 96khz
1169 * EA [0] - Enabled
1170 * RTA [4:5] - 96kHz
1171 * EB [8] - Enabled
1172 * RTB [12:13] - 96kHz
1173 * EC [16] - Enabled
1174 * RTC [20:21] - 96kHz
1175 * ED [24] - Enabled
1176 * RTD [28:29] - 96kHz */
1177 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1178 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1179 } else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1180 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1181 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1182 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1183 } else {
1184 dev_alert(hw->card->dev,
1185 "ERROR!!! Invalid sampling rate!!!\n");
1186 return -EINVAL;
1189 for (i = 0; i < 8; i++) {
1190 if (i <= 3) {
1191 /* This comment looks wrong since loop is over 4 */
1192 /* channels and emu20k2 supports 4 spdif IOs. */
1193 /* 1st 3 channels are SPDIFs (SB0960) */
1194 if (i == 3)
1195 data = 0x1001001;
1196 else
1197 data = 0x1000001;
1199 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1200 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1202 /* Initialize the SPDIF Out Channel status registers.
1203 * The value specified here is based on the typical
1204 * values provided in the specification, namely: Clock
1205 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1206 * unspecified source number, Generation status = 1,
1207 * Category code = 0x12 (Digital Signal Mixer),
1208 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1209 * (indicating that we're transmitting digital audio,
1210 * and the Professional Use bit is 0. */
1212 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1213 0x02109204); /* Default to 48kHz */
1215 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1216 } else {
1217 /* Again, loop is over 4 channels not 5. */
1218 /* Next 5 channels are I2S (SB0960) */
1219 data = 0x11;
1220 hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1221 if (2 == info->msr) {
1222 /* Four channels per sample period */
1223 data |= 0x1000;
1224 } else if (4 == info->msr) {
1225 /* FIXME: check this against the chip spec */
1226 data |= 0x2000;
1228 hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1232 return 0;
1235 /* TRANSPORT operations */
1236 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1238 u32 vmctl, data;
1239 u32 ptp_phys_low, ptp_phys_high;
1240 int i;
1242 /* Set up device page table */
1243 if ((~0UL) == info->vm_pgt_phys) {
1244 dev_alert(hw->card->dev,
1245 "Wrong device page table page address!!!\n");
1246 return -1;
1249 vmctl = 0x80000C0F; /* 32-bit, 4k-size page */
1250 ptp_phys_low = (u32)info->vm_pgt_phys;
1251 ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1252 if (sizeof(void *) == 8) /* 64bit address */
1253 vmctl |= (3 << 8);
1254 /* Write page table physical address to all PTPAL registers */
1255 for (i = 0; i < 64; i++) {
1256 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1257 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1259 /* Enable virtual memory transfer */
1260 hw_write_20kx(hw, VMEM_CTL, vmctl);
1261 /* Enable transport bus master and queueing of request */
1262 hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1263 hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1264 /* Enable transport ring */
1265 data = hw_read_20kx(hw, TRANSPORT_ENB);
1266 hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1268 return 0;
1271 /* Card initialization */
1272 #define GCTL_AIE 0x00000001
1273 #define GCTL_UAA 0x00000002
1274 #define GCTL_DPC 0x00000004
1275 #define GCTL_DBP 0x00000008
1276 #define GCTL_ABP 0x00000010
1277 #define GCTL_TBP 0x00000020
1278 #define GCTL_SBP 0x00000040
1279 #define GCTL_FBP 0x00000080
1280 #define GCTL_ME 0x00000100
1281 #define GCTL_AID 0x00001000
1283 #define PLLCTL_SRC 0x00000007
1284 #define PLLCTL_SPE 0x00000008
1285 #define PLLCTL_RD 0x000000F0
1286 #define PLLCTL_FD 0x0001FF00
1287 #define PLLCTL_OD 0x00060000
1288 #define PLLCTL_B 0x00080000
1289 #define PLLCTL_AS 0x00100000
1290 #define PLLCTL_LF 0x03E00000
1291 #define PLLCTL_SPS 0x1C000000
1292 #define PLLCTL_AD 0x60000000
1294 #define PLLSTAT_CCS 0x00000007
1295 #define PLLSTAT_SPL 0x00000008
1296 #define PLLSTAT_CRD 0x000000F0
1297 #define PLLSTAT_CFD 0x0001FF00
1298 #define PLLSTAT_SL 0x00020000
1299 #define PLLSTAT_FAS 0x00040000
1300 #define PLLSTAT_B 0x00080000
1301 #define PLLSTAT_PD 0x00100000
1302 #define PLLSTAT_OCA 0x00200000
1303 #define PLLSTAT_NCA 0x00400000
1305 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1307 unsigned int pllenb;
1308 unsigned int pllctl;
1309 unsigned int pllstat;
1310 int i;
1312 pllenb = 0xB;
1313 hw_write_20kx(hw, PLL_ENB, pllenb);
1314 pllctl = 0x20C00000;
1315 set_field(&pllctl, PLLCTL_B, 0);
1316 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1317 set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1318 hw_write_20kx(hw, PLL_CTL, pllctl);
1319 mdelay(40);
1321 pllctl = hw_read_20kx(hw, PLL_CTL);
1322 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1323 hw_write_20kx(hw, PLL_CTL, pllctl);
1324 mdelay(40);
1326 for (i = 0; i < 1000; i++) {
1327 pllstat = hw_read_20kx(hw, PLL_STAT);
1328 if (get_field(pllstat, PLLSTAT_PD))
1329 continue;
1331 if (get_field(pllstat, PLLSTAT_B) !=
1332 get_field(pllctl, PLLCTL_B))
1333 continue;
1335 if (get_field(pllstat, PLLSTAT_CCS) !=
1336 get_field(pllctl, PLLCTL_SRC))
1337 continue;
1339 if (get_field(pllstat, PLLSTAT_CRD) !=
1340 get_field(pllctl, PLLCTL_RD))
1341 continue;
1343 if (get_field(pllstat, PLLSTAT_CFD) !=
1344 get_field(pllctl, PLLCTL_FD))
1345 continue;
1347 break;
1349 if (i >= 1000) {
1350 dev_alert(hw->card->dev,
1351 "PLL initialization failed!!!\n");
1352 return -EBUSY;
1355 return 0;
1358 static int hw_auto_init(struct hw *hw)
1360 unsigned int gctl;
1361 int i;
1363 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1364 set_field(&gctl, GCTL_AIE, 0);
1365 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1366 set_field(&gctl, GCTL_AIE, 1);
1367 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1368 mdelay(10);
1369 for (i = 0; i < 400000; i++) {
1370 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1371 if (get_field(gctl, GCTL_AID))
1372 break;
1374 if (!get_field(gctl, GCTL_AID)) {
1375 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
1376 return -EBUSY;
1379 return 0;
1382 /* DAC operations */
1384 #define CS4382_MC1 0x1
1385 #define CS4382_MC2 0x2
1386 #define CS4382_MC3 0x3
1387 #define CS4382_FC 0x4
1388 #define CS4382_IC 0x5
1389 #define CS4382_XC1 0x6
1390 #define CS4382_VCA1 0x7
1391 #define CS4382_VCB1 0x8
1392 #define CS4382_XC2 0x9
1393 #define CS4382_VCA2 0xA
1394 #define CS4382_VCB2 0xB
1395 #define CS4382_XC3 0xC
1396 #define CS4382_VCA3 0xD
1397 #define CS4382_VCB3 0xE
1398 #define CS4382_XC4 0xF
1399 #define CS4382_VCA4 0x10
1400 #define CS4382_VCB4 0x11
1401 #define CS4382_CREV 0x12
1403 /* I2C status */
1404 #define STATE_LOCKED 0x00
1405 #define STATE_UNLOCKED 0xAA
1406 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */
1407 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */
1409 #define I2C_STATUS_DCM 0x00000001
1410 #define I2C_STATUS_BC 0x00000006
1411 #define I2C_STATUS_APD 0x00000008
1412 #define I2C_STATUS_AB 0x00010000
1413 #define I2C_STATUS_DR 0x00800000
1415 #define I2C_ADDRESS_PTAD 0x0000FFFF
1416 #define I2C_ADDRESS_SLAD 0x007F0000
1418 struct regs_cs4382 {
1419 u32 mode_control_1;
1420 u32 mode_control_2;
1421 u32 mode_control_3;
1423 u32 filter_control;
1424 u32 invert_control;
1426 u32 mix_control_P1;
1427 u32 vol_control_A1;
1428 u32 vol_control_B1;
1430 u32 mix_control_P2;
1431 u32 vol_control_A2;
1432 u32 vol_control_B2;
1434 u32 mix_control_P3;
1435 u32 vol_control_A3;
1436 u32 vol_control_B3;
1438 u32 mix_control_P4;
1439 u32 vol_control_A4;
1440 u32 vol_control_B4;
1443 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1445 u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4};
1447 /* Send keys for forced BIOS mode */
1448 hw_write_20kx(hw, I2C_IF_WLOCK,
1449 UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1450 hw_write_20kx(hw, I2C_IF_WLOCK,
1451 UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1452 /* Check whether the chip is unlocked */
1453 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1454 return 0;
1456 return -1;
1459 static int hw20k2_i2c_lock_chip(struct hw *hw)
1461 /* Write twice */
1462 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1463 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1464 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1465 return 0;
1467 return -1;
1470 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1472 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1473 int err;
1474 unsigned int i2c_status;
1475 unsigned int i2c_addr;
1477 err = hw20k2_i2c_unlock_full_access(hw);
1478 if (err < 0)
1479 return err;
1481 hw20k2->addr_size = addr_size;
1482 hw20k2->data_size = data_size;
1483 hw20k2->dev_id = dev_id;
1485 i2c_addr = 0;
1486 set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1488 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1490 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1492 set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1494 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1496 return 0;
1499 static int hw20k2_i2c_uninit(struct hw *hw)
1501 unsigned int i2c_status;
1502 unsigned int i2c_addr;
1504 i2c_addr = 0;
1505 set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1507 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1509 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1511 set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1513 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1515 return hw20k2_i2c_lock_chip(hw);
1518 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1520 int i = 0x400000;
1521 unsigned int ret;
1523 do {
1524 ret = hw_read_20kx(hw, I2C_IF_STATUS);
1525 } while ((!(ret & DATA_READY)) && --i);
1527 return i;
1530 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1532 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1533 unsigned int i2c_status;
1535 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1536 set_field(&i2c_status, I2C_STATUS_BC,
1537 (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1538 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1539 if (!hw20k2_i2c_wait_data_ready(hw))
1540 return -1;
1542 hw_write_20kx(hw, I2C_IF_WDATA, addr);
1543 if (!hw20k2_i2c_wait_data_ready(hw))
1544 return -1;
1546 /* Force a read operation */
1547 hw_write_20kx(hw, I2C_IF_RDATA, 0);
1548 if (!hw20k2_i2c_wait_data_ready(hw))
1549 return -1;
1551 *datap = hw_read_20kx(hw, I2C_IF_RDATA);
1553 return 0;
1556 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1558 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1559 unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1560 unsigned int i2c_status;
1562 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1564 set_field(&i2c_status, I2C_STATUS_BC,
1565 (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1566 0 : (hw20k2->addr_size + hw20k2->data_size));
1568 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1569 hw20k2_i2c_wait_data_ready(hw);
1570 /* Dummy write to trigger the write operation */
1571 hw_write_20kx(hw, I2C_IF_WDATA, 0);
1572 hw20k2_i2c_wait_data_ready(hw);
1574 /* This is the real data */
1575 hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1576 hw20k2_i2c_wait_data_ready(hw);
1578 return 0;
1581 static void hw_dac_stop(struct hw *hw)
1583 u32 data;
1584 data = hw_read_20kx(hw, GPIO_DATA);
1585 data &= 0xFFFFFFFD;
1586 hw_write_20kx(hw, GPIO_DATA, data);
1587 mdelay(10);
1590 static void hw_dac_start(struct hw *hw)
1592 u32 data;
1593 data = hw_read_20kx(hw, GPIO_DATA);
1594 data |= 0x2;
1595 hw_write_20kx(hw, GPIO_DATA, data);
1596 mdelay(50);
1599 static void hw_dac_reset(struct hw *hw)
1601 hw_dac_stop(hw);
1602 hw_dac_start(hw);
1605 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1607 int err;
1608 u32 data;
1609 int i;
1610 struct regs_cs4382 cs_read = {0};
1611 struct regs_cs4382 cs_def = {
1612 .mode_control_1 = 0x00000001, /* Mode Control 1 */
1613 .mode_control_2 = 0x00000000, /* Mode Control 2 */
1614 .mode_control_3 = 0x00000084, /* Mode Control 3 */
1615 .filter_control = 0x00000000, /* Filter Control */
1616 .invert_control = 0x00000000, /* Invert Control */
1617 .mix_control_P1 = 0x00000024, /* Mixing Control Pair 1 */
1618 .vol_control_A1 = 0x00000000, /* Vol Control A1 */
1619 .vol_control_B1 = 0x00000000, /* Vol Control B1 */
1620 .mix_control_P2 = 0x00000024, /* Mixing Control Pair 2 */
1621 .vol_control_A2 = 0x00000000, /* Vol Control A2 */
1622 .vol_control_B2 = 0x00000000, /* Vol Control B2 */
1623 .mix_control_P3 = 0x00000024, /* Mixing Control Pair 3 */
1624 .vol_control_A3 = 0x00000000, /* Vol Control A3 */
1625 .vol_control_B3 = 0x00000000, /* Vol Control B3 */
1626 .mix_control_P4 = 0x00000024, /* Mixing Control Pair 4 */
1627 .vol_control_A4 = 0x00000000, /* Vol Control A4 */
1628 .vol_control_B4 = 0x00000000 /* Vol Control B4 */
1631 if (hw->model == CTSB1270) {
1632 hw_dac_stop(hw);
1633 data = hw_read_20kx(hw, GPIO_DATA);
1634 data &= ~0x0600;
1635 if (1 == info->msr)
1636 data |= 0x0000; /* Single Speed Mode 0-50kHz */
1637 else if (2 == info->msr)
1638 data |= 0x0200; /* Double Speed Mode 50-100kHz */
1639 else
1640 data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1641 hw_write_20kx(hw, GPIO_DATA, data);
1642 hw_dac_start(hw);
1643 return 0;
1646 /* Set DAC reset bit as output */
1647 data = hw_read_20kx(hw, GPIO_CTRL);
1648 data |= 0x02;
1649 hw_write_20kx(hw, GPIO_CTRL, data);
1651 err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1652 if (err < 0)
1653 goto End;
1655 for (i = 0; i < 2; i++) {
1656 /* Reset DAC twice just in-case the chip
1657 * didn't initialized properly */
1658 hw_dac_reset(hw);
1659 hw_dac_reset(hw);
1661 if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1))
1662 continue;
1664 if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2))
1665 continue;
1667 if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3))
1668 continue;
1670 if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control))
1671 continue;
1673 if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control))
1674 continue;
1676 if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1))
1677 continue;
1679 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1680 continue;
1682 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1683 continue;
1685 if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2))
1686 continue;
1688 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1689 continue;
1691 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1692 continue;
1694 if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3))
1695 continue;
1697 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1698 continue;
1700 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1701 continue;
1703 if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4))
1704 continue;
1706 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1707 continue;
1709 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1710 continue;
1712 if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1713 continue;
1714 else
1715 break;
1718 if (i >= 2)
1719 goto End;
1721 /* Note: Every I2C write must have some delay.
1722 * This is not a requirement but the delay works here... */
1723 hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1724 hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1725 if (1 == info->msr) {
1726 hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1727 hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1728 hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1729 hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1730 } else if (2 == info->msr) {
1731 hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1732 hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1733 hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1734 hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1735 } else {
1736 hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1737 hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1738 hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1739 hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1742 return 0;
1743 End:
1745 hw20k2_i2c_uninit(hw);
1746 return -1;
1749 /* ADC operations */
1750 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1751 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF)
1753 #define WM8775_IC 0x0B
1754 #define WM8775_MMC 0x0C
1755 #define WM8775_AADCL 0x0E
1756 #define WM8775_AADCR 0x0F
1757 #define WM8775_ADCMC 0x15
1758 #define WM8775_RESET 0x17
1760 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1762 u32 data;
1763 if (hw->model == CTSB1270) {
1764 /* Titanium HD has two ADC chips, one for line in and one */
1765 /* for MIC. We don't need to switch the ADC input. */
1766 return 1;
1768 data = hw_read_20kx(hw, GPIO_DATA);
1769 switch (type) {
1770 case ADC_MICIN:
1771 data = (data & (0x1 << 14)) ? 1 : 0;
1772 break;
1773 case ADC_LINEIN:
1774 data = (data & (0x1 << 14)) ? 0 : 1;
1775 break;
1776 default:
1777 data = 0;
1779 return data;
1782 #define MIC_BOOST_0DB 0xCF
1783 #define MIC_BOOST_STEPS_PER_DB 2
1785 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1787 u32 adcmc, gain;
1789 if (input > 3)
1790 input = 3;
1792 adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1794 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1795 MAKE_WM8775_DATA(adcmc));
1797 if (gain_in_db < -103)
1798 gain_in_db = -103;
1799 if (gain_in_db > 24)
1800 gain_in_db = 24;
1802 gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1804 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1805 MAKE_WM8775_DATA(gain));
1806 /* ...so there should be no need for the following. */
1807 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1808 MAKE_WM8775_DATA(gain));
1811 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1813 u32 data;
1814 data = hw_read_20kx(hw, GPIO_DATA);
1815 switch (type) {
1816 case ADC_MICIN:
1817 data |= (0x1 << 14);
1818 hw_write_20kx(hw, GPIO_DATA, data);
1819 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1820 break;
1821 case ADC_LINEIN:
1822 data &= ~(0x1 << 14);
1823 hw_write_20kx(hw, GPIO_DATA, data);
1824 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1825 break;
1826 default:
1827 break;
1830 return 0;
1833 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1835 int err;
1836 u32 data, ctl;
1838 /* Set ADC reset bit as output */
1839 data = hw_read_20kx(hw, GPIO_CTRL);
1840 data |= (0x1 << 15);
1841 hw_write_20kx(hw, GPIO_CTRL, data);
1843 /* Initialize I2C */
1844 err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1845 if (err < 0) {
1846 dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n");
1847 goto error;
1850 /* Reset the ADC (reset is active low). */
1851 data = hw_read_20kx(hw, GPIO_DATA);
1852 data &= ~(0x1 << 15);
1853 hw_write_20kx(hw, GPIO_DATA, data);
1855 if (hw->model == CTSB1270) {
1856 /* Set up the PCM4220 ADC on Titanium HD */
1857 data &= ~0x0C;
1858 if (1 == info->msr)
1859 data |= 0x00; /* Single Speed Mode 32-50kHz */
1860 else if (2 == info->msr)
1861 data |= 0x08; /* Double Speed Mode 50-108kHz */
1862 else
1863 data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1864 hw_write_20kx(hw, GPIO_DATA, data);
1867 mdelay(10);
1868 /* Return the ADC to normal operation. */
1869 data |= (0x1 << 15);
1870 hw_write_20kx(hw, GPIO_DATA, data);
1871 mdelay(50);
1873 /* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1874 /* invert bit, interface format to I2S, word length to 24-bit, */
1875 /* enable ADC high pass filter. Fixes bug 5323? */
1876 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1877 MAKE_WM8775_DATA(0x26));
1879 /* Set the master mode (256fs) */
1880 if (1 == info->msr) {
1881 /* slave mode, 128x oversampling 256fs */
1882 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1883 MAKE_WM8775_DATA(0x02));
1884 } else if ((2 == info->msr) || (4 == info->msr)) {
1885 /* slave mode, 64x oversampling, 256fs */
1886 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1887 MAKE_WM8775_DATA(0x0A));
1888 } else {
1889 dev_alert(hw->card->dev,
1890 "Invalid master sampling rate (msr %d)!!!\n",
1891 info->msr);
1892 err = -EINVAL;
1893 goto error;
1896 if (hw->model != CTSB1270) {
1897 /* Configure GPIO bit 14 change to line-in/mic-in */
1898 ctl = hw_read_20kx(hw, GPIO_CTRL);
1899 ctl |= 0x1 << 14;
1900 hw_write_20kx(hw, GPIO_CTRL, ctl);
1901 hw_adc_input_select(hw, ADC_LINEIN);
1902 } else {
1903 hw_wm8775_input_select(hw, 0, 0);
1906 return 0;
1907 error:
1908 hw20k2_i2c_uninit(hw);
1909 return err;
1912 static struct capabilities hw_capabilities(struct hw *hw)
1914 struct capabilities cap;
1916 cap.digit_io_switch = 0;
1917 cap.dedicated_mic = hw->model == CTSB1270;
1918 cap.output_switch = hw->model == CTSB1270;
1919 cap.mic_source_switch = hw->model == CTSB1270;
1921 return cap;
1924 static int hw_output_switch_get(struct hw *hw)
1926 u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1928 switch (data & 0x30) {
1929 case 0x00:
1930 return 0;
1931 case 0x10:
1932 return 1;
1933 case 0x20:
1934 return 2;
1935 default:
1936 return 3;
1940 static int hw_output_switch_put(struct hw *hw, int position)
1942 u32 data;
1944 if (position == hw_output_switch_get(hw))
1945 return 0;
1947 /* Mute line and headphones (intended for anti-pop). */
1948 data = hw_read_20kx(hw, GPIO_DATA);
1949 data |= (0x03 << 11);
1950 hw_write_20kx(hw, GPIO_DATA, data);
1952 data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1953 switch (position) {
1954 case 0:
1955 break;
1956 case 1:
1957 data |= 0x10;
1958 break;
1959 default:
1960 data |= 0x20;
1962 hw_write_20kx(hw, GPIO_EXT_DATA, data);
1964 /* Unmute line and headphones. */
1965 data = hw_read_20kx(hw, GPIO_DATA);
1966 data &= ~(0x03 << 11);
1967 hw_write_20kx(hw, GPIO_DATA, data);
1969 return 1;
1972 static int hw_mic_source_switch_get(struct hw *hw)
1974 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1976 return hw20k2->mic_source;
1979 static int hw_mic_source_switch_put(struct hw *hw, int position)
1981 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1983 if (position == hw20k2->mic_source)
1984 return 0;
1986 switch (position) {
1987 case 0:
1988 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1989 break;
1990 case 1:
1991 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1992 break;
1993 case 2:
1994 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1995 break;
1996 default:
1997 return 0;
2000 hw20k2->mic_source = position;
2002 return 1;
2005 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2007 struct hw *hw = dev_id;
2008 unsigned int status;
2010 status = hw_read_20kx(hw, GIP);
2011 if (!status)
2012 return IRQ_NONE;
2014 if (hw->irq_callback)
2015 hw->irq_callback(hw->irq_callback_data, status);
2017 hw_write_20kx(hw, GIP, status);
2018 return IRQ_HANDLED;
2021 static int hw_card_start(struct hw *hw)
2023 int err = 0;
2024 struct pci_dev *pci = hw->pci;
2025 unsigned int gctl;
2026 const unsigned int dma_bits = BITS_PER_LONG;
2028 err = pci_enable_device(pci);
2029 if (err < 0)
2030 return err;
2032 /* Set DMA transfer mask */
2033 if (!dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) {
2034 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits));
2035 } else {
2036 dma_set_mask(&pci->dev, DMA_BIT_MASK(32));
2037 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32));
2040 if (!hw->io_base) {
2041 err = pci_request_regions(pci, "XFi");
2042 if (err < 0)
2043 goto error1;
2045 hw->io_base = pci_resource_start(hw->pci, 2);
2046 hw->mem_base = ioremap(hw->io_base,
2047 pci_resource_len(hw->pci, 2));
2048 if (!hw->mem_base) {
2049 err = -ENOENT;
2050 goto error2;
2054 /* Switch to 20k2 mode from UAA mode. */
2055 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2056 set_field(&gctl, GCTL_UAA, 0);
2057 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2059 if (hw->irq < 0) {
2060 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2061 KBUILD_MODNAME, hw);
2062 if (err < 0) {
2063 dev_err(hw->card->dev,
2064 "XFi: Cannot get irq %d\n", pci->irq);
2065 goto error2;
2067 hw->irq = pci->irq;
2070 pci_set_master(pci);
2072 return 0;
2074 /*error3:
2075 iounmap((void *)hw->mem_base);
2076 hw->mem_base = (unsigned long)NULL;*/
2077 error2:
2078 pci_release_regions(pci);
2079 hw->io_base = 0;
2080 error1:
2081 pci_disable_device(pci);
2082 return err;
2085 static int hw_card_stop(struct hw *hw)
2087 unsigned int data;
2089 /* disable transport bus master and queueing of request */
2090 hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2092 /* disable pll */
2093 data = hw_read_20kx(hw, PLL_ENB);
2094 hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2096 /* TODO: Disable interrupt and so on... */
2097 return 0;
2100 static int hw_card_shutdown(struct hw *hw)
2102 if (hw->irq >= 0)
2103 free_irq(hw->irq, hw);
2105 hw->irq = -1;
2106 iounmap(hw->mem_base);
2107 hw->mem_base = NULL;
2109 if (hw->io_base)
2110 pci_release_regions(hw->pci);
2112 hw->io_base = 0;
2114 pci_disable_device(hw->pci);
2116 return 0;
2119 static int hw_card_init(struct hw *hw, struct card_conf *info)
2121 int err;
2122 unsigned int gctl;
2123 u32 data = 0;
2124 struct dac_conf dac_info = {0};
2125 struct adc_conf adc_info = {0};
2126 struct daio_conf daio_info = {0};
2127 struct trn_conf trn_info = {0};
2129 /* Get PCI io port/memory base address and
2130 * do 20kx core switch if needed. */
2131 err = hw_card_start(hw);
2132 if (err)
2133 return err;
2135 /* PLL init */
2136 err = hw_pll_init(hw, info->rsr);
2137 if (err < 0)
2138 return err;
2140 /* kick off auto-init */
2141 err = hw_auto_init(hw);
2142 if (err < 0)
2143 return err;
2145 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2146 set_field(&gctl, GCTL_DBP, 1);
2147 set_field(&gctl, GCTL_TBP, 1);
2148 set_field(&gctl, GCTL_FBP, 1);
2149 set_field(&gctl, GCTL_DPC, 0);
2150 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2152 /* Reset all global pending interrupts */
2153 hw_write_20kx(hw, GIE, 0);
2154 /* Reset all SRC pending interrupts */
2155 hw_write_20kx(hw, SRC_IP, 0);
2157 if (hw->model != CTSB1270) {
2158 /* TODO: detect the card ID and configure GPIO accordingly. */
2159 /* Configures GPIO (0xD802 0x98028) */
2160 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2161 /* Configures GPIO (SB0880) */
2162 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2163 hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2164 } else {
2165 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2167 /* Enable audio ring */
2168 hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2170 trn_info.vm_pgt_phys = info->vm_pgt_phys;
2171 err = hw_trn_init(hw, &trn_info);
2172 if (err < 0)
2173 return err;
2175 daio_info.msr = info->msr;
2176 err = hw_daio_init(hw, &daio_info);
2177 if (err < 0)
2178 return err;
2180 dac_info.msr = info->msr;
2181 err = hw_dac_init(hw, &dac_info);
2182 if (err < 0)
2183 return err;
2185 adc_info.msr = info->msr;
2186 adc_info.input = ADC_LINEIN;
2187 adc_info.mic20db = 0;
2188 err = hw_adc_init(hw, &adc_info);
2189 if (err < 0)
2190 return err;
2192 data = hw_read_20kx(hw, SRC_MCTL);
2193 data |= 0x1; /* Enables input from the audio ring */
2194 hw_write_20kx(hw, SRC_MCTL, data);
2196 return 0;
2199 #ifdef CONFIG_PM_SLEEP
2200 static int hw_suspend(struct hw *hw)
2202 hw_card_stop(hw);
2203 return 0;
2206 static int hw_resume(struct hw *hw, struct card_conf *info)
2208 /* Re-initialize card hardware. */
2209 return hw_card_init(hw, info);
2211 #endif
2213 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2215 return readl(hw->mem_base + reg);
2218 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2220 writel(data, hw->mem_base + reg);
2223 static const struct hw ct20k2_preset = {
2224 .irq = -1,
2226 .card_init = hw_card_init,
2227 .card_stop = hw_card_stop,
2228 .pll_init = hw_pll_init,
2229 .is_adc_source_selected = hw_is_adc_input_selected,
2230 .select_adc_source = hw_adc_input_select,
2231 .capabilities = hw_capabilities,
2232 .output_switch_get = hw_output_switch_get,
2233 .output_switch_put = hw_output_switch_put,
2234 .mic_source_switch_get = hw_mic_source_switch_get,
2235 .mic_source_switch_put = hw_mic_source_switch_put,
2236 #ifdef CONFIG_PM_SLEEP
2237 .suspend = hw_suspend,
2238 .resume = hw_resume,
2239 #endif
2241 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2242 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2243 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2244 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2245 .src_set_state = src_set_state,
2246 .src_set_bm = src_set_bm,
2247 .src_set_rsr = src_set_rsr,
2248 .src_set_sf = src_set_sf,
2249 .src_set_wr = src_set_wr,
2250 .src_set_pm = src_set_pm,
2251 .src_set_rom = src_set_rom,
2252 .src_set_vo = src_set_vo,
2253 .src_set_st = src_set_st,
2254 .src_set_ie = src_set_ie,
2255 .src_set_ilsz = src_set_ilsz,
2256 .src_set_bp = src_set_bp,
2257 .src_set_cisz = src_set_cisz,
2258 .src_set_ca = src_set_ca,
2259 .src_set_sa = src_set_sa,
2260 .src_set_la = src_set_la,
2261 .src_set_pitch = src_set_pitch,
2262 .src_set_dirty = src_set_dirty,
2263 .src_set_clear_zbufs = src_set_clear_zbufs,
2264 .src_set_dirty_all = src_set_dirty_all,
2265 .src_commit_write = src_commit_write,
2266 .src_get_ca = src_get_ca,
2267 .src_get_dirty = src_get_dirty,
2268 .src_dirty_conj_mask = src_dirty_conj_mask,
2269 .src_mgr_enbs_src = src_mgr_enbs_src,
2270 .src_mgr_enb_src = src_mgr_enb_src,
2271 .src_mgr_dsb_src = src_mgr_dsb_src,
2272 .src_mgr_commit_write = src_mgr_commit_write,
2274 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2275 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2276 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2277 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2278 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2279 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2280 .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2282 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2283 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2284 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2285 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2286 .amixer_set_mode = amixer_set_mode,
2287 .amixer_set_iv = amixer_set_iv,
2288 .amixer_set_x = amixer_set_x,
2289 .amixer_set_y = amixer_set_y,
2290 .amixer_set_sadr = amixer_set_sadr,
2291 .amixer_set_se = amixer_set_se,
2292 .amixer_set_dirty = amixer_set_dirty,
2293 .amixer_set_dirty_all = amixer_set_dirty_all,
2294 .amixer_commit_write = amixer_commit_write,
2295 .amixer_get_y = amixer_get_y,
2296 .amixer_get_dirty = amixer_get_dirty,
2298 .dai_get_ctrl_blk = dai_get_ctrl_blk,
2299 .dai_put_ctrl_blk = dai_put_ctrl_blk,
2300 .dai_srt_set_srco = dai_srt_set_srco,
2301 .dai_srt_set_srcm = dai_srt_set_srcm,
2302 .dai_srt_set_rsr = dai_srt_set_rsr,
2303 .dai_srt_set_drat = dai_srt_set_drat,
2304 .dai_srt_set_ec = dai_srt_set_ec,
2305 .dai_srt_set_et = dai_srt_set_et,
2306 .dai_commit_write = dai_commit_write,
2308 .dao_get_ctrl_blk = dao_get_ctrl_blk,
2309 .dao_put_ctrl_blk = dao_put_ctrl_blk,
2310 .dao_set_spos = dao_set_spos,
2311 .dao_commit_write = dao_commit_write,
2312 .dao_get_spos = dao_get_spos,
2314 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2315 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2316 .daio_mgr_enb_dai = daio_mgr_enb_dai,
2317 .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2318 .daio_mgr_enb_dao = daio_mgr_enb_dao,
2319 .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2320 .daio_mgr_dao_init = daio_mgr_dao_init,
2321 .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2322 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2323 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2324 .daio_mgr_commit_write = daio_mgr_commit_write,
2326 .set_timer_irq = set_timer_irq,
2327 .set_timer_tick = set_timer_tick,
2328 .get_wc = get_wc,
2331 int create_20k2_hw_obj(struct hw **rhw)
2333 struct hw20k2 *hw20k2;
2335 *rhw = NULL;
2336 hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2337 if (!hw20k2)
2338 return -ENOMEM;
2340 hw20k2->hw = ct20k2_preset;
2341 *rhw = &hw20k2->hw;
2343 return 0;
2346 int destroy_20k2_hw_obj(struct hw *hw)
2348 if (hw->io_base)
2349 hw_card_shutdown(hw);
2351 kfree(hw);
2352 return 0;