Linux 4.1-rc7
[cris-mirror.git] / mm / sparse.c
blobd1b48b691ac8c20040a262337cc7e0cbf566420f
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
20 * Permanent SPARSEMEM data:
22 * 1) mem_section - memory sections, mem_map's for valid memory
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
45 int page_to_nid(const struct page *page)
47 return section_to_node_table[page_to_section(page)];
49 EXPORT_SYMBOL(page_to_nid);
51 static void set_section_nid(unsigned long section_nr, int nid)
53 section_to_node_table[section_nr] = nid;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
59 #endif
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 else
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
74 section = memblock_virt_alloc_node(array_size, nid);
77 return section;
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
85 if (mem_section[root])
86 return -EEXIST;
88 section = sparse_index_alloc(nid);
89 if (!section)
90 return -ENOMEM;
92 mem_section[root] = section;
94 return 0;
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
99 return 0;
101 #endif
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
108 int __section_nr(struct mem_section* ms)
110 unsigned long root_nr;
111 struct mem_section* root;
113 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115 if (!root)
116 continue;
118 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119 break;
122 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
124 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node. This keeps us from having to use another data structure. The
131 * node information is cleared just before we store the real mem_map.
133 static inline unsigned long sparse_encode_early_nid(int nid)
135 return (nid << SECTION_NID_SHIFT);
138 static inline int sparse_early_nid(struct mem_section *section)
140 return (section->section_mem_map >> SECTION_NID_SHIFT);
143 /* Validate the physical addressing limitations of the model */
144 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145 unsigned long *end_pfn)
147 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150 * Sanity checks - do not allow an architecture to pass
151 * in larger pfns than the maximum scope of sparsemem:
153 if (*start_pfn > max_sparsemem_pfn) {
154 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156 *start_pfn, *end_pfn, max_sparsemem_pfn);
157 WARN_ON_ONCE(1);
158 *start_pfn = max_sparsemem_pfn;
159 *end_pfn = max_sparsemem_pfn;
160 } else if (*end_pfn > max_sparsemem_pfn) {
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *end_pfn = max_sparsemem_pfn;
169 /* Record a memory area against a node. */
170 void __init memory_present(int nid, unsigned long start, unsigned long end)
172 unsigned long pfn;
174 start &= PAGE_SECTION_MASK;
175 mminit_validate_memmodel_limits(&start, &end);
176 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177 unsigned long section = pfn_to_section_nr(pfn);
178 struct mem_section *ms;
180 sparse_index_init(section, nid);
181 set_section_nid(section, nid);
183 ms = __nr_to_section(section);
184 if (!ms->section_mem_map)
185 ms->section_mem_map = sparse_encode_early_nid(nid) |
186 SECTION_MARKED_PRESENT;
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
194 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195 unsigned long end_pfn)
197 unsigned long pfn;
198 unsigned long nr_pages = 0;
200 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202 if (nid != early_pfn_to_nid(pfn))
203 continue;
205 if (pfn_present(pfn))
206 nr_pages += PAGES_PER_SECTION;
209 return nr_pages * sizeof(struct page);
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
217 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
219 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
223 * Decode mem_map from the coded memmap
225 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
227 /* mask off the extra low bits of information */
228 coded_mem_map &= SECTION_MAP_MASK;
229 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
232 static int __meminit sparse_init_one_section(struct mem_section *ms,
233 unsigned long pnum, struct page *mem_map,
234 unsigned long *pageblock_bitmap)
236 if (!present_section(ms))
237 return -EINVAL;
239 ms->section_mem_map &= ~SECTION_MAP_MASK;
240 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241 SECTION_HAS_MEM_MAP;
242 ms->pageblock_flags = pageblock_bitmap;
244 return 1;
247 unsigned long usemap_size(void)
249 unsigned long size_bytes;
250 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251 size_bytes = roundup(size_bytes, sizeof(unsigned long));
252 return size_bytes;
255 #ifdef CONFIG_MEMORY_HOTPLUG
256 static unsigned long *__kmalloc_section_usemap(void)
258 return kmalloc(usemap_size(), GFP_KERNEL);
260 #endif /* CONFIG_MEMORY_HOTPLUG */
262 #ifdef CONFIG_MEMORY_HOTREMOVE
263 static unsigned long * __init
264 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265 unsigned long size)
267 unsigned long goal, limit;
268 unsigned long *p;
269 int nid;
271 * A page may contain usemaps for other sections preventing the
272 * page being freed and making a section unremovable while
273 * other sections referencing the usemap remain active. Similarly,
274 * a pgdat can prevent a section being removed. If section A
275 * contains a pgdat and section B contains the usemap, both
276 * sections become inter-dependent. This allocates usemaps
277 * from the same section as the pgdat where possible to avoid
278 * this problem.
280 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281 limit = goal + (1UL << PA_SECTION_SHIFT);
282 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283 again:
284 p = memblock_virt_alloc_try_nid_nopanic(size,
285 SMP_CACHE_BYTES, goal, limit,
286 nid);
287 if (!p && limit) {
288 limit = 0;
289 goto again;
291 return p;
294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
296 unsigned long usemap_snr, pgdat_snr;
297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 struct pglist_data *pgdat = NODE_DATA(nid);
300 int usemap_nid;
302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 if (usemap_snr == pgdat_snr)
305 return;
307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 /* skip redundant message */
309 return;
311 old_usemap_snr = usemap_snr;
312 old_pgdat_snr = pgdat_snr;
314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 if (usemap_nid != nid) {
316 printk(KERN_INFO
317 "node %d must be removed before remove section %ld\n",
318 nid, usemap_snr);
319 return;
322 * There is a circular dependency.
323 * Some platforms allow un-removable section because they will just
324 * gather other removable sections for dynamic partitioning.
325 * Just notify un-removable section's number here.
327 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328 pgdat_snr, nid);
329 printk(KERN_CONT
330 " have a circular dependency on usemap and pgdat allocations\n");
332 #else
333 static unsigned long * __init
334 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335 unsigned long size)
337 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
340 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
343 #endif /* CONFIG_MEMORY_HOTREMOVE */
345 static void __init sparse_early_usemaps_alloc_node(void *data,
346 unsigned long pnum_begin,
347 unsigned long pnum_end,
348 unsigned long usemap_count, int nodeid)
350 void *usemap;
351 unsigned long pnum;
352 unsigned long **usemap_map = (unsigned long **)data;
353 int size = usemap_size();
355 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
356 size * usemap_count);
357 if (!usemap) {
358 printk(KERN_WARNING "%s: allocation failed\n", __func__);
359 return;
362 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
363 if (!present_section_nr(pnum))
364 continue;
365 usemap_map[pnum] = usemap;
366 usemap += size;
367 check_usemap_section_nr(nodeid, usemap_map[pnum]);
371 #ifndef CONFIG_SPARSEMEM_VMEMMAP
372 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
374 struct page *map;
375 unsigned long size;
377 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
378 if (map)
379 return map;
381 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
382 map = memblock_virt_alloc_try_nid(size,
383 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
384 BOOTMEM_ALLOC_ACCESSIBLE, nid);
385 return map;
387 void __init sparse_mem_maps_populate_node(struct page **map_map,
388 unsigned long pnum_begin,
389 unsigned long pnum_end,
390 unsigned long map_count, int nodeid)
392 void *map;
393 unsigned long pnum;
394 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
396 map = alloc_remap(nodeid, size * map_count);
397 if (map) {
398 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399 if (!present_section_nr(pnum))
400 continue;
401 map_map[pnum] = map;
402 map += size;
404 return;
407 size = PAGE_ALIGN(size);
408 map = memblock_virt_alloc_try_nid(size * map_count,
409 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
410 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
411 if (map) {
412 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413 if (!present_section_nr(pnum))
414 continue;
415 map_map[pnum] = map;
416 map += size;
418 return;
421 /* fallback */
422 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423 struct mem_section *ms;
425 if (!present_section_nr(pnum))
426 continue;
427 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428 if (map_map[pnum])
429 continue;
430 ms = __nr_to_section(pnum);
431 printk(KERN_ERR "%s: sparsemem memory map backing failed "
432 "some memory will not be available.\n", __func__);
433 ms->section_mem_map = 0;
436 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
438 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439 static void __init sparse_early_mem_maps_alloc_node(void *data,
440 unsigned long pnum_begin,
441 unsigned long pnum_end,
442 unsigned long map_count, int nodeid)
444 struct page **map_map = (struct page **)data;
445 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
446 map_count, nodeid);
448 #else
449 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
451 struct page *map;
452 struct mem_section *ms = __nr_to_section(pnum);
453 int nid = sparse_early_nid(ms);
455 map = sparse_mem_map_populate(pnum, nid);
456 if (map)
457 return map;
459 printk(KERN_ERR "%s: sparsemem memory map backing failed "
460 "some memory will not be available.\n", __func__);
461 ms->section_mem_map = 0;
462 return NULL;
464 #endif
466 void __weak __meminit vmemmap_populate_print_last(void)
471 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
472 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
474 static void __init alloc_usemap_and_memmap(void (*alloc_func)
475 (void *, unsigned long, unsigned long,
476 unsigned long, int), void *data)
478 unsigned long pnum;
479 unsigned long map_count;
480 int nodeid_begin = 0;
481 unsigned long pnum_begin = 0;
483 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
484 struct mem_section *ms;
486 if (!present_section_nr(pnum))
487 continue;
488 ms = __nr_to_section(pnum);
489 nodeid_begin = sparse_early_nid(ms);
490 pnum_begin = pnum;
491 break;
493 map_count = 1;
494 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
495 struct mem_section *ms;
496 int nodeid;
498 if (!present_section_nr(pnum))
499 continue;
500 ms = __nr_to_section(pnum);
501 nodeid = sparse_early_nid(ms);
502 if (nodeid == nodeid_begin) {
503 map_count++;
504 continue;
506 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
507 alloc_func(data, pnum_begin, pnum,
508 map_count, nodeid_begin);
509 /* new start, update count etc*/
510 nodeid_begin = nodeid;
511 pnum_begin = pnum;
512 map_count = 1;
514 /* ok, last chunk */
515 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
516 map_count, nodeid_begin);
520 * Allocate the accumulated non-linear sections, allocate a mem_map
521 * for each and record the physical to section mapping.
523 void __init sparse_init(void)
525 unsigned long pnum;
526 struct page *map;
527 unsigned long *usemap;
528 unsigned long **usemap_map;
529 int size;
530 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
531 int size2;
532 struct page **map_map;
533 #endif
535 /* see include/linux/mmzone.h 'struct mem_section' definition */
536 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
538 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
539 set_pageblock_order();
542 * map is using big page (aka 2M in x86 64 bit)
543 * usemap is less one page (aka 24 bytes)
544 * so alloc 2M (with 2M align) and 24 bytes in turn will
545 * make next 2M slip to one more 2M later.
546 * then in big system, the memory will have a lot of holes...
547 * here try to allocate 2M pages continuously.
549 * powerpc need to call sparse_init_one_section right after each
550 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
552 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
553 usemap_map = memblock_virt_alloc(size, 0);
554 if (!usemap_map)
555 panic("can not allocate usemap_map\n");
556 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
557 (void *)usemap_map);
559 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
561 map_map = memblock_virt_alloc(size2, 0);
562 if (!map_map)
563 panic("can not allocate map_map\n");
564 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
565 (void *)map_map);
566 #endif
568 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
569 if (!present_section_nr(pnum))
570 continue;
572 usemap = usemap_map[pnum];
573 if (!usemap)
574 continue;
576 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
577 map = map_map[pnum];
578 #else
579 map = sparse_early_mem_map_alloc(pnum);
580 #endif
581 if (!map)
582 continue;
584 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
585 usemap);
588 vmemmap_populate_print_last();
590 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 memblock_free_early(__pa(map_map), size2);
592 #endif
593 memblock_free_early(__pa(usemap_map), size);
596 #ifdef CONFIG_MEMORY_HOTPLUG
597 #ifdef CONFIG_SPARSEMEM_VMEMMAP
598 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
600 /* This will make the necessary allocations eventually. */
601 return sparse_mem_map_populate(pnum, nid);
603 static void __kfree_section_memmap(struct page *memmap)
605 unsigned long start = (unsigned long)memmap;
606 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
608 vmemmap_free(start, end);
610 #ifdef CONFIG_MEMORY_HOTREMOVE
611 static void free_map_bootmem(struct page *memmap)
613 unsigned long start = (unsigned long)memmap;
614 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
616 vmemmap_free(start, end);
618 #endif /* CONFIG_MEMORY_HOTREMOVE */
619 #else
620 static struct page *__kmalloc_section_memmap(void)
622 struct page *page, *ret;
623 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
625 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
626 if (page)
627 goto got_map_page;
629 ret = vmalloc(memmap_size);
630 if (ret)
631 goto got_map_ptr;
633 return NULL;
634 got_map_page:
635 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
636 got_map_ptr:
638 return ret;
641 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
643 return __kmalloc_section_memmap();
646 static void __kfree_section_memmap(struct page *memmap)
648 if (is_vmalloc_addr(memmap))
649 vfree(memmap);
650 else
651 free_pages((unsigned long)memmap,
652 get_order(sizeof(struct page) * PAGES_PER_SECTION));
655 #ifdef CONFIG_MEMORY_HOTREMOVE
656 static void free_map_bootmem(struct page *memmap)
658 unsigned long maps_section_nr, removing_section_nr, i;
659 unsigned long magic, nr_pages;
660 struct page *page = virt_to_page(memmap);
662 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
663 >> PAGE_SHIFT;
665 for (i = 0; i < nr_pages; i++, page++) {
666 magic = (unsigned long) page->lru.next;
668 BUG_ON(magic == NODE_INFO);
670 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
671 removing_section_nr = page->private;
674 * When this function is called, the removing section is
675 * logical offlined state. This means all pages are isolated
676 * from page allocator. If removing section's memmap is placed
677 * on the same section, it must not be freed.
678 * If it is freed, page allocator may allocate it which will
679 * be removed physically soon.
681 if (maps_section_nr != removing_section_nr)
682 put_page_bootmem(page);
685 #endif /* CONFIG_MEMORY_HOTREMOVE */
686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
689 * returns the number of sections whose mem_maps were properly
690 * set. If this is <=0, then that means that the passed-in
691 * map was not consumed and must be freed.
693 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
695 unsigned long section_nr = pfn_to_section_nr(start_pfn);
696 struct pglist_data *pgdat = zone->zone_pgdat;
697 struct mem_section *ms;
698 struct page *memmap;
699 unsigned long *usemap;
700 unsigned long flags;
701 int ret;
704 * no locking for this, because it does its own
705 * plus, it does a kmalloc
707 ret = sparse_index_init(section_nr, pgdat->node_id);
708 if (ret < 0 && ret != -EEXIST)
709 return ret;
710 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
711 if (!memmap)
712 return -ENOMEM;
713 usemap = __kmalloc_section_usemap();
714 if (!usemap) {
715 __kfree_section_memmap(memmap);
716 return -ENOMEM;
719 pgdat_resize_lock(pgdat, &flags);
721 ms = __pfn_to_section(start_pfn);
722 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
723 ret = -EEXIST;
724 goto out;
727 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
729 ms->section_mem_map |= SECTION_MARKED_PRESENT;
731 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
733 out:
734 pgdat_resize_unlock(pgdat, &flags);
735 if (ret <= 0) {
736 kfree(usemap);
737 __kfree_section_memmap(memmap);
739 return ret;
742 #ifdef CONFIG_MEMORY_HOTREMOVE
743 #ifdef CONFIG_MEMORY_FAILURE
744 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
746 int i;
748 if (!memmap)
749 return;
751 for (i = 0; i < PAGES_PER_SECTION; i++) {
752 if (PageHWPoison(&memmap[i])) {
753 atomic_long_sub(1, &num_poisoned_pages);
754 ClearPageHWPoison(&memmap[i]);
758 #else
759 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
762 #endif
764 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
766 struct page *usemap_page;
768 if (!usemap)
769 return;
771 usemap_page = virt_to_page(usemap);
773 * Check to see if allocation came from hot-plug-add
775 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
776 kfree(usemap);
777 if (memmap)
778 __kfree_section_memmap(memmap);
779 return;
783 * The usemap came from bootmem. This is packed with other usemaps
784 * on the section which has pgdat at boot time. Just keep it as is now.
787 if (memmap)
788 free_map_bootmem(memmap);
791 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
793 struct page *memmap = NULL;
794 unsigned long *usemap = NULL, flags;
795 struct pglist_data *pgdat = zone->zone_pgdat;
797 pgdat_resize_lock(pgdat, &flags);
798 if (ms->section_mem_map) {
799 usemap = ms->pageblock_flags;
800 memmap = sparse_decode_mem_map(ms->section_mem_map,
801 __section_nr(ms));
802 ms->section_mem_map = 0;
803 ms->pageblock_flags = NULL;
805 pgdat_resize_unlock(pgdat, &flags);
807 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
808 free_section_usemap(memmap, usemap);
810 #endif /* CONFIG_MEMORY_HOTREMOVE */
811 #endif /* CONFIG_MEMORY_HOTPLUG */