[PATCH] aic7xxx_osm build fix
[cris-mirror.git] / drivers / char / agp / isoch.c
blobc9ac731504f229a11f18f588f23e1f8dc1d0df27
1 /*
2 * Setup routines for AGP 3.5 compliant bridges.
3 */
5 #include <linux/list.h>
6 #include <linux/pci.h>
7 #include <linux/agp_backend.h>
8 #include <linux/module.h>
10 #include "agp.h"
12 /* Generic AGP 3.5 enabling routines */
14 struct agp_3_5_dev {
15 struct list_head list;
16 u8 capndx;
17 u32 maxbw;
18 struct pci_dev *dev;
21 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
23 struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
24 struct list_head *pos;
26 list_for_each(pos, head) {
27 cur = list_entry(pos, struct agp_3_5_dev, list);
28 if(cur->maxbw > n->maxbw)
29 break;
31 list_add_tail(new, pos);
34 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
36 struct agp_3_5_dev *cur;
37 struct pci_dev *dev;
38 struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
39 u32 nistat;
41 INIT_LIST_HEAD(head);
43 for (pos=start; pos!=head; ) {
44 cur = list_entry(pos, struct agp_3_5_dev, list);
45 dev = cur->dev;
47 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
48 cur->maxbw = (nistat >> 16) & 0xff;
50 tmp = pos;
51 pos = pos->next;
52 agp_3_5_dev_list_insert(head, tmp);
56 /*
57 * Initialize all isochronous transfer parameters for an AGP 3.0
58 * node (i.e. a host bridge in combination with the adapters
59 * lying behind it...)
62 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
63 struct agp_3_5_dev *dev_list, unsigned int ndevs)
66 * Convenience structure to make the calculations clearer
67 * here. The field names come straight from the AGP 3.0 spec.
69 struct isoch_data {
70 u32 maxbw;
71 u32 n;
72 u32 y;
73 u32 l;
74 u32 rq;
75 struct agp_3_5_dev *dev;
78 struct pci_dev *td = bridge->dev, *dev;
79 struct list_head *head = &dev_list->list, *pos;
80 struct agp_3_5_dev *cur;
81 struct isoch_data *master, target;
82 unsigned int cdev = 0;
83 u32 mnistat, tnistat, tstatus, mcmd;
84 u16 tnicmd, mnicmd;
85 u8 mcapndx;
86 u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
87 u32 step, rem, rem_isoch, rem_async;
88 int ret = 0;
91 * We'll work with an array of isoch_data's (one for each
92 * device in dev_list) throughout this function.
94 if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
95 ret = -ENOMEM;
96 goto get_out;
100 * Sort the device list by maxbw. We need to do this because the
101 * spec suggests that the devices with the smallest requirements
102 * have their resources allocated first, with all remaining resources
103 * falling to the device with the largest requirement.
105 * We don't exactly do this, we divide target resources by ndevs
106 * and split them amongst the AGP 3.0 devices. The remainder of such
107 * division operations are dropped on the last device, sort of like
108 * the spec mentions it should be done.
110 * We can't do this sort when we initially construct the dev_list
111 * because we don't know until this function whether isochronous
112 * transfers are enabled and consequently whether maxbw will mean
113 * anything.
115 agp_3_5_dev_list_sort(dev_list, ndevs);
117 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
118 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
120 /* Extract power-on defaults from the target */
121 target.maxbw = (tnistat >> 16) & 0xff;
122 target.n = (tnistat >> 8) & 0xff;
123 target.y = (tnistat >> 6) & 0x3;
124 target.l = (tnistat >> 3) & 0x7;
125 target.rq = (tstatus >> 24) & 0xff;
127 y_max = target.y;
130 * Extract power-on defaults for each device in dev_list. Along
131 * the way, calculate the total isochronous bandwidth required
132 * by these devices and the largest requested payload size.
134 list_for_each(pos, head) {
135 cur = list_entry(pos, struct agp_3_5_dev, list);
136 dev = cur->dev;
138 mcapndx = cur->capndx;
140 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
142 master[cdev].maxbw = (mnistat >> 16) & 0xff;
143 master[cdev].n = (mnistat >> 8) & 0xff;
144 master[cdev].y = (mnistat >> 6) & 0x3;
145 master[cdev].dev = cur;
147 tot_bw += master[cdev].maxbw;
148 y_max = max(y_max, master[cdev].y);
150 cdev++;
153 /* Check if this configuration has any chance of working */
154 if (tot_bw > target.maxbw) {
155 printk(KERN_ERR PFX "isochronous bandwidth required "
156 "by AGP 3.0 devices exceeds that which is supported by "
157 "the AGP 3.0 bridge!\n");
158 ret = -ENODEV;
159 goto free_and_exit;
162 target.y = y_max;
165 * Write the calculated payload size into the target's NICMD
166 * register. Doing this directly effects the ISOCH_N value
167 * in the target's NISTAT register, so we need to do this now
168 * to get an accurate value for ISOCH_N later.
170 pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171 tnicmd &= ~(0x3 << 6);
172 tnicmd |= target.y << 6;
173 pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
175 /* Reread the target's ISOCH_N */
176 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177 target.n = (tnistat >> 8) & 0xff;
179 /* Calculate the minimum ISOCH_N needed by each master */
180 for (cdev=0; cdev<ndevs; cdev++) {
181 master[cdev].y = target.y;
182 master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
184 tot_n += master[cdev].n;
187 /* Exit if the minimal ISOCH_N allocation among the masters is more
188 * than the target can handle. */
189 if (tot_n > target.n) {
190 printk(KERN_ERR PFX "number of isochronous "
191 "transactions per period required by AGP 3.0 devices "
192 "exceeds that which is supported by the AGP 3.0 "
193 "bridge!\n");
194 ret = -ENODEV;
195 goto free_and_exit;
198 /* Calculate left over ISOCH_N capability in the target. We'll give
199 * this to the hungriest device (as per the spec) */
200 rem = target.n - tot_n;
203 * Calculate the minimum isochronous RQ depth needed by each master.
204 * Along the way, distribute the extra ISOCH_N capability calculated
205 * above.
207 for (cdev=0; cdev<ndevs; cdev++) {
209 * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
210 * byte isochronous writes will be broken into 64B pieces.
211 * This means we need to budget more RQ depth to account for
212 * these kind of writes (each isochronous write is actually
213 * many writes on the AGP bus).
215 master[cdev].rq = master[cdev].n;
216 if(master[cdev].y > 0x1)
217 master[cdev].rq *= (1 << (master[cdev].y - 1));
219 tot_rq += master[cdev].rq;
221 if (cdev == ndevs-1)
222 master[cdev].n += rem;
225 /* Figure the number of isochronous and asynchronous RQ slots the
226 * target is providing. */
227 rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
228 rq_async = target.rq - rq_isoch;
230 /* Exit if the minimal RQ needs of the masters exceeds what the target
231 * can provide. */
232 if (tot_rq > rq_isoch) {
233 printk(KERN_ERR PFX "number of request queue slots "
234 "required by the isochronous bandwidth requested by "
235 "AGP 3.0 devices exceeds the number provided by the "
236 "AGP 3.0 bridge!\n");
237 ret = -ENODEV;
238 goto free_and_exit;
241 /* Calculate asynchronous RQ capability in the target (per master) as
242 * well as the total number of leftover isochronous RQ slots. */
243 step = rq_async / ndevs;
244 rem_async = step + (rq_async % ndevs);
245 rem_isoch = rq_isoch - tot_rq;
247 /* Distribute the extra RQ slots calculated above and write our
248 * isochronous settings out to the actual devices. */
249 for (cdev=0; cdev<ndevs; cdev++) {
250 cur = master[cdev].dev;
251 dev = cur->dev;
253 mcapndx = cur->capndx;
255 master[cdev].rq += (cdev == ndevs - 1)
256 ? (rem_async + rem_isoch) : step;
258 pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
259 pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
261 mnicmd &= ~(0xff << 8);
262 mnicmd &= ~(0x3 << 6);
263 mcmd &= ~(0xff << 24);
265 mnicmd |= master[cdev].n << 8;
266 mnicmd |= master[cdev].y << 6;
267 mcmd |= master[cdev].rq << 24;
269 pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
270 pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
273 free_and_exit:
274 kfree(master);
276 get_out:
277 return ret;
281 * This function basically allocates request queue slots among the
282 * AGP 3.0 systems in nonisochronous nodes. The algorithm is
283 * pretty stupid, divide the total number of RQ slots provided by the
284 * target by ndevs. Distribute this many slots to each AGP 3.0 device,
285 * giving any left over slots to the last device in dev_list.
287 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
288 struct agp_3_5_dev *dev_list, unsigned int ndevs)
290 struct agp_3_5_dev *cur;
291 struct list_head *head = &dev_list->list, *pos;
292 u32 tstatus, mcmd;
293 u32 trq, mrq, rem;
294 unsigned int cdev = 0;
296 pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
298 trq = (tstatus >> 24) & 0xff;
299 mrq = trq / ndevs;
301 rem = mrq + (trq % ndevs);
303 for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
304 cur = list_entry(pos, struct agp_3_5_dev, list);
306 pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
307 mcmd &= ~(0xff << 24);
308 mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
309 pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
314 * Fully configure and enable an AGP 3.0 host bridge and all the devices
315 * lying behind it.
317 int agp_3_5_enable(struct agp_bridge_data *bridge)
319 struct pci_dev *td = bridge->dev, *dev = NULL;
320 u8 mcapndx;
321 u32 isoch, arqsz;
322 u32 tstatus, mstatus, ncapid;
323 u32 mmajor;
324 u16 mpstat;
325 struct agp_3_5_dev *dev_list, *cur;
326 struct list_head *head, *pos;
327 unsigned int ndevs = 0;
328 int ret = 0;
330 /* Extract some power-on defaults from the target */
331 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
332 isoch = (tstatus >> 17) & 0x1;
333 if (isoch == 0) /* isoch xfers not available, bail out. */
334 return -ENODEV;
336 arqsz = (tstatus >> 13) & 0x7;
339 * Allocate a head for our AGP 3.5 device list
340 * (multiple AGP v3 devices are allowed behind a single bridge).
342 if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
343 ret = -ENOMEM;
344 goto get_out;
346 head = &dev_list->list;
347 INIT_LIST_HEAD(head);
349 /* Find all AGP devices, and add them to dev_list. */
350 for_each_pci_dev(dev) {
351 mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
352 if (mcapndx == 0)
353 continue;
355 switch ((dev->class >>8) & 0xff00) {
356 case 0x0600: /* Bridge */
357 /* Skip bridges. We should call this function for each one. */
358 continue;
360 case 0x0001: /* Unclassified device */
361 /* Don't know what this is, but log it for investigation. */
362 if (mcapndx != 0) {
363 printk (KERN_INFO PFX "Wacky, found unclassified AGP device. %x:%x\n",
364 dev->vendor, dev->device);
366 continue;
368 case 0x0300: /* Display controller */
369 case 0x0400: /* Multimedia controller */
370 if((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
371 ret = -ENOMEM;
372 goto free_and_exit;
374 cur->dev = dev;
376 pos = &cur->list;
377 list_add(pos, head);
378 ndevs++;
379 continue;
381 default:
382 continue;
387 * Take an initial pass through the devices lying behind our host
388 * bridge. Make sure each one is actually an AGP 3.0 device, otherwise
389 * exit with an error message. Along the way store the AGP 3.0
390 * cap_ptr for each device
392 list_for_each(pos, head) {
393 cur = list_entry(pos, struct agp_3_5_dev, list);
394 dev = cur->dev;
396 pci_read_config_word(dev, PCI_STATUS, &mpstat);
397 if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
398 continue;
400 pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
401 if (mcapndx != 0) {
402 do {
403 pci_read_config_dword(dev, mcapndx, &ncapid);
404 if ((ncapid & 0xff) != 2)
405 mcapndx = (ncapid >> 8) & 0xff;
407 while (((ncapid & 0xff) != 2) && (mcapndx != 0));
410 if (mcapndx == 0) {
411 printk(KERN_ERR PFX "woah! Non-AGP device "
412 "found on the secondary bus of an AGP 3.5 bridge!\n");
413 ret = -ENODEV;
414 goto free_and_exit;
417 mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
418 if (mmajor < 3) {
419 printk(KERN_ERR PFX "woah! AGP 2.0 device "
420 "found on the secondary bus of an AGP 3.5 "
421 "bridge operating with AGP 3.0 electricals!\n");
422 ret = -ENODEV;
423 goto free_and_exit;
426 cur->capndx = mcapndx;
428 pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
430 if (((mstatus >> 3) & 0x1) == 0) {
431 printk(KERN_ERR PFX "woah! AGP 3.x device "
432 "not operating in AGP 3.x mode found on the "
433 "secondary bus of an AGP 3.5 bridge operating "
434 "with AGP 3.0 electricals!\n");
435 ret = -ENODEV;
436 goto free_and_exit;
441 * Call functions to divide target resources amongst the AGP 3.0
442 * masters. This process is dramatically different depending on
443 * whether isochronous transfers are supported.
445 if (isoch) {
446 ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
447 if (ret) {
448 printk(KERN_INFO PFX "Something bad happened setting "
449 "up isochronous xfers. Falling back to "
450 "non-isochronous xfer mode.\n");
451 } else {
452 goto free_and_exit;
455 agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
457 free_and_exit:
458 /* Be sure to free the dev_list */
459 for (pos=head->next; pos!=head; ) {
460 cur = list_entry(pos, struct agp_3_5_dev, list);
462 pos = pos->next;
463 kfree(cur);
465 kfree(dev_list);
467 get_out:
468 return ret;