2 * Intel Multimedia Timer device implementation for SGI SN platforms.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved.
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
28 #include <linux/devfs_fs_kernel.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
34 #include <asm/uaccess.h>
35 #include <asm/sn/addrs.h>
36 #include <asm/sn/intr.h>
37 #include <asm/sn/shub_mmr.h>
38 #include <asm/sn/nodepda.h>
39 #include <asm/sn/shubio.h>
41 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
42 MODULE_DESCRIPTION("SGI Altix RTC Timer");
43 MODULE_LICENSE("GPL");
45 /* name of the device, usually in /dev */
46 #define MMTIMER_NAME "mmtimer"
47 #define MMTIMER_DESC "SGI Altix RTC Timer"
48 #define MMTIMER_VERSION "2.0"
50 #define RTC_BITS 55 /* 55 bits for this implementation */
52 extern unsigned long sn_rtc_cycles_per_second
;
54 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
56 #define rtc_time() (*RTC_COUNTER_ADDR)
58 static int mmtimer_ioctl(struct inode
*inode
, struct file
*file
,
59 unsigned int cmd
, unsigned long arg
);
60 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
);
63 * Period in femtoseconds (10^-15 s)
65 static unsigned long mmtimer_femtoperiod
= 0;
67 static struct file_operations mmtimer_fops
= {
70 .ioctl
= mmtimer_ioctl
,
74 * We only have comparison registers RTC1-4 currently available per
75 * node. RTC0 is used by SAL.
77 #define NUM_COMPARATORS 3
78 /* Check for an RTC interrupt pending */
79 static int inline mmtimer_int_pending(int comparator
)
81 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED
)) &
82 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
)
87 /* Clear the RTC interrupt pending bit */
88 static void inline mmtimer_clr_int_pending(int comparator
)
90 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS
),
91 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
);
94 /* Setup timer on comparator RTC1 */
95 static void inline mmtimer_setup_int_0(u64 expires
)
99 /* Disable interrupt */
100 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 0UL);
102 /* Initialize comparator value */
103 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), -1L);
105 /* Clear pending bit */
106 mmtimer_clr_int_pending(0);
108 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC1_INT_CONFIG_IDX_SHFT
) |
109 ((u64
)cpu_physical_id(smp_processor_id()) <<
110 SH_RTC1_INT_CONFIG_PID_SHFT
);
112 /* Set configuration */
113 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG
), val
);
115 /* Enable RTC interrupts */
116 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 1UL);
118 /* Initialize comparator value */
119 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), expires
);
124 /* Setup timer on comparator RTC2 */
125 static void inline mmtimer_setup_int_1(u64 expires
)
129 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 0UL);
131 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), -1L);
133 mmtimer_clr_int_pending(1);
135 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC2_INT_CONFIG_IDX_SHFT
) |
136 ((u64
)cpu_physical_id(smp_processor_id()) <<
137 SH_RTC2_INT_CONFIG_PID_SHFT
);
139 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG
), val
);
141 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 1UL);
143 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), expires
);
146 /* Setup timer on comparator RTC3 */
147 static void inline mmtimer_setup_int_2(u64 expires
)
151 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 0UL);
153 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), -1L);
155 mmtimer_clr_int_pending(2);
157 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC3_INT_CONFIG_IDX_SHFT
) |
158 ((u64
)cpu_physical_id(smp_processor_id()) <<
159 SH_RTC3_INT_CONFIG_PID_SHFT
);
161 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG
), val
);
163 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 1UL);
165 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), expires
);
169 * This function must be called with interrupts disabled and preemption off
170 * in order to insure that the setup succeeds in a deterministic time frame.
171 * It will check if the interrupt setup succeeded.
173 static int inline mmtimer_setup(int comparator
, unsigned long expires
)
176 switch (comparator
) {
178 mmtimer_setup_int_0(expires
);
181 mmtimer_setup_int_1(expires
);
184 mmtimer_setup_int_2(expires
);
187 /* We might've missed our expiration time */
188 if (rtc_time() < expires
)
192 * If an interrupt is already pending then its okay
193 * if not then we failed
195 return mmtimer_int_pending(comparator
);
198 static int inline mmtimer_disable_int(long nasid
, int comparator
)
200 switch (comparator
) {
202 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
),
203 0UL) : REMOTE_HUB_S(nasid
, SH_RTC1_INT_ENABLE
, 0UL);
206 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
),
207 0UL) : REMOTE_HUB_S(nasid
, SH_RTC2_INT_ENABLE
, 0UL);
210 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
),
211 0UL) : REMOTE_HUB_S(nasid
, SH_RTC3_INT_ENABLE
, 0UL);
219 #define TIMER_OFF 0xbadcabLL
221 /* There is one of these for each comparator */
222 typedef struct mmtimer
{
223 spinlock_t lock ____cacheline_aligned
;
224 struct k_itimer
*timer
;
227 struct tasklet_struct tasklet
;
231 * Total number of comparators is comparators/node * MAX nodes/running kernel
233 static mmtimer_t timers
[NUM_COMPARATORS
*MAX_COMPACT_NODES
];
236 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
237 * @inode: inode of the device
238 * @file: file structure for the device
239 * @cmd: command to execute
240 * @arg: optional argument to command
242 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
247 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
248 * of the page where the registers are mapped) for the counter in question.
250 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
253 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
256 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
258 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
260 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
261 * in the address specified by @arg.
263 static int mmtimer_ioctl(struct inode
*inode
, struct file
*file
,
264 unsigned int cmd
, unsigned long arg
)
269 case MMTIMER_GETOFFSET
: /* offset of the counter */
271 * SN RTC registers are on their own 64k page
273 if(PAGE_SIZE
<= (1 << 16))
274 ret
= (((long)RTC_COUNTER_ADDR
) & (PAGE_SIZE
-1)) / 8;
279 case MMTIMER_GETRES
: /* resolution of the clock in 10^-15 s */
280 if(copy_to_user((unsigned long __user
*)arg
,
281 &mmtimer_femtoperiod
, sizeof(unsigned long)))
285 case MMTIMER_GETFREQ
: /* frequency in Hz */
286 if(copy_to_user((unsigned long __user
*)arg
,
287 &sn_rtc_cycles_per_second
,
288 sizeof(unsigned long)))
293 case MMTIMER_GETBITS
: /* number of bits in the clock */
297 case MMTIMER_MMAPAVAIL
: /* can we mmap the clock into userspace? */
298 ret
= (PAGE_SIZE
<= (1 << 16)) ? 1 : 0;
301 case MMTIMER_GETCOUNTER
:
302 if(copy_to_user((unsigned long __user
*)arg
,
303 RTC_COUNTER_ADDR
, sizeof(unsigned long)))
315 * mmtimer_mmap - maps the clock's registers into userspace
316 * @file: file structure for the device
317 * @vma: VMA to map the registers into
319 * Calls remap_pfn_range() to map the clock's registers into
320 * the calling process' address space.
322 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
)
324 unsigned long mmtimer_addr
;
326 if (vma
->vm_end
- vma
->vm_start
!= PAGE_SIZE
)
329 if (vma
->vm_flags
& VM_WRITE
)
332 if (PAGE_SIZE
> (1 << 16))
335 vma
->vm_flags
|= (VM_IO
| VM_SHM
| VM_LOCKED
);
336 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
338 mmtimer_addr
= __pa(RTC_COUNTER_ADDR
);
339 mmtimer_addr
&= ~(PAGE_SIZE
- 1);
340 mmtimer_addr
&= 0xfffffffffffffffUL
;
342 if (remap_pfn_range(vma
, vma
->vm_start
, mmtimer_addr
>> PAGE_SHIFT
,
343 PAGE_SIZE
, vma
->vm_page_prot
)) {
344 printk(KERN_ERR
"remap_pfn_range failed in mmtimer.c\n");
351 static struct miscdevice mmtimer_miscdev
= {
357 static struct timespec sgi_clock_offset
;
358 static int sgi_clock_period
;
361 * Posix Timer Interface
364 static struct timespec sgi_clock_offset
;
365 static int sgi_clock_period
;
367 static int sgi_clock_get(clockid_t clockid
, struct timespec
*tp
)
371 nsec
= rtc_time() * sgi_clock_period
372 + sgi_clock_offset
.tv_nsec
;
373 tp
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &tp
->tv_nsec
)
374 + sgi_clock_offset
.tv_sec
;
378 static int sgi_clock_set(clockid_t clockid
, struct timespec
*tp
)
384 nsec
= rtc_time() * sgi_clock_period
;
386 sgi_clock_offset
.tv_sec
= tp
->tv_sec
- div_long_long_rem(nsec
, NSEC_PER_SEC
, &rem
);
388 if (rem
<= tp
->tv_nsec
)
389 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
- rem
;
391 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
+ NSEC_PER_SEC
- rem
;
392 sgi_clock_offset
.tv_sec
--;
398 * Schedule the next periodic interrupt. This function will attempt
399 * to schedule a periodic interrupt later if necessary. If the scheduling
400 * of an interrupt fails then the time to skip is lengthened
401 * exponentially in order to ensure that the next interrupt
402 * can be properly scheduled..
404 static int inline reschedule_periodic_timer(mmtimer_t
*x
)
407 struct k_itimer
*t
= x
->timer
;
409 t
->it
.mmtimer
.clock
= x
->i
;
415 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
<< n
;
416 t
->it_overrun
+= 1 << n
;
421 } while (!mmtimer_setup(x
->i
, t
->it
.mmtimer
.expires
));
427 * mmtimer_interrupt - timer interrupt handler
429 * @dev_id: device the irq came from
430 * @regs: register state upon receipt of the interrupt
432 * Called when one of the comarators matches the counter, This
433 * routine will send signals to processes that have requested
436 * This interrupt is run in an interrupt context
437 * by the SHUB. It is therefore safe to locally access SHub
441 mmtimer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
444 mmtimer_t
*base
= timers
+ cpuid_to_cnodeid(smp_processor_id()) *
446 unsigned long expires
= 0;
447 int result
= IRQ_NONE
;
450 * Do this once for each comparison register
452 for (i
= 0; i
< NUM_COMPARATORS
; i
++) {
453 /* Make sure this doesn't get reused before tasklet_sched */
454 spin_lock(&base
[i
].lock
);
455 if (base
[i
].cpu
== smp_processor_id()) {
457 expires
= base
[i
].timer
->it
.mmtimer
.expires
;
458 /* expires test won't work with shared irqs */
459 if ((mmtimer_int_pending(i
) > 0) ||
460 (expires
&& (expires
< rtc_time()))) {
461 mmtimer_clr_int_pending(i
);
462 tasklet_schedule(&base
[i
].tasklet
);
463 result
= IRQ_HANDLED
;
466 spin_unlock(&base
[i
].lock
);
472 void mmtimer_tasklet(unsigned long data
) {
473 mmtimer_t
*x
= (mmtimer_t
*)data
;
474 struct k_itimer
*t
= x
->timer
;
480 /* Send signal and deal with periodic signals */
481 spin_lock_irqsave(&t
->it_lock
, flags
);
483 /* If timer was deleted between interrupt and here, leave */
488 if (posix_timer_event(t
, 0) != 0) {
490 // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");
494 if(t
->it
.mmtimer
.incr
) {
496 if (reschedule_periodic_timer(x
)) {
497 printk(KERN_WARNING
"mmtimer: unable to reschedule\n");
501 /* Ensure we don't false trigger in mmtimer_interrupt */
502 t
->it
.mmtimer
.expires
= 0;
504 t
->it_overrun_last
= t
->it_overrun
;
506 spin_unlock(&x
->lock
);
507 spin_unlock_irqrestore(&t
->it_lock
, flags
);
510 static int sgi_timer_create(struct k_itimer
*timer
)
512 /* Insure that a newly created timer is off */
513 timer
->it
.mmtimer
.clock
= TIMER_OFF
;
517 /* This does not really delete a timer. It just insures
518 * that the timer is not active
520 * Assumption: it_lock is already held with irq's disabled
522 static int sgi_timer_del(struct k_itimer
*timr
)
524 int i
= timr
->it
.mmtimer
.clock
;
525 cnodeid_t nodeid
= timr
->it
.mmtimer
.node
;
526 mmtimer_t
*t
= timers
+ nodeid
* NUM_COMPARATORS
+i
;
527 unsigned long irqflags
;
529 if (i
!= TIMER_OFF
) {
530 spin_lock_irqsave(&t
->lock
, irqflags
);
531 mmtimer_disable_int(cnodeid_to_nasid(nodeid
),i
);
533 timr
->it
.mmtimer
.clock
= TIMER_OFF
;
534 timr
->it
.mmtimer
.expires
= 0;
535 spin_unlock_irqrestore(&t
->lock
, irqflags
);
540 #define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
541 #define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)
543 /* Assumption: it_lock is already held with irq's disabled */
544 static void sgi_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
547 if (timr
->it
.mmtimer
.clock
== TIMER_OFF
) {
548 cur_setting
->it_interval
.tv_nsec
= 0;
549 cur_setting
->it_interval
.tv_sec
= 0;
550 cur_setting
->it_value
.tv_nsec
= 0;
551 cur_setting
->it_value
.tv_sec
=0;
555 ns_to_timespec(cur_setting
->it_interval
, timr
->it
.mmtimer
.incr
* sgi_clock_period
);
556 ns_to_timespec(cur_setting
->it_value
, (timr
->it
.mmtimer
.expires
- rtc_time())* sgi_clock_period
);
561 static int sgi_timer_set(struct k_itimer
*timr
, int flags
,
562 struct itimerspec
* new_setting
,
563 struct itimerspec
* old_setting
)
567 unsigned long when
, period
, irqflags
;
573 sgi_timer_get(timr
, old_setting
);
576 when
= timespec_to_ns(new_setting
->it_value
);
577 period
= timespec_to_ns(new_setting
->it_interval
);
583 if (flags
& TIMER_ABSTIME
) {
588 now
= timespec_to_ns(n
);
592 /* Fire the timer immediately */
597 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
598 * to getnstimeofday() in order to be as faithful as possible to the time
601 when
= (when
+ sgi_clock_period
- 1) / sgi_clock_period
+ rtc_time();
602 period
= (period
+ sgi_clock_period
- 1) / sgi_clock_period
;
605 * We are allocating a local SHub comparator. If we would be moved to another
606 * cpu then another SHub may be local to us. Prohibit that by switching off
611 nodeid
= cpuid_to_cnodeid(smp_processor_id());
612 base
= timers
+ nodeid
* NUM_COMPARATORS
;
614 /* Don't use an allocated timer, or a deleted one that's pending */
615 for(i
= 0; i
< NUM_COMPARATORS
; i
++) {
616 if (!base
[i
].timer
&& !base
[i
].tasklet
.state
) {
621 if (i
== NUM_COMPARATORS
) {
626 spin_lock_irqsave(&base
[i
].lock
, irqflags
);
628 if (base
[i
].timer
|| base
[i
].tasklet
.state
!= 0) {
629 spin_unlock_irqrestore(&base
[i
].lock
, irqflags
);
632 base
[i
].timer
= timr
;
633 base
[i
].cpu
= smp_processor_id();
635 timr
->it
.mmtimer
.clock
= i
;
636 timr
->it
.mmtimer
.node
= nodeid
;
637 timr
->it
.mmtimer
.incr
= period
;
638 timr
->it
.mmtimer
.expires
= when
;
641 if (!mmtimer_setup(i
, when
)) {
642 mmtimer_disable_int(-1, i
);
643 posix_timer_event(timr
, 0);
644 timr
->it
.mmtimer
.expires
= 0;
647 timr
->it
.mmtimer
.expires
-= period
;
648 if (reschedule_periodic_timer(base
+i
))
652 spin_unlock_irqrestore(&base
[i
].lock
, irqflags
);
659 static struct k_clock sgi_clock
= {
661 .clock_set
= sgi_clock_set
,
662 .clock_get
= sgi_clock_get
,
663 .timer_create
= sgi_timer_create
,
664 .nsleep
= do_posix_clock_nonanosleep
,
665 .timer_set
= sgi_timer_set
,
666 .timer_del
= sgi_timer_del
,
667 .timer_get
= sgi_timer_get
671 * mmtimer_init - device initialization routine
673 * Does initial setup for the mmtimer device.
675 static int __init
mmtimer_init(void)
679 if (!ia64_platform_is("sn2"))
683 * Sanity check the cycles/sec variable
685 if (sn_rtc_cycles_per_second
< 100000) {
686 printk(KERN_ERR
"%s: unable to determine clock frequency\n",
691 mmtimer_femtoperiod
= ((unsigned long)1E15
+ sn_rtc_cycles_per_second
/
692 2) / sn_rtc_cycles_per_second
;
694 for (i
=0; i
< NUM_COMPARATORS
*MAX_COMPACT_NODES
; i
++) {
695 spin_lock_init(&timers
[i
].lock
);
696 timers
[i
].timer
= NULL
;
698 timers
[i
].i
= i
% NUM_COMPARATORS
;
699 tasklet_init(&timers
[i
].tasklet
, mmtimer_tasklet
, (unsigned long) (timers
+i
));
702 if (request_irq(SGI_MMTIMER_VECTOR
, mmtimer_interrupt
, SA_PERCPU_IRQ
, MMTIMER_NAME
, NULL
)) {
703 printk(KERN_WARNING
"%s: unable to allocate interrupt.",
708 strcpy(mmtimer_miscdev
.devfs_name
, MMTIMER_NAME
);
709 if (misc_register(&mmtimer_miscdev
)) {
710 printk(KERN_ERR
"%s: failed to register device\n",
715 sgi_clock_period
= sgi_clock
.res
= NSEC_PER_SEC
/ sn_rtc_cycles_per_second
;
716 register_posix_clock(CLOCK_SGI_CYCLE
, &sgi_clock
);
718 printk(KERN_INFO
"%s: v%s, %ld MHz\n", MMTIMER_DESC
, MMTIMER_VERSION
,
719 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
724 module_init(mmtimer_init
);