1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright (c) 2004 Simtec Electronics
4 * Ben Dooks <ben@simtec.co.uk>
6 * Samsung S3C2410 NAND driver
9 * 21-Sep-2004 BJD Initial version
10 * 23-Sep-2004 BJD Mulitple device support
11 * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
12 * 12-Oct-2004 BJD Fixed errors in use of platform data
14 * $Id: s3c2410.c,v 1.7 2005/01/05 18:05:14 dwmw2 Exp $
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 #include <config/mtd/nand/s3c2410/hwecc.h>
32 #include <config/mtd/nand/s3c2410/debug.h>
34 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/init.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/ioport.h>
44 #include <linux/device.h>
45 #include <linux/delay.h>
46 #include <linux/err.h>
48 #include <linux/mtd/mtd.h>
49 #include <linux/mtd/nand.h>
50 #include <linux/mtd/nand_ecc.h>
51 #include <linux/mtd/partitions.h>
54 #include <asm/mach-types.h>
55 #include <asm/hardware/clock.h>
57 #include <asm/arch/regs-nand.h>
58 #include <asm/arch/nand.h>
60 #define PFX "s3c2410-nand: "
62 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
63 static int hardware_ecc
= 1;
65 static int hardware_ecc
= 0;
68 /* new oob placement block for use with hardware ecc generation
71 static struct nand_oobinfo nand_hw_eccoob
= {
72 .useecc
= MTD_NANDECC_AUTOPLACE
,
78 /* controller and mtd information */
80 struct s3c2410_nand_info
;
82 struct s3c2410_nand_mtd
{
84 struct nand_chip chip
;
85 struct s3c2410_nand_set
*set
;
86 struct s3c2410_nand_info
*info
;
90 /* overview of the s3c2410 nand state */
92 struct s3c2410_nand_info
{
94 struct nand_hw_control controller
;
95 struct s3c2410_nand_mtd
*mtds
;
96 struct s3c2410_platform_nand
*platform
;
99 struct device
*device
;
100 struct resource
*area
;
106 /* conversion functions */
108 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
110 return container_of(mtd
, struct s3c2410_nand_mtd
, mtd
);
113 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
115 return s3c2410_nand_mtd_toours(mtd
)->info
;
118 static struct s3c2410_nand_info
*to_nand_info(struct device
*dev
)
120 return dev_get_drvdata(dev
);
123 static struct s3c2410_platform_nand
*to_nand_plat(struct device
*dev
)
125 return dev
->platform_data
;
128 /* timing calculations */
130 #define NS_IN_KHZ 10000000
132 static int s3c2410_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
136 result
= (wanted
* NS_IN_KHZ
) / clk
;
139 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
142 printk("%d ns is too big for current clock rate %ld\n",
153 #define to_ns(ticks,clk) (((clk) * (ticks)) / NS_IN_KHZ)
155 /* controller setup */
157 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
,
160 struct s3c2410_platform_nand
*plat
= to_nand_plat(dev
);
161 unsigned int tacls
, twrph0
, twrph1
;
162 unsigned long clkrate
= clk_get_rate(info
->clk
);
165 /* calculate the timing information for the controller */
168 tacls
= s3c2410_nand_calc_rate(plat
->tacls
, clkrate
, 8);
169 twrph0
= s3c2410_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
170 twrph1
= s3c2410_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
172 /* default timings */
178 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
179 printk(KERN_ERR PFX
"cannot get timings suitable for board\n");
183 printk(KERN_INFO PFX
"timing: Tacls %ldns, Twrph0 %ldns, Twrph1 %ldns\n",
184 to_ns(tacls
, clkrate
),
185 to_ns(twrph0
, clkrate
),
186 to_ns(twrph1
, clkrate
));
188 cfg
= S3C2410_NFCONF_EN
;
189 cfg
|= S3C2410_NFCONF_TACLS(tacls
-1);
190 cfg
|= S3C2410_NFCONF_TWRPH0(twrph0
-1);
191 cfg
|= S3C2410_NFCONF_TWRPH1(twrph1
-1);
193 pr_debug(PFX
"NF_CONF is 0x%lx\n", cfg
);
195 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
201 static void s3c2410_nand_select_chip(struct mtd_info
*mtd
, int chip
)
203 struct s3c2410_nand_info
*info
;
204 struct s3c2410_nand_mtd
*nmtd
;
205 struct nand_chip
*this = mtd
->priv
;
211 cur
= readl(info
->regs
+ S3C2410_NFCONF
);
214 cur
|= S3C2410_NFCONF_nFCE
;
216 if (chip
> nmtd
->set
->nr_chips
) {
217 printk(KERN_ERR PFX
"chip %d out of range\n", chip
);
221 if (info
->platform
!= NULL
) {
222 if (info
->platform
->select_chip
!= NULL
)
223 (info
->platform
->select_chip
)(nmtd
->set
, chip
);
226 cur
&= ~S3C2410_NFCONF_nFCE
;
229 writel(cur
, info
->regs
+ S3C2410_NFCONF
);
232 /* command and control functions */
234 static void s3c2410_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
)
236 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
240 case NAND_CTL_SETNCE
:
241 cur
= readl(info
->regs
+ S3C2410_NFCONF
);
242 cur
&= ~S3C2410_NFCONF_nFCE
;
243 writel(cur
, info
->regs
+ S3C2410_NFCONF
);
246 case NAND_CTL_CLRNCE
:
247 cur
= readl(info
->regs
+ S3C2410_NFCONF
);
248 cur
|= S3C2410_NFCONF_nFCE
;
249 writel(cur
, info
->regs
+ S3C2410_NFCONF
);
252 /* we don't need to implement these */
253 case NAND_CTL_SETCLE
:
254 case NAND_CTL_CLRCLE
:
255 case NAND_CTL_SETALE
:
256 case NAND_CTL_CLRALE
:
257 pr_debug(PFX
"s3c2410_nand_hwcontrol(%d) unusedn", cmd
);
262 /* s3c2410_nand_command
264 * This function implements sending commands and the relevant address
265 * information to the chip, via the hardware controller. Since the
266 * S3C2410 generates the correct ALE/CLE signaling automatically, we
267 * do not need to use hwcontrol.
270 static void s3c2410_nand_command (struct mtd_info
*mtd
, unsigned command
,
271 int column
, int page_addr
)
273 register struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
274 register struct nand_chip
*this = mtd
->priv
;
277 * Write out the command to the device.
279 if (command
== NAND_CMD_SEQIN
) {
282 if (column
>= mtd
->oobblock
) {
284 column
-= mtd
->oobblock
;
285 readcmd
= NAND_CMD_READOOB
;
286 } else if (column
< 256) {
287 /* First 256 bytes --> READ0 */
288 readcmd
= NAND_CMD_READ0
;
291 readcmd
= NAND_CMD_READ1
;
294 writeb(readcmd
, info
->regs
+ S3C2410_NFCMD
);
296 writeb(command
, info
->regs
+ S3C2410_NFCMD
);
298 /* Set ALE and clear CLE to start address cycle */
300 if (column
!= -1 || page_addr
!= -1) {
302 /* Serially input address */
304 /* Adjust columns for 16 bit buswidth */
305 if (this->options
& NAND_BUSWIDTH_16
)
307 writeb(column
, info
->regs
+ S3C2410_NFADDR
);
309 if (page_addr
!= -1) {
310 writeb((unsigned char) (page_addr
), info
->regs
+ S3C2410_NFADDR
);
311 writeb((unsigned char) (page_addr
>> 8), info
->regs
+ S3C2410_NFADDR
);
312 /* One more address cycle for higher density devices */
313 if (this->chipsize
& 0x0c000000)
314 writeb((unsigned char) ((page_addr
>> 16) & 0x0f),
315 info
->regs
+ S3C2410_NFADDR
);
317 /* Latch in address */
321 * program and erase have their own busy handlers
322 * status and sequential in needs no delay
326 case NAND_CMD_PAGEPROG
:
327 case NAND_CMD_ERASE1
:
328 case NAND_CMD_ERASE2
:
330 case NAND_CMD_STATUS
:
337 udelay(this->chip_delay
);
338 writeb(NAND_CMD_STATUS
, info
->regs
+ S3C2410_NFCMD
);
340 while ( !(this->read_byte(mtd
) & 0x40));
343 /* This applies to read commands */
346 * If we don't have access to the busy pin, we apply the given
349 if (!this->dev_ready
) {
350 udelay (this->chip_delay
);
355 /* Apply this short delay always to ensure that we do wait tWB in
356 * any case on any machine. */
358 /* wait until command is processed */
359 while (!this->dev_ready(mtd
));
363 /* s3c2410_nand_devready()
365 * returns 0 if the nand is busy, 1 if it is ready
368 static int s3c2410_nand_devready(struct mtd_info
*mtd
)
370 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
372 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
375 /* ECC handling functions */
377 static int s3c2410_nand_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
378 u_char
*read_ecc
, u_char
*calc_ecc
)
380 pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n",
381 mtd
, dat
, read_ecc
, calc_ecc
);
383 pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
384 read_ecc
[0], read_ecc
[1], read_ecc
[2],
385 calc_ecc
[0], calc_ecc
[1], calc_ecc
[2]);
387 if (read_ecc
[0] == calc_ecc
[0] &&
388 read_ecc
[1] == calc_ecc
[1] &&
389 read_ecc
[2] == calc_ecc
[2])
392 /* we curently have no method for correcting the error */
397 static void s3c2410_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
399 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
402 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
403 ctrl
|= S3C2410_NFCONF_INITECC
;
404 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
407 static int s3c2410_nand_calculate_ecc(struct mtd_info
*mtd
,
408 const u_char
*dat
, u_char
*ecc_code
)
410 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
412 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
413 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
414 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
416 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
417 ecc_code
[0], ecc_code
[1], ecc_code
[2]);
423 /* over-ride the standard functions for a little more speed? */
425 static void s3c2410_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
427 struct nand_chip
*this = mtd
->priv
;
428 readsb(this->IO_ADDR_R
, buf
, len
);
431 static void s3c2410_nand_write_buf(struct mtd_info
*mtd
,
432 const u_char
*buf
, int len
)
434 struct nand_chip
*this = mtd
->priv
;
435 writesb(this->IO_ADDR_W
, buf
, len
);
438 /* device management functions */
440 static int s3c2410_nand_remove(struct device
*dev
)
442 struct s3c2410_nand_info
*info
= to_nand_info(dev
);
444 dev_set_drvdata(dev
, NULL
);
449 /* first thing we need to do is release all our mtds
450 * and their partitions, then go through freeing the
454 if (info
->mtds
!= NULL
) {
455 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
458 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
459 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
460 nand_release(&ptr
->mtd
);
466 /* free the common resources */
468 if (info
->clk
!= NULL
&& !IS_ERR(info
->clk
)) {
469 clk_disable(info
->clk
);
470 clk_unuse(info
->clk
);
474 if (info
->regs
!= NULL
) {
479 if (info
->area
!= NULL
) {
480 release_resource(info
->area
);
490 #ifdef CONFIG_MTD_PARTITIONS
491 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
492 struct s3c2410_nand_mtd
*mtd
,
493 struct s3c2410_nand_set
*set
)
496 return add_mtd_device(&mtd
->mtd
);
498 if (set
->nr_partitions
> 0 && set
->partitions
!= NULL
) {
499 return add_mtd_partitions(&mtd
->mtd
,
504 return add_mtd_device(&mtd
->mtd
);
507 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
508 struct s3c2410_nand_mtd
*mtd
,
509 struct s3c2410_nand_set
*set
)
511 return add_mtd_device(&mtd
->mtd
);
515 /* s3c2410_nand_init_chip
517 * init a single instance of an chip
520 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
521 struct s3c2410_nand_mtd
*nmtd
,
522 struct s3c2410_nand_set
*set
)
524 struct nand_chip
*chip
= &nmtd
->chip
;
526 chip
->IO_ADDR_R
= (char *)info
->regs
+ S3C2410_NFDATA
;
527 chip
->IO_ADDR_W
= (char *)info
->regs
+ S3C2410_NFDATA
;
528 chip
->hwcontrol
= s3c2410_nand_hwcontrol
;
529 chip
->dev_ready
= s3c2410_nand_devready
;
530 chip
->cmdfunc
= s3c2410_nand_command
;
531 chip
->write_buf
= s3c2410_nand_write_buf
;
532 chip
->read_buf
= s3c2410_nand_read_buf
;
533 chip
->select_chip
= s3c2410_nand_select_chip
;
534 chip
->chip_delay
= 50;
537 chip
->controller
= &info
->controller
;
540 nmtd
->mtd
.priv
= chip
;
544 chip
->correct_data
= s3c2410_nand_correct_data
;
545 chip
->enable_hwecc
= s3c2410_nand_enable_hwecc
;
546 chip
->calculate_ecc
= s3c2410_nand_calculate_ecc
;
547 chip
->eccmode
= NAND_ECC_HW3_512
;
548 chip
->autooob
= &nand_hw_eccoob
;
550 chip
->eccmode
= NAND_ECC_SOFT
;
554 /* s3c2410_nand_probe
556 * called by device layer when it finds a device matching
557 * one our driver can handled. This code checks to see if
558 * it can allocate all necessary resources then calls the
559 * nand layer to look for devices
562 static int s3c2410_nand_probe(struct device
*dev
)
564 struct platform_device
*pdev
= to_platform_device(dev
);
565 struct s3c2410_platform_nand
*plat
= to_nand_plat(dev
);
566 struct s3c2410_nand_info
*info
;
567 struct s3c2410_nand_mtd
*nmtd
;
568 struct s3c2410_nand_set
*sets
;
569 struct resource
*res
;
575 pr_debug("s3c2410_nand_probe(%p)\n", dev
);
577 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
579 printk(KERN_ERR PFX
"no memory for flash info\n");
584 memzero(info
, sizeof(*info
));
585 dev_set_drvdata(dev
, info
);
587 spin_lock_init(&info
->controller
.lock
);
589 /* get the clock source and enable it */
591 info
->clk
= clk_get(dev
, "nand");
592 if (IS_ERR(info
->clk
)) {
593 printk(KERN_ERR PFX
"failed to get clock");
599 clk_enable(info
->clk
);
601 /* allocate and map the resource */
603 res
= pdev
->resource
; /* assume that the flash has one resource */
604 size
= res
->end
- res
->start
+ 1;
606 info
->area
= request_mem_region(res
->start
, size
, pdev
->name
);
608 if (info
->area
== NULL
) {
609 printk(KERN_ERR PFX
"cannot reserve register region\n");
615 info
->platform
= plat
;
616 info
->regs
= ioremap(res
->start
, size
);
618 if (info
->regs
== NULL
) {
619 printk(KERN_ERR PFX
"cannot reserve register region\n");
624 printk(KERN_INFO PFX
"mapped registers at %p\n", info
->regs
);
626 /* initialise the hardware */
628 err
= s3c2410_nand_inithw(info
, dev
);
632 sets
= (plat
!= NULL
) ? plat
->sets
: NULL
;
633 nr_sets
= (plat
!= NULL
) ? plat
->nr_sets
: 1;
635 info
->mtd_count
= nr_sets
;
637 /* allocate our information */
639 size
= nr_sets
* sizeof(*info
->mtds
);
640 info
->mtds
= kmalloc(size
, GFP_KERNEL
);
641 if (info
->mtds
== NULL
) {
642 printk(KERN_ERR PFX
"failed to allocate mtd storage\n");
647 memzero(info
->mtds
, size
);
649 /* initialise all possible chips */
653 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++) {
654 pr_debug("initialising set %d (%p, info %p)\n",
657 s3c2410_nand_init_chip(info
, nmtd
, sets
);
659 nmtd
->scan_res
= nand_scan(&nmtd
->mtd
,
660 (sets
) ? sets
->nr_chips
: 1);
662 if (nmtd
->scan_res
== 0) {
663 s3c2410_nand_add_partition(info
, nmtd
, sets
);
670 pr_debug("initialised ok\n");
674 s3c2410_nand_remove(dev
);
681 static struct device_driver s3c2410_nand_driver
= {
682 .name
= "s3c2410-nand",
683 .bus
= &platform_bus_type
,
684 .probe
= s3c2410_nand_probe
,
685 .remove
= s3c2410_nand_remove
,
688 static int __init
s3c2410_nand_init(void)
690 printk("S3C2410 NAND Driver, (c) 2004 Simtec Electronics\n");
691 return driver_register(&s3c2410_nand_driver
);
694 static void __exit
s3c2410_nand_exit(void)
696 driver_unregister(&s3c2410_nand_driver
);
699 module_init(s3c2410_nand_init
);
700 module_exit(s3c2410_nand_exit
);
702 MODULE_LICENSE("GPL");
703 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
704 MODULE_DESCRIPTION("S3C2410 MTD NAND driver");