2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/version.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/pci.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
76 #include <linux/ethtool.h>
82 #include <asm/system.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
121 * Farallon used the DEC vendor ID by mistake and they seem not
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 static struct pci_device_id acenic_pci_tbl
[] = {
138 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
139 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
141 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
143 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
145 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
147 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
153 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
155 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
157 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
162 #ifndef SET_NETDEV_DEV
163 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
166 #if LINUX_VERSION_CODE >= 0x2051c
167 #define ace_sync_irq(irq) synchronize_irq(irq)
169 #define ace_sync_irq(irq) synchronize_irq()
172 #ifndef offset_in_page
173 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
176 #define ACE_MAX_MOD_PARMS 8
177 #define BOARD_IDX_STATIC 0
178 #define BOARD_IDX_OVERFLOW -1
180 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
181 defined(NETIF_F_HW_VLAN_RX)
182 #define ACENIC_DO_VLAN 1
183 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
185 #define ACENIC_DO_VLAN 0
186 #define ACE_RCB_VLAN_FLAG 0
192 * These must be defined before the firmware is included.
194 #define MAX_TEXT_LEN 96*1024
195 #define MAX_RODATA_LEN 8*1024
196 #define MAX_DATA_LEN 2*1024
198 #include "acenic_firmware.h"
200 #ifndef tigon2FwReleaseLocal
201 #define tigon2FwReleaseLocal 0
205 * This driver currently supports Tigon I and Tigon II based cards
206 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
207 * GA620. The driver should also work on the SGI, DEC and Farallon
208 * versions of the card, however I have not been able to test that
211 * This card is really neat, it supports receive hardware checksumming
212 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
213 * firmware. Also the programming interface is quite neat, except for
214 * the parts dealing with the i2c eeprom on the card ;-)
216 * Using jumbo frames:
218 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
219 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
220 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
221 * interface number and <MTU> being the MTU value.
225 * When compiled as a loadable module, the driver allows for a number
226 * of module parameters to be specified. The driver supports the
227 * following module parameters:
229 * trace=<val> - Firmware trace level. This requires special traced
230 * firmware to replace the firmware supplied with
231 * the driver - for debugging purposes only.
233 * link=<val> - Link state. Normally you want to use the default link
234 * parameters set by the driver. This can be used to
235 * override these in case your switch doesn't negotiate
236 * the link properly. Valid values are:
237 * 0x0001 - Force half duplex link.
238 * 0x0002 - Do not negotiate line speed with the other end.
239 * 0x0010 - 10Mbit/sec link.
240 * 0x0020 - 100Mbit/sec link.
241 * 0x0040 - 1000Mbit/sec link.
242 * 0x0100 - Do not negotiate flow control.
243 * 0x0200 - Enable RX flow control Y
244 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
245 * Default value is 0x0270, ie. enable link+flow
246 * control negotiation. Negotiating the highest
247 * possible link speed with RX flow control enabled.
249 * When disabling link speed negotiation, only one link
250 * speed is allowed to be specified!
252 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
253 * to wait for more packets to arive before
254 * interrupting the host, from the time the first
257 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
258 * to wait for more packets to arive in the transmit ring,
259 * before interrupting the host, after transmitting the
260 * first packet in the ring.
262 * max_tx_desc=<val> - maximum number of transmit descriptors
263 * (packets) transmitted before interrupting the host.
265 * max_rx_desc=<val> - maximum number of receive descriptors
266 * (packets) received before interrupting the host.
268 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
269 * increments of the NIC's on board memory to be used for
270 * transmit and receive buffers. For the 1MB NIC app. 800KB
271 * is available, on the 1/2MB NIC app. 300KB is available.
272 * 68KB will always be available as a minimum for both
273 * directions. The default value is a 50/50 split.
274 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
275 * operations, default (1) is to always disable this as
276 * that is what Alteon does on NT. I have not been able
277 * to measure any real performance differences with
278 * this on my systems. Set <val>=0 if you want to
279 * enable these operations.
281 * If you use more than one NIC, specify the parameters for the
282 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
283 * run tracing on NIC #2 but not on NIC #1 and #3.
287 * - Proper multicast support.
288 * - NIC dump support.
289 * - More tuning parameters.
291 * The mini ring is not used under Linux and I am not sure it makes sense
292 * to actually use it.
294 * New interrupt handler strategy:
296 * The old interrupt handler worked using the traditional method of
297 * replacing an skbuff with a new one when a packet arrives. However
298 * the rx rings do not need to contain a static number of buffer
299 * descriptors, thus it makes sense to move the memory allocation out
300 * of the main interrupt handler and do it in a bottom half handler
301 * and only allocate new buffers when the number of buffers in the
302 * ring is below a certain threshold. In order to avoid starving the
303 * NIC under heavy load it is however necessary to force allocation
304 * when hitting a minimum threshold. The strategy for alloction is as
307 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
308 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
309 * the buffers in the interrupt handler
310 * RX_RING_THRES - maximum number of buffers in the rx ring
311 * RX_MINI_THRES - maximum number of buffers in the mini ring
312 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
314 * One advantagous side effect of this allocation approach is that the
315 * entire rx processing can be done without holding any spin lock
316 * since the rx rings and registers are totally independent of the tx
317 * ring and its registers. This of course includes the kmalloc's of
318 * new skb's. Thus start_xmit can run in parallel with rx processing
319 * and the memory allocation on SMP systems.
321 * Note that running the skb reallocation in a bottom half opens up
322 * another can of races which needs to be handled properly. In
323 * particular it can happen that the interrupt handler tries to run
324 * the reallocation while the bottom half is either running on another
325 * CPU or was interrupted on the same CPU. To get around this the
326 * driver uses bitops to prevent the reallocation routines from being
329 * TX handling can also be done without holding any spin lock, wheee
330 * this is fun! since tx_ret_csm is only written to by the interrupt
331 * handler. The case to be aware of is when shutting down the device
332 * and cleaning up where it is necessary to make sure that
333 * start_xmit() is not running while this is happening. Well DaveM
334 * informs me that this case is already protected against ... bye bye
335 * Mr. Spin Lock, it was nice to know you.
337 * TX interrupts are now partly disabled so the NIC will only generate
338 * TX interrupts for the number of coal ticks, not for the number of
339 * TX packets in the queue. This should reduce the number of TX only,
340 * ie. when no RX processing is done, interrupts seen.
344 * Threshold values for RX buffer allocation - the low water marks for
345 * when to start refilling the rings are set to 75% of the ring
346 * sizes. It seems to make sense to refill the rings entirely from the
347 * intrrupt handler once it gets below the panic threshold, that way
348 * we don't risk that the refilling is moved to another CPU when the
349 * one running the interrupt handler just got the slab code hot in its
352 #define RX_RING_SIZE 72
353 #define RX_MINI_SIZE 64
354 #define RX_JUMBO_SIZE 48
356 #define RX_PANIC_STD_THRES 16
357 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
358 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
359 #define RX_PANIC_MINI_THRES 12
360 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
361 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
362 #define RX_PANIC_JUMBO_THRES 6
363 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
364 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
368 * Size of the mini ring entries, basically these just should be big
369 * enough to take TCP ACKs
371 #define ACE_MINI_SIZE 100
373 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
374 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
375 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
378 * There seems to be a magic difference in the effect between 995 and 996
379 * but little difference between 900 and 995 ... no idea why.
381 * There is now a default set of tuning parameters which is set, depending
382 * on whether or not the user enables Jumbo frames. It's assumed that if
383 * Jumbo frames are enabled, the user wants optimal tuning for that case.
385 #define DEF_TX_COAL 400 /* 996 */
386 #define DEF_TX_MAX_DESC 60 /* was 40 */
387 #define DEF_RX_COAL 120 /* 1000 */
388 #define DEF_RX_MAX_DESC 25
389 #define DEF_TX_RATIO 21 /* 24 */
391 #define DEF_JUMBO_TX_COAL 20
392 #define DEF_JUMBO_TX_MAX_DESC 60
393 #define DEF_JUMBO_RX_COAL 30
394 #define DEF_JUMBO_RX_MAX_DESC 6
395 #define DEF_JUMBO_TX_RATIO 21
397 #if tigon2FwReleaseLocal < 20001118
399 * Standard firmware and early modifications duplicate
400 * IRQ load without this flag (coal timer is never reset).
401 * Note that with this flag tx_coal should be less than
402 * time to xmit full tx ring.
403 * 400usec is not so bad for tx ring size of 128.
405 #define TX_COAL_INTS_ONLY 1 /* worth it */
408 * With modified firmware, this is not necessary, but still useful.
410 #define TX_COAL_INTS_ONLY 1
414 #define DEF_STAT (2 * TICKS_PER_SEC)
417 static int link
[ACE_MAX_MOD_PARMS
];
418 static int trace
[ACE_MAX_MOD_PARMS
];
419 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
420 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
421 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
422 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
423 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
424 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
426 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
427 MODULE_LICENSE("GPL");
428 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
430 module_param_array(link
, int, NULL
, 0);
431 module_param_array(trace
, int, NULL
, 0);
432 module_param_array(tx_coal_tick
, int, NULL
, 0);
433 module_param_array(max_tx_desc
, int, NULL
, 0);
434 module_param_array(rx_coal_tick
, int, NULL
, 0);
435 module_param_array(max_rx_desc
, int, NULL
, 0);
436 module_param_array(tx_ratio
, int, NULL
, 0);
437 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
438 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
439 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
440 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
441 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
442 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
443 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
446 static char version
[] __devinitdata
=
447 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
448 " http://home.cern.ch/~jes/gige/acenic.html\n";
450 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
451 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
452 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
454 static struct ethtool_ops ace_ethtool_ops
= {
455 .get_settings
= ace_get_settings
,
456 .set_settings
= ace_set_settings
,
457 .get_drvinfo
= ace_get_drvinfo
,
460 static void ace_watchdog(struct net_device
*dev
);
462 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
463 const struct pci_device_id
*id
)
465 struct net_device
*dev
;
466 struct ace_private
*ap
;
467 static int boards_found
;
469 dev
= alloc_etherdev(sizeof(struct ace_private
));
471 printk(KERN_ERR
"acenic: Unable to allocate "
472 "net_device structure!\n");
476 SET_MODULE_OWNER(dev
);
477 SET_NETDEV_DEV(dev
, &pdev
->dev
);
481 ap
->name
= pci_name(pdev
);
483 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
485 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
486 dev
->vlan_rx_register
= ace_vlan_rx_register
;
487 dev
->vlan_rx_kill_vid
= ace_vlan_rx_kill_vid
;
490 dev
->tx_timeout
= &ace_watchdog
;
491 dev
->watchdog_timeo
= 5*HZ
;
494 dev
->open
= &ace_open
;
495 dev
->stop
= &ace_close
;
496 dev
->hard_start_xmit
= &ace_start_xmit
;
497 dev
->get_stats
= &ace_get_stats
;
498 dev
->set_multicast_list
= &ace_set_multicast_list
;
499 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
500 dev
->set_mac_address
= &ace_set_mac_addr
;
501 dev
->change_mtu
= &ace_change_mtu
;
503 /* we only display this string ONCE */
507 if (pci_enable_device(pdev
))
508 goto fail_free_netdev
;
511 * Enable master mode before we start playing with the
512 * pci_command word since pci_set_master() will modify
515 pci_set_master(pdev
);
517 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
519 /* OpenFirmware on Mac's does not set this - DOH.. */
520 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
521 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
522 "access - was not enabled by BIOS/Firmware\n",
524 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
525 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
530 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
531 if (ap
->pci_latency
<= 0x40) {
532 ap
->pci_latency
= 0x40;
533 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
537 * Remap the regs into kernel space - this is abuse of
538 * dev->base_addr since it was means for I/O port
539 * addresses but who gives a damn.
541 dev
->base_addr
= pci_resource_start(pdev
, 0);
542 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
544 printk(KERN_ERR
"%s: Unable to map I/O register, "
545 "AceNIC %i will be disabled.\n",
546 ap
->name
, boards_found
);
547 goto fail_free_netdev
;
550 switch(pdev
->vendor
) {
551 case PCI_VENDOR_ID_ALTEON
:
552 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
553 printk(KERN_INFO
"%s: Farallon PN9100-T ",
556 printk(KERN_INFO
"%s: Alteon AceNIC ",
560 case PCI_VENDOR_ID_3COM
:
561 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
563 case PCI_VENDOR_ID_NETGEAR
:
564 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
566 case PCI_VENDOR_ID_DEC
:
567 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
568 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
572 case PCI_VENDOR_ID_SGI
:
573 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
576 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
580 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
582 printk("irq %s\n", __irq_itoa(pdev
->irq
));
584 printk("irq %i\n", pdev
->irq
);
587 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
588 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
589 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
590 " support - NIC disabled\n", dev
->name
);
595 if (ace_allocate_descriptors(dev
))
596 goto fail_free_netdev
;
599 if (boards_found
>= ACE_MAX_MOD_PARMS
)
600 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
602 ap
->board_idx
= boards_found
;
604 ap
->board_idx
= BOARD_IDX_STATIC
;
608 goto fail_free_netdev
;
610 if (register_netdev(dev
)) {
611 printk(KERN_ERR
"acenic: device registration failed\n");
614 ap
->name
= dev
->name
;
616 if (ap
->pci_using_dac
)
617 dev
->features
|= NETIF_F_HIGHDMA
;
619 pci_set_drvdata(pdev
, dev
);
625 ace_init_cleanup(dev
);
631 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
633 struct net_device
*dev
= pci_get_drvdata(pdev
);
634 struct ace_private
*ap
= netdev_priv(dev
);
635 struct ace_regs __iomem
*regs
= ap
->regs
;
638 unregister_netdev(dev
);
640 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
641 if (ap
->version
>= 2)
642 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
645 * This clears any pending interrupts
647 writel(1, ®s
->Mb0Lo
);
648 readl(®s
->CpuCtrl
); /* flush */
651 * Make sure no other CPUs are processing interrupts
652 * on the card before the buffers are being released.
653 * Otherwise one might experience some `interesting'
656 * Then release the RX buffers - jumbo buffers were
657 * already released in ace_close().
659 ace_sync_irq(dev
->irq
);
661 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
662 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
665 struct ring_info
*ringp
;
668 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
669 mapping
= pci_unmap_addr(ringp
, mapping
);
670 pci_unmap_page(ap
->pdev
, mapping
,
674 ap
->rx_std_ring
[i
].size
= 0;
675 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
680 if (ap
->version
>= 2) {
681 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
682 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
685 struct ring_info
*ringp
;
688 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
689 mapping
= pci_unmap_addr(ringp
,mapping
);
690 pci_unmap_page(ap
->pdev
, mapping
,
694 ap
->rx_mini_ring
[i
].size
= 0;
695 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
701 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
702 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
704 struct ring_info
*ringp
;
707 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
708 mapping
= pci_unmap_addr(ringp
, mapping
);
709 pci_unmap_page(ap
->pdev
, mapping
,
713 ap
->rx_jumbo_ring
[i
].size
= 0;
714 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
719 ace_init_cleanup(dev
);
723 static struct pci_driver acenic_pci_driver
= {
725 .id_table
= acenic_pci_tbl
,
726 .probe
= acenic_probe_one
,
727 .remove
= __devexit_p(acenic_remove_one
),
730 static int __init
acenic_init(void)
732 return pci_module_init(&acenic_pci_driver
);
735 static void __exit
acenic_exit(void)
737 pci_unregister_driver(&acenic_pci_driver
);
740 module_init(acenic_init
);
741 module_exit(acenic_exit
);
743 static void ace_free_descriptors(struct net_device
*dev
)
745 struct ace_private
*ap
= netdev_priv(dev
);
748 if (ap
->rx_std_ring
!= NULL
) {
749 size
= (sizeof(struct rx_desc
) *
750 (RX_STD_RING_ENTRIES
+
751 RX_JUMBO_RING_ENTRIES
+
752 RX_MINI_RING_ENTRIES
+
753 RX_RETURN_RING_ENTRIES
));
754 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
755 ap
->rx_ring_base_dma
);
756 ap
->rx_std_ring
= NULL
;
757 ap
->rx_jumbo_ring
= NULL
;
758 ap
->rx_mini_ring
= NULL
;
759 ap
->rx_return_ring
= NULL
;
761 if (ap
->evt_ring
!= NULL
) {
762 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
763 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
767 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
768 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
769 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
774 if (ap
->evt_prd
!= NULL
) {
775 pci_free_consistent(ap
->pdev
, sizeof(u32
),
776 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
779 if (ap
->rx_ret_prd
!= NULL
) {
780 pci_free_consistent(ap
->pdev
, sizeof(u32
),
781 (void *)ap
->rx_ret_prd
,
783 ap
->rx_ret_prd
= NULL
;
785 if (ap
->tx_csm
!= NULL
) {
786 pci_free_consistent(ap
->pdev
, sizeof(u32
),
787 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
793 static int ace_allocate_descriptors(struct net_device
*dev
)
795 struct ace_private
*ap
= netdev_priv(dev
);
798 size
= (sizeof(struct rx_desc
) *
799 (RX_STD_RING_ENTRIES
+
800 RX_JUMBO_RING_ENTRIES
+
801 RX_MINI_RING_ENTRIES
+
802 RX_RETURN_RING_ENTRIES
));
804 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
805 &ap
->rx_ring_base_dma
);
806 if (ap
->rx_std_ring
== NULL
)
809 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
810 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
811 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
813 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
815 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
817 if (ap
->evt_ring
== NULL
)
821 * Only allocate a host TX ring for the Tigon II, the Tigon I
822 * has to use PCI registers for this ;-(
824 if (!ACE_IS_TIGON_I(ap
)) {
825 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
827 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
830 if (ap
->tx_ring
== NULL
)
834 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
836 if (ap
->evt_prd
== NULL
)
839 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
840 &ap
->rx_ret_prd_dma
);
841 if (ap
->rx_ret_prd
== NULL
)
844 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
846 if (ap
->tx_csm
== NULL
)
853 ace_init_cleanup(dev
);
859 * Generic cleanup handling data allocated during init. Used when the
860 * module is unloaded or if an error occurs during initialization
862 static void ace_init_cleanup(struct net_device
*dev
)
864 struct ace_private
*ap
;
866 ap
= netdev_priv(dev
);
868 ace_free_descriptors(dev
);
871 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
872 ap
->info
, ap
->info_dma
);
876 kfree(ap
->trace_buf
);
879 free_irq(dev
->irq
, dev
);
886 * Commands are considered to be slow.
888 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
892 idx
= readl(®s
->CmdPrd
);
894 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
895 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
897 writel(idx
, ®s
->CmdPrd
);
901 static int __devinit
ace_init(struct net_device
*dev
)
903 struct ace_private
*ap
;
904 struct ace_regs __iomem
*regs
;
905 struct ace_info
*info
= NULL
;
906 struct pci_dev
*pdev
;
909 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
910 int board_idx
, ecode
= 0;
912 unsigned char cache_size
;
914 ap
= netdev_priv(dev
);
917 board_idx
= ap
->board_idx
;
920 * aman@sgi.com - its useful to do a NIC reset here to
921 * address the `Firmware not running' problem subsequent
922 * to any crashes involving the NIC
924 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
925 readl(®s
->HostCtrl
); /* PCI write posting */
929 * Don't access any other registers before this point!
933 * This will most likely need BYTE_SWAP once we switch
934 * to using __raw_writel()
936 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
939 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
942 readl(®s
->HostCtrl
); /* PCI write posting */
945 * Stop the NIC CPU and clear pending interrupts
947 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
948 readl(®s
->CpuCtrl
); /* PCI write posting */
949 writel(0, ®s
->Mb0Lo
);
951 tig_ver
= readl(®s
->HostCtrl
) >> 28;
954 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
957 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
958 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
960 writel(0, ®s
->LocalCtrl
);
962 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
966 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
967 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
969 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
970 readl(®s
->CpuBCtrl
); /* PCI write posting */
972 * The SRAM bank size does _not_ indicate the amount
973 * of memory on the card, it controls the _bank_ size!
974 * Ie. a 1MB AceNIC will have two banks of 512KB.
976 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
977 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
979 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
982 printk(KERN_WARNING
" Unsupported Tigon version detected "
989 * ModeStat _must_ be set after the SRAM settings as this change
990 * seems to corrupt the ModeStat and possible other registers.
991 * The SRAM settings survive resets and setting it to the same
992 * value a second time works as well. This is what caused the
993 * `Firmware not running' problem on the Tigon II.
996 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
997 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
999 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
1000 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
1002 readl(®s
->ModeStat
); /* PCI write posting */
1005 for(i
= 0; i
< 4; i
++) {
1007 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1012 mac1
|= (tmp
& 0xff);
1015 for(i
= 4; i
< 8; i
++) {
1017 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1022 mac2
|= (tmp
& 0xff);
1025 writel(mac1
, ®s
->MacAddrHi
);
1026 writel(mac2
, ®s
->MacAddrLo
);
1028 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1029 (mac1
>> 8) & 0xff, mac1
& 0xff, (mac2
>> 24) &0xff,
1030 (mac2
>> 16) & 0xff, (mac2
>> 8) & 0xff, mac2
& 0xff);
1032 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1033 dev
->dev_addr
[1] = mac1
& 0xff;
1034 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1035 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1036 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1037 dev
->dev_addr
[5] = mac2
& 0xff;
1040 * Looks like this is necessary to deal with on all architectures,
1041 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1042 * Ie. having two NICs in the machine, one will have the cache
1043 * line set at boot time, the other will not.
1046 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1048 if (cache_size
!= SMP_CACHE_BYTES
) {
1049 printk(KERN_INFO
" PCI cache line size set incorrectly "
1050 "(%i bytes) by BIOS/FW, ", cache_size
);
1051 if (cache_size
> SMP_CACHE_BYTES
)
1052 printk("expecting %i\n", SMP_CACHE_BYTES
);
1054 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1055 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1056 SMP_CACHE_BYTES
>> 2);
1060 pci_state
= readl(®s
->PciState
);
1061 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1062 "latency: %i clks\n",
1063 (pci_state
& PCI_32BIT
) ? 32 : 64,
1064 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1068 * Set the max DMA transfer size. Seems that for most systems
1069 * the performance is better when no MAX parameter is
1070 * set. However for systems enabling PCI write and invalidate,
1071 * DMA writes must be set to the L1 cache line size to get
1072 * optimal performance.
1074 * The default is now to turn the PCI write and invalidate off
1075 * - that is what Alteon does for NT.
1077 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1078 if (ap
->version
>= 2) {
1079 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1081 * Tuning parameters only supported for 8 cards
1083 if (board_idx
== BOARD_IDX_OVERFLOW
||
1084 dis_pci_mem_inval
[board_idx
]) {
1085 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1086 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1087 pci_write_config_word(pdev
, PCI_COMMAND
,
1089 printk(KERN_INFO
" Disabling PCI memory "
1090 "write and invalidate\n");
1092 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1093 printk(KERN_INFO
" PCI memory write & invalidate "
1094 "enabled by BIOS, enabling counter measures\n");
1096 switch(SMP_CACHE_BYTES
) {
1098 tmp
|= DMA_WRITE_MAX_16
;
1101 tmp
|= DMA_WRITE_MAX_32
;
1104 tmp
|= DMA_WRITE_MAX_64
;
1107 tmp
|= DMA_WRITE_MAX_128
;
1110 printk(KERN_INFO
" Cache line size %i not "
1111 "supported, PCI write and invalidate "
1112 "disabled\n", SMP_CACHE_BYTES
);
1113 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1114 pci_write_config_word(pdev
, PCI_COMMAND
,
1122 * On this platform, we know what the best dma settings
1123 * are. We use 64-byte maximum bursts, because if we
1124 * burst larger than the cache line size (or even cross
1125 * a 64byte boundary in a single burst) the UltraSparc
1126 * PCI controller will disconnect at 64-byte multiples.
1128 * Read-multiple will be properly enabled above, and when
1129 * set will give the PCI controller proper hints about
1132 tmp
&= ~DMA_READ_WRITE_MASK
;
1133 tmp
|= DMA_READ_MAX_64
;
1134 tmp
|= DMA_WRITE_MAX_64
;
1137 tmp
&= ~DMA_READ_WRITE_MASK
;
1138 tmp
|= DMA_READ_MAX_128
;
1140 * All the docs say MUST NOT. Well, I did.
1141 * Nothing terrible happens, if we load wrong size.
1142 * Bit w&i still works better!
1144 tmp
|= DMA_WRITE_MAX_128
;
1146 writel(tmp
, ®s
->PciState
);
1150 * The Host PCI bus controller driver has to set FBB.
1151 * If all devices on that PCI bus support FBB, then the controller
1152 * can enable FBB support in the Host PCI Bus controller (or on
1153 * the PCI-PCI bridge if that applies).
1157 * I have received reports from people having problems when this
1160 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1161 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1162 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1163 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1168 * Configure DMA attributes.
1170 if (!pci_set_dma_mask(pdev
, 0xffffffffffffffffULL
)) {
1171 ap
->pci_using_dac
= 1;
1172 } else if (!pci_set_dma_mask(pdev
, 0xffffffffULL
)) {
1173 ap
->pci_using_dac
= 0;
1180 * Initialize the generic info block and the command+event rings
1181 * and the control blocks for the transmit and receive rings
1182 * as they need to be setup once and for all.
1184 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1192 * Get the memory for the skb rings.
1194 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1199 ecode
= request_irq(pdev
->irq
, ace_interrupt
, SA_SHIRQ
,
1202 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1203 DRV_NAME
, pdev
->irq
);
1206 dev
->irq
= pdev
->irq
;
1209 spin_lock_init(&ap
->debug_lock
);
1210 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1211 ap
->last_std_rx
= 0;
1212 ap
->last_mini_rx
= 0;
1215 memset(ap
->info
, 0, sizeof(struct ace_info
));
1216 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1218 ace_load_firmware(dev
);
1221 tmp_ptr
= ap
->info_dma
;
1222 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1223 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1225 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1227 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1228 info
->evt_ctrl
.flags
= 0;
1232 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1233 writel(0, ®s
->EvtCsm
);
1235 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1236 info
->cmd_ctrl
.flags
= 0;
1237 info
->cmd_ctrl
.max_len
= 0;
1239 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1240 writel(0, ®s
->CmdRng
[i
]);
1242 writel(0, ®s
->CmdPrd
);
1243 writel(0, ®s
->CmdCsm
);
1245 tmp_ptr
= ap
->info_dma
;
1246 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1247 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1249 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1250 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1251 info
->rx_std_ctrl
.flags
=
1252 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1254 memset(ap
->rx_std_ring
, 0,
1255 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1257 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1258 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1260 ap
->rx_std_skbprd
= 0;
1261 atomic_set(&ap
->cur_rx_bufs
, 0);
1263 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1264 (ap
->rx_ring_base_dma
+
1265 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1266 info
->rx_jumbo_ctrl
.max_len
= 0;
1267 info
->rx_jumbo_ctrl
.flags
=
1268 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1270 memset(ap
->rx_jumbo_ring
, 0,
1271 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1273 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1274 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1276 ap
->rx_jumbo_skbprd
= 0;
1277 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1279 memset(ap
->rx_mini_ring
, 0,
1280 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1282 if (ap
->version
>= 2) {
1283 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1284 (ap
->rx_ring_base_dma
+
1285 (sizeof(struct rx_desc
) *
1286 (RX_STD_RING_ENTRIES
+
1287 RX_JUMBO_RING_ENTRIES
))));
1288 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1289 info
->rx_mini_ctrl
.flags
=
1290 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1292 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1293 ap
->rx_mini_ring
[i
].flags
=
1294 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1296 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1297 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1298 info
->rx_mini_ctrl
.max_len
= 0;
1301 ap
->rx_mini_skbprd
= 0;
1302 atomic_set(&ap
->cur_mini_bufs
, 0);
1304 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1305 (ap
->rx_ring_base_dma
+
1306 (sizeof(struct rx_desc
) *
1307 (RX_STD_RING_ENTRIES
+
1308 RX_JUMBO_RING_ENTRIES
+
1309 RX_MINI_RING_ENTRIES
))));
1310 info
->rx_return_ctrl
.flags
= 0;
1311 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1313 memset(ap
->rx_return_ring
, 0,
1314 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1316 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1317 *(ap
->rx_ret_prd
) = 0;
1319 writel(TX_RING_BASE
, ®s
->WinBase
);
1321 if (ACE_IS_TIGON_I(ap
)) {
1322 ap
->tx_ring
= (struct tx_desc
*) regs
->Window
;
1323 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1324 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1325 writel(0, (void __iomem
*)ap
->tx_ring
+ i
* 4);
1327 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1329 memset(ap
->tx_ring
, 0,
1330 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1332 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1335 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1336 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1339 * The Tigon I does not like having the TX ring in host memory ;-(
1341 if (!ACE_IS_TIGON_I(ap
))
1342 tmp
|= RCB_FLG_TX_HOST_RING
;
1343 #if TX_COAL_INTS_ONLY
1344 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1346 info
->tx_ctrl
.flags
= tmp
;
1348 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1351 * Potential item for tuning parameter
1354 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1355 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1357 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1358 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1361 writel(0, ®s
->MaskInt
);
1362 writel(1, ®s
->IfIdx
);
1365 * McKinley boxes do not like us fiddling with AssistState
1368 writel(1, ®s
->AssistState
);
1371 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1372 writel(DEF_TRACE
, ®s
->TuneTrace
);
1374 ace_set_rxtx_parms(dev
, 0);
1376 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1377 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1378 "ignoring module parameters!\n",
1379 ap
->name
, ACE_MAX_MOD_PARMS
);
1380 } else if (board_idx
>= 0) {
1381 if (tx_coal_tick
[board_idx
])
1382 writel(tx_coal_tick
[board_idx
],
1383 ®s
->TuneTxCoalTicks
);
1384 if (max_tx_desc
[board_idx
])
1385 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1387 if (rx_coal_tick
[board_idx
])
1388 writel(rx_coal_tick
[board_idx
],
1389 ®s
->TuneRxCoalTicks
);
1390 if (max_rx_desc
[board_idx
])
1391 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1393 if (trace
[board_idx
])
1394 writel(trace
[board_idx
], ®s
->TuneTrace
);
1396 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1397 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1401 * Default link parameters
1403 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1404 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1405 if(ap
->version
>= 2)
1406 tmp
|= LNK_TX_FLOW_CTL_Y
;
1409 * Override link default parameters
1411 if ((board_idx
>= 0) && link
[board_idx
]) {
1412 int option
= link
[board_idx
];
1416 if (option
& 0x01) {
1417 printk(KERN_INFO
"%s: Setting half duplex link\n",
1419 tmp
&= ~LNK_FULL_DUPLEX
;
1422 tmp
&= ~LNK_NEGOTIATE
;
1429 if ((option
& 0x70) == 0) {
1430 printk(KERN_WARNING
"%s: No media speed specified, "
1431 "forcing auto negotiation\n", ap
->name
);
1432 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1433 LNK_100MB
| LNK_10MB
;
1435 if ((option
& 0x100) == 0)
1436 tmp
|= LNK_NEG_FCTL
;
1438 printk(KERN_INFO
"%s: Disabling flow control "
1439 "negotiation\n", ap
->name
);
1441 tmp
|= LNK_RX_FLOW_CTL_Y
;
1442 if ((option
& 0x400) && (ap
->version
>= 2)) {
1443 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1445 tmp
|= LNK_TX_FLOW_CTL_Y
;
1450 writel(tmp
, ®s
->TuneLink
);
1451 if (ap
->version
>= 2)
1452 writel(tmp
, ®s
->TuneFastLink
);
1454 if (ACE_IS_TIGON_I(ap
))
1455 writel(tigonFwStartAddr
, ®s
->Pc
);
1456 if (ap
->version
== 2)
1457 writel(tigon2FwStartAddr
, ®s
->Pc
);
1459 writel(0, ®s
->Mb0Lo
);
1462 * Set tx_csm before we start receiving interrupts, otherwise
1463 * the interrupt handler might think it is supposed to process
1464 * tx ints before we are up and running, which may cause a null
1465 * pointer access in the int handler.
1468 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1471 ace_set_txprd(regs
, ap
, 0);
1472 writel(0, ®s
->RxRetCsm
);
1475 * Zero the stats before starting the interface
1477 memset(&ap
->stats
, 0, sizeof(ap
->stats
));
1480 * Enable DMA engine now.
1481 * If we do this sooner, Mckinley box pukes.
1482 * I assume it's because Tigon II DMA engine wants to check
1483 * *something* even before the CPU is started.
1485 writel(1, ®s
->AssistState
); /* enable DMA */
1490 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1491 readl(®s
->CpuCtrl
);
1494 * Wait for the firmware to spin up - max 3 seconds.
1496 myjif
= jiffies
+ 3 * HZ
;
1497 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1500 if (!ap
->fw_running
) {
1501 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1504 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1505 readl(®s
->CpuCtrl
);
1507 /* aman@sgi.com - account for badly behaving firmware/NIC:
1508 * - have observed that the NIC may continue to generate
1509 * interrupts for some reason; attempt to stop it - halt
1510 * second CPU for Tigon II cards, and also clear Mb0
1511 * - if we're a module, we'll fail to load if this was
1512 * the only GbE card in the system => if the kernel does
1513 * see an interrupt from the NIC, code to handle it is
1514 * gone and OOps! - so free_irq also
1516 if (ap
->version
>= 2)
1517 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1519 writel(0, ®s
->Mb0Lo
);
1520 readl(®s
->Mb0Lo
);
1527 * We load the ring here as there seem to be no way to tell the
1528 * firmware to wipe the ring without re-initializing it.
1530 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1531 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1533 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1535 if (ap
->version
>= 2) {
1536 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1537 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1539 printk(KERN_ERR
"%s: Someone is busy refilling "
1540 "the RX mini ring\n", ap
->name
);
1545 ace_init_cleanup(dev
);
1550 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1552 struct ace_private
*ap
= netdev_priv(dev
);
1553 struct ace_regs __iomem
*regs
= ap
->regs
;
1554 int board_idx
= ap
->board_idx
;
1556 if (board_idx
>= 0) {
1558 if (!tx_coal_tick
[board_idx
])
1559 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1560 if (!max_tx_desc
[board_idx
])
1561 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1562 if (!rx_coal_tick
[board_idx
])
1563 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1564 if (!max_rx_desc
[board_idx
])
1565 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1566 if (!tx_ratio
[board_idx
])
1567 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1569 if (!tx_coal_tick
[board_idx
])
1570 writel(DEF_JUMBO_TX_COAL
,
1571 ®s
->TuneTxCoalTicks
);
1572 if (!max_tx_desc
[board_idx
])
1573 writel(DEF_JUMBO_TX_MAX_DESC
,
1574 ®s
->TuneMaxTxDesc
);
1575 if (!rx_coal_tick
[board_idx
])
1576 writel(DEF_JUMBO_RX_COAL
,
1577 ®s
->TuneRxCoalTicks
);
1578 if (!max_rx_desc
[board_idx
])
1579 writel(DEF_JUMBO_RX_MAX_DESC
,
1580 ®s
->TuneMaxRxDesc
);
1581 if (!tx_ratio
[board_idx
])
1582 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1588 static void ace_watchdog(struct net_device
*data
)
1590 struct net_device
*dev
= data
;
1591 struct ace_private
*ap
= netdev_priv(dev
);
1592 struct ace_regs __iomem
*regs
= ap
->regs
;
1595 * We haven't received a stats update event for more than 2.5
1596 * seconds and there is data in the transmit queue, thus we
1597 * asume the card is stuck.
1599 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1600 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1601 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1602 /* This can happen due to ieee flow control. */
1604 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1607 netif_wake_queue(dev
);
1613 static void ace_tasklet(unsigned long dev
)
1615 struct ace_private
*ap
= netdev_priv((struct net_device
*)dev
);
1618 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1619 if ((cur_size
< RX_LOW_STD_THRES
) &&
1620 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1622 printk("refilling buffers (current %i)\n", cur_size
);
1624 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1627 if (ap
->version
>= 2) {
1628 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1629 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1630 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1632 printk("refilling mini buffers (current %i)\n",
1635 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1639 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1640 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1641 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1643 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1645 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1647 ap
->tasklet_pending
= 0;
1652 * Copy the contents of the NIC's trace buffer to kernel memory.
1654 static void ace_dump_trace(struct ace_private
*ap
)
1658 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1665 * Load the standard rx ring.
1667 * Loading rings is safe without holding the spin lock since this is
1668 * done only before the device is enabled, thus no interrupts are
1669 * generated and by the interrupt handler/tasklet handler.
1671 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1673 struct ace_regs __iomem
*regs
= ap
->regs
;
1677 prefetchw(&ap
->cur_rx_bufs
);
1679 idx
= ap
->rx_std_skbprd
;
1681 for (i
= 0; i
< nr_bufs
; i
++) {
1682 struct sk_buff
*skb
;
1686 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1690 skb_reserve(skb
, NET_IP_ALIGN
);
1691 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1692 offset_in_page(skb
->data
),
1694 PCI_DMA_FROMDEVICE
);
1695 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1696 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1699 rd
= &ap
->rx_std_ring
[idx
];
1700 set_aceaddr(&rd
->addr
, mapping
);
1701 rd
->size
= ACE_STD_BUFSIZE
;
1703 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1709 atomic_add(i
, &ap
->cur_rx_bufs
);
1710 ap
->rx_std_skbprd
= idx
;
1712 if (ACE_IS_TIGON_I(ap
)) {
1714 cmd
.evt
= C_SET_RX_PRD_IDX
;
1716 cmd
.idx
= ap
->rx_std_skbprd
;
1717 ace_issue_cmd(regs
, &cmd
);
1719 writel(idx
, ®s
->RxStdPrd
);
1724 clear_bit(0, &ap
->std_refill_busy
);
1728 printk(KERN_INFO
"Out of memory when allocating "
1729 "standard receive buffers\n");
1734 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1736 struct ace_regs __iomem
*regs
= ap
->regs
;
1739 prefetchw(&ap
->cur_mini_bufs
);
1741 idx
= ap
->rx_mini_skbprd
;
1742 for (i
= 0; i
< nr_bufs
; i
++) {
1743 struct sk_buff
*skb
;
1747 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1751 skb_reserve(skb
, NET_IP_ALIGN
);
1752 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1753 offset_in_page(skb
->data
),
1755 PCI_DMA_FROMDEVICE
);
1756 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1757 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1760 rd
= &ap
->rx_mini_ring
[idx
];
1761 set_aceaddr(&rd
->addr
, mapping
);
1762 rd
->size
= ACE_MINI_BUFSIZE
;
1764 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1770 atomic_add(i
, &ap
->cur_mini_bufs
);
1772 ap
->rx_mini_skbprd
= idx
;
1774 writel(idx
, ®s
->RxMiniPrd
);
1778 clear_bit(0, &ap
->mini_refill_busy
);
1781 printk(KERN_INFO
"Out of memory when allocating "
1782 "mini receive buffers\n");
1788 * Load the jumbo rx ring, this may happen at any time if the MTU
1789 * is changed to a value > 1500.
1791 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1793 struct ace_regs __iomem
*regs
= ap
->regs
;
1796 idx
= ap
->rx_jumbo_skbprd
;
1798 for (i
= 0; i
< nr_bufs
; i
++) {
1799 struct sk_buff
*skb
;
1803 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1807 skb_reserve(skb
, NET_IP_ALIGN
);
1808 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1809 offset_in_page(skb
->data
),
1811 PCI_DMA_FROMDEVICE
);
1812 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1813 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1816 rd
= &ap
->rx_jumbo_ring
[idx
];
1817 set_aceaddr(&rd
->addr
, mapping
);
1818 rd
->size
= ACE_JUMBO_BUFSIZE
;
1820 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1826 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1827 ap
->rx_jumbo_skbprd
= idx
;
1829 if (ACE_IS_TIGON_I(ap
)) {
1831 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1833 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1834 ace_issue_cmd(regs
, &cmd
);
1836 writel(idx
, ®s
->RxJumboPrd
);
1841 clear_bit(0, &ap
->jumbo_refill_busy
);
1844 if (net_ratelimit())
1845 printk(KERN_INFO
"Out of memory when allocating "
1846 "jumbo receive buffers\n");
1852 * All events are considered to be slow (RX/TX ints do not generate
1853 * events) and are handled here, outside the main interrupt handler,
1854 * to reduce the size of the handler.
1856 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1858 struct ace_private
*ap
;
1860 ap
= netdev_priv(dev
);
1862 while (evtcsm
!= evtprd
) {
1863 switch (ap
->evt_ring
[evtcsm
].evt
) {
1865 printk(KERN_INFO
"%s: Firmware up and running\n",
1870 case E_STATS_UPDATED
:
1874 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1878 u32 state
= readl(&ap
->regs
->GigLnkState
);
1879 printk(KERN_WARNING
"%s: Optical link UP "
1880 "(%s Duplex, Flow Control: %s%s)\n",
1882 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1883 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1884 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1888 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1891 case E_C_LINK_10_100
:
1892 printk(KERN_WARNING
"%s: 10/100BaseT link "
1896 printk(KERN_ERR
"%s: Unknown optical link "
1897 "state %02x\n", ap
->name
, code
);
1902 switch(ap
->evt_ring
[evtcsm
].code
) {
1903 case E_C_ERR_INVAL_CMD
:
1904 printk(KERN_ERR
"%s: invalid command error\n",
1907 case E_C_ERR_UNIMP_CMD
:
1908 printk(KERN_ERR
"%s: unimplemented command "
1909 "error\n", ap
->name
);
1911 case E_C_ERR_BAD_CFG
:
1912 printk(KERN_ERR
"%s: bad config error\n",
1916 printk(KERN_ERR
"%s: unknown error %02x\n",
1917 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1920 case E_RESET_JUMBO_RNG
:
1923 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1924 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1925 ap
->rx_jumbo_ring
[i
].size
= 0;
1926 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1927 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1928 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1932 if (ACE_IS_TIGON_I(ap
)) {
1934 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1937 ace_issue_cmd(ap
->regs
, &cmd
);
1939 writel(0, &((ap
->regs
)->RxJumboPrd
));
1944 ap
->rx_jumbo_skbprd
= 0;
1945 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1947 clear_bit(0, &ap
->jumbo_refill_busy
);
1951 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1952 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1954 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1961 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1963 struct ace_private
*ap
= netdev_priv(dev
);
1965 int mini_count
= 0, std_count
= 0;
1969 prefetchw(&ap
->cur_rx_bufs
);
1970 prefetchw(&ap
->cur_mini_bufs
);
1972 while (idx
!= rxretprd
) {
1973 struct ring_info
*rip
;
1974 struct sk_buff
*skb
;
1975 struct rx_desc
*rxdesc
, *retdesc
;
1977 int bd_flags
, desc_type
, mapsize
;
1981 /* make sure the rx descriptor isn't read before rxretprd */
1982 if (idx
== rxretcsm
)
1985 retdesc
= &ap
->rx_return_ring
[idx
];
1986 skbidx
= retdesc
->idx
;
1987 bd_flags
= retdesc
->flags
;
1988 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1992 * Normal frames do not have any flags set
1994 * Mini and normal frames arrive frequently,
1995 * so use a local counter to avoid doing
1996 * atomic operations for each packet arriving.
1999 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
2000 mapsize
= ACE_STD_BUFSIZE
;
2001 rxdesc
= &ap
->rx_std_ring
[skbidx
];
2005 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
2006 mapsize
= ACE_JUMBO_BUFSIZE
;
2007 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
2008 atomic_dec(&ap
->cur_jumbo_bufs
);
2011 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
2012 mapsize
= ACE_MINI_BUFSIZE
;
2013 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
2017 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
2018 "returned by NIC\n", dev
->name
,
2025 pci_unmap_page(ap
->pdev
,
2026 pci_unmap_addr(rip
, mapping
),
2028 PCI_DMA_FROMDEVICE
);
2029 skb_put(skb
, retdesc
->size
);
2034 csum
= retdesc
->tcp_udp_csum
;
2037 skb
->protocol
= eth_type_trans(skb
, dev
);
2040 * Instead of forcing the poor tigon mips cpu to calculate
2041 * pseudo hdr checksum, we do this ourselves.
2043 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2044 skb
->csum
= htons(csum
);
2045 skb
->ip_summed
= CHECKSUM_HW
;
2047 skb
->ip_summed
= CHECKSUM_NONE
;
2052 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2053 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2058 dev
->last_rx
= jiffies
;
2059 ap
->stats
.rx_packets
++;
2060 ap
->stats
.rx_bytes
+= retdesc
->size
;
2062 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2065 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2066 if (!ACE_IS_TIGON_I(ap
))
2067 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2071 * According to the documentation RxRetCsm is obsolete with
2072 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2074 if (ACE_IS_TIGON_I(ap
)) {
2075 writel(idx
, &ap
->regs
->RxRetCsm
);
2086 static inline void ace_tx_int(struct net_device
*dev
,
2089 struct ace_private
*ap
= netdev_priv(dev
);
2092 struct sk_buff
*skb
;
2094 struct tx_ring_info
*info
;
2096 info
= ap
->skb
->tx_skbuff
+ idx
;
2098 mapping
= pci_unmap_addr(info
, mapping
);
2101 pci_unmap_page(ap
->pdev
, mapping
,
2102 pci_unmap_len(info
, maplen
),
2104 pci_unmap_addr_set(info
, mapping
, 0);
2108 ap
->stats
.tx_packets
++;
2109 ap
->stats
.tx_bytes
+= skb
->len
;
2110 dev_kfree_skb_irq(skb
);
2114 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2115 } while (idx
!= txcsm
);
2117 if (netif_queue_stopped(dev
))
2118 netif_wake_queue(dev
);
2121 ap
->tx_ret_csm
= txcsm
;
2123 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2125 * We could try to make it before. In this case we would get
2126 * the following race condition: hard_start_xmit on other cpu
2127 * enters after we advanced tx_ret_csm and fills space,
2128 * which we have just freed, so that we make illegal device wakeup.
2129 * There is no good way to workaround this (at entry
2130 * to ace_start_xmit detects this condition and prevents
2131 * ring corruption, but it is not a good workaround.)
2133 * When tx_ret_csm is advanced after, we wake up device _only_
2134 * if we really have some space in ring (though the core doing
2135 * hard_start_xmit can see full ring for some period and has to
2136 * synchronize.) Superb.
2137 * BUT! We get another subtle race condition. hard_start_xmit
2138 * may think that ring is full between wakeup and advancing
2139 * tx_ret_csm and will stop device instantly! It is not so bad.
2140 * We are guaranteed that there is something in ring, so that
2141 * the next irq will resume transmission. To speedup this we could
2142 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2143 * (see ace_start_xmit).
2145 * Well, this dilemma exists in all lock-free devices.
2146 * We, following scheme used in drivers by Donald Becker,
2147 * select the least dangerous.
2153 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
, struct pt_regs
*ptregs
)
2155 struct net_device
*dev
= (struct net_device
*)dev_id
;
2156 struct ace_private
*ap
= netdev_priv(dev
);
2157 struct ace_regs __iomem
*regs
= ap
->regs
;
2159 u32 txcsm
, rxretcsm
, rxretprd
;
2163 * In case of PCI shared interrupts or spurious interrupts,
2164 * we want to make sure it is actually our interrupt before
2165 * spending any time in here.
2167 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2171 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2172 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2173 * writel(0, ®s->Mb0Lo).
2175 * "IRQ avoidance" recommended in docs applies to IRQs served
2176 * threads and it is wrong even for that case.
2178 writel(0, ®s
->Mb0Lo
);
2179 readl(®s
->Mb0Lo
);
2182 * There is no conflict between transmit handling in
2183 * start_xmit and receive processing, thus there is no reason
2184 * to take a spin lock for RX handling. Wait until we start
2185 * working on the other stuff - hey we don't need a spin lock
2188 rxretprd
= *ap
->rx_ret_prd
;
2189 rxretcsm
= ap
->cur_rx
;
2191 if (rxretprd
!= rxretcsm
)
2192 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2194 txcsm
= *ap
->tx_csm
;
2195 idx
= ap
->tx_ret_csm
;
2199 * If each skb takes only one descriptor this check degenerates
2200 * to identity, because new space has just been opened.
2201 * But if skbs are fragmented we must check that this index
2202 * update releases enough of space, otherwise we just
2203 * wait for device to make more work.
2205 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2206 ace_tx_int(dev
, txcsm
, idx
);
2209 evtcsm
= readl(®s
->EvtCsm
);
2210 evtprd
= *ap
->evt_prd
;
2212 if (evtcsm
!= evtprd
) {
2213 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2214 writel(evtcsm
, ®s
->EvtCsm
);
2218 * This has to go last in the interrupt handler and run with
2219 * the spin lock released ... what lock?
2221 if (netif_running(dev
)) {
2223 int run_tasklet
= 0;
2225 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2226 if (cur_size
< RX_LOW_STD_THRES
) {
2227 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2228 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2230 printk("low on std buffers %i\n", cur_size
);
2232 ace_load_std_rx_ring(ap
,
2233 RX_RING_SIZE
- cur_size
);
2238 if (!ACE_IS_TIGON_I(ap
)) {
2239 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2240 if (cur_size
< RX_LOW_MINI_THRES
) {
2241 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2242 !test_and_set_bit(0,
2243 &ap
->mini_refill_busy
)) {
2245 printk("low on mini buffers %i\n",
2248 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2255 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2256 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2257 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2258 !test_and_set_bit(0,
2259 &ap
->jumbo_refill_busy
)){
2261 printk("low on jumbo buffers %i\n",
2264 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2269 if (run_tasklet
&& !ap
->tasklet_pending
) {
2270 ap
->tasklet_pending
= 1;
2271 tasklet_schedule(&ap
->ace_tasklet
);
2280 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2282 struct ace_private
*ap
= netdev_priv(dev
);
2283 unsigned long flags
;
2285 local_irq_save(flags
);
2290 ace_unmask_irq(dev
);
2291 local_irq_restore(flags
);
2295 static void ace_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
2297 struct ace_private
*ap
= netdev_priv(dev
);
2298 unsigned long flags
;
2300 local_irq_save(flags
);
2304 ap
->vlgrp
->vlan_devices
[vid
] = NULL
;
2306 ace_unmask_irq(dev
);
2307 local_irq_restore(flags
);
2309 #endif /* ACENIC_DO_VLAN */
2312 static int ace_open(struct net_device
*dev
)
2314 struct ace_private
*ap
= netdev_priv(dev
);
2315 struct ace_regs __iomem
*regs
= ap
->regs
;
2318 if (!(ap
->fw_running
)) {
2319 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2323 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2325 cmd
.evt
= C_CLEAR_STATS
;
2328 ace_issue_cmd(regs
, &cmd
);
2330 cmd
.evt
= C_HOST_STATE
;
2331 cmd
.code
= C_C_STACK_UP
;
2333 ace_issue_cmd(regs
, &cmd
);
2336 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2337 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2339 if (dev
->flags
& IFF_PROMISC
) {
2340 cmd
.evt
= C_SET_PROMISC_MODE
;
2341 cmd
.code
= C_C_PROMISC_ENABLE
;
2343 ace_issue_cmd(regs
, &cmd
);
2351 cmd
.evt
= C_LNK_NEGOTIATION
;
2354 ace_issue_cmd(regs
, &cmd
);
2357 netif_start_queue(dev
);
2360 * Setup the bottom half rx ring refill handler
2362 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2367 static int ace_close(struct net_device
*dev
)
2369 struct ace_private
*ap
= netdev_priv(dev
);
2370 struct ace_regs __iomem
*regs
= ap
->regs
;
2372 unsigned long flags
;
2376 * Without (or before) releasing irq and stopping hardware, this
2377 * is an absolute non-sense, by the way. It will be reset instantly
2380 netif_stop_queue(dev
);
2384 cmd
.evt
= C_SET_PROMISC_MODE
;
2385 cmd
.code
= C_C_PROMISC_DISABLE
;
2387 ace_issue_cmd(regs
, &cmd
);
2391 cmd
.evt
= C_HOST_STATE
;
2392 cmd
.code
= C_C_STACK_DOWN
;
2394 ace_issue_cmd(regs
, &cmd
);
2396 tasklet_kill(&ap
->ace_tasklet
);
2399 * Make sure one CPU is not processing packets while
2400 * buffers are being released by another.
2403 local_irq_save(flags
);
2406 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2407 struct sk_buff
*skb
;
2409 struct tx_ring_info
*info
;
2411 info
= ap
->skb
->tx_skbuff
+ i
;
2413 mapping
= pci_unmap_addr(info
, mapping
);
2416 if (ACE_IS_TIGON_I(ap
)) {
2417 struct tx_desc __iomem
*tx
2418 = (struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2419 writel(0, &tx
->addr
.addrhi
);
2420 writel(0, &tx
->addr
.addrlo
);
2421 writel(0, &tx
->flagsize
);
2423 memset(ap
->tx_ring
+ i
, 0,
2424 sizeof(struct tx_desc
));
2425 pci_unmap_page(ap
->pdev
, mapping
,
2426 pci_unmap_len(info
, maplen
),
2428 pci_unmap_addr_set(info
, mapping
, 0);
2437 cmd
.evt
= C_RESET_JUMBO_RNG
;
2440 ace_issue_cmd(regs
, &cmd
);
2443 ace_unmask_irq(dev
);
2444 local_irq_restore(flags
);
2450 static inline dma_addr_t
2451 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2452 struct sk_buff
*tail
, u32 idx
)
2455 struct tx_ring_info
*info
;
2457 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2458 offset_in_page(skb
->data
),
2459 skb
->len
, PCI_DMA_TODEVICE
);
2461 info
= ap
->skb
->tx_skbuff
+ idx
;
2463 pci_unmap_addr_set(info
, mapping
, mapping
);
2464 pci_unmap_len_set(info
, maplen
, skb
->len
);
2470 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2471 u32 flagsize
, u32 vlan_tag
)
2473 #if !USE_TX_COAL_NOW
2474 flagsize
&= ~BD_FLG_COAL_NOW
;
2477 if (ACE_IS_TIGON_I(ap
)) {
2478 struct tx_desc __iomem
*io
= (struct tx_desc __iomem
*) desc
;
2479 writel(addr
>> 32, &io
->addr
.addrhi
);
2480 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2481 writel(flagsize
, &io
->flagsize
);
2483 writel(vlan_tag
, &io
->vlanres
);
2486 desc
->addr
.addrhi
= addr
>> 32;
2487 desc
->addr
.addrlo
= addr
;
2488 desc
->flagsize
= flagsize
;
2490 desc
->vlanres
= vlan_tag
;
2496 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2498 struct ace_private
*ap
= netdev_priv(dev
);
2499 struct ace_regs __iomem
*regs
= ap
->regs
;
2500 struct tx_desc
*desc
;
2502 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2507 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2510 if (!skb_shinfo(skb
)->nr_frags
) {
2514 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2515 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2516 if (skb
->ip_summed
== CHECKSUM_HW
)
2517 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2519 if (vlan_tx_tag_present(skb
)) {
2520 flagsize
|= BD_FLG_VLAN_TAG
;
2521 vlan_tag
= vlan_tx_tag_get(skb
);
2524 desc
= ap
->tx_ring
+ idx
;
2525 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2527 /* Look at ace_tx_int for explanations. */
2528 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2529 flagsize
|= BD_FLG_COAL_NOW
;
2531 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2537 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2538 flagsize
= (skb_headlen(skb
) << 16);
2539 if (skb
->ip_summed
== CHECKSUM_HW
)
2540 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2542 if (vlan_tx_tag_present(skb
)) {
2543 flagsize
|= BD_FLG_VLAN_TAG
;
2544 vlan_tag
= vlan_tx_tag_get(skb
);
2548 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2550 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2552 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2553 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2554 struct tx_ring_info
*info
;
2557 info
= ap
->skb
->tx_skbuff
+ idx
;
2558 desc
= ap
->tx_ring
+ idx
;
2560 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2561 frag
->page_offset
, frag
->size
,
2564 flagsize
= (frag
->size
<< 16);
2565 if (skb
->ip_summed
== CHECKSUM_HW
)
2566 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2567 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2569 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2570 flagsize
|= BD_FLG_END
;
2571 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2572 flagsize
|= BD_FLG_COAL_NOW
;
2575 * Only the last fragment frees
2582 pci_unmap_addr_set(info
, mapping
, mapping
);
2583 pci_unmap_len_set(info
, maplen
, frag
->size
);
2584 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2590 ace_set_txprd(regs
, ap
, idx
);
2592 if (flagsize
& BD_FLG_COAL_NOW
) {
2593 netif_stop_queue(dev
);
2596 * A TX-descriptor producer (an IRQ) might have gotten
2597 * inbetween, making the ring free again. Since xmit is
2598 * serialized, this is the only situation we have to
2601 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2602 netif_wake_queue(dev
);
2605 dev
->trans_start
= jiffies
;
2606 return NETDEV_TX_OK
;
2610 * This race condition is unavoidable with lock-free drivers.
2611 * We wake up the queue _before_ tx_prd is advanced, so that we can
2612 * enter hard_start_xmit too early, while tx ring still looks closed.
2613 * This happens ~1-4 times per 100000 packets, so that we can allow
2614 * to loop syncing to other CPU. Probably, we need an additional
2615 * wmb() in ace_tx_intr as well.
2617 * Note that this race is relieved by reserving one more entry
2618 * in tx ring than it is necessary (see original non-SG driver).
2619 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2620 * is already overkill.
2622 * Alternative is to return with 1 not throttling queue. In this
2623 * case loop becomes longer, no more useful effects.
2625 if (time_before(jiffies
, maxjiff
)) {
2631 /* The ring is stuck full. */
2632 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2633 return NETDEV_TX_BUSY
;
2637 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2639 struct ace_private
*ap
= netdev_priv(dev
);
2640 struct ace_regs __iomem
*regs
= ap
->regs
;
2642 if (new_mtu
> ACE_JUMBO_MTU
)
2645 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2648 if (new_mtu
> ACE_STD_MTU
) {
2650 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2651 "support\n", dev
->name
);
2653 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2654 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2655 ace_set_rxtx_parms(dev
, 1);
2658 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2659 ace_sync_irq(dev
->irq
);
2660 ace_set_rxtx_parms(dev
, 0);
2664 cmd
.evt
= C_RESET_JUMBO_RNG
;
2667 ace_issue_cmd(regs
, &cmd
);
2674 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2676 struct ace_private
*ap
= netdev_priv(dev
);
2677 struct ace_regs __iomem
*regs
= ap
->regs
;
2680 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2682 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2683 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2684 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2685 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2687 ecmd
->port
= PORT_FIBRE
;
2688 ecmd
->transceiver
= XCVR_INTERNAL
;
2690 link
= readl(®s
->GigLnkState
);
2691 if (link
& LNK_1000MB
)
2692 ecmd
->speed
= SPEED_1000
;
2694 link
= readl(®s
->FastLnkState
);
2695 if (link
& LNK_100MB
)
2696 ecmd
->speed
= SPEED_100
;
2697 else if (link
& LNK_10MB
)
2698 ecmd
->speed
= SPEED_10
;
2702 if (link
& LNK_FULL_DUPLEX
)
2703 ecmd
->duplex
= DUPLEX_FULL
;
2705 ecmd
->duplex
= DUPLEX_HALF
;
2707 if (link
& LNK_NEGOTIATE
)
2708 ecmd
->autoneg
= AUTONEG_ENABLE
;
2710 ecmd
->autoneg
= AUTONEG_DISABLE
;
2714 * Current struct ethtool_cmd is insufficient
2716 ecmd
->trace
= readl(®s
->TuneTrace
);
2718 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2719 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2721 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2722 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2727 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2729 struct ace_private
*ap
= netdev_priv(dev
);
2730 struct ace_regs __iomem
*regs
= ap
->regs
;
2733 link
= readl(®s
->GigLnkState
);
2734 if (link
& LNK_1000MB
)
2737 link
= readl(®s
->FastLnkState
);
2738 if (link
& LNK_100MB
)
2740 else if (link
& LNK_10MB
)
2746 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2747 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2748 if (!ACE_IS_TIGON_I(ap
))
2749 link
|= LNK_TX_FLOW_CTL_Y
;
2750 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2751 link
|= LNK_NEGOTIATE
;
2752 if (ecmd
->speed
!= speed
) {
2753 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2767 if (ecmd
->duplex
== DUPLEX_FULL
)
2768 link
|= LNK_FULL_DUPLEX
;
2770 if (link
!= ap
->link
) {
2772 printk(KERN_INFO
"%s: Renegotiating link state\n",
2776 writel(link
, ®s
->TuneLink
);
2777 if (!ACE_IS_TIGON_I(ap
))
2778 writel(link
, ®s
->TuneFastLink
);
2781 cmd
.evt
= C_LNK_NEGOTIATION
;
2784 ace_issue_cmd(regs
, &cmd
);
2789 static void ace_get_drvinfo(struct net_device
*dev
,
2790 struct ethtool_drvinfo
*info
)
2792 struct ace_private
*ap
= netdev_priv(dev
);
2794 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2795 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2796 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2800 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2801 sizeof(info
->bus_info
));
2806 * Set the hardware MAC address.
2808 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2810 struct ace_private
*ap
= netdev_priv(dev
);
2811 struct ace_regs __iomem
*regs
= ap
->regs
;
2812 struct sockaddr
*addr
=p
;
2816 if(netif_running(dev
))
2819 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2821 da
= (u8
*)dev
->dev_addr
;
2823 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2824 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2827 cmd
.evt
= C_SET_MAC_ADDR
;
2830 ace_issue_cmd(regs
, &cmd
);
2836 static void ace_set_multicast_list(struct net_device
*dev
)
2838 struct ace_private
*ap
= netdev_priv(dev
);
2839 struct ace_regs __iomem
*regs
= ap
->regs
;
2842 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2843 cmd
.evt
= C_SET_MULTICAST_MODE
;
2844 cmd
.code
= C_C_MCAST_ENABLE
;
2846 ace_issue_cmd(regs
, &cmd
);
2848 } else if (ap
->mcast_all
) {
2849 cmd
.evt
= C_SET_MULTICAST_MODE
;
2850 cmd
.code
= C_C_MCAST_DISABLE
;
2852 ace_issue_cmd(regs
, &cmd
);
2856 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2857 cmd
.evt
= C_SET_PROMISC_MODE
;
2858 cmd
.code
= C_C_PROMISC_ENABLE
;
2860 ace_issue_cmd(regs
, &cmd
);
2862 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2863 cmd
.evt
= C_SET_PROMISC_MODE
;
2864 cmd
.code
= C_C_PROMISC_DISABLE
;
2866 ace_issue_cmd(regs
, &cmd
);
2871 * For the time being multicast relies on the upper layers
2872 * filtering it properly. The Firmware does not allow one to
2873 * set the entire multicast list at a time and keeping track of
2874 * it here is going to be messy.
2876 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2877 cmd
.evt
= C_SET_MULTICAST_MODE
;
2878 cmd
.code
= C_C_MCAST_ENABLE
;
2880 ace_issue_cmd(regs
, &cmd
);
2881 }else if (!ap
->mcast_all
) {
2882 cmd
.evt
= C_SET_MULTICAST_MODE
;
2883 cmd
.code
= C_C_MCAST_DISABLE
;
2885 ace_issue_cmd(regs
, &cmd
);
2890 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2892 struct ace_private
*ap
= netdev_priv(dev
);
2893 struct ace_mac_stats __iomem
*mac_stats
=
2894 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2896 ap
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2897 ap
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2898 ap
->stats
.collisions
= readl(&mac_stats
->coll
);
2904 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, void *src
,
2907 void __iomem
*tdest
;
2915 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2916 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2917 tdest
= (void __iomem
*) ®s
->Window
+
2918 (dest
& (ACE_WINDOW_SIZE
- 1));
2919 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2921 * This requires byte swapping on big endian, however
2922 * writel does that for us
2925 for (i
= 0; i
< (tsize
/ 4); i
++) {
2926 writel(wsrc
[i
], tdest
+ i
*4);
2937 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2939 void __iomem
*tdest
;
2946 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2947 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2948 tdest
= (void __iomem
*) ®s
->Window
+
2949 (dest
& (ACE_WINDOW_SIZE
- 1));
2950 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2952 for (i
= 0; i
< (tsize
/ 4); i
++) {
2953 writel(0, tdest
+ i
*4);
2965 * Download the firmware into the SRAM on the NIC
2967 * This operation requires the NIC to be halted and is performed with
2968 * interrupts disabled and with the spinlock hold.
2970 int __devinit
ace_load_firmware(struct net_device
*dev
)
2972 struct ace_private
*ap
= netdev_priv(dev
);
2973 struct ace_regs __iomem
*regs
= ap
->regs
;
2975 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2976 printk(KERN_ERR
"%s: trying to download firmware while the "
2977 "CPU is running!\n", ap
->name
);
2982 * Do not try to clear more than 512KB or we end up seeing
2983 * funny things on NICs with only 512KB SRAM
2985 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2986 if (ACE_IS_TIGON_I(ap
)) {
2987 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
2988 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
2989 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
2991 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
2992 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
2993 }else if (ap
->version
== 2) {
2994 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
2995 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
2996 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
2997 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
2999 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
3007 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3009 * Accessing the EEPROM is `interesting' to say the least - don't read
3010 * this code right after dinner.
3012 * This is all about black magic and bit-banging the device .... I
3013 * wonder in what hospital they have put the guy who designed the i2c
3016 * Oh yes, this is only the beginning!
3018 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3019 * code i2c readout code by beta testing all my hacks.
3021 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
3025 readl(®s
->LocalCtrl
);
3026 udelay(ACE_SHORT_DELAY
);
3027 local
= readl(®s
->LocalCtrl
);
3028 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
3029 writel(local
, ®s
->LocalCtrl
);
3030 readl(®s
->LocalCtrl
);
3032 udelay(ACE_SHORT_DELAY
);
3033 local
|= EEPROM_CLK_OUT
;
3034 writel(local
, ®s
->LocalCtrl
);
3035 readl(®s
->LocalCtrl
);
3037 udelay(ACE_SHORT_DELAY
);
3038 local
&= ~EEPROM_DATA_OUT
;
3039 writel(local
, ®s
->LocalCtrl
);
3040 readl(®s
->LocalCtrl
);
3042 udelay(ACE_SHORT_DELAY
);
3043 local
&= ~EEPROM_CLK_OUT
;
3044 writel(local
, ®s
->LocalCtrl
);
3045 readl(®s
->LocalCtrl
);
3050 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
3055 udelay(ACE_SHORT_DELAY
);
3056 local
= readl(®s
->LocalCtrl
);
3057 local
&= ~EEPROM_DATA_OUT
;
3058 local
|= EEPROM_WRITE_ENABLE
;
3059 writel(local
, ®s
->LocalCtrl
);
3060 readl(®s
->LocalCtrl
);
3063 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3064 udelay(ACE_SHORT_DELAY
);
3066 local
|= EEPROM_DATA_OUT
;
3068 local
&= ~EEPROM_DATA_OUT
;
3069 writel(local
, ®s
->LocalCtrl
);
3070 readl(®s
->LocalCtrl
);
3073 udelay(ACE_SHORT_DELAY
);
3074 local
|= EEPROM_CLK_OUT
;
3075 writel(local
, ®s
->LocalCtrl
);
3076 readl(®s
->LocalCtrl
);
3078 udelay(ACE_SHORT_DELAY
);
3079 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3080 writel(local
, ®s
->LocalCtrl
);
3081 readl(®s
->LocalCtrl
);
3087 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3092 local
= readl(®s
->LocalCtrl
);
3093 local
&= ~EEPROM_WRITE_ENABLE
;
3094 writel(local
, ®s
->LocalCtrl
);
3095 readl(®s
->LocalCtrl
);
3097 udelay(ACE_LONG_DELAY
);
3098 local
|= EEPROM_CLK_OUT
;
3099 writel(local
, ®s
->LocalCtrl
);
3100 readl(®s
->LocalCtrl
);
3102 udelay(ACE_SHORT_DELAY
);
3103 /* sample data in middle of high clk */
3104 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3105 udelay(ACE_SHORT_DELAY
);
3107 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3108 readl(®s
->LocalCtrl
);
3115 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3119 udelay(ACE_SHORT_DELAY
);
3120 local
= readl(®s
->LocalCtrl
);
3121 local
|= EEPROM_WRITE_ENABLE
;
3122 writel(local
, ®s
->LocalCtrl
);
3123 readl(®s
->LocalCtrl
);
3125 udelay(ACE_SHORT_DELAY
);
3126 local
&= ~EEPROM_DATA_OUT
;
3127 writel(local
, ®s
->LocalCtrl
);
3128 readl(®s
->LocalCtrl
);
3130 udelay(ACE_SHORT_DELAY
);
3131 local
|= EEPROM_CLK_OUT
;
3132 writel(local
, ®s
->LocalCtrl
);
3133 readl(®s
->LocalCtrl
);
3135 udelay(ACE_SHORT_DELAY
);
3136 local
|= EEPROM_DATA_OUT
;
3137 writel(local
, ®s
->LocalCtrl
);
3138 readl(®s
->LocalCtrl
);
3140 udelay(ACE_LONG_DELAY
);
3141 local
&= ~EEPROM_CLK_OUT
;
3142 writel(local
, ®s
->LocalCtrl
);
3148 * Read a whole byte from the EEPROM.
3150 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3151 unsigned long offset
)
3153 struct ace_private
*ap
= netdev_priv(dev
);
3154 struct ace_regs __iomem
*regs
= ap
->regs
;
3155 unsigned long flags
;
3161 printk(KERN_ERR
"No device!\n");
3167 * Don't take interrupts on this CPU will bit banging
3168 * the %#%#@$ I2C device
3170 local_irq_save(flags
);
3174 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3175 if (eeprom_check_ack(regs
)) {
3176 local_irq_restore(flags
);
3177 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3179 goto eeprom_read_error
;
3182 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3183 if (eeprom_check_ack(regs
)) {
3184 local_irq_restore(flags
);
3185 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3188 goto eeprom_read_error
;
3191 eeprom_prep(regs
, offset
& 0xff);
3192 if (eeprom_check_ack(regs
)) {
3193 local_irq_restore(flags
);
3194 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3197 goto eeprom_read_error
;
3201 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3202 if (eeprom_check_ack(regs
)) {
3203 local_irq_restore(flags
);
3204 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3207 goto eeprom_read_error
;
3210 for (i
= 0; i
< 8; i
++) {
3211 local
= readl(®s
->LocalCtrl
);
3212 local
&= ~EEPROM_WRITE_ENABLE
;
3213 writel(local
, ®s
->LocalCtrl
);
3214 readl(®s
->LocalCtrl
);
3215 udelay(ACE_LONG_DELAY
);
3217 local
|= EEPROM_CLK_OUT
;
3218 writel(local
, ®s
->LocalCtrl
);
3219 readl(®s
->LocalCtrl
);
3221 udelay(ACE_SHORT_DELAY
);
3222 /* sample data mid high clk */
3223 result
= (result
<< 1) |
3224 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3225 udelay(ACE_SHORT_DELAY
);
3227 local
= readl(®s
->LocalCtrl
);
3228 local
&= ~EEPROM_CLK_OUT
;
3229 writel(local
, ®s
->LocalCtrl
);
3230 readl(®s
->LocalCtrl
);
3231 udelay(ACE_SHORT_DELAY
);
3234 local
|= EEPROM_WRITE_ENABLE
;
3235 writel(local
, ®s
->LocalCtrl
);
3236 readl(®s
->LocalCtrl
);
3238 udelay(ACE_SHORT_DELAY
);
3242 local
|= EEPROM_DATA_OUT
;
3243 writel(local
, ®s
->LocalCtrl
);
3244 readl(®s
->LocalCtrl
);
3246 udelay(ACE_SHORT_DELAY
);
3247 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3248 readl(®s
->LocalCtrl
);
3249 udelay(ACE_LONG_DELAY
);
3250 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3251 readl(®s
->LocalCtrl
);
3253 udelay(ACE_SHORT_DELAY
);
3256 local_irq_restore(flags
);
3261 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3269 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"