2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * Gianfar: AKA Lambda Draconis, "Dragon"
25 * This driver is designed for the Triple-speed Ethernet
26 * controllers on the Freescale 8540/8560 integrated processors,
27 * as well as the Fast Ethernet Controller on the 8540.
29 * The driver is initialized through platform_device. Structures which
30 * define the configuration needed by the board are defined in a
31 * board structure in arch/ppc/platforms (though I do not
32 * discount the possibility that other architectures could one
33 * day be supported. One assumption the driver currently makes
34 * is that the PHY is configured in such a way to advertise all
35 * capabilities. This is a sensible default, and on certain
36 * PHYs, changing this default encounters substantial errata
37 * issues. Future versions may remove this requirement, but for
38 * now, it is best for the firmware to ensure this is the case.
40 * The Gianfar Ethernet Controller uses a ring of buffer
41 * descriptors. The beginning is indicated by a register
42 * pointing to the physical address of the start of the ring.
43 * The end is determined by a "wrap" bit being set in the
44 * last descriptor of the ring.
46 * When a packet is received, the RXF bit in the
47 * IEVENT register is set, triggering an interrupt when the
48 * corresponding bit in the IMASK register is also set (if
49 * interrupt coalescing is active, then the interrupt may not
50 * happen immediately, but will wait until either a set number
51 * of frames or amount of time have passed.). In NAPI, the
52 * interrupt handler will signal there is work to be done, and
53 * exit. Without NAPI, the packet(s) will be handled
54 * immediately. Both methods will start at the last known empty
55 * descriptor, and process every subsequent descriptor until there
56 * are none left with data (NAPI will stop after a set number of
57 * packets to give time to other tasks, but will eventually
58 * process all the packets). The data arrives inside a
59 * pre-allocated skb, and so after the skb is passed up to the
60 * stack, a new skb must be allocated, and the address field in
61 * the buffer descriptor must be updated to indicate this new
64 * When the kernel requests that a packet be transmitted, the
65 * driver starts where it left off last time, and points the
66 * descriptor at the buffer which was passed in. The driver
67 * then informs the DMA engine that there are packets ready to
68 * be transmitted. Once the controller is finished transmitting
69 * the packet, an interrupt may be triggered (under the same
70 * conditions as for reception, but depending on the TXF bit).
71 * The driver then cleans up the buffer.
74 #include <linux/config.h>
75 #include <linux/kernel.h>
76 #include <linux/sched.h>
77 #include <linux/string.h>
78 #include <linux/errno.h>
79 #include <linux/slab.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/delay.h>
83 #include <linux/netdevice.h>
84 #include <linux/etherdevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/spinlock.h>
88 #include <linux/device.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/version.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
99 #include "gianfar_phy.h"
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
109 #define RECEIVE(x) netif_rx(x)
112 const char gfar_driver_name
[] = "Gianfar Ethernet";
113 const char gfar_driver_version
[] = "1.1";
115 int startup_gfar(struct net_device
*dev
);
116 static int gfar_enet_open(struct net_device
*dev
);
117 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
118 static void gfar_timeout(struct net_device
*dev
);
119 static int gfar_close(struct net_device
*dev
);
120 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
121 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
122 static int gfar_set_mac_address(struct net_device
*dev
);
123 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
124 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
125 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
126 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
);
127 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
128 static irqreturn_t
phy_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
129 static void gfar_phy_change(void *data
);
130 static void gfar_phy_timer(unsigned long data
);
131 static void adjust_link(struct net_device
*dev
);
132 static void init_registers(struct net_device
*dev
);
133 static int init_phy(struct net_device
*dev
);
134 static int gfar_probe(struct device
*device
);
135 static int gfar_remove(struct device
*device
);
136 void free_skb_resources(struct gfar_private
*priv
);
137 static void gfar_set_multi(struct net_device
*dev
);
138 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
139 #ifdef CONFIG_GFAR_NAPI
140 static int gfar_poll(struct net_device
*dev
, int *budget
);
142 static int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
143 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
144 static void gfar_phy_startup_timer(unsigned long data
);
146 extern struct ethtool_ops gfar_ethtool_ops
;
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
152 static int gfar_probe(struct device
*device
)
155 struct net_device
*dev
= NULL
;
156 struct gfar_private
*priv
= NULL
;
157 struct platform_device
*pdev
= to_platform_device(device
);
158 struct gianfar_platform_data
*einfo
;
162 int dev_ethtool_ops
= 0;
164 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
167 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
173 /* Create an ethernet device instance */
174 dev
= alloc_etherdev(sizeof (*priv
));
179 priv
= netdev_priv(dev
);
181 /* Set the info in the priv to the current info */
184 /* fill out IRQ fields */
185 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
186 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
187 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
188 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
190 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
193 /* get a pointer to the register memory */
194 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
195 priv
->regs
= (struct gfar
*)
196 ioremap(r
->start
, sizeof (struct gfar
));
198 if (priv
->regs
== NULL
) {
203 /* Set the PHY base address */
204 priv
->phyregs
= (struct gfar
*)
205 ioremap(einfo
->phy_reg_addr
, sizeof (struct gfar
));
207 if (priv
->phyregs
== NULL
) {
212 spin_lock_init(&priv
->lock
);
214 dev_set_drvdata(device
, dev
);
216 /* Stop the DMA engine now, in case it was running before */
217 /* (The firmware could have used it, and left it running). */
218 /* To do this, we write Graceful Receive Stop and Graceful */
219 /* Transmit Stop, and then wait until the corresponding bits */
220 /* in IEVENT indicate the stops have completed. */
221 tempval
= gfar_read(&priv
->regs
->dmactrl
);
222 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
223 gfar_write(&priv
->regs
->dmactrl
, tempval
);
225 tempval
= gfar_read(&priv
->regs
->dmactrl
);
226 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
227 gfar_write(&priv
->regs
->dmactrl
, tempval
);
229 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
232 /* Reset MAC layer */
233 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
235 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
236 gfar_write(&priv
->regs
->maccfg1
, tempval
);
238 /* Initialize MACCFG2. */
239 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
241 /* Initialize ECNTRL */
242 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
244 /* Copy the station address into the dev structure, */
245 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
247 /* Set the dev->base_addr to the gfar reg region */
248 dev
->base_addr
= (unsigned long) (priv
->regs
);
250 SET_MODULE_OWNER(dev
);
251 SET_NETDEV_DEV(dev
, device
);
253 /* Fill in the dev structure */
254 dev
->open
= gfar_enet_open
;
255 dev
->hard_start_xmit
= gfar_start_xmit
;
256 dev
->tx_timeout
= gfar_timeout
;
257 dev
->watchdog_timeo
= TX_TIMEOUT
;
258 #ifdef CONFIG_GFAR_NAPI
259 dev
->poll
= gfar_poll
;
260 dev
->weight
= GFAR_DEV_WEIGHT
;
262 dev
->stop
= gfar_close
;
263 dev
->get_stats
= gfar_get_stats
;
264 dev
->change_mtu
= gfar_change_mtu
;
266 dev
->set_multicast_list
= gfar_set_multi
;
268 /* Index into the array of possible ethtool
269 * ops to catch all 4 possibilities */
270 if((priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) == 0)
271 dev_ethtool_ops
+= 1;
273 if((priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_COALESCE
) == 0)
274 dev_ethtool_ops
+= 2;
276 dev
->ethtool_ops
= gfar_op_array
[dev_ethtool_ops
];
278 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
279 #ifdef CONFIG_GFAR_BUFSTASH
280 priv
->rx_stash_size
= STASH_LENGTH
;
282 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
283 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
285 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
286 priv
->txcount
= DEFAULT_TXCOUNT
;
287 priv
->txtime
= DEFAULT_TXTIME
;
288 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
289 priv
->rxcount
= DEFAULT_RXCOUNT
;
290 priv
->rxtime
= DEFAULT_RXTIME
;
292 err
= register_netdev(dev
);
295 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
300 /* Print out the device info */
301 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
302 for (idx
= 0; idx
< 6; idx
++)
303 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
306 /* Even more device info helps when determining which kernel */
307 /* provided which set of benchmarks. Since this is global for all */
308 /* devices, we only print it once */
309 #ifdef CONFIG_GFAR_NAPI
310 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
312 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
314 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
315 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
320 iounmap((void *) priv
->phyregs
);
322 iounmap((void *) priv
->regs
);
328 static int gfar_remove(struct device
*device
)
330 struct net_device
*dev
= dev_get_drvdata(device
);
331 struct gfar_private
*priv
= netdev_priv(dev
);
333 dev_set_drvdata(device
, NULL
);
335 iounmap((void *) priv
->regs
);
336 iounmap((void *) priv
->phyregs
);
343 /* Configure the PHY for dev.
344 * returns 0 if success. -1 if failure
346 static int init_phy(struct net_device
*dev
)
348 struct gfar_private
*priv
= netdev_priv(dev
);
349 struct phy_info
*curphy
;
350 unsigned int timeout
= PHY_INIT_TIMEOUT
;
351 struct gfar
*phyregs
= priv
->phyregs
;
352 struct gfar_mii_info
*mii_info
;
357 priv
->oldduplex
= -1;
359 mii_info
= kmalloc(sizeof(struct gfar_mii_info
),
362 if(NULL
== mii_info
) {
363 printk(KERN_ERR
"%s: Could not allocate mii_info\n",
368 mii_info
->speed
= SPEED_1000
;
369 mii_info
->duplex
= DUPLEX_FULL
;
373 mii_info
->advertising
= (ADVERTISED_10baseT_Half
|
374 ADVERTISED_10baseT_Full
|
375 ADVERTISED_100baseT_Half
|
376 ADVERTISED_100baseT_Full
|
377 ADVERTISED_1000baseT_Full
);
378 mii_info
->autoneg
= 1;
380 spin_lock_init(&mii_info
->mdio_lock
);
382 mii_info
->mii_id
= priv
->einfo
->phyid
;
386 mii_info
->mdio_read
= &read_phy_reg
;
387 mii_info
->mdio_write
= &write_phy_reg
;
389 priv
->mii_info
= mii_info
;
391 /* Reset the management interface */
392 gfar_write(&phyregs
->miimcfg
, MIIMCFG_RESET
);
394 /* Setup the MII Mgmt clock speed */
395 gfar_write(&phyregs
->miimcfg
, MIIMCFG_INIT_VALUE
);
397 /* Wait until the bus is free */
398 while ((gfar_read(&phyregs
->miimind
) & MIIMIND_BUSY
) &&
403 printk(KERN_ERR
"%s: The MII Bus is stuck!\n",
409 /* get info for this PHY */
410 curphy
= get_phy_info(priv
->mii_info
);
412 if (curphy
== NULL
) {
413 printk(KERN_ERR
"%s: No PHY found\n", dev
->name
);
418 mii_info
->phyinfo
= curphy
;
420 /* Run the commands which initialize the PHY */
422 err
= curphy
->init(priv
->mii_info
);
438 static void init_registers(struct net_device
*dev
)
440 struct gfar_private
*priv
= netdev_priv(dev
);
443 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
445 /* Initialize IMASK */
446 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
448 /* Init hash registers to zero */
449 gfar_write(&priv
->regs
->iaddr0
, 0);
450 gfar_write(&priv
->regs
->iaddr1
, 0);
451 gfar_write(&priv
->regs
->iaddr2
, 0);
452 gfar_write(&priv
->regs
->iaddr3
, 0);
453 gfar_write(&priv
->regs
->iaddr4
, 0);
454 gfar_write(&priv
->regs
->iaddr5
, 0);
455 gfar_write(&priv
->regs
->iaddr6
, 0);
456 gfar_write(&priv
->regs
->iaddr7
, 0);
458 gfar_write(&priv
->regs
->gaddr0
, 0);
459 gfar_write(&priv
->regs
->gaddr1
, 0);
460 gfar_write(&priv
->regs
->gaddr2
, 0);
461 gfar_write(&priv
->regs
->gaddr3
, 0);
462 gfar_write(&priv
->regs
->gaddr4
, 0);
463 gfar_write(&priv
->regs
->gaddr5
, 0);
464 gfar_write(&priv
->regs
->gaddr6
, 0);
465 gfar_write(&priv
->regs
->gaddr7
, 0);
468 gfar_write(&priv
->regs
->rctrl
, 0x00000000);
470 /* Zero out the rmon mib registers if it has them */
471 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
472 memset((void *) &(priv
->regs
->rmon
), 0,
473 sizeof (struct rmon_mib
));
475 /* Mask off the CAM interrupts */
476 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
477 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
480 /* Initialize the max receive buffer length */
481 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
483 #ifdef CONFIG_GFAR_BUFSTASH
484 /* If we are stashing buffers, we need to set the
485 * extraction length to the size of the buffer */
486 gfar_write(&priv
->regs
->attreli
, priv
->rx_stash_size
<< 16);
489 /* Initialize the Minimum Frame Length Register */
490 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
492 /* Setup Attributes so that snooping is on for rx */
493 gfar_write(&priv
->regs
->attr
, ATTR_INIT_SETTINGS
);
494 gfar_write(&priv
->regs
->attreli
, ATTRELI_INIT_SETTINGS
);
496 /* Assign the TBI an address which won't conflict with the PHYs */
497 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
500 void stop_gfar(struct net_device
*dev
)
502 struct gfar_private
*priv
= netdev_priv(dev
);
503 struct gfar
*regs
= priv
->regs
;
508 spin_lock_irqsave(&priv
->lock
, flags
);
510 /* Tell the kernel the link is down */
511 priv
->mii_info
->link
= 0;
514 /* Mask all interrupts */
515 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
517 /* Clear all interrupts */
518 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
520 /* Stop the DMA, and wait for it to stop */
521 tempval
= gfar_read(&priv
->regs
->dmactrl
);
522 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
523 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
524 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
525 gfar_write(&priv
->regs
->dmactrl
, tempval
);
527 while (!(gfar_read(&priv
->regs
->ievent
) &
528 (IEVENT_GRSC
| IEVENT_GTSC
)))
532 /* Disable Rx and Tx */
533 tempval
= gfar_read(®s
->maccfg1
);
534 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
535 gfar_write(®s
->maccfg1
, tempval
);
537 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
) {
538 /* Clear any pending interrupts */
539 mii_clear_phy_interrupt(priv
->mii_info
);
541 /* Disable PHY Interrupts */
542 mii_configure_phy_interrupt(priv
->mii_info
,
543 MII_INTERRUPT_DISABLED
);
546 spin_unlock_irqrestore(&priv
->lock
, flags
);
549 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
550 free_irq(priv
->interruptError
, dev
);
551 free_irq(priv
->interruptTransmit
, dev
);
552 free_irq(priv
->interruptReceive
, dev
);
554 free_irq(priv
->interruptTransmit
, dev
);
557 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
) {
558 free_irq(priv
->einfo
->interruptPHY
, dev
);
560 del_timer_sync(&priv
->phy_info_timer
);
563 free_skb_resources(priv
);
565 dma_free_coherent(NULL
,
566 sizeof(struct txbd8
)*priv
->tx_ring_size
567 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
569 gfar_read(®s
->tbase
));
572 /* If there are any tx skbs or rx skbs still around, free them.
573 * Then free tx_skbuff and rx_skbuff */
574 void free_skb_resources(struct gfar_private
*priv
)
580 /* Go through all the buffer descriptors and free their data buffers */
581 txbdp
= priv
->tx_bd_base
;
583 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
585 if (priv
->tx_skbuff
[i
]) {
586 dma_unmap_single(NULL
, txbdp
->bufPtr
,
589 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
590 priv
->tx_skbuff
[i
] = NULL
;
594 kfree(priv
->tx_skbuff
);
596 rxbdp
= priv
->rx_bd_base
;
598 /* rx_skbuff is not guaranteed to be allocated, so only
599 * free it and its contents if it is allocated */
600 if(priv
->rx_skbuff
!= NULL
) {
601 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
602 if (priv
->rx_skbuff
[i
]) {
603 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
608 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
609 priv
->rx_skbuff
[i
] = NULL
;
619 kfree(priv
->rx_skbuff
);
623 /* Bring the controller up and running */
624 int startup_gfar(struct net_device
*dev
)
631 struct gfar_private
*priv
= netdev_priv(dev
);
632 struct gfar
*regs
= priv
->regs
;
636 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
638 /* Allocate memory for the buffer descriptors */
639 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
640 sizeof (struct txbd8
) * priv
->tx_ring_size
+
641 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
645 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
650 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
652 /* enet DMA only understands physical addresses */
653 gfar_write(®s
->tbase
, addr
);
655 /* Start the rx descriptor ring where the tx ring leaves off */
656 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
657 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
658 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
659 gfar_write(®s
->rbase
, addr
);
661 /* Setup the skbuff rings */
663 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
664 priv
->tx_ring_size
, GFP_KERNEL
);
666 if (priv
->tx_skbuff
== NULL
) {
667 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
673 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
674 priv
->tx_skbuff
[i
] = NULL
;
677 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
678 priv
->rx_ring_size
, GFP_KERNEL
);
680 if (priv
->rx_skbuff
== NULL
) {
681 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
687 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
688 priv
->rx_skbuff
[i
] = NULL
;
690 /* Initialize some variables in our dev structure */
691 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
692 priv
->cur_rx
= priv
->rx_bd_base
;
693 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
696 /* Initialize Transmit Descriptor Ring */
697 txbdp
= priv
->tx_bd_base
;
698 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
705 /* Set the last descriptor in the ring to indicate wrap */
707 txbdp
->status
|= TXBD_WRAP
;
709 rxbdp
= priv
->rx_bd_base
;
710 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
711 struct sk_buff
*skb
= NULL
;
715 skb
= gfar_new_skb(dev
, rxbdp
);
717 priv
->rx_skbuff
[i
] = skb
;
722 /* Set the last descriptor in the ring to wrap */
724 rxbdp
->status
|= RXBD_WRAP
;
726 /* If the device has multiple interrupts, register for
727 * them. Otherwise, only register for the one */
728 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
729 /* Install our interrupt handlers for Error,
730 * Transmit, and Receive */
731 if (request_irq(priv
->interruptError
, gfar_error
,
732 0, "enet_error", dev
) < 0) {
733 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
734 dev
->name
, priv
->interruptError
);
740 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
741 0, "enet_tx", dev
) < 0) {
742 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
743 dev
->name
, priv
->interruptTransmit
);
750 if (request_irq(priv
->interruptReceive
, gfar_receive
,
751 0, "enet_rx", dev
) < 0) {
752 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
753 dev
->name
, priv
->interruptReceive
);
759 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
760 0, "gfar_interrupt", dev
) < 0) {
761 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
762 dev
->name
, priv
->interruptError
);
769 /* Set up the PHY change work queue */
770 INIT_WORK(&priv
->tq
, gfar_phy_change
, dev
);
772 init_timer(&priv
->phy_info_timer
);
773 priv
->phy_info_timer
.function
= &gfar_phy_startup_timer
;
774 priv
->phy_info_timer
.data
= (unsigned long) priv
->mii_info
;
775 mod_timer(&priv
->phy_info_timer
, jiffies
+ HZ
);
777 /* Configure the coalescing support */
778 if (priv
->txcoalescing
)
779 gfar_write(®s
->txic
,
780 mk_ic_value(priv
->txcount
, priv
->txtime
));
782 gfar_write(®s
->txic
, 0);
784 if (priv
->rxcoalescing
)
785 gfar_write(®s
->rxic
,
786 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
788 gfar_write(®s
->rxic
, 0);
790 init_waitqueue_head(&priv
->rxcleanupq
);
792 /* Enable Rx and Tx in MACCFG1 */
793 tempval
= gfar_read(®s
->maccfg1
);
794 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
795 gfar_write(®s
->maccfg1
, tempval
);
797 /* Initialize DMACTRL to have WWR and WOP */
798 tempval
= gfar_read(&priv
->regs
->dmactrl
);
799 tempval
|= DMACTRL_INIT_SETTINGS
;
800 gfar_write(&priv
->regs
->dmactrl
, tempval
);
802 /* Clear THLT, so that the DMA starts polling now */
803 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
805 /* Make sure we aren't stopped */
806 tempval
= gfar_read(&priv
->regs
->dmactrl
);
807 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
808 gfar_write(&priv
->regs
->dmactrl
, tempval
);
810 /* Unmask the interrupts we look for */
811 gfar_write(®s
->imask
, IMASK_DEFAULT
);
816 free_irq(priv
->interruptTransmit
, dev
);
818 free_irq(priv
->interruptError
, dev
);
821 free_skb_resources(priv
);
823 dma_free_coherent(NULL
,
824 sizeof(struct txbd8
)*priv
->tx_ring_size
825 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
827 gfar_read(®s
->tbase
));
829 if (priv
->mii_info
->phyinfo
->close
)
830 priv
->mii_info
->phyinfo
->close(priv
->mii_info
);
832 kfree(priv
->mii_info
);
837 /* Called when something needs to use the ethernet device */
838 /* Returns 0 for success. */
839 static int gfar_enet_open(struct net_device
*dev
)
843 /* Initialize a bunch of registers */
846 gfar_set_mac_address(dev
);
853 err
= startup_gfar(dev
);
855 netif_start_queue(dev
);
860 /* This is called by the kernel when a frame is ready for transmission. */
861 /* It is pointed to by the dev->hard_start_xmit function pointer */
862 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
864 struct gfar_private
*priv
= netdev_priv(dev
);
867 /* Update transmit stats */
868 priv
->stats
.tx_bytes
+= skb
->len
;
871 spin_lock_irq(&priv
->lock
);
873 /* Point at the first free tx descriptor */
874 txbdp
= priv
->cur_tx
;
876 /* Clear all but the WRAP status flags */
877 txbdp
->status
&= TXBD_WRAP
;
879 /* Set buffer length and pointer */
880 txbdp
->length
= skb
->len
;
881 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
882 skb
->len
, DMA_TO_DEVICE
);
884 /* Save the skb pointer so we can free it later */
885 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
887 /* Update the current skb pointer (wrapping if this was the last) */
889 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
891 /* Flag the BD as interrupt-causing */
892 txbdp
->status
|= TXBD_INTERRUPT
;
894 /* Flag the BD as ready to go, last in frame, and */
896 txbdp
->status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
898 dev
->trans_start
= jiffies
;
900 /* If this was the last BD in the ring, the next one */
901 /* is at the beginning of the ring */
902 if (txbdp
->status
& TXBD_WRAP
)
903 txbdp
= priv
->tx_bd_base
;
907 /* If the next BD still needs to be cleaned up, then the bds
908 are full. We need to tell the kernel to stop sending us stuff. */
909 if (txbdp
== priv
->dirty_tx
) {
910 netif_stop_queue(dev
);
912 priv
->stats
.tx_fifo_errors
++;
915 /* Update the current txbd to the next one */
916 priv
->cur_tx
= txbdp
;
918 /* Tell the DMA to go go go */
919 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
922 spin_unlock_irq(&priv
->lock
);
927 /* Stops the kernel queue, and halts the controller */
928 static int gfar_close(struct net_device
*dev
)
930 struct gfar_private
*priv
= netdev_priv(dev
);
933 /* Shutdown the PHY */
934 if (priv
->mii_info
->phyinfo
->close
)
935 priv
->mii_info
->phyinfo
->close(priv
->mii_info
);
937 kfree(priv
->mii_info
);
939 netif_stop_queue(dev
);
944 /* returns a net_device_stats structure pointer */
945 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
947 struct gfar_private
*priv
= netdev_priv(dev
);
949 return &(priv
->stats
);
952 /* Changes the mac address if the controller is not running. */
953 int gfar_set_mac_address(struct net_device
*dev
)
955 struct gfar_private
*priv
= netdev_priv(dev
);
957 char tmpbuf
[MAC_ADDR_LEN
];
960 /* Now copy it into the mac registers backwards, cuz */
961 /* little endian is silly */
962 for (i
= 0; i
< MAC_ADDR_LEN
; i
++)
963 tmpbuf
[MAC_ADDR_LEN
- 1 - i
] = dev
->dev_addr
[i
];
965 gfar_write(&priv
->regs
->macstnaddr1
, *((u32
*) (tmpbuf
)));
967 tempval
= *((u32
*) (tmpbuf
+ 4));
969 gfar_write(&priv
->regs
->macstnaddr2
, tempval
);
975 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
977 int tempsize
, tempval
;
978 struct gfar_private
*priv
= netdev_priv(dev
);
979 int oldsize
= priv
->rx_buffer_size
;
980 int frame_size
= new_mtu
+ 18;
982 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
983 printk(KERN_ERR
"%s: Invalid MTU setting\n", dev
->name
);
988 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
989 INCREMENTAL_BUFFER_SIZE
;
991 /* Only stop and start the controller if it isn't already
993 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
996 priv
->rx_buffer_size
= tempsize
;
1000 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1001 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1003 /* If the mtu is larger than the max size for standard
1004 * ethernet frames (ie, a jumbo frame), then set maccfg2
1005 * to allow huge frames, and to check the length */
1006 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1008 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1009 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1011 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1013 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1015 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1021 /* gfar_timeout gets called when a packet has not been
1022 * transmitted after a set amount of time.
1023 * For now, assume that clearing out all the structures, and
1024 * starting over will fix the problem. */
1025 static void gfar_timeout(struct net_device
*dev
)
1027 struct gfar_private
*priv
= netdev_priv(dev
);
1029 priv
->stats
.tx_errors
++;
1031 if (dev
->flags
& IFF_UP
) {
1036 netif_schedule(dev
);
1039 /* Interrupt Handler for Transmit complete */
1040 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1042 struct net_device
*dev
= (struct net_device
*) dev_id
;
1043 struct gfar_private
*priv
= netdev_priv(dev
);
1047 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1050 spin_lock(&priv
->lock
);
1051 bdp
= priv
->dirty_tx
;
1052 while ((bdp
->status
& TXBD_READY
) == 0) {
1053 /* If dirty_tx and cur_tx are the same, then either the */
1054 /* ring is empty or full now (it could only be full in the beginning, */
1055 /* obviously). If it is empty, we are done. */
1056 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1059 priv
->stats
.tx_packets
++;
1061 /* Deferred means some collisions occurred during transmit, */
1062 /* but we eventually sent the packet. */
1063 if (bdp
->status
& TXBD_DEF
)
1064 priv
->stats
.collisions
++;
1066 /* Free the sk buffer associated with this TxBD */
1067 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1068 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1070 (priv
->skb_dirtytx
+
1071 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1073 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1074 if (bdp
->status
& TXBD_WRAP
)
1075 bdp
= priv
->tx_bd_base
;
1079 /* Move dirty_tx to be the next bd */
1080 priv
->dirty_tx
= bdp
;
1082 /* We freed a buffer, so now we can restart transmission */
1083 if (netif_queue_stopped(dev
))
1084 netif_wake_queue(dev
);
1085 } /* while ((bdp->status & TXBD_READY) == 0) */
1087 /* If we are coalescing the interrupts, reset the timer */
1088 /* Otherwise, clear it */
1089 if (priv
->txcoalescing
)
1090 gfar_write(&priv
->regs
->txic
,
1091 mk_ic_value(priv
->txcount
, priv
->txtime
));
1093 gfar_write(&priv
->regs
->txic
, 0);
1095 spin_unlock(&priv
->lock
);
1100 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1102 struct gfar_private
*priv
= netdev_priv(dev
);
1103 struct sk_buff
*skb
= NULL
;
1104 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1106 /* We have to allocate the skb, so keep trying till we succeed */
1107 while ((!skb
) && timeout
--)
1108 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1113 /* We need the data buffer to be aligned properly. We will reserve
1114 * as many bytes as needed to align the data properly
1118 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
1122 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1123 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
,
1128 /* Mark the buffer empty */
1129 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1134 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1136 struct net_device_stats
*stats
= &priv
->stats
;
1137 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1139 /* If the packet was truncated, none of the other errors
1141 if (status
& RXBD_TRUNCATED
) {
1142 stats
->rx_length_errors
++;
1148 /* Count the errors, if there were any */
1149 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1150 stats
->rx_length_errors
++;
1152 if (status
& RXBD_LARGE
)
1157 if (status
& RXBD_NONOCTET
) {
1158 stats
->rx_frame_errors
++;
1159 estats
->rx_nonoctet
++;
1161 if (status
& RXBD_CRCERR
) {
1162 estats
->rx_crcerr
++;
1163 stats
->rx_crc_errors
++;
1165 if (status
& RXBD_OVERRUN
) {
1166 estats
->rx_overrun
++;
1167 stats
->rx_crc_errors
++;
1171 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1173 struct net_device
*dev
= (struct net_device
*) dev_id
;
1174 struct gfar_private
*priv
= netdev_priv(dev
);
1176 #ifdef CONFIG_GFAR_NAPI
1180 /* Clear IEVENT, so rx interrupt isn't called again
1181 * because of this interrupt */
1182 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1185 #ifdef CONFIG_GFAR_NAPI
1186 if (netif_rx_schedule_prep(dev
)) {
1187 tempval
= gfar_read(&priv
->regs
->imask
);
1188 tempval
&= IMASK_RX_DISABLED
;
1189 gfar_write(&priv
->regs
->imask
, tempval
);
1191 __netif_rx_schedule(dev
);
1193 #ifdef VERBOSE_GFAR_ERRORS
1194 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1195 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1196 gfar_read(&priv
->regs
->imask
));
1201 spin_lock(&priv
->lock
);
1202 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1204 /* If we are coalescing interrupts, update the timer */
1205 /* Otherwise, clear it */
1206 if (priv
->rxcoalescing
)
1207 gfar_write(&priv
->regs
->rxic
,
1208 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1210 gfar_write(&priv
->regs
->rxic
, 0);
1212 /* Just in case we need to wake the ring param changer */
1215 spin_unlock(&priv
->lock
);
1222 /* gfar_process_frame() -- handle one incoming packet if skb
1224 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1227 struct gfar_private
*priv
= netdev_priv(dev
);
1230 #ifdef BRIEF_GFAR_ERRORS
1231 printk(KERN_WARNING
"%s: Missing skb!!.\n",
1234 priv
->stats
.rx_dropped
++;
1235 priv
->extra_stats
.rx_skbmissing
++;
1237 /* Prep the skb for the packet */
1238 skb_put(skb
, length
);
1240 /* Tell the skb what kind of packet this is */
1241 skb
->protocol
= eth_type_trans(skb
, dev
);
1243 /* Send the packet up the stack */
1244 if (RECEIVE(skb
) == NET_RX_DROP
) {
1245 priv
->extra_stats
.kernel_dropped
++;
1252 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1253 * until the budget/quota has been reached. Returns the number
1256 static int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1259 struct sk_buff
*skb
;
1262 struct gfar_private
*priv
= netdev_priv(dev
);
1264 /* Get the first full descriptor */
1267 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1268 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1271 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1272 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1273 /* Increment the number of packets */
1274 priv
->stats
.rx_packets
++;
1277 /* Remove the FCS from the packet length */
1278 pkt_len
= bdp
->length
- 4;
1280 gfar_process_frame(dev
, skb
, pkt_len
);
1282 priv
->stats
.rx_bytes
+= pkt_len
;
1284 count_errors(bdp
->status
, priv
);
1287 dev_kfree_skb_any(skb
);
1289 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1292 dev
->last_rx
= jiffies
;
1294 /* Clear the status flags for this buffer */
1295 bdp
->status
&= ~RXBD_STATS
;
1297 /* Add another skb for the future */
1298 skb
= gfar_new_skb(dev
, bdp
);
1299 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1301 /* Update to the next pointer */
1302 if (bdp
->status
& RXBD_WRAP
)
1303 bdp
= priv
->rx_bd_base
;
1307 /* update to point at the next skb */
1310 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1314 /* Update the current rxbd pointer to be the next one */
1317 /* If no packets have arrived since the
1318 * last one we processed, clear the IEVENT RX and
1319 * BSY bits so that another interrupt won't be
1320 * generated when we set IMASK */
1321 if (bdp
->status
& RXBD_EMPTY
)
1322 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1327 #ifdef CONFIG_GFAR_NAPI
1328 static int gfar_poll(struct net_device
*dev
, int *budget
)
1331 struct gfar_private
*priv
= netdev_priv(dev
);
1332 int rx_work_limit
= *budget
;
1334 if (rx_work_limit
> dev
->quota
)
1335 rx_work_limit
= dev
->quota
;
1337 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1339 dev
->quota
-= howmany
;
1340 rx_work_limit
-= howmany
;
1343 if (rx_work_limit
>= 0) {
1344 netif_rx_complete(dev
);
1346 /* Clear the halt bit in RSTAT */
1347 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1349 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1351 /* If we are coalescing interrupts, update the timer */
1352 /* Otherwise, clear it */
1353 if (priv
->rxcoalescing
)
1354 gfar_write(&priv
->regs
->rxic
,
1355 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1357 gfar_write(&priv
->regs
->rxic
, 0);
1359 /* Signal to the ring size changer that it's safe to go */
1363 return (rx_work_limit
< 0) ? 1 : 0;
1367 /* The interrupt handler for devices with one interrupt */
1368 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1370 struct net_device
*dev
= dev_id
;
1371 struct gfar_private
*priv
= netdev_priv(dev
);
1373 /* Save ievent for future reference */
1374 u32 events
= gfar_read(&priv
->regs
->ievent
);
1377 gfar_write(&priv
->regs
->ievent
, events
);
1379 /* Check for reception */
1380 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1381 gfar_receive(irq
, dev_id
, regs
);
1383 /* Check for transmit completion */
1384 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1385 gfar_transmit(irq
, dev_id
, regs
);
1387 /* Update error statistics */
1388 if (events
& IEVENT_TXE
) {
1389 priv
->stats
.tx_errors
++;
1391 if (events
& IEVENT_LC
)
1392 priv
->stats
.tx_window_errors
++;
1393 if (events
& IEVENT_CRL
)
1394 priv
->stats
.tx_aborted_errors
++;
1395 if (events
& IEVENT_XFUN
) {
1396 #ifdef VERBOSE_GFAR_ERRORS
1397 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n",
1400 priv
->stats
.tx_dropped
++;
1401 priv
->extra_stats
.tx_underrun
++;
1403 /* Reactivate the Tx Queues */
1404 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1407 if (events
& IEVENT_BSY
) {
1408 priv
->stats
.rx_errors
++;
1409 priv
->extra_stats
.rx_bsy
++;
1411 gfar_receive(irq
, dev_id
, regs
);
1413 #ifndef CONFIG_GFAR_NAPI
1414 /* Clear the halt bit in RSTAT */
1415 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1418 #ifdef VERBOSE_GFAR_ERRORS
1419 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n", dev
->name
,
1420 gfar_read(&priv
->regs
->rstat
));
1423 if (events
& IEVENT_BABR
) {
1424 priv
->stats
.rx_errors
++;
1425 priv
->extra_stats
.rx_babr
++;
1427 #ifdef VERBOSE_GFAR_ERRORS
1428 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1431 if (events
& IEVENT_EBERR
) {
1432 priv
->extra_stats
.eberr
++;
1433 #ifdef VERBOSE_GFAR_ERRORS
1434 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1437 if (events
& IEVENT_RXC
) {
1438 #ifdef VERBOSE_GFAR_ERRORS
1439 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1443 if (events
& IEVENT_BABT
) {
1444 priv
->extra_stats
.tx_babt
++;
1445 #ifdef VERBOSE_GFAR_ERRORS
1446 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1453 static irqreturn_t
phy_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1455 struct net_device
*dev
= (struct net_device
*) dev_id
;
1456 struct gfar_private
*priv
= netdev_priv(dev
);
1458 /* Clear the interrupt */
1459 mii_clear_phy_interrupt(priv
->mii_info
);
1461 /* Disable PHY interrupts */
1462 mii_configure_phy_interrupt(priv
->mii_info
,
1463 MII_INTERRUPT_DISABLED
);
1465 /* Schedule the phy change */
1466 schedule_work(&priv
->tq
);
1471 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1472 static void gfar_phy_change(void *data
)
1474 struct net_device
*dev
= (struct net_device
*) data
;
1475 struct gfar_private
*priv
= netdev_priv(dev
);
1478 /* Delay to give the PHY a chance to change the
1482 /* Update the link, speed, duplex */
1483 result
= priv
->mii_info
->phyinfo
->read_status(priv
->mii_info
);
1485 /* Adjust the known status as long as the link
1486 * isn't still coming up */
1487 if((0 == result
) || (priv
->mii_info
->link
== 0))
1490 /* Reenable interrupts, if needed */
1491 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
)
1492 mii_configure_phy_interrupt(priv
->mii_info
,
1493 MII_INTERRUPT_ENABLED
);
1496 /* Called every so often on systems that don't interrupt
1497 * the core for PHY changes */
1498 static void gfar_phy_timer(unsigned long data
)
1500 struct net_device
*dev
= (struct net_device
*) data
;
1501 struct gfar_private
*priv
= netdev_priv(dev
);
1503 schedule_work(&priv
->tq
);
1505 mod_timer(&priv
->phy_info_timer
, jiffies
+
1506 GFAR_PHY_CHANGE_TIME
* HZ
);
1509 /* Keep trying aneg for some time
1510 * If, after GFAR_AN_TIMEOUT seconds, it has not
1511 * finished, we switch to forced.
1512 * Either way, once the process has completed, we either
1513 * request the interrupt, or switch the timer over to
1514 * using gfar_phy_timer to check status */
1515 static void gfar_phy_startup_timer(unsigned long data
)
1518 static int secondary
= GFAR_AN_TIMEOUT
;
1519 struct gfar_mii_info
*mii_info
= (struct gfar_mii_info
*)data
;
1520 struct gfar_private
*priv
= netdev_priv(mii_info
->dev
);
1522 /* Configure the Auto-negotiation */
1523 result
= mii_info
->phyinfo
->config_aneg(mii_info
);
1525 /* If autonegotiation failed to start, and
1526 * we haven't timed out, reset the timer, and return */
1527 if (result
&& secondary
--) {
1528 mod_timer(&priv
->phy_info_timer
, jiffies
+ HZ
);
1530 } else if (result
) {
1531 /* Couldn't start autonegotiation.
1532 * Try switching to forced */
1533 mii_info
->autoneg
= 0;
1534 result
= mii_info
->phyinfo
->config_aneg(mii_info
);
1536 /* Forcing failed! Give up */
1538 printk(KERN_ERR
"%s: Forcing failed!\n",
1539 mii_info
->dev
->name
);
1544 /* Kill the timer so it can be restarted */
1545 del_timer_sync(&priv
->phy_info_timer
);
1547 /* Grab the PHY interrupt, if necessary/possible */
1548 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
) {
1549 if (request_irq(priv
->einfo
->interruptPHY
,
1553 mii_info
->dev
) < 0) {
1554 printk(KERN_ERR
"%s: Can't get IRQ %d (PHY)\n",
1555 mii_info
->dev
->name
,
1556 priv
->einfo
->interruptPHY
);
1558 mii_configure_phy_interrupt(priv
->mii_info
,
1559 MII_INTERRUPT_ENABLED
);
1564 /* Start the timer again, this time in order to
1565 * handle a change in status */
1566 init_timer(&priv
->phy_info_timer
);
1567 priv
->phy_info_timer
.function
= &gfar_phy_timer
;
1568 priv
->phy_info_timer
.data
= (unsigned long) mii_info
->dev
;
1569 mod_timer(&priv
->phy_info_timer
, jiffies
+
1570 GFAR_PHY_CHANGE_TIME
* HZ
);
1573 /* Called every time the controller might need to be made
1574 * aware of new link state. The PHY code conveys this
1575 * information through variables in the priv structure, and this
1576 * function converts those variables into the appropriate
1577 * register values, and can bring down the device if needed.
1579 static void adjust_link(struct net_device
*dev
)
1581 struct gfar_private
*priv
= netdev_priv(dev
);
1582 struct gfar
*regs
= priv
->regs
;
1584 struct gfar_mii_info
*mii_info
= priv
->mii_info
;
1586 if (mii_info
->link
) {
1587 /* Now we make sure that we can be in full duplex mode.
1588 * If not, we operate in half-duplex mode. */
1589 if (mii_info
->duplex
!= priv
->oldduplex
) {
1590 if (!(mii_info
->duplex
)) {
1591 tempval
= gfar_read(®s
->maccfg2
);
1592 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1593 gfar_write(®s
->maccfg2
, tempval
);
1595 printk(KERN_INFO
"%s: Half Duplex\n",
1598 tempval
= gfar_read(®s
->maccfg2
);
1599 tempval
|= MACCFG2_FULL_DUPLEX
;
1600 gfar_write(®s
->maccfg2
, tempval
);
1602 printk(KERN_INFO
"%s: Full Duplex\n",
1606 priv
->oldduplex
= mii_info
->duplex
;
1609 if (mii_info
->speed
!= priv
->oldspeed
) {
1610 switch (mii_info
->speed
) {
1612 tempval
= gfar_read(®s
->maccfg2
);
1614 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1615 gfar_write(®s
->maccfg2
, tempval
);
1619 tempval
= gfar_read(®s
->maccfg2
);
1621 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1622 gfar_write(®s
->maccfg2
, tempval
);
1626 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1627 dev
->name
, mii_info
->speed
);
1631 printk(KERN_INFO
"%s: Speed %dBT\n", dev
->name
,
1634 priv
->oldspeed
= mii_info
->speed
;
1637 if (!priv
->oldlink
) {
1638 printk(KERN_INFO
"%s: Link is up\n", dev
->name
);
1640 netif_carrier_on(dev
);
1641 netif_schedule(dev
);
1644 if (priv
->oldlink
) {
1645 printk(KERN_INFO
"%s: Link is down\n", dev
->name
);
1648 priv
->oldduplex
= -1;
1649 netif_carrier_off(dev
);
1655 /* Update the hash table based on the current list of multicast
1656 * addresses we subscribe to. Also, change the promiscuity of
1657 * the device based on the flags (this function is called
1658 * whenever dev->flags is changed */
1659 static void gfar_set_multi(struct net_device
*dev
)
1661 struct dev_mc_list
*mc_ptr
;
1662 struct gfar_private
*priv
= netdev_priv(dev
);
1663 struct gfar
*regs
= priv
->regs
;
1666 if(dev
->flags
& IFF_PROMISC
) {
1667 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1669 /* Set RCTRL to PROM */
1670 tempval
= gfar_read(®s
->rctrl
);
1671 tempval
|= RCTRL_PROM
;
1672 gfar_write(®s
->rctrl
, tempval
);
1674 /* Set RCTRL to not PROM */
1675 tempval
= gfar_read(®s
->rctrl
);
1676 tempval
&= ~(RCTRL_PROM
);
1677 gfar_write(®s
->rctrl
, tempval
);
1680 if(dev
->flags
& IFF_ALLMULTI
) {
1681 /* Set the hash to rx all multicast frames */
1682 gfar_write(®s
->gaddr0
, 0xffffffff);
1683 gfar_write(®s
->gaddr1
, 0xffffffff);
1684 gfar_write(®s
->gaddr2
, 0xffffffff);
1685 gfar_write(®s
->gaddr3
, 0xffffffff);
1686 gfar_write(®s
->gaddr4
, 0xffffffff);
1687 gfar_write(®s
->gaddr5
, 0xffffffff);
1688 gfar_write(®s
->gaddr6
, 0xffffffff);
1689 gfar_write(®s
->gaddr7
, 0xffffffff);
1691 /* zero out the hash */
1692 gfar_write(®s
->gaddr0
, 0x0);
1693 gfar_write(®s
->gaddr1
, 0x0);
1694 gfar_write(®s
->gaddr2
, 0x0);
1695 gfar_write(®s
->gaddr3
, 0x0);
1696 gfar_write(®s
->gaddr4
, 0x0);
1697 gfar_write(®s
->gaddr5
, 0x0);
1698 gfar_write(®s
->gaddr6
, 0x0);
1699 gfar_write(®s
->gaddr7
, 0x0);
1701 if(dev
->mc_count
== 0)
1704 /* Parse the list, and set the appropriate bits */
1705 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1706 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1713 /* Set the appropriate hash bit for the given addr */
1714 /* The algorithm works like so:
1715 * 1) Take the Destination Address (ie the multicast address), and
1716 * do a CRC on it (little endian), and reverse the bits of the
1718 * 2) Use the 8 most significant bits as a hash into a 256-entry
1719 * table. The table is controlled through 8 32-bit registers:
1720 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1721 * gaddr7. This means that the 3 most significant bits in the
1722 * hash index which gaddr register to use, and the 5 other bits
1723 * indicate which bit (assuming an IBM numbering scheme, which
1724 * for PowerPC (tm) is usually the case) in the register holds
1726 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1729 struct gfar_private
*priv
= netdev_priv(dev
);
1730 struct gfar
*regs
= priv
->regs
;
1731 u32
*hash
= ®s
->gaddr0
;
1732 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1733 u8 whichreg
= ((result
>> 29) & 0x7);
1734 u8 whichbit
= ((result
>> 24) & 0x1f);
1735 u32 value
= (1 << (31-whichbit
));
1737 tempval
= gfar_read(&hash
[whichreg
]);
1739 gfar_write(&hash
[whichreg
], tempval
);
1744 /* GFAR error interrupt handler */
1745 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
1747 struct net_device
*dev
= dev_id
;
1748 struct gfar_private
*priv
= netdev_priv(dev
);
1750 /* Save ievent for future reference */
1751 u32 events
= gfar_read(&priv
->regs
->ievent
);
1754 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1757 #if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS)
1758 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1759 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1762 /* Update the error counters */
1763 if (events
& IEVENT_TXE
) {
1764 priv
->stats
.tx_errors
++;
1766 if (events
& IEVENT_LC
)
1767 priv
->stats
.tx_window_errors
++;
1768 if (events
& IEVENT_CRL
)
1769 priv
->stats
.tx_aborted_errors
++;
1770 if (events
& IEVENT_XFUN
) {
1771 #ifdef VERBOSE_GFAR_ERRORS
1772 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
1775 priv
->stats
.tx_dropped
++;
1776 priv
->extra_stats
.tx_underrun
++;
1778 /* Reactivate the Tx Queues */
1779 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1781 #ifdef VERBOSE_GFAR_ERRORS
1782 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1785 if (events
& IEVENT_BSY
) {
1786 priv
->stats
.rx_errors
++;
1787 priv
->extra_stats
.rx_bsy
++;
1789 gfar_receive(irq
, dev_id
, regs
);
1791 #ifndef CONFIG_GFAR_NAPI
1792 /* Clear the halt bit in RSTAT */
1793 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1796 #ifdef VERBOSE_GFAR_ERRORS
1797 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n", dev
->name
,
1798 gfar_read(&priv
->regs
->rstat
));
1801 if (events
& IEVENT_BABR
) {
1802 priv
->stats
.rx_errors
++;
1803 priv
->extra_stats
.rx_babr
++;
1805 #ifdef VERBOSE_GFAR_ERRORS
1806 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1809 if (events
& IEVENT_EBERR
) {
1810 priv
->extra_stats
.eberr
++;
1811 #ifdef VERBOSE_GFAR_ERRORS
1812 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1815 if (events
& IEVENT_RXC
)
1816 #ifdef VERBOSE_GFAR_ERRORS
1817 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1820 if (events
& IEVENT_BABT
) {
1821 priv
->extra_stats
.tx_babt
++;
1822 #ifdef VERBOSE_GFAR_ERRORS
1823 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1829 /* Structure for a device driver */
1830 static struct device_driver gfar_driver
= {
1831 .name
= "fsl-gianfar",
1832 .bus
= &platform_bus_type
,
1833 .probe
= gfar_probe
,
1834 .remove
= gfar_remove
,
1837 static int __init
gfar_init(void)
1839 return driver_register(&gfar_driver
);
1842 static void __exit
gfar_exit(void)
1844 driver_unregister(&gfar_driver
);
1847 module_init(gfar_init
);
1848 module_exit(gfar_exit
);