[PATCH] aic7xxx_osm build fix
[cris-mirror.git] / net / ipv4 / tcp_input.c
blob5bad504630a3b641158af85f402cc91da27e4d06
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 * Angelo Dell'Aera: TCP Westwood+ support
67 #include <linux/config.h>
68 #include <linux/mm.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <net/tcp.h>
72 #include <net/inet_common.h>
73 #include <linux/ipsec.h>
74 #include <asm/unaligned.h>
76 int sysctl_tcp_timestamps = 1;
77 int sysctl_tcp_window_scaling = 1;
78 int sysctl_tcp_sack = 1;
79 int sysctl_tcp_fack = 1;
80 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn;
82 int sysctl_tcp_dsack = 1;
83 int sysctl_tcp_app_win = 31;
84 int sysctl_tcp_adv_win_scale = 2;
86 int sysctl_tcp_stdurg;
87 int sysctl_tcp_rfc1337;
88 int sysctl_tcp_max_orphans = NR_FILE;
89 int sysctl_tcp_frto;
90 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_westwood;
92 int sysctl_tcp_vegas_cong_avoid;
94 int sysctl_tcp_moderate_rcvbuf = 1;
96 /* Default values of the Vegas variables, in fixed-point representation
97 * with V_PARAM_SHIFT bits to the right of the binary point.
99 #define V_PARAM_SHIFT 1
100 int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT;
101 int sysctl_tcp_vegas_beta = 3<<V_PARAM_SHIFT;
102 int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT;
103 int sysctl_tcp_bic = 1;
104 int sysctl_tcp_bic_fast_convergence = 1;
105 int sysctl_tcp_bic_low_window = 14;
106 int sysctl_tcp_bic_beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
108 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
109 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
110 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
111 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
112 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
113 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
114 #define FLAG_ECE 0x40 /* ECE in this ACK */
115 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
116 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
124 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
125 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
129 /* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
132 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
133 struct sk_buff *skb)
135 unsigned int len, lss;
137 lss = tp->ack.last_seg_size;
138 tp->ack.last_seg_size = 0;
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
143 len = skb->len;
144 if (len >= tp->ack.rcv_mss) {
145 tp->ack.rcv_mss = len;
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
150 * "len" is invariant segment length, including TCP header.
152 len += skb->data - skb->h.raw;
153 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
165 len -= tp->tcp_header_len;
166 tp->ack.last_seg_size = len;
167 if (len == lss) {
168 tp->ack.rcv_mss = len;
169 return;
172 tp->ack.pending |= TCP_ACK_PUSHED;
176 static void tcp_incr_quickack(struct tcp_sock *tp)
178 unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
180 if (quickacks==0)
181 quickacks=2;
182 if (quickacks > tp->ack.quick)
183 tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
186 void tcp_enter_quickack_mode(struct tcp_sock *tp)
188 tcp_incr_quickack(tp);
189 tp->ack.pingpong = 0;
190 tp->ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
199 return (tp->ack.quick && !tp->ack.pingpong);
202 /* Buffer size and advertised window tuning.
204 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
207 static void tcp_fixup_sndbuf(struct sock *sk)
209 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
210 sizeof(struct sk_buff);
212 if (sk->sk_sndbuf < 3 * sndmem)
213 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
216 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
218 * All tcp_full_space() is split to two parts: "network" buffer, allocated
219 * forward and advertised in receiver window (tp->rcv_wnd) and
220 * "application buffer", required to isolate scheduling/application
221 * latencies from network.
222 * window_clamp is maximal advertised window. It can be less than
223 * tcp_full_space(), in this case tcp_full_space() - window_clamp
224 * is reserved for "application" buffer. The less window_clamp is
225 * the smoother our behaviour from viewpoint of network, but the lower
226 * throughput and the higher sensitivity of the connection to losses. 8)
228 * rcv_ssthresh is more strict window_clamp used at "slow start"
229 * phase to predict further behaviour of this connection.
230 * It is used for two goals:
231 * - to enforce header prediction at sender, even when application
232 * requires some significant "application buffer". It is check #1.
233 * - to prevent pruning of receive queue because of misprediction
234 * of receiver window. Check #2.
236 * The scheme does not work when sender sends good segments opening
237 * window and then starts to feed us spagetti. But it should work
238 * in common situations. Otherwise, we have to rely on queue collapsing.
241 /* Slow part of check#2. */
242 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
243 struct sk_buff *skb)
245 /* Optimize this! */
246 int truesize = tcp_win_from_space(skb->truesize)/2;
247 int window = tcp_full_space(sk)/2;
249 while (tp->rcv_ssthresh <= window) {
250 if (truesize <= skb->len)
251 return 2*tp->ack.rcv_mss;
253 truesize >>= 1;
254 window >>= 1;
256 return 0;
259 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
260 struct sk_buff *skb)
262 /* Check #1 */
263 if (tp->rcv_ssthresh < tp->window_clamp &&
264 (int)tp->rcv_ssthresh < tcp_space(sk) &&
265 !tcp_memory_pressure) {
266 int incr;
268 /* Check #2. Increase window, if skb with such overhead
269 * will fit to rcvbuf in future.
271 if (tcp_win_from_space(skb->truesize) <= skb->len)
272 incr = 2*tp->advmss;
273 else
274 incr = __tcp_grow_window(sk, tp, skb);
276 if (incr) {
277 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
278 tp->ack.quick |= 1;
283 /* 3. Tuning rcvbuf, when connection enters established state. */
285 static void tcp_fixup_rcvbuf(struct sock *sk)
287 struct tcp_sock *tp = tcp_sk(sk);
288 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
290 /* Try to select rcvbuf so that 4 mss-sized segments
291 * will fit to window and correspoding skbs will fit to our rcvbuf.
292 * (was 3; 4 is minimum to allow fast retransmit to work.)
294 while (tcp_win_from_space(rcvmem) < tp->advmss)
295 rcvmem += 128;
296 if (sk->sk_rcvbuf < 4 * rcvmem)
297 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
300 /* 4. Try to fixup all. It is made iimediately after connection enters
301 * established state.
303 static void tcp_init_buffer_space(struct sock *sk)
305 struct tcp_sock *tp = tcp_sk(sk);
306 int maxwin;
308 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
309 tcp_fixup_rcvbuf(sk);
310 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
311 tcp_fixup_sndbuf(sk);
313 tp->rcvq_space.space = tp->rcv_wnd;
315 maxwin = tcp_full_space(sk);
317 if (tp->window_clamp >= maxwin) {
318 tp->window_clamp = maxwin;
320 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
321 tp->window_clamp = max(maxwin -
322 (maxwin >> sysctl_tcp_app_win),
323 4 * tp->advmss);
326 /* Force reservation of one segment. */
327 if (sysctl_tcp_app_win &&
328 tp->window_clamp > 2 * tp->advmss &&
329 tp->window_clamp + tp->advmss > maxwin)
330 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
332 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
333 tp->snd_cwnd_stamp = tcp_time_stamp;
336 static void init_bictcp(struct tcp_sock *tp)
338 tp->bictcp.cnt = 0;
340 tp->bictcp.last_max_cwnd = 0;
341 tp->bictcp.last_cwnd = 0;
342 tp->bictcp.last_stamp = 0;
345 /* 5. Recalculate window clamp after socket hit its memory bounds. */
346 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
348 struct sk_buff *skb;
349 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
350 int ofo_win = 0;
352 tp->ack.quick = 0;
354 skb_queue_walk(&tp->out_of_order_queue, skb) {
355 ofo_win += skb->len;
358 /* If overcommit is due to out of order segments,
359 * do not clamp window. Try to expand rcvbuf instead.
361 if (ofo_win) {
362 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
363 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
364 !tcp_memory_pressure &&
365 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
366 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
367 sysctl_tcp_rmem[2]);
369 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
370 app_win += ofo_win;
371 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
372 app_win >>= 1;
373 if (app_win > tp->ack.rcv_mss)
374 app_win -= tp->ack.rcv_mss;
375 app_win = max(app_win, 2U*tp->advmss);
377 if (!ofo_win)
378 tp->window_clamp = min(tp->window_clamp, app_win);
379 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
383 /* Receiver "autotuning" code.
385 * The algorithm for RTT estimation w/o timestamps is based on
386 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
387 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
389 * More detail on this code can be found at
390 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
391 * though this reference is out of date. A new paper
392 * is pending.
394 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
396 u32 new_sample = tp->rcv_rtt_est.rtt;
397 long m = sample;
399 if (m == 0)
400 m = 1;
402 if (new_sample != 0) {
403 /* If we sample in larger samples in the non-timestamp
404 * case, we could grossly overestimate the RTT especially
405 * with chatty applications or bulk transfer apps which
406 * are stalled on filesystem I/O.
408 * Also, since we are only going for a minimum in the
409 * non-timestamp case, we do not smoothe things out
410 * else with timestamps disabled convergance takes too
411 * long.
413 if (!win_dep) {
414 m -= (new_sample >> 3);
415 new_sample += m;
416 } else if (m < new_sample)
417 new_sample = m << 3;
418 } else {
419 /* No previous mesaure. */
420 new_sample = m << 3;
423 if (tp->rcv_rtt_est.rtt != new_sample)
424 tp->rcv_rtt_est.rtt = new_sample;
427 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
429 if (tp->rcv_rtt_est.time == 0)
430 goto new_measure;
431 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
432 return;
433 tcp_rcv_rtt_update(tp,
434 jiffies - tp->rcv_rtt_est.time,
437 new_measure:
438 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
439 tp->rcv_rtt_est.time = tcp_time_stamp;
442 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
444 if (tp->rx_opt.rcv_tsecr &&
445 (TCP_SKB_CB(skb)->end_seq -
446 TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
447 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
451 * This function should be called every time data is copied to user space.
452 * It calculates the appropriate TCP receive buffer space.
454 void tcp_rcv_space_adjust(struct sock *sk)
456 struct tcp_sock *tp = tcp_sk(sk);
457 int time;
458 int space;
460 if (tp->rcvq_space.time == 0)
461 goto new_measure;
463 time = tcp_time_stamp - tp->rcvq_space.time;
464 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
465 tp->rcv_rtt_est.rtt == 0)
466 return;
468 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
470 space = max(tp->rcvq_space.space, space);
472 if (tp->rcvq_space.space != space) {
473 int rcvmem;
475 tp->rcvq_space.space = space;
477 if (sysctl_tcp_moderate_rcvbuf) {
478 int new_clamp = space;
480 /* Receive space grows, normalize in order to
481 * take into account packet headers and sk_buff
482 * structure overhead.
484 space /= tp->advmss;
485 if (!space)
486 space = 1;
487 rcvmem = (tp->advmss + MAX_TCP_HEADER +
488 16 + sizeof(struct sk_buff));
489 while (tcp_win_from_space(rcvmem) < tp->advmss)
490 rcvmem += 128;
491 space *= rcvmem;
492 space = min(space, sysctl_tcp_rmem[2]);
493 if (space > sk->sk_rcvbuf) {
494 sk->sk_rcvbuf = space;
496 /* Make the window clamp follow along. */
497 tp->window_clamp = new_clamp;
502 new_measure:
503 tp->rcvq_space.seq = tp->copied_seq;
504 tp->rcvq_space.time = tcp_time_stamp;
507 /* There is something which you must keep in mind when you analyze the
508 * behavior of the tp->ato delayed ack timeout interval. When a
509 * connection starts up, we want to ack as quickly as possible. The
510 * problem is that "good" TCP's do slow start at the beginning of data
511 * transmission. The means that until we send the first few ACK's the
512 * sender will sit on his end and only queue most of his data, because
513 * he can only send snd_cwnd unacked packets at any given time. For
514 * each ACK we send, he increments snd_cwnd and transmits more of his
515 * queue. -DaveM
517 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
519 u32 now;
521 tcp_schedule_ack(tp);
523 tcp_measure_rcv_mss(tp, skb);
525 tcp_rcv_rtt_measure(tp);
527 now = tcp_time_stamp;
529 if (!tp->ack.ato) {
530 /* The _first_ data packet received, initialize
531 * delayed ACK engine.
533 tcp_incr_quickack(tp);
534 tp->ack.ato = TCP_ATO_MIN;
535 } else {
536 int m = now - tp->ack.lrcvtime;
538 if (m <= TCP_ATO_MIN/2) {
539 /* The fastest case is the first. */
540 tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
541 } else if (m < tp->ack.ato) {
542 tp->ack.ato = (tp->ack.ato>>1) + m;
543 if (tp->ack.ato > tp->rto)
544 tp->ack.ato = tp->rto;
545 } else if (m > tp->rto) {
546 /* Too long gap. Apparently sender falled to
547 * restart window, so that we send ACKs quickly.
549 tcp_incr_quickack(tp);
550 sk_stream_mem_reclaim(sk);
553 tp->ack.lrcvtime = now;
555 TCP_ECN_check_ce(tp, skb);
557 if (skb->len >= 128)
558 tcp_grow_window(sk, tp, skb);
561 /* When starting a new connection, pin down the current choice of
562 * congestion algorithm.
564 void tcp_ca_init(struct tcp_sock *tp)
566 if (sysctl_tcp_westwood)
567 tp->adv_cong = TCP_WESTWOOD;
568 else if (sysctl_tcp_bic)
569 tp->adv_cong = TCP_BIC;
570 else if (sysctl_tcp_vegas_cong_avoid) {
571 tp->adv_cong = TCP_VEGAS;
572 tp->vegas.baseRTT = 0x7fffffff;
573 tcp_vegas_enable(tp);
577 /* Do RTT sampling needed for Vegas.
578 * Basically we:
579 * o min-filter RTT samples from within an RTT to get the current
580 * propagation delay + queuing delay (we are min-filtering to try to
581 * avoid the effects of delayed ACKs)
582 * o min-filter RTT samples from a much longer window (forever for now)
583 * to find the propagation delay (baseRTT)
585 static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt)
587 __u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */
589 /* Filter to find propagation delay: */
590 if (vrtt < tp->vegas.baseRTT)
591 tp->vegas.baseRTT = vrtt;
593 /* Find the min RTT during the last RTT to find
594 * the current prop. delay + queuing delay:
596 tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt);
597 tp->vegas.cntRTT++;
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
609 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt)
611 long m = mrtt; /* RTT */
613 if (tcp_vegas_enabled(tp))
614 vegas_rtt_calc(tp, mrtt);
616 /* The following amusing code comes from Jacobson's
617 * article in SIGCOMM '88. Note that rtt and mdev
618 * are scaled versions of rtt and mean deviation.
619 * This is designed to be as fast as possible
620 * m stands for "measurement".
622 * On a 1990 paper the rto value is changed to:
623 * RTO = rtt + 4 * mdev
625 * Funny. This algorithm seems to be very broken.
626 * These formulae increase RTO, when it should be decreased, increase
627 * too slowly, when it should be incresed fastly, decrease too fastly
628 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629 * does not matter how to _calculate_ it. Seems, it was trap
630 * that VJ failed to avoid. 8)
632 if(m == 0)
633 m = 1;
634 if (tp->srtt != 0) {
635 m -= (tp->srtt >> 3); /* m is now error in rtt est */
636 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
637 if (m < 0) {
638 m = -m; /* m is now abs(error) */
639 m -= (tp->mdev >> 2); /* similar update on mdev */
640 /* This is similar to one of Eifel findings.
641 * Eifel blocks mdev updates when rtt decreases.
642 * This solution is a bit different: we use finer gain
643 * for mdev in this case (alpha*beta).
644 * Like Eifel it also prevents growth of rto,
645 * but also it limits too fast rto decreases,
646 * happening in pure Eifel.
648 if (m > 0)
649 m >>= 3;
650 } else {
651 m -= (tp->mdev >> 2); /* similar update on mdev */
653 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
654 if (tp->mdev > tp->mdev_max) {
655 tp->mdev_max = tp->mdev;
656 if (tp->mdev_max > tp->rttvar)
657 tp->rttvar = tp->mdev_max;
659 if (after(tp->snd_una, tp->rtt_seq)) {
660 if (tp->mdev_max < tp->rttvar)
661 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
662 tp->rtt_seq = tp->snd_nxt;
663 tp->mdev_max = TCP_RTO_MIN;
665 } else {
666 /* no previous measure. */
667 tp->srtt = m<<3; /* take the measured time to be rtt */
668 tp->mdev = m<<1; /* make sure rto = 3*rtt */
669 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
670 tp->rtt_seq = tp->snd_nxt;
673 tcp_westwood_update_rtt(tp, tp->srtt >> 3);
676 /* Calculate rto without backoff. This is the second half of Van Jacobson's
677 * routine referred to above.
679 static inline void tcp_set_rto(struct tcp_sock *tp)
681 /* Old crap is replaced with new one. 8)
683 * More seriously:
684 * 1. If rtt variance happened to be less 50msec, it is hallucination.
685 * It cannot be less due to utterly erratic ACK generation made
686 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687 * to do with delayed acks, because at cwnd>2 true delack timeout
688 * is invisible. Actually, Linux-2.4 also generates erratic
689 * ACKs in some curcumstances.
691 tp->rto = (tp->srtt >> 3) + tp->rttvar;
693 /* 2. Fixups made earlier cannot be right.
694 * If we do not estimate RTO correctly without them,
695 * all the algo is pure shit and should be replaced
696 * with correct one. It is exaclty, which we pretend to do.
700 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
701 * guarantees that rto is higher.
703 static inline void tcp_bound_rto(struct tcp_sock *tp)
705 if (tp->rto > TCP_RTO_MAX)
706 tp->rto = TCP_RTO_MAX;
709 /* Save metrics learned by this TCP session.
710 This function is called only, when TCP finishes successfully
711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
713 void tcp_update_metrics(struct sock *sk)
715 struct tcp_sock *tp = tcp_sk(sk);
716 struct dst_entry *dst = __sk_dst_get(sk);
718 if (sysctl_tcp_nometrics_save)
719 return;
721 dst_confirm(dst);
723 if (dst && (dst->flags&DST_HOST)) {
724 int m;
726 if (tp->backoff || !tp->srtt) {
727 /* This session failed to estimate rtt. Why?
728 * Probably, no packets returned in time.
729 * Reset our results.
731 if (!(dst_metric_locked(dst, RTAX_RTT)))
732 dst->metrics[RTAX_RTT-1] = 0;
733 return;
736 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
738 /* If newly calculated rtt larger than stored one,
739 * store new one. Otherwise, use EWMA. Remember,
740 * rtt overestimation is always better than underestimation.
742 if (!(dst_metric_locked(dst, RTAX_RTT))) {
743 if (m <= 0)
744 dst->metrics[RTAX_RTT-1] = tp->srtt;
745 else
746 dst->metrics[RTAX_RTT-1] -= (m>>3);
749 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
750 if (m < 0)
751 m = -m;
753 /* Scale deviation to rttvar fixed point */
754 m >>= 1;
755 if (m < tp->mdev)
756 m = tp->mdev;
758 if (m >= dst_metric(dst, RTAX_RTTVAR))
759 dst->metrics[RTAX_RTTVAR-1] = m;
760 else
761 dst->metrics[RTAX_RTTVAR-1] -=
762 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
765 if (tp->snd_ssthresh >= 0xFFFF) {
766 /* Slow start still did not finish. */
767 if (dst_metric(dst, RTAX_SSTHRESH) &&
768 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
769 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
770 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
771 if (!dst_metric_locked(dst, RTAX_CWND) &&
772 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
773 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
774 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
775 tp->ca_state == TCP_CA_Open) {
776 /* Cong. avoidance phase, cwnd is reliable. */
777 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
778 dst->metrics[RTAX_SSTHRESH-1] =
779 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
780 if (!dst_metric_locked(dst, RTAX_CWND))
781 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
782 } else {
783 /* Else slow start did not finish, cwnd is non-sense,
784 ssthresh may be also invalid.
786 if (!dst_metric_locked(dst, RTAX_CWND))
787 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
788 if (dst->metrics[RTAX_SSTHRESH-1] &&
789 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
791 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
794 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
795 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
796 tp->reordering != sysctl_tcp_reordering)
797 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
802 /* Numbers are taken from RFC2414. */
803 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
805 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807 if (!cwnd) {
808 if (tp->mss_cache_std > 1460)
809 cwnd = 2;
810 else
811 cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
813 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
816 /* Initialize metrics on socket. */
818 static void tcp_init_metrics(struct sock *sk)
820 struct tcp_sock *tp = tcp_sk(sk);
821 struct dst_entry *dst = __sk_dst_get(sk);
823 if (dst == NULL)
824 goto reset;
826 dst_confirm(dst);
828 if (dst_metric_locked(dst, RTAX_CWND))
829 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
830 if (dst_metric(dst, RTAX_SSTHRESH)) {
831 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
832 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
833 tp->snd_ssthresh = tp->snd_cwnd_clamp;
835 if (dst_metric(dst, RTAX_REORDERING) &&
836 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
837 tp->rx_opt.sack_ok &= ~2;
838 tp->reordering = dst_metric(dst, RTAX_REORDERING);
841 if (dst_metric(dst, RTAX_RTT) == 0)
842 goto reset;
844 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
845 goto reset;
847 /* Initial rtt is determined from SYN,SYN-ACK.
848 * The segment is small and rtt may appear much
849 * less than real one. Use per-dst memory
850 * to make it more realistic.
852 * A bit of theory. RTT is time passed after "normal" sized packet
853 * is sent until it is ACKed. In normal curcumstances sending small
854 * packets force peer to delay ACKs and calculation is correct too.
855 * The algorithm is adaptive and, provided we follow specs, it
856 * NEVER underestimate RTT. BUT! If peer tries to make some clever
857 * tricks sort of "quick acks" for time long enough to decrease RTT
858 * to low value, and then abruptly stops to do it and starts to delay
859 * ACKs, wait for troubles.
861 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
862 tp->srtt = dst_metric(dst, RTAX_RTT);
863 tp->rtt_seq = tp->snd_nxt;
865 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
866 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
867 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
869 tcp_set_rto(tp);
870 tcp_bound_rto(tp);
871 if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
872 goto reset;
873 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
874 tp->snd_cwnd_stamp = tcp_time_stamp;
875 return;
877 reset:
878 /* Play conservative. If timestamps are not
879 * supported, TCP will fail to recalculate correct
880 * rtt, if initial rto is too small. FORGET ALL AND RESET!
882 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
883 tp->srtt = 0;
884 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
885 tp->rto = TCP_TIMEOUT_INIT;
889 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
891 if (metric > tp->reordering) {
892 tp->reordering = min(TCP_MAX_REORDERING, metric);
894 /* This exciting event is worth to be remembered. 8) */
895 if (ts)
896 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
897 else if (IsReno(tp))
898 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
899 else if (IsFack(tp))
900 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
901 else
902 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
903 #if FASTRETRANS_DEBUG > 1
904 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
905 tp->rx_opt.sack_ok, tp->ca_state,
906 tp->reordering,
907 tp->fackets_out,
908 tp->sacked_out,
909 tp->undo_marker ? tp->undo_retrans : 0);
910 #endif
911 /* Disable FACK yet. */
912 tp->rx_opt.sack_ok &= ~2;
916 /* This procedure tags the retransmission queue when SACKs arrive.
918 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
919 * Packets in queue with these bits set are counted in variables
920 * sacked_out, retrans_out and lost_out, correspondingly.
922 * Valid combinations are:
923 * Tag InFlight Description
924 * 0 1 - orig segment is in flight.
925 * S 0 - nothing flies, orig reached receiver.
926 * L 0 - nothing flies, orig lost by net.
927 * R 2 - both orig and retransmit are in flight.
928 * L|R 1 - orig is lost, retransmit is in flight.
929 * S|R 1 - orig reached receiver, retrans is still in flight.
930 * (L|S|R is logically valid, it could occur when L|R is sacked,
931 * but it is equivalent to plain S and code short-curcuits it to S.
932 * L|S is logically invalid, it would mean -1 packet in flight 8))
934 * These 6 states form finite state machine, controlled by the following events:
935 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
936 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
937 * 3. Loss detection event of one of three flavors:
938 * A. Scoreboard estimator decided the packet is lost.
939 * A'. Reno "three dupacks" marks head of queue lost.
940 * A''. Its FACK modfication, head until snd.fack is lost.
941 * B. SACK arrives sacking data transmitted after never retransmitted
942 * hole was sent out.
943 * C. SACK arrives sacking SND.NXT at the moment, when the
944 * segment was retransmitted.
945 * 4. D-SACK added new rule: D-SACK changes any tag to S.
947 * It is pleasant to note, that state diagram turns out to be commutative,
948 * so that we are allowed not to be bothered by order of our actions,
949 * when multiple events arrive simultaneously. (see the function below).
951 * Reordering detection.
952 * --------------------
953 * Reordering metric is maximal distance, which a packet can be displaced
954 * in packet stream. With SACKs we can estimate it:
956 * 1. SACK fills old hole and the corresponding segment was not
957 * ever retransmitted -> reordering. Alas, we cannot use it
958 * when segment was retransmitted.
959 * 2. The last flaw is solved with D-SACK. D-SACK arrives
960 * for retransmitted and already SACKed segment -> reordering..
961 * Both of these heuristics are not used in Loss state, when we cannot
962 * account for retransmits accurately.
964 static int
965 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
967 struct tcp_sock *tp = tcp_sk(sk);
968 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
969 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
970 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
971 int reord = tp->packets_out;
972 int prior_fackets;
973 u32 lost_retrans = 0;
974 int flag = 0;
975 int i;
977 /* So, SACKs for already sent large segments will be lost.
978 * Not good, but alternative is to resegment the queue. */
979 if (sk->sk_route_caps & NETIF_F_TSO) {
980 sk->sk_route_caps &= ~NETIF_F_TSO;
981 sock_set_flag(sk, SOCK_NO_LARGESEND);
982 tp->mss_cache = tp->mss_cache_std;
985 if (!tp->sacked_out)
986 tp->fackets_out = 0;
987 prior_fackets = tp->fackets_out;
989 for (i=0; i<num_sacks; i++, sp++) {
990 struct sk_buff *skb;
991 __u32 start_seq = ntohl(sp->start_seq);
992 __u32 end_seq = ntohl(sp->end_seq);
993 int fack_count = 0;
994 int dup_sack = 0;
996 /* Check for D-SACK. */
997 if (i == 0) {
998 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
1000 if (before(start_seq, ack)) {
1001 dup_sack = 1;
1002 tp->rx_opt.sack_ok |= 4;
1003 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1004 } else if (num_sacks > 1 &&
1005 !after(end_seq, ntohl(sp[1].end_seq)) &&
1006 !before(start_seq, ntohl(sp[1].start_seq))) {
1007 dup_sack = 1;
1008 tp->rx_opt.sack_ok |= 4;
1009 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1012 /* D-SACK for already forgotten data...
1013 * Do dumb counting. */
1014 if (dup_sack &&
1015 !after(end_seq, prior_snd_una) &&
1016 after(end_seq, tp->undo_marker))
1017 tp->undo_retrans--;
1019 /* Eliminate too old ACKs, but take into
1020 * account more or less fresh ones, they can
1021 * contain valid SACK info.
1023 if (before(ack, prior_snd_una - tp->max_window))
1024 return 0;
1027 /* Event "B" in the comment above. */
1028 if (after(end_seq, tp->high_seq))
1029 flag |= FLAG_DATA_LOST;
1031 sk_stream_for_retrans_queue(skb, sk) {
1032 u8 sacked = TCP_SKB_CB(skb)->sacked;
1033 int in_sack;
1035 /* The retransmission queue is always in order, so
1036 * we can short-circuit the walk early.
1038 if(!before(TCP_SKB_CB(skb)->seq, end_seq))
1039 break;
1041 fack_count += tcp_skb_pcount(skb);
1043 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1044 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1046 /* Account D-SACK for retransmitted packet. */
1047 if ((dup_sack && in_sack) &&
1048 (sacked & TCPCB_RETRANS) &&
1049 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1050 tp->undo_retrans--;
1052 /* The frame is ACKed. */
1053 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1054 if (sacked&TCPCB_RETRANS) {
1055 if ((dup_sack && in_sack) &&
1056 (sacked&TCPCB_SACKED_ACKED))
1057 reord = min(fack_count, reord);
1058 } else {
1059 /* If it was in a hole, we detected reordering. */
1060 if (fack_count < prior_fackets &&
1061 !(sacked&TCPCB_SACKED_ACKED))
1062 reord = min(fack_count, reord);
1065 /* Nothing to do; acked frame is about to be dropped. */
1066 continue;
1069 if ((sacked&TCPCB_SACKED_RETRANS) &&
1070 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1071 (!lost_retrans || after(end_seq, lost_retrans)))
1072 lost_retrans = end_seq;
1074 if (!in_sack)
1075 continue;
1077 if (!(sacked&TCPCB_SACKED_ACKED)) {
1078 if (sacked & TCPCB_SACKED_RETRANS) {
1079 /* If the segment is not tagged as lost,
1080 * we do not clear RETRANS, believing
1081 * that retransmission is still in flight.
1083 if (sacked & TCPCB_LOST) {
1084 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1085 tp->lost_out -= tcp_skb_pcount(skb);
1086 tp->retrans_out -= tcp_skb_pcount(skb);
1088 } else {
1089 /* New sack for not retransmitted frame,
1090 * which was in hole. It is reordering.
1092 if (!(sacked & TCPCB_RETRANS) &&
1093 fack_count < prior_fackets)
1094 reord = min(fack_count, reord);
1096 if (sacked & TCPCB_LOST) {
1097 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1098 tp->lost_out -= tcp_skb_pcount(skb);
1102 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1103 flag |= FLAG_DATA_SACKED;
1104 tp->sacked_out += tcp_skb_pcount(skb);
1106 if (fack_count > tp->fackets_out)
1107 tp->fackets_out = fack_count;
1108 } else {
1109 if (dup_sack && (sacked&TCPCB_RETRANS))
1110 reord = min(fack_count, reord);
1113 /* D-SACK. We can detect redundant retransmission
1114 * in S|R and plain R frames and clear it.
1115 * undo_retrans is decreased above, L|R frames
1116 * are accounted above as well.
1118 if (dup_sack &&
1119 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1120 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1121 tp->retrans_out -= tcp_skb_pcount(skb);
1126 /* Check for lost retransmit. This superb idea is
1127 * borrowed from "ratehalving". Event "C".
1128 * Later note: FACK people cheated me again 8),
1129 * we have to account for reordering! Ugly,
1130 * but should help.
1132 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1133 struct sk_buff *skb;
1135 sk_stream_for_retrans_queue(skb, sk) {
1136 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1137 break;
1138 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139 continue;
1140 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1141 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1142 (IsFack(tp) ||
1143 !before(lost_retrans,
1144 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1145 tp->mss_cache_std))) {
1146 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1147 tp->retrans_out -= tcp_skb_pcount(skb);
1149 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 tp->lost_out += tcp_skb_pcount(skb);
1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 flag |= FLAG_DATA_SACKED;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1159 tp->left_out = tp->sacked_out + tp->lost_out;
1161 if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1162 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1164 #if FASTRETRANS_DEBUG > 0
1165 BUG_TRAP((int)tp->sacked_out >= 0);
1166 BUG_TRAP((int)tp->lost_out >= 0);
1167 BUG_TRAP((int)tp->retrans_out >= 0);
1168 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1169 #endif
1170 return flag;
1173 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1174 * segments to see from the next ACKs whether any data was really missing.
1175 * If the RTO was spurious, new ACKs should arrive.
1177 void tcp_enter_frto(struct sock *sk)
1179 struct tcp_sock *tp = tcp_sk(sk);
1180 struct sk_buff *skb;
1182 tp->frto_counter = 1;
1184 if (tp->ca_state <= TCP_CA_Disorder ||
1185 tp->snd_una == tp->high_seq ||
1186 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1187 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1188 if (!tcp_westwood_ssthresh(tp))
1189 tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1192 /* Have to clear retransmission markers here to keep the bookkeeping
1193 * in shape, even though we are not yet in Loss state.
1194 * If something was really lost, it is eventually caught up
1195 * in tcp_enter_frto_loss.
1197 tp->retrans_out = 0;
1198 tp->undo_marker = tp->snd_una;
1199 tp->undo_retrans = 0;
1201 sk_stream_for_retrans_queue(skb, sk) {
1202 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1204 tcp_sync_left_out(tp);
1206 tcp_set_ca_state(tp, TCP_CA_Open);
1207 tp->frto_highmark = tp->snd_nxt;
1210 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1211 * which indicates that we should follow the traditional RTO recovery,
1212 * i.e. mark everything lost and do go-back-N retransmission.
1214 static void tcp_enter_frto_loss(struct sock *sk)
1216 struct tcp_sock *tp = tcp_sk(sk);
1217 struct sk_buff *skb;
1218 int cnt = 0;
1220 tp->sacked_out = 0;
1221 tp->lost_out = 0;
1222 tp->fackets_out = 0;
1224 sk_stream_for_retrans_queue(skb, sk) {
1225 cnt += tcp_skb_pcount(skb);
1226 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1227 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1229 /* Do not mark those segments lost that were
1230 * forward transmitted after RTO
1232 if (!after(TCP_SKB_CB(skb)->end_seq,
1233 tp->frto_highmark)) {
1234 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1235 tp->lost_out += tcp_skb_pcount(skb);
1237 } else {
1238 tp->sacked_out += tcp_skb_pcount(skb);
1239 tp->fackets_out = cnt;
1242 tcp_sync_left_out(tp);
1244 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1245 tp->snd_cwnd_cnt = 0;
1246 tp->snd_cwnd_stamp = tcp_time_stamp;
1247 tp->undo_marker = 0;
1248 tp->frto_counter = 0;
1250 tp->reordering = min_t(unsigned int, tp->reordering,
1251 sysctl_tcp_reordering);
1252 tcp_set_ca_state(tp, TCP_CA_Loss);
1253 tp->high_seq = tp->frto_highmark;
1254 TCP_ECN_queue_cwr(tp);
1256 init_bictcp(tp);
1259 void tcp_clear_retrans(struct tcp_sock *tp)
1261 tp->left_out = 0;
1262 tp->retrans_out = 0;
1264 tp->fackets_out = 0;
1265 tp->sacked_out = 0;
1266 tp->lost_out = 0;
1268 tp->undo_marker = 0;
1269 tp->undo_retrans = 0;
1272 /* Enter Loss state. If "how" is not zero, forget all SACK information
1273 * and reset tags completely, otherwise preserve SACKs. If receiver
1274 * dropped its ofo queue, we will know this due to reneging detection.
1276 void tcp_enter_loss(struct sock *sk, int how)
1278 struct tcp_sock *tp = tcp_sk(sk);
1279 struct sk_buff *skb;
1280 int cnt = 0;
1282 /* Reduce ssthresh if it has not yet been made inside this window. */
1283 if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1284 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1285 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1286 tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1288 tp->snd_cwnd = 1;
1289 tp->snd_cwnd_cnt = 0;
1290 tp->snd_cwnd_stamp = tcp_time_stamp;
1292 tcp_clear_retrans(tp);
1294 /* Push undo marker, if it was plain RTO and nothing
1295 * was retransmitted. */
1296 if (!how)
1297 tp->undo_marker = tp->snd_una;
1299 sk_stream_for_retrans_queue(skb, sk) {
1300 cnt += tcp_skb_pcount(skb);
1301 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1302 tp->undo_marker = 0;
1303 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1304 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1305 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1306 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1307 tp->lost_out += tcp_skb_pcount(skb);
1308 } else {
1309 tp->sacked_out += tcp_skb_pcount(skb);
1310 tp->fackets_out = cnt;
1313 tcp_sync_left_out(tp);
1315 tp->reordering = min_t(unsigned int, tp->reordering,
1316 sysctl_tcp_reordering);
1317 tcp_set_ca_state(tp, TCP_CA_Loss);
1318 tp->high_seq = tp->snd_nxt;
1319 TCP_ECN_queue_cwr(tp);
1322 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
1324 struct sk_buff *skb;
1326 /* If ACK arrived pointing to a remembered SACK,
1327 * it means that our remembered SACKs do not reflect
1328 * real state of receiver i.e.
1329 * receiver _host_ is heavily congested (or buggy).
1330 * Do processing similar to RTO timeout.
1332 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1333 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1334 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1336 tcp_enter_loss(sk, 1);
1337 tp->retransmits++;
1338 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1339 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1340 return 1;
1342 return 0;
1345 static inline int tcp_fackets_out(struct tcp_sock *tp)
1347 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1350 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
1352 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
1355 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1357 return tp->packets_out &&
1358 tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
1361 /* Linux NewReno/SACK/FACK/ECN state machine.
1362 * --------------------------------------
1364 * "Open" Normal state, no dubious events, fast path.
1365 * "Disorder" In all the respects it is "Open",
1366 * but requires a bit more attention. It is entered when
1367 * we see some SACKs or dupacks. It is split of "Open"
1368 * mainly to move some processing from fast path to slow one.
1369 * "CWR" CWND was reduced due to some Congestion Notification event.
1370 * It can be ECN, ICMP source quench, local device congestion.
1371 * "Recovery" CWND was reduced, we are fast-retransmitting.
1372 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1374 * tcp_fastretrans_alert() is entered:
1375 * - each incoming ACK, if state is not "Open"
1376 * - when arrived ACK is unusual, namely:
1377 * * SACK
1378 * * Duplicate ACK.
1379 * * ECN ECE.
1381 * Counting packets in flight is pretty simple.
1383 * in_flight = packets_out - left_out + retrans_out
1385 * packets_out is SND.NXT-SND.UNA counted in packets.
1387 * retrans_out is number of retransmitted segments.
1389 * left_out is number of segments left network, but not ACKed yet.
1391 * left_out = sacked_out + lost_out
1393 * sacked_out: Packets, which arrived to receiver out of order
1394 * and hence not ACKed. With SACKs this number is simply
1395 * amount of SACKed data. Even without SACKs
1396 * it is easy to give pretty reliable estimate of this number,
1397 * counting duplicate ACKs.
1399 * lost_out: Packets lost by network. TCP has no explicit
1400 * "loss notification" feedback from network (for now).
1401 * It means that this number can be only _guessed_.
1402 * Actually, it is the heuristics to predict lossage that
1403 * distinguishes different algorithms.
1405 * F.e. after RTO, when all the queue is considered as lost,
1406 * lost_out = packets_out and in_flight = retrans_out.
1408 * Essentially, we have now two algorithms counting
1409 * lost packets.
1411 * FACK: It is the simplest heuristics. As soon as we decided
1412 * that something is lost, we decide that _all_ not SACKed
1413 * packets until the most forward SACK are lost. I.e.
1414 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1415 * It is absolutely correct estimate, if network does not reorder
1416 * packets. And it loses any connection to reality when reordering
1417 * takes place. We use FACK by default until reordering
1418 * is suspected on the path to this destination.
1420 * NewReno: when Recovery is entered, we assume that one segment
1421 * is lost (classic Reno). While we are in Recovery and
1422 * a partial ACK arrives, we assume that one more packet
1423 * is lost (NewReno). This heuristics are the same in NewReno
1424 * and SACK.
1426 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1427 * deflation etc. CWND is real congestion window, never inflated, changes
1428 * only according to classic VJ rules.
1430 * Really tricky (and requiring careful tuning) part of algorithm
1431 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1432 * The first determines the moment _when_ we should reduce CWND and,
1433 * hence, slow down forward transmission. In fact, it determines the moment
1434 * when we decide that hole is caused by loss, rather than by a reorder.
1436 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1437 * holes, caused by lost packets.
1439 * And the most logically complicated part of algorithm is undo
1440 * heuristics. We detect false retransmits due to both too early
1441 * fast retransmit (reordering) and underestimated RTO, analyzing
1442 * timestamps and D-SACKs. When we detect that some segments were
1443 * retransmitted by mistake and CWND reduction was wrong, we undo
1444 * window reduction and abort recovery phase. This logic is hidden
1445 * inside several functions named tcp_try_undo_<something>.
1448 /* This function decides, when we should leave Disordered state
1449 * and enter Recovery phase, reducing congestion window.
1451 * Main question: may we further continue forward transmission
1452 * with the same cwnd?
1454 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1456 __u32 packets_out;
1458 /* Trick#1: The loss is proven. */
1459 if (tp->lost_out)
1460 return 1;
1462 /* Not-A-Trick#2 : Classic rule... */
1463 if (tcp_fackets_out(tp) > tp->reordering)
1464 return 1;
1466 /* Trick#3 : when we use RFC2988 timer restart, fast
1467 * retransmit can be triggered by timeout of queue head.
1469 if (tcp_head_timedout(sk, tp))
1470 return 1;
1472 /* Trick#4: It is still not OK... But will it be useful to delay
1473 * recovery more?
1475 packets_out = tp->packets_out;
1476 if (packets_out <= tp->reordering &&
1477 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1478 !tcp_may_send_now(sk, tp)) {
1479 /* We have nothing to send. This connection is limited
1480 * either by receiver window or by application.
1482 return 1;
1485 return 0;
1488 /* If we receive more dupacks than we expected counting segments
1489 * in assumption of absent reordering, interpret this as reordering.
1490 * The only another reason could be bug in receiver TCP.
1492 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1494 u32 holes;
1496 holes = max(tp->lost_out, 1U);
1497 holes = min(holes, tp->packets_out);
1499 if ((tp->sacked_out + holes) > tp->packets_out) {
1500 tp->sacked_out = tp->packets_out - holes;
1501 tcp_update_reordering(tp, tp->packets_out+addend, 0);
1505 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1507 static void tcp_add_reno_sack(struct tcp_sock *tp)
1509 tp->sacked_out++;
1510 tcp_check_reno_reordering(tp, 0);
1511 tcp_sync_left_out(tp);
1514 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1516 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1518 if (acked > 0) {
1519 /* One ACK acked hole. The rest eat duplicate ACKs. */
1520 if (acked-1 >= tp->sacked_out)
1521 tp->sacked_out = 0;
1522 else
1523 tp->sacked_out -= acked-1;
1525 tcp_check_reno_reordering(tp, acked);
1526 tcp_sync_left_out(tp);
1529 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1531 tp->sacked_out = 0;
1532 tp->left_out = tp->lost_out;
1535 /* Mark head of queue up as lost. */
1536 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1537 int packets, u32 high_seq)
1539 struct sk_buff *skb;
1540 int cnt = packets;
1542 BUG_TRAP(cnt <= tp->packets_out);
1544 sk_stream_for_retrans_queue(skb, sk) {
1545 cnt -= tcp_skb_pcount(skb);
1546 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1547 break;
1548 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1549 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1550 tp->lost_out += tcp_skb_pcount(skb);
1553 tcp_sync_left_out(tp);
1556 /* Account newly detected lost packet(s) */
1558 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1560 if (IsFack(tp)) {
1561 int lost = tp->fackets_out - tp->reordering;
1562 if (lost <= 0)
1563 lost = 1;
1564 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1565 } else {
1566 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1569 /* New heuristics: it is possible only after we switched
1570 * to restart timer each time when something is ACKed.
1571 * Hence, we can detect timed out packets during fast
1572 * retransmit without falling to slow start.
1574 if (tcp_head_timedout(sk, tp)) {
1575 struct sk_buff *skb;
1577 sk_stream_for_retrans_queue(skb, sk) {
1578 if (tcp_skb_timedout(tp, skb) &&
1579 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1580 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1581 tp->lost_out += tcp_skb_pcount(skb);
1584 tcp_sync_left_out(tp);
1588 /* CWND moderation, preventing bursts due to too big ACKs
1589 * in dubious situations.
1591 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1593 tp->snd_cwnd = min(tp->snd_cwnd,
1594 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1595 tp->snd_cwnd_stamp = tcp_time_stamp;
1598 /* Decrease cwnd each second ack. */
1600 static void tcp_cwnd_down(struct tcp_sock *tp)
1602 int decr = tp->snd_cwnd_cnt + 1;
1603 __u32 limit;
1606 * TCP Westwood
1607 * Here limit is evaluated as BWestimation*RTTmin (for obtaining it
1608 * in packets we use mss_cache). If sysctl_tcp_westwood is off
1609 * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
1610 * still used as usual. It prevents other strange cases in which
1611 * BWE*RTTmin could assume value 0. It should not happen but...
1614 if (!(limit = tcp_westwood_bw_rttmin(tp)))
1615 limit = tp->snd_ssthresh/2;
1617 tp->snd_cwnd_cnt = decr&1;
1618 decr >>= 1;
1620 if (decr && tp->snd_cwnd > limit)
1621 tp->snd_cwnd -= decr;
1623 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1624 tp->snd_cwnd_stamp = tcp_time_stamp;
1627 /* Nothing was retransmitted or returned timestamp is less
1628 * than timestamp of the first retransmission.
1630 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1632 return !tp->retrans_stamp ||
1633 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1634 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1637 /* Undo procedures. */
1639 #if FASTRETRANS_DEBUG > 1
1640 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1642 struct inet_sock *inet = inet_sk(sk);
1643 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1644 msg,
1645 NIPQUAD(inet->daddr), ntohs(inet->dport),
1646 tp->snd_cwnd, tp->left_out,
1647 tp->snd_ssthresh, tp->prior_ssthresh,
1648 tp->packets_out);
1650 #else
1651 #define DBGUNDO(x...) do { } while (0)
1652 #endif
1654 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1656 if (tp->prior_ssthresh) {
1657 if (tcp_is_bic(tp))
1658 tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd);
1659 else
1660 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1662 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1663 tp->snd_ssthresh = tp->prior_ssthresh;
1664 TCP_ECN_withdraw_cwr(tp);
1666 } else {
1667 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1669 tcp_moderate_cwnd(tp);
1670 tp->snd_cwnd_stamp = tcp_time_stamp;
1673 static inline int tcp_may_undo(struct tcp_sock *tp)
1675 return tp->undo_marker &&
1676 (!tp->undo_retrans || tcp_packet_delayed(tp));
1679 /* People celebrate: "We love our President!" */
1680 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1682 if (tcp_may_undo(tp)) {
1683 /* Happy end! We did not retransmit anything
1684 * or our original transmission succeeded.
1686 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1687 tcp_undo_cwr(tp, 1);
1688 if (tp->ca_state == TCP_CA_Loss)
1689 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1690 else
1691 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1692 tp->undo_marker = 0;
1694 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1695 /* Hold old state until something *above* high_seq
1696 * is ACKed. For Reno it is MUST to prevent false
1697 * fast retransmits (RFC2582). SACK TCP is safe. */
1698 tcp_moderate_cwnd(tp);
1699 return 1;
1701 tcp_set_ca_state(tp, TCP_CA_Open);
1702 return 0;
1705 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1706 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1708 if (tp->undo_marker && !tp->undo_retrans) {
1709 DBGUNDO(sk, tp, "D-SACK");
1710 tcp_undo_cwr(tp, 1);
1711 tp->undo_marker = 0;
1712 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1716 /* Undo during fast recovery after partial ACK. */
1718 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1719 int acked)
1721 /* Partial ACK arrived. Force Hoe's retransmit. */
1722 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1724 if (tcp_may_undo(tp)) {
1725 /* Plain luck! Hole if filled with delayed
1726 * packet, rather than with a retransmit.
1728 if (tp->retrans_out == 0)
1729 tp->retrans_stamp = 0;
1731 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1733 DBGUNDO(sk, tp, "Hoe");
1734 tcp_undo_cwr(tp, 0);
1735 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1737 /* So... Do not make Hoe's retransmit yet.
1738 * If the first packet was delayed, the rest
1739 * ones are most probably delayed as well.
1741 failed = 0;
1743 return failed;
1746 /* Undo during loss recovery after partial ACK. */
1747 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1749 if (tcp_may_undo(tp)) {
1750 struct sk_buff *skb;
1751 sk_stream_for_retrans_queue(skb, sk) {
1752 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1754 DBGUNDO(sk, tp, "partial loss");
1755 tp->lost_out = 0;
1756 tp->left_out = tp->sacked_out;
1757 tcp_undo_cwr(tp, 1);
1758 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1759 tp->retransmits = 0;
1760 tp->undo_marker = 0;
1761 if (!IsReno(tp))
1762 tcp_set_ca_state(tp, TCP_CA_Open);
1763 return 1;
1765 return 0;
1768 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1770 if (tcp_westwood_cwnd(tp))
1771 tp->snd_ssthresh = tp->snd_cwnd;
1772 else
1773 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1774 tp->snd_cwnd_stamp = tcp_time_stamp;
1777 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1779 tp->left_out = tp->sacked_out;
1781 if (tp->retrans_out == 0)
1782 tp->retrans_stamp = 0;
1784 if (flag&FLAG_ECE)
1785 tcp_enter_cwr(tp);
1787 if (tp->ca_state != TCP_CA_CWR) {
1788 int state = TCP_CA_Open;
1790 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1791 state = TCP_CA_Disorder;
1793 if (tp->ca_state != state) {
1794 tcp_set_ca_state(tp, state);
1795 tp->high_seq = tp->snd_nxt;
1797 tcp_moderate_cwnd(tp);
1798 } else {
1799 tcp_cwnd_down(tp);
1803 /* Process an event, which can update packets-in-flight not trivially.
1804 * Main goal of this function is to calculate new estimate for left_out,
1805 * taking into account both packets sitting in receiver's buffer and
1806 * packets lost by network.
1808 * Besides that it does CWND reduction, when packet loss is detected
1809 * and changes state of machine.
1811 * It does _not_ decide what to send, it is made in function
1812 * tcp_xmit_retransmit_queue().
1814 static void
1815 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1816 int prior_packets, int flag)
1818 struct tcp_sock *tp = tcp_sk(sk);
1819 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1821 /* Some technical things:
1822 * 1. Reno does not count dupacks (sacked_out) automatically. */
1823 if (!tp->packets_out)
1824 tp->sacked_out = 0;
1825 /* 2. SACK counts snd_fack in packets inaccurately. */
1826 if (tp->sacked_out == 0)
1827 tp->fackets_out = 0;
1829 /* Now state machine starts.
1830 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1831 if (flag&FLAG_ECE)
1832 tp->prior_ssthresh = 0;
1834 /* B. In all the states check for reneging SACKs. */
1835 if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1836 return;
1838 /* C. Process data loss notification, provided it is valid. */
1839 if ((flag&FLAG_DATA_LOST) &&
1840 before(tp->snd_una, tp->high_seq) &&
1841 tp->ca_state != TCP_CA_Open &&
1842 tp->fackets_out > tp->reordering) {
1843 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1844 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1847 /* D. Synchronize left_out to current state. */
1848 tcp_sync_left_out(tp);
1850 /* E. Check state exit conditions. State can be terminated
1851 * when high_seq is ACKed. */
1852 if (tp->ca_state == TCP_CA_Open) {
1853 if (!sysctl_tcp_frto)
1854 BUG_TRAP(tp->retrans_out == 0);
1855 tp->retrans_stamp = 0;
1856 } else if (!before(tp->snd_una, tp->high_seq)) {
1857 switch (tp->ca_state) {
1858 case TCP_CA_Loss:
1859 tp->retransmits = 0;
1860 if (tcp_try_undo_recovery(sk, tp))
1861 return;
1862 break;
1864 case TCP_CA_CWR:
1865 /* CWR is to be held something *above* high_seq
1866 * is ACKed for CWR bit to reach receiver. */
1867 if (tp->snd_una != tp->high_seq) {
1868 tcp_complete_cwr(tp);
1869 tcp_set_ca_state(tp, TCP_CA_Open);
1871 break;
1873 case TCP_CA_Disorder:
1874 tcp_try_undo_dsack(sk, tp);
1875 if (!tp->undo_marker ||
1876 /* For SACK case do not Open to allow to undo
1877 * catching for all duplicate ACKs. */
1878 IsReno(tp) || tp->snd_una != tp->high_seq) {
1879 tp->undo_marker = 0;
1880 tcp_set_ca_state(tp, TCP_CA_Open);
1882 break;
1884 case TCP_CA_Recovery:
1885 if (IsReno(tp))
1886 tcp_reset_reno_sack(tp);
1887 if (tcp_try_undo_recovery(sk, tp))
1888 return;
1889 tcp_complete_cwr(tp);
1890 break;
1894 /* F. Process state. */
1895 switch (tp->ca_state) {
1896 case TCP_CA_Recovery:
1897 if (prior_snd_una == tp->snd_una) {
1898 if (IsReno(tp) && is_dupack)
1899 tcp_add_reno_sack(tp);
1900 } else {
1901 int acked = prior_packets - tp->packets_out;
1902 if (IsReno(tp))
1903 tcp_remove_reno_sacks(sk, tp, acked);
1904 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1906 break;
1907 case TCP_CA_Loss:
1908 if (flag&FLAG_DATA_ACKED)
1909 tp->retransmits = 0;
1910 if (!tcp_try_undo_loss(sk, tp)) {
1911 tcp_moderate_cwnd(tp);
1912 tcp_xmit_retransmit_queue(sk);
1913 return;
1915 if (tp->ca_state != TCP_CA_Open)
1916 return;
1917 /* Loss is undone; fall through to processing in Open state. */
1918 default:
1919 if (IsReno(tp)) {
1920 if (tp->snd_una != prior_snd_una)
1921 tcp_reset_reno_sack(tp);
1922 if (is_dupack)
1923 tcp_add_reno_sack(tp);
1926 if (tp->ca_state == TCP_CA_Disorder)
1927 tcp_try_undo_dsack(sk, tp);
1929 if (!tcp_time_to_recover(sk, tp)) {
1930 tcp_try_to_open(sk, tp, flag);
1931 return;
1934 /* Otherwise enter Recovery state */
1936 if (IsReno(tp))
1937 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1938 else
1939 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1941 tp->high_seq = tp->snd_nxt;
1942 tp->prior_ssthresh = 0;
1943 tp->undo_marker = tp->snd_una;
1944 tp->undo_retrans = tp->retrans_out;
1946 if (tp->ca_state < TCP_CA_CWR) {
1947 if (!(flag&FLAG_ECE))
1948 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1949 tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1950 TCP_ECN_queue_cwr(tp);
1953 tp->snd_cwnd_cnt = 0;
1954 tcp_set_ca_state(tp, TCP_CA_Recovery);
1957 if (is_dupack || tcp_head_timedout(sk, tp))
1958 tcp_update_scoreboard(sk, tp);
1959 tcp_cwnd_down(tp);
1960 tcp_xmit_retransmit_queue(sk);
1963 /* Read draft-ietf-tcplw-high-performance before mucking
1964 * with this code. (Superceeds RFC1323)
1966 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag)
1968 __u32 seq_rtt;
1970 /* RTTM Rule: A TSecr value received in a segment is used to
1971 * update the averaged RTT measurement only if the segment
1972 * acknowledges some new data, i.e., only if it advances the
1973 * left edge of the send window.
1975 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1976 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1978 * Changed: reset backoff as soon as we see the first valid sample.
1979 * If we do not, we get strongly overstimated rto. With timestamps
1980 * samples are accepted even from very old segments: f.e., when rtt=1
1981 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1982 * answer arrives rto becomes 120 seconds! If at least one of segments
1983 * in window is lost... Voila. --ANK (010210)
1985 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1986 tcp_rtt_estimator(tp, seq_rtt);
1987 tcp_set_rto(tp);
1988 tp->backoff = 0;
1989 tcp_bound_rto(tp);
1992 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag)
1994 /* We don't have a timestamp. Can only use
1995 * packets that are not retransmitted to determine
1996 * rtt estimates. Also, we must not reset the
1997 * backoff for rto until we get a non-retransmitted
1998 * packet. This allows us to deal with a situation
1999 * where the network delay has increased suddenly.
2000 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2003 if (flag & FLAG_RETRANS_DATA_ACKED)
2004 return;
2006 tcp_rtt_estimator(tp, seq_rtt);
2007 tcp_set_rto(tp);
2008 tp->backoff = 0;
2009 tcp_bound_rto(tp);
2012 static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
2013 int flag, s32 seq_rtt)
2015 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2016 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2017 tcp_ack_saw_tstamp(tp, flag);
2018 else if (seq_rtt >= 0)
2019 tcp_ack_no_tstamp(tp, seq_rtt, flag);
2023 * Compute congestion window to use.
2025 * This is from the implementation of BICTCP in
2026 * Lison-Xu, Kahaled Harfoush, and Injog Rhee.
2027 * "Binary Increase Congestion Control for Fast, Long Distance
2028 * Networks" in InfoComm 2004
2029 * Available from:
2030 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
2032 * Unless BIC is enabled and congestion window is large
2033 * this behaves the same as the original Reno.
2035 static inline __u32 bictcp_cwnd(struct tcp_sock *tp)
2037 /* orignal Reno behaviour */
2038 if (!tcp_is_bic(tp))
2039 return tp->snd_cwnd;
2041 if (tp->bictcp.last_cwnd == tp->snd_cwnd &&
2042 (s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5))
2043 return tp->bictcp.cnt;
2045 tp->bictcp.last_cwnd = tp->snd_cwnd;
2046 tp->bictcp.last_stamp = tcp_time_stamp;
2048 /* start off normal */
2049 if (tp->snd_cwnd <= sysctl_tcp_bic_low_window)
2050 tp->bictcp.cnt = tp->snd_cwnd;
2052 /* binary increase */
2053 else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) {
2054 __u32 dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd)
2055 / BICTCP_B;
2057 if (dist > BICTCP_MAX_INCREMENT)
2058 /* linear increase */
2059 tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
2060 else if (dist <= 1U)
2061 /* binary search increase */
2062 tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
2063 / BICTCP_B;
2064 else
2065 /* binary search increase */
2066 tp->bictcp.cnt = tp->snd_cwnd / dist;
2067 } else {
2068 /* slow start amd linear increase */
2069 if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B)
2070 /* slow start */
2071 tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
2072 / BICTCP_B;
2073 else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd
2074 + BICTCP_MAX_INCREMENT*(BICTCP_B-1))
2075 /* slow start */
2076 tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1)
2077 / (tp->snd_cwnd-tp->bictcp.last_max_cwnd);
2078 else
2079 /* linear increase */
2080 tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
2082 return tp->bictcp.cnt;
2085 /* This is Jacobson's slow start and congestion avoidance.
2086 * SIGCOMM '88, p. 328.
2088 static inline void reno_cong_avoid(struct tcp_sock *tp)
2090 if (tp->snd_cwnd <= tp->snd_ssthresh) {
2091 /* In "safe" area, increase. */
2092 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
2093 tp->snd_cwnd++;
2094 } else {
2095 /* In dangerous area, increase slowly.
2096 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
2098 if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) {
2099 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
2100 tp->snd_cwnd++;
2101 tp->snd_cwnd_cnt=0;
2102 } else
2103 tp->snd_cwnd_cnt++;
2105 tp->snd_cwnd_stamp = tcp_time_stamp;
2108 /* This is based on the congestion detection/avoidance scheme described in
2109 * Lawrence S. Brakmo and Larry L. Peterson.
2110 * "TCP Vegas: End to end congestion avoidance on a global internet."
2111 * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
2112 * October 1995. Available from:
2113 * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
2115 * See http://www.cs.arizona.edu/xkernel/ for their implementation.
2116 * The main aspects that distinguish this implementation from the
2117 * Arizona Vegas implementation are:
2118 * o We do not change the loss detection or recovery mechanisms of
2119 * Linux in any way. Linux already recovers from losses quite well,
2120 * using fine-grained timers, NewReno, and FACK.
2121 * o To avoid the performance penalty imposed by increasing cwnd
2122 * only every-other RTT during slow start, we increase during
2123 * every RTT during slow start, just like Reno.
2124 * o Largely to allow continuous cwnd growth during slow start,
2125 * we use the rate at which ACKs come back as the "actual"
2126 * rate, rather than the rate at which data is sent.
2127 * o To speed convergence to the right rate, we set the cwnd
2128 * to achieve the right ("actual") rate when we exit slow start.
2129 * o To filter out the noise caused by delayed ACKs, we use the
2130 * minimum RTT sample observed during the last RTT to calculate
2131 * the actual rate.
2132 * o When the sender re-starts from idle, it waits until it has
2133 * received ACKs for an entire flight of new data before making
2134 * a cwnd adjustment decision. The original Vegas implementation
2135 * assumed senders never went idle.
2137 static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
2139 /* The key players are v_beg_snd_una and v_beg_snd_nxt.
2141 * These are so named because they represent the approximate values
2142 * of snd_una and snd_nxt at the beginning of the current RTT. More
2143 * precisely, they represent the amount of data sent during the RTT.
2144 * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
2145 * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
2146 * bytes of data have been ACKed during the course of the RTT, giving
2147 * an "actual" rate of:
2149 * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
2151 * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
2152 * because delayed ACKs can cover more than one segment, so they
2153 * don't line up nicely with the boundaries of RTTs.
2155 * Another unfortunate fact of life is that delayed ACKs delay the
2156 * advance of the left edge of our send window, so that the number
2157 * of bytes we send in an RTT is often less than our cwnd will allow.
2158 * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
2161 if (after(ack, tp->vegas.beg_snd_nxt)) {
2162 /* Do the Vegas once-per-RTT cwnd adjustment. */
2163 u32 old_wnd, old_snd_cwnd;
2166 /* Here old_wnd is essentially the window of data that was
2167 * sent during the previous RTT, and has all
2168 * been acknowledged in the course of the RTT that ended
2169 * with the ACK we just received. Likewise, old_snd_cwnd
2170 * is the cwnd during the previous RTT.
2172 old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) /
2173 tp->mss_cache_std;
2174 old_snd_cwnd = tp->vegas.beg_snd_cwnd;
2176 /* Save the extent of the current window so we can use this
2177 * at the end of the next RTT.
2179 tp->vegas.beg_snd_una = tp->vegas.beg_snd_nxt;
2180 tp->vegas.beg_snd_nxt = tp->snd_nxt;
2181 tp->vegas.beg_snd_cwnd = tp->snd_cwnd;
2183 /* Take into account the current RTT sample too, to
2184 * decrease the impact of delayed acks. This double counts
2185 * this sample since we count it for the next window as well,
2186 * but that's not too awful, since we're taking the min,
2187 * rather than averaging.
2189 vegas_rtt_calc(tp, seq_rtt);
2191 /* We do the Vegas calculations only if we got enough RTT
2192 * samples that we can be reasonably sure that we got
2193 * at least one RTT sample that wasn't from a delayed ACK.
2194 * If we only had 2 samples total,
2195 * then that means we're getting only 1 ACK per RTT, which
2196 * means they're almost certainly delayed ACKs.
2197 * If we have 3 samples, we should be OK.
2200 if (tp->vegas.cntRTT <= 2) {
2201 /* We don't have enough RTT samples to do the Vegas
2202 * calculation, so we'll behave like Reno.
2204 if (tp->snd_cwnd > tp->snd_ssthresh)
2205 tp->snd_cwnd++;
2206 } else {
2207 u32 rtt, target_cwnd, diff;
2209 /* We have enough RTT samples, so, using the Vegas
2210 * algorithm, we determine if we should increase or
2211 * decrease cwnd, and by how much.
2214 /* Pluck out the RTT we are using for the Vegas
2215 * calculations. This is the min RTT seen during the
2216 * last RTT. Taking the min filters out the effects
2217 * of delayed ACKs, at the cost of noticing congestion
2218 * a bit later.
2220 rtt = tp->vegas.minRTT;
2222 /* Calculate the cwnd we should have, if we weren't
2223 * going too fast.
2225 * This is:
2226 * (actual rate in segments) * baseRTT
2227 * We keep it as a fixed point number with
2228 * V_PARAM_SHIFT bits to the right of the binary point.
2230 target_cwnd = ((old_wnd * tp->vegas.baseRTT)
2231 << V_PARAM_SHIFT) / rtt;
2233 /* Calculate the difference between the window we had,
2234 * and the window we would like to have. This quantity
2235 * is the "Diff" from the Arizona Vegas papers.
2237 * Again, this is a fixed point number with
2238 * V_PARAM_SHIFT bits to the right of the binary
2239 * point.
2241 diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
2243 if (tp->snd_cwnd < tp->snd_ssthresh) {
2244 /* Slow start. */
2245 if (diff > sysctl_tcp_vegas_gamma) {
2246 /* Going too fast. Time to slow down
2247 * and switch to congestion avoidance.
2249 tp->snd_ssthresh = 2;
2251 /* Set cwnd to match the actual rate
2252 * exactly:
2253 * cwnd = (actual rate) * baseRTT
2254 * Then we add 1 because the integer
2255 * truncation robs us of full link
2256 * utilization.
2258 tp->snd_cwnd = min(tp->snd_cwnd,
2259 (target_cwnd >>
2260 V_PARAM_SHIFT)+1);
2263 } else {
2264 /* Congestion avoidance. */
2265 u32 next_snd_cwnd;
2267 /* Figure out where we would like cwnd
2268 * to be.
2270 if (diff > sysctl_tcp_vegas_beta) {
2271 /* The old window was too fast, so
2272 * we slow down.
2274 next_snd_cwnd = old_snd_cwnd - 1;
2275 } else if (diff < sysctl_tcp_vegas_alpha) {
2276 /* We don't have enough extra packets
2277 * in the network, so speed up.
2279 next_snd_cwnd = old_snd_cwnd + 1;
2280 } else {
2281 /* Sending just as fast as we
2282 * should be.
2284 next_snd_cwnd = old_snd_cwnd;
2287 /* Adjust cwnd upward or downward, toward the
2288 * desired value.
2290 if (next_snd_cwnd > tp->snd_cwnd)
2291 tp->snd_cwnd++;
2292 else if (next_snd_cwnd < tp->snd_cwnd)
2293 tp->snd_cwnd--;
2297 /* Wipe the slate clean for the next RTT. */
2298 tp->vegas.cntRTT = 0;
2299 tp->vegas.minRTT = 0x7fffffff;
2302 /* The following code is executed for every ack we receive,
2303 * except for conditions checked in should_advance_cwnd()
2304 * before the call to tcp_cong_avoid(). Mainly this means that
2305 * we only execute this code if the ack actually acked some
2306 * data.
2309 /* If we are in slow start, increase our cwnd in response to this ACK.
2310 * (If we are not in slow start then we are in congestion avoidance,
2311 * and adjust our congestion window only once per RTT. See the code
2312 * above.)
2314 if (tp->snd_cwnd <= tp->snd_ssthresh)
2315 tp->snd_cwnd++;
2317 /* to keep cwnd from growing without bound */
2318 tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
2320 /* Make sure that we are never so timid as to reduce our cwnd below
2321 * 2 MSS.
2323 * Going below 2 MSS would risk huge delayed ACKs from our receiver.
2325 tp->snd_cwnd = max(tp->snd_cwnd, 2U);
2327 tp->snd_cwnd_stamp = tcp_time_stamp;
2330 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
2332 if (tcp_vegas_enabled(tp))
2333 vegas_cong_avoid(tp, ack, seq_rtt);
2334 else
2335 reno_cong_avoid(tp);
2338 /* Restart timer after forward progress on connection.
2339 * RFC2988 recommends to restart timer to now+rto.
2342 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2344 if (!tp->packets_out) {
2345 tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
2346 } else {
2347 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
2351 /* There is one downside to this scheme. Although we keep the
2352 * ACK clock ticking, adjusting packet counters and advancing
2353 * congestion window, we do not liberate socket send buffer
2354 * space.
2356 * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
2357 * then making a write space wakeup callback is a possible
2358 * future enhancement. WARNING: it is not trivial to make.
2360 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2361 __u32 now, __s32 *seq_rtt)
2363 struct tcp_sock *tp = tcp_sk(sk);
2364 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2365 __u32 seq = tp->snd_una;
2366 __u32 packets_acked;
2367 int acked = 0;
2369 /* If we get here, the whole TSO packet has not been
2370 * acked.
2372 BUG_ON(!after(scb->end_seq, seq));
2374 packets_acked = tcp_skb_pcount(skb);
2375 if (tcp_trim_head(sk, skb, seq - scb->seq))
2376 return 0;
2377 packets_acked -= tcp_skb_pcount(skb);
2379 if (packets_acked) {
2380 __u8 sacked = scb->sacked;
2382 acked |= FLAG_DATA_ACKED;
2383 if (sacked) {
2384 if (sacked & TCPCB_RETRANS) {
2385 if (sacked & TCPCB_SACKED_RETRANS)
2386 tp->retrans_out -= packets_acked;
2387 acked |= FLAG_RETRANS_DATA_ACKED;
2388 *seq_rtt = -1;
2389 } else if (*seq_rtt < 0)
2390 *seq_rtt = now - scb->when;
2391 if (sacked & TCPCB_SACKED_ACKED)
2392 tp->sacked_out -= packets_acked;
2393 if (sacked & TCPCB_LOST)
2394 tp->lost_out -= packets_acked;
2395 if (sacked & TCPCB_URG) {
2396 if (tp->urg_mode &&
2397 !before(seq, tp->snd_up))
2398 tp->urg_mode = 0;
2400 } else if (*seq_rtt < 0)
2401 *seq_rtt = now - scb->when;
2403 if (tp->fackets_out) {
2404 __u32 dval = min(tp->fackets_out, packets_acked);
2405 tp->fackets_out -= dval;
2407 tp->packets_out -= packets_acked;
2409 BUG_ON(tcp_skb_pcount(skb) == 0);
2410 BUG_ON(!before(scb->seq, scb->end_seq));
2413 return acked;
2417 /* Remove acknowledged frames from the retransmission queue. */
2418 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2420 struct tcp_sock *tp = tcp_sk(sk);
2421 struct sk_buff *skb;
2422 __u32 now = tcp_time_stamp;
2423 int acked = 0;
2424 __s32 seq_rtt = -1;
2426 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2427 skb != sk->sk_send_head) {
2428 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2429 __u8 sacked = scb->sacked;
2431 /* If our packet is before the ack sequence we can
2432 * discard it as it's confirmed to have arrived at
2433 * the other end.
2435 if (after(scb->end_seq, tp->snd_una)) {
2436 if (tcp_skb_pcount(skb) > 1)
2437 acked |= tcp_tso_acked(sk, skb,
2438 now, &seq_rtt);
2439 break;
2442 /* Initial outgoing SYN's get put onto the write_queue
2443 * just like anything else we transmit. It is not
2444 * true data, and if we misinform our callers that
2445 * this ACK acks real data, we will erroneously exit
2446 * connection startup slow start one packet too
2447 * quickly. This is severely frowned upon behavior.
2449 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2450 acked |= FLAG_DATA_ACKED;
2451 } else {
2452 acked |= FLAG_SYN_ACKED;
2453 tp->retrans_stamp = 0;
2456 if (sacked) {
2457 if (sacked & TCPCB_RETRANS) {
2458 if(sacked & TCPCB_SACKED_RETRANS)
2459 tp->retrans_out -= tcp_skb_pcount(skb);
2460 acked |= FLAG_RETRANS_DATA_ACKED;
2461 seq_rtt = -1;
2462 } else if (seq_rtt < 0)
2463 seq_rtt = now - scb->when;
2464 if (sacked & TCPCB_SACKED_ACKED)
2465 tp->sacked_out -= tcp_skb_pcount(skb);
2466 if (sacked & TCPCB_LOST)
2467 tp->lost_out -= tcp_skb_pcount(skb);
2468 if (sacked & TCPCB_URG) {
2469 if (tp->urg_mode &&
2470 !before(scb->end_seq, tp->snd_up))
2471 tp->urg_mode = 0;
2473 } else if (seq_rtt < 0)
2474 seq_rtt = now - scb->when;
2475 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2476 tcp_packets_out_dec(tp, skb);
2477 __skb_unlink(skb, skb->list);
2478 sk_stream_free_skb(sk, skb);
2481 if (acked&FLAG_ACKED) {
2482 tcp_ack_update_rtt(tp, acked, seq_rtt);
2483 tcp_ack_packets_out(sk, tp);
2486 #if FASTRETRANS_DEBUG > 0
2487 BUG_TRAP((int)tp->sacked_out >= 0);
2488 BUG_TRAP((int)tp->lost_out >= 0);
2489 BUG_TRAP((int)tp->retrans_out >= 0);
2490 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2491 if (tp->lost_out) {
2492 printk(KERN_DEBUG "Leak l=%u %d\n",
2493 tp->lost_out, tp->ca_state);
2494 tp->lost_out = 0;
2496 if (tp->sacked_out) {
2497 printk(KERN_DEBUG "Leak s=%u %d\n",
2498 tp->sacked_out, tp->ca_state);
2499 tp->sacked_out = 0;
2501 if (tp->retrans_out) {
2502 printk(KERN_DEBUG "Leak r=%u %d\n",
2503 tp->retrans_out, tp->ca_state);
2504 tp->retrans_out = 0;
2507 #endif
2508 *seq_rtt_p = seq_rtt;
2509 return acked;
2512 static void tcp_ack_probe(struct sock *sk)
2514 struct tcp_sock *tp = tcp_sk(sk);
2516 /* Was it a usable window open? */
2518 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2519 tp->snd_una + tp->snd_wnd)) {
2520 tp->backoff = 0;
2521 tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
2522 /* Socket must be waked up by subsequent tcp_data_snd_check().
2523 * This function is not for random using!
2525 } else {
2526 tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
2527 min(tp->rto << tp->backoff, TCP_RTO_MAX));
2531 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2533 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2534 tp->ca_state != TCP_CA_Open);
2537 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2539 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2540 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2543 /* Check that window update is acceptable.
2544 * The function assumes that snd_una<=ack<=snd_next.
2546 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
2547 u32 ack_seq, u32 nwin)
2549 return (after(ack, tp->snd_una) ||
2550 after(ack_seq, tp->snd_wl1) ||
2551 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2554 /* Update our send window.
2556 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2557 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2559 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2560 struct sk_buff *skb, u32 ack, u32 ack_seq)
2562 int flag = 0;
2563 u32 nwin = ntohs(skb->h.th->window);
2565 if (likely(!skb->h.th->syn))
2566 nwin <<= tp->rx_opt.snd_wscale;
2568 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2569 flag |= FLAG_WIN_UPDATE;
2570 tcp_update_wl(tp, ack, ack_seq);
2572 if (tp->snd_wnd != nwin) {
2573 tp->snd_wnd = nwin;
2575 /* Note, it is the only place, where
2576 * fast path is recovered for sending TCP.
2578 tcp_fast_path_check(sk, tp);
2580 if (nwin > tp->max_window) {
2581 tp->max_window = nwin;
2582 tcp_sync_mss(sk, tp->pmtu_cookie);
2587 tp->snd_una = ack;
2589 return flag;
2592 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2594 struct tcp_sock *tp = tcp_sk(sk);
2596 tcp_sync_left_out(tp);
2598 if (tp->snd_una == prior_snd_una ||
2599 !before(tp->snd_una, tp->frto_highmark)) {
2600 /* RTO was caused by loss, start retransmitting in
2601 * go-back-N slow start
2603 tcp_enter_frto_loss(sk);
2604 return;
2607 if (tp->frto_counter == 1) {
2608 /* First ACK after RTO advances the window: allow two new
2609 * segments out.
2611 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2612 } else {
2613 /* Also the second ACK after RTO advances the window.
2614 * The RTO was likely spurious. Reduce cwnd and continue
2615 * in congestion avoidance
2617 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2618 tcp_moderate_cwnd(tp);
2621 /* F-RTO affects on two new ACKs following RTO.
2622 * At latest on third ACK the TCP behavor is back to normal.
2624 tp->frto_counter = (tp->frto_counter + 1) % 3;
2628 * TCP Westwood+
2632 * @init_westwood
2633 * This function initializes fields used in TCP Westwood+. We can't
2634 * get no information about RTTmin at this time so we simply set it to
2635 * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
2636 * since in this way we're sure it will be updated in a consistent
2637 * way as soon as possible. It will reasonably happen within the first
2638 * RTT period of the connection lifetime.
2641 static void init_westwood(struct sock *sk)
2643 struct tcp_sock *tp = tcp_sk(sk);
2645 tp->westwood.bw_ns_est = 0;
2646 tp->westwood.bw_est = 0;
2647 tp->westwood.accounted = 0;
2648 tp->westwood.cumul_ack = 0;
2649 tp->westwood.rtt_win_sx = tcp_time_stamp;
2650 tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT;
2651 tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT;
2652 tp->westwood.snd_una = tp->snd_una;
2656 * @westwood_do_filter
2657 * Low-pass filter. Implemented using constant coeffients.
2660 static inline __u32 westwood_do_filter(__u32 a, __u32 b)
2662 return (((7 * a) + b) >> 3);
2665 static void westwood_filter(struct sock *sk, __u32 delta)
2667 struct tcp_sock *tp = tcp_sk(sk);
2669 tp->westwood.bw_ns_est =
2670 westwood_do_filter(tp->westwood.bw_ns_est,
2671 tp->westwood.bk / delta);
2672 tp->westwood.bw_est =
2673 westwood_do_filter(tp->westwood.bw_est,
2674 tp->westwood.bw_ns_est);
2678 * @westwood_update_rttmin
2679 * It is used to update RTTmin. In this case we MUST NOT use
2680 * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
2683 static inline __u32 westwood_update_rttmin(const struct sock *sk)
2685 const struct tcp_sock *tp = tcp_sk(sk);
2686 __u32 rttmin = tp->westwood.rtt_min;
2688 if (tp->westwood.rtt != 0 &&
2689 (tp->westwood.rtt < tp->westwood.rtt_min || !rttmin))
2690 rttmin = tp->westwood.rtt;
2692 return rttmin;
2696 * @westwood_acked
2697 * Evaluate increases for dk.
2700 static inline __u32 westwood_acked(const struct sock *sk)
2702 const struct tcp_sock *tp = tcp_sk(sk);
2704 return tp->snd_una - tp->westwood.snd_una;
2708 * @westwood_new_window
2709 * It evaluates if we are receiving data inside the same RTT window as
2710 * when we started.
2711 * Return value:
2712 * It returns 0 if we are still evaluating samples in the same RTT
2713 * window, 1 if the sample has to be considered in the next window.
2716 static int westwood_new_window(const struct sock *sk)
2718 const struct tcp_sock *tp = tcp_sk(sk);
2719 __u32 left_bound;
2720 __u32 rtt;
2721 int ret = 0;
2723 left_bound = tp->westwood.rtt_win_sx;
2724 rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN);
2727 * A RTT-window has passed. Be careful since if RTT is less than
2728 * 50ms we don't filter but we continue 'building the sample'.
2729 * This minimum limit was choosen since an estimation on small
2730 * time intervals is better to avoid...
2731 * Obvioulsy on a LAN we reasonably will always have
2732 * right_bound = left_bound + WESTWOOD_RTT_MIN
2735 if ((left_bound + rtt) < tcp_time_stamp)
2736 ret = 1;
2738 return ret;
2742 * @westwood_update_window
2743 * It updates RTT evaluation window if it is the right moment to do
2744 * it. If so it calls filter for evaluating bandwidth.
2747 static void __westwood_update_window(struct sock *sk, __u32 now)
2749 struct tcp_sock *tp = tcp_sk(sk);
2750 __u32 delta = now - tp->westwood.rtt_win_sx;
2752 if (delta) {
2753 if (tp->westwood.rtt)
2754 westwood_filter(sk, delta);
2756 tp->westwood.bk = 0;
2757 tp->westwood.rtt_win_sx = tcp_time_stamp;
2762 static void westwood_update_window(struct sock *sk, __u32 now)
2764 if (westwood_new_window(sk))
2765 __westwood_update_window(sk, now);
2769 * @__tcp_westwood_fast_bw
2770 * It is called when we are in fast path. In particular it is called when
2771 * header prediction is successfull. In such case infact update is
2772 * straight forward and doesn't need any particular care.
2775 static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
2777 struct tcp_sock *tp = tcp_sk(sk);
2779 westwood_update_window(sk, tcp_time_stamp);
2781 tp->westwood.bk += westwood_acked(sk);
2782 tp->westwood.snd_una = tp->snd_una;
2783 tp->westwood.rtt_min = westwood_update_rttmin(sk);
2786 static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
2788 if (tcp_is_westwood(tcp_sk(sk)))
2789 __tcp_westwood_fast_bw(sk, skb);
2794 * @westwood_dupack_update
2795 * It updates accounted and cumul_ack when receiving a dupack.
2798 static void westwood_dupack_update(struct sock *sk)
2800 struct tcp_sock *tp = tcp_sk(sk);
2802 tp->westwood.accounted += tp->mss_cache_std;
2803 tp->westwood.cumul_ack = tp->mss_cache_std;
2806 static inline int westwood_may_change_cumul(struct tcp_sock *tp)
2808 return (tp->westwood.cumul_ack > tp->mss_cache_std);
2811 static inline void westwood_partial_update(struct tcp_sock *tp)
2813 tp->westwood.accounted -= tp->westwood.cumul_ack;
2814 tp->westwood.cumul_ack = tp->mss_cache_std;
2817 static inline void westwood_complete_update(struct tcp_sock *tp)
2819 tp->westwood.cumul_ack -= tp->westwood.accounted;
2820 tp->westwood.accounted = 0;
2824 * @westwood_acked_count
2825 * This function evaluates cumul_ack for evaluating dk in case of
2826 * delayed or partial acks.
2829 static inline __u32 westwood_acked_count(struct sock *sk)
2831 struct tcp_sock *tp = tcp_sk(sk);
2833 tp->westwood.cumul_ack = westwood_acked(sk);
2835 /* If cumul_ack is 0 this is a dupack since it's not moving
2836 * tp->snd_una.
2838 if (!(tp->westwood.cumul_ack))
2839 westwood_dupack_update(sk);
2841 if (westwood_may_change_cumul(tp)) {
2842 /* Partial or delayed ack */
2843 if (tp->westwood.accounted >= tp->westwood.cumul_ack)
2844 westwood_partial_update(tp);
2845 else
2846 westwood_complete_update(tp);
2849 tp->westwood.snd_una = tp->snd_una;
2851 return tp->westwood.cumul_ack;
2856 * @__tcp_westwood_slow_bw
2857 * It is called when something is going wrong..even if there could
2858 * be no problems! Infact a simple delayed packet may trigger a
2859 * dupack. But we need to be careful in such case.
2862 static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
2864 struct tcp_sock *tp = tcp_sk(sk);
2866 westwood_update_window(sk, tcp_time_stamp);
2868 tp->westwood.bk += westwood_acked_count(sk);
2869 tp->westwood.rtt_min = westwood_update_rttmin(sk);
2872 static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
2874 if (tcp_is_westwood(tcp_sk(sk)))
2875 __tcp_westwood_slow_bw(sk, skb);
2878 /* This routine deals with incoming acks, but not outgoing ones. */
2879 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2881 struct tcp_sock *tp = tcp_sk(sk);
2882 u32 prior_snd_una = tp->snd_una;
2883 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2884 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2885 u32 prior_in_flight;
2886 s32 seq_rtt;
2887 int prior_packets;
2889 /* If the ack is newer than sent or older than previous acks
2890 * then we can probably ignore it.
2892 if (after(ack, tp->snd_nxt))
2893 goto uninteresting_ack;
2895 if (before(ack, prior_snd_una))
2896 goto old_ack;
2898 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2899 /* Window is constant, pure forward advance.
2900 * No more checks are required.
2901 * Note, we use the fact that SND.UNA>=SND.WL2.
2903 tcp_update_wl(tp, ack, ack_seq);
2904 tp->snd_una = ack;
2905 tcp_westwood_fast_bw(sk, skb);
2906 flag |= FLAG_WIN_UPDATE;
2908 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2909 } else {
2910 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2911 flag |= FLAG_DATA;
2912 else
2913 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2915 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2917 if (TCP_SKB_CB(skb)->sacked)
2918 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2920 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2921 flag |= FLAG_ECE;
2923 tcp_westwood_slow_bw(sk,skb);
2926 /* We passed data and got it acked, remove any soft error
2927 * log. Something worked...
2929 sk->sk_err_soft = 0;
2930 tp->rcv_tstamp = tcp_time_stamp;
2931 prior_packets = tp->packets_out;
2932 if (!prior_packets)
2933 goto no_queue;
2935 prior_in_flight = tcp_packets_in_flight(tp);
2937 /* See if we can take anything off of the retransmit queue. */
2938 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2940 if (tp->frto_counter)
2941 tcp_process_frto(sk, prior_snd_una);
2943 if (tcp_ack_is_dubious(tp, flag)) {
2944 /* Advanve CWND, if state allows this. */
2945 if ((flag & FLAG_DATA_ACKED) &&
2946 (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) &&
2947 tcp_may_raise_cwnd(tp, flag))
2948 tcp_cong_avoid(tp, ack, seq_rtt);
2949 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2950 } else {
2951 if ((flag & FLAG_DATA_ACKED) &&
2952 (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd))
2953 tcp_cong_avoid(tp, ack, seq_rtt);
2956 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2957 dst_confirm(sk->sk_dst_cache);
2959 return 1;
2961 no_queue:
2962 tp->probes_out = 0;
2964 /* If this ack opens up a zero window, clear backoff. It was
2965 * being used to time the probes, and is probably far higher than
2966 * it needs to be for normal retransmission.
2968 if (sk->sk_send_head)
2969 tcp_ack_probe(sk);
2970 return 1;
2972 old_ack:
2973 if (TCP_SKB_CB(skb)->sacked)
2974 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2976 uninteresting_ack:
2977 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2978 return 0;
2982 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2983 * But, this can also be called on packets in the established flow when
2984 * the fast version below fails.
2986 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2988 unsigned char *ptr;
2989 struct tcphdr *th = skb->h.th;
2990 int length=(th->doff*4)-sizeof(struct tcphdr);
2992 ptr = (unsigned char *)(th + 1);
2993 opt_rx->saw_tstamp = 0;
2995 while(length>0) {
2996 int opcode=*ptr++;
2997 int opsize;
2999 switch (opcode) {
3000 case TCPOPT_EOL:
3001 return;
3002 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3003 length--;
3004 continue;
3005 default:
3006 opsize=*ptr++;
3007 if (opsize < 2) /* "silly options" */
3008 return;
3009 if (opsize > length)
3010 return; /* don't parse partial options */
3011 switch(opcode) {
3012 case TCPOPT_MSS:
3013 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
3014 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
3015 if (in_mss) {
3016 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3017 in_mss = opt_rx->user_mss;
3018 opt_rx->mss_clamp = in_mss;
3021 break;
3022 case TCPOPT_WINDOW:
3023 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
3024 if (sysctl_tcp_window_scaling) {
3025 __u8 snd_wscale = *(__u8 *) ptr;
3026 opt_rx->wscale_ok = 1;
3027 if (snd_wscale > 14) {
3028 if(net_ratelimit())
3029 printk(KERN_INFO "tcp_parse_options: Illegal window "
3030 "scaling value %d >14 received.\n",
3031 snd_wscale);
3032 snd_wscale = 14;
3034 opt_rx->snd_wscale = snd_wscale;
3036 break;
3037 case TCPOPT_TIMESTAMP:
3038 if(opsize==TCPOLEN_TIMESTAMP) {
3039 if ((estab && opt_rx->tstamp_ok) ||
3040 (!estab && sysctl_tcp_timestamps)) {
3041 opt_rx->saw_tstamp = 1;
3042 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
3043 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
3046 break;
3047 case TCPOPT_SACK_PERM:
3048 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3049 if (sysctl_tcp_sack) {
3050 opt_rx->sack_ok = 1;
3051 tcp_sack_reset(opt_rx);
3054 break;
3056 case TCPOPT_SACK:
3057 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3058 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3059 opt_rx->sack_ok) {
3060 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3063 ptr+=opsize-2;
3064 length-=opsize;
3069 /* Fast parse options. This hopes to only see timestamps.
3070 * If it is wrong it falls back on tcp_parse_options().
3072 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3073 struct tcp_sock *tp)
3075 if (th->doff == sizeof(struct tcphdr)>>2) {
3076 tp->rx_opt.saw_tstamp = 0;
3077 return 0;
3078 } else if (tp->rx_opt.tstamp_ok &&
3079 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3080 __u32 *ptr = (__u32 *)(th + 1);
3081 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3082 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3083 tp->rx_opt.saw_tstamp = 1;
3084 ++ptr;
3085 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3086 ++ptr;
3087 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3088 return 1;
3091 tcp_parse_options(skb, &tp->rx_opt, 1);
3092 return 1;
3095 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3097 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3098 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
3101 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3103 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3104 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3105 * extra check below makes sure this can only happen
3106 * for pure ACK frames. -DaveM
3108 * Not only, also it occurs for expired timestamps.
3111 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3112 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3113 tcp_store_ts_recent(tp);
3117 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3119 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3120 * it can pass through stack. So, the following predicate verifies that
3121 * this segment is not used for anything but congestion avoidance or
3122 * fast retransmit. Moreover, we even are able to eliminate most of such
3123 * second order effects, if we apply some small "replay" window (~RTO)
3124 * to timestamp space.
3126 * All these measures still do not guarantee that we reject wrapped ACKs
3127 * on networks with high bandwidth, when sequence space is recycled fastly,
3128 * but it guarantees that such events will be very rare and do not affect
3129 * connection seriously. This doesn't look nice, but alas, PAWS is really
3130 * buggy extension.
3132 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3133 * states that events when retransmit arrives after original data are rare.
3134 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3135 * the biggest problem on large power networks even with minor reordering.
3136 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3137 * up to bandwidth of 18Gigabit/sec. 8) ]
3140 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
3142 struct tcphdr *th = skb->h.th;
3143 u32 seq = TCP_SKB_CB(skb)->seq;
3144 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3146 return (/* 1. Pure ACK with correct sequence number. */
3147 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3149 /* 2. ... and duplicate ACK. */
3150 ack == tp->snd_una &&
3152 /* 3. ... and does not update window. */
3153 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3155 /* 4. ... and sits in replay window. */
3156 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
3159 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
3161 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3162 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3163 !tcp_disordered_ack(tp, skb));
3166 /* Check segment sequence number for validity.
3168 * Segment controls are considered valid, if the segment
3169 * fits to the window after truncation to the window. Acceptability
3170 * of data (and SYN, FIN, of course) is checked separately.
3171 * See tcp_data_queue(), for example.
3173 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3174 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3175 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3176 * (borrowed from freebsd)
3179 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3181 return !before(end_seq, tp->rcv_wup) &&
3182 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3185 /* When we get a reset we do this. */
3186 static void tcp_reset(struct sock *sk)
3188 /* We want the right error as BSD sees it (and indeed as we do). */
3189 switch (sk->sk_state) {
3190 case TCP_SYN_SENT:
3191 sk->sk_err = ECONNREFUSED;
3192 break;
3193 case TCP_CLOSE_WAIT:
3194 sk->sk_err = EPIPE;
3195 break;
3196 case TCP_CLOSE:
3197 return;
3198 default:
3199 sk->sk_err = ECONNRESET;
3202 if (!sock_flag(sk, SOCK_DEAD))
3203 sk->sk_error_report(sk);
3205 tcp_done(sk);
3209 * Process the FIN bit. This now behaves as it is supposed to work
3210 * and the FIN takes effect when it is validly part of sequence
3211 * space. Not before when we get holes.
3213 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3214 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3215 * TIME-WAIT)
3217 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3218 * close and we go into CLOSING (and later onto TIME-WAIT)
3220 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3222 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3224 struct tcp_sock *tp = tcp_sk(sk);
3226 tcp_schedule_ack(tp);
3228 sk->sk_shutdown |= RCV_SHUTDOWN;
3229 sock_set_flag(sk, SOCK_DONE);
3231 switch (sk->sk_state) {
3232 case TCP_SYN_RECV:
3233 case TCP_ESTABLISHED:
3234 /* Move to CLOSE_WAIT */
3235 tcp_set_state(sk, TCP_CLOSE_WAIT);
3236 tp->ack.pingpong = 1;
3237 break;
3239 case TCP_CLOSE_WAIT:
3240 case TCP_CLOSING:
3241 /* Received a retransmission of the FIN, do
3242 * nothing.
3244 break;
3245 case TCP_LAST_ACK:
3246 /* RFC793: Remain in the LAST-ACK state. */
3247 break;
3249 case TCP_FIN_WAIT1:
3250 /* This case occurs when a simultaneous close
3251 * happens, we must ack the received FIN and
3252 * enter the CLOSING state.
3254 tcp_send_ack(sk);
3255 tcp_set_state(sk, TCP_CLOSING);
3256 break;
3257 case TCP_FIN_WAIT2:
3258 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3259 tcp_send_ack(sk);
3260 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3261 break;
3262 default:
3263 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3264 * cases we should never reach this piece of code.
3266 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3267 __FUNCTION__, sk->sk_state);
3268 break;
3271 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3272 * Probably, we should reset in this case. For now drop them.
3274 __skb_queue_purge(&tp->out_of_order_queue);
3275 if (tp->rx_opt.sack_ok)
3276 tcp_sack_reset(&tp->rx_opt);
3277 sk_stream_mem_reclaim(sk);
3279 if (!sock_flag(sk, SOCK_DEAD)) {
3280 sk->sk_state_change(sk);
3282 /* Do not send POLL_HUP for half duplex close. */
3283 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3284 sk->sk_state == TCP_CLOSE)
3285 sk_wake_async(sk, 1, POLL_HUP);
3286 else
3287 sk_wake_async(sk, 1, POLL_IN);
3291 static __inline__ int
3292 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3294 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3295 if (before(seq, sp->start_seq))
3296 sp->start_seq = seq;
3297 if (after(end_seq, sp->end_seq))
3298 sp->end_seq = end_seq;
3299 return 1;
3301 return 0;
3304 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3306 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3307 if (before(seq, tp->rcv_nxt))
3308 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3309 else
3310 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3312 tp->rx_opt.dsack = 1;
3313 tp->duplicate_sack[0].start_seq = seq;
3314 tp->duplicate_sack[0].end_seq = end_seq;
3315 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3319 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3321 if (!tp->rx_opt.dsack)
3322 tcp_dsack_set(tp, seq, end_seq);
3323 else
3324 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3327 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3329 struct tcp_sock *tp = tcp_sk(sk);
3331 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3332 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3333 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3334 tcp_enter_quickack_mode(tp);
3336 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3337 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3339 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3340 end_seq = tp->rcv_nxt;
3341 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3345 tcp_send_ack(sk);
3348 /* These routines update the SACK block as out-of-order packets arrive or
3349 * in-order packets close up the sequence space.
3351 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3353 int this_sack;
3354 struct tcp_sack_block *sp = &tp->selective_acks[0];
3355 struct tcp_sack_block *swalk = sp+1;
3357 /* See if the recent change to the first SACK eats into
3358 * or hits the sequence space of other SACK blocks, if so coalesce.
3360 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3361 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3362 int i;
3364 /* Zap SWALK, by moving every further SACK up by one slot.
3365 * Decrease num_sacks.
3367 tp->rx_opt.num_sacks--;
3368 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3369 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3370 sp[i] = sp[i+1];
3371 continue;
3373 this_sack++, swalk++;
3377 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3379 __u32 tmp;
3381 tmp = sack1->start_seq;
3382 sack1->start_seq = sack2->start_seq;
3383 sack2->start_seq = tmp;
3385 tmp = sack1->end_seq;
3386 sack1->end_seq = sack2->end_seq;
3387 sack2->end_seq = tmp;
3390 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3392 struct tcp_sock *tp = tcp_sk(sk);
3393 struct tcp_sack_block *sp = &tp->selective_acks[0];
3394 int cur_sacks = tp->rx_opt.num_sacks;
3395 int this_sack;
3397 if (!cur_sacks)
3398 goto new_sack;
3400 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3401 if (tcp_sack_extend(sp, seq, end_seq)) {
3402 /* Rotate this_sack to the first one. */
3403 for (; this_sack>0; this_sack--, sp--)
3404 tcp_sack_swap(sp, sp-1);
3405 if (cur_sacks > 1)
3406 tcp_sack_maybe_coalesce(tp);
3407 return;
3411 /* Could not find an adjacent existing SACK, build a new one,
3412 * put it at the front, and shift everyone else down. We
3413 * always know there is at least one SACK present already here.
3415 * If the sack array is full, forget about the last one.
3417 if (this_sack >= 4) {
3418 this_sack--;
3419 tp->rx_opt.num_sacks--;
3420 sp--;
3422 for(; this_sack > 0; this_sack--, sp--)
3423 *sp = *(sp-1);
3425 new_sack:
3426 /* Build the new head SACK, and we're done. */
3427 sp->start_seq = seq;
3428 sp->end_seq = end_seq;
3429 tp->rx_opt.num_sacks++;
3430 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3433 /* RCV.NXT advances, some SACKs should be eaten. */
3435 static void tcp_sack_remove(struct tcp_sock *tp)
3437 struct tcp_sack_block *sp = &tp->selective_acks[0];
3438 int num_sacks = tp->rx_opt.num_sacks;
3439 int this_sack;
3441 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3442 if (skb_queue_len(&tp->out_of_order_queue) == 0) {
3443 tp->rx_opt.num_sacks = 0;
3444 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3445 return;
3448 for(this_sack = 0; this_sack < num_sacks; ) {
3449 /* Check if the start of the sack is covered by RCV.NXT. */
3450 if (!before(tp->rcv_nxt, sp->start_seq)) {
3451 int i;
3453 /* RCV.NXT must cover all the block! */
3454 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3456 /* Zap this SACK, by moving forward any other SACKS. */
3457 for (i=this_sack+1; i < num_sacks; i++)
3458 tp->selective_acks[i-1] = tp->selective_acks[i];
3459 num_sacks--;
3460 continue;
3462 this_sack++;
3463 sp++;
3465 if (num_sacks != tp->rx_opt.num_sacks) {
3466 tp->rx_opt.num_sacks = num_sacks;
3467 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3471 /* This one checks to see if we can put data from the
3472 * out_of_order queue into the receive_queue.
3474 static void tcp_ofo_queue(struct sock *sk)
3476 struct tcp_sock *tp = tcp_sk(sk);
3477 __u32 dsack_high = tp->rcv_nxt;
3478 struct sk_buff *skb;
3480 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3481 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3482 break;
3484 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3485 __u32 dsack = dsack_high;
3486 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3487 dsack_high = TCP_SKB_CB(skb)->end_seq;
3488 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3491 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3492 SOCK_DEBUG(sk, "ofo packet was already received \n");
3493 __skb_unlink(skb, skb->list);
3494 __kfree_skb(skb);
3495 continue;
3497 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3498 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3499 TCP_SKB_CB(skb)->end_seq);
3501 __skb_unlink(skb, skb->list);
3502 __skb_queue_tail(&sk->sk_receive_queue, skb);
3503 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3504 if(skb->h.th->fin)
3505 tcp_fin(skb, sk, skb->h.th);
3509 static int tcp_prune_queue(struct sock *sk);
3511 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3513 struct tcphdr *th = skb->h.th;
3514 struct tcp_sock *tp = tcp_sk(sk);
3515 int eaten = -1;
3517 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3518 goto drop;
3520 __skb_pull(skb, th->doff*4);
3522 TCP_ECN_accept_cwr(tp, skb);
3524 if (tp->rx_opt.dsack) {
3525 tp->rx_opt.dsack = 0;
3526 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3527 4 - tp->rx_opt.tstamp_ok);
3530 /* Queue data for delivery to the user.
3531 * Packets in sequence go to the receive queue.
3532 * Out of sequence packets to the out_of_order_queue.
3534 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3535 if (tcp_receive_window(tp) == 0)
3536 goto out_of_window;
3538 /* Ok. In sequence. In window. */
3539 if (tp->ucopy.task == current &&
3540 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3541 sock_owned_by_user(sk) && !tp->urg_data) {
3542 int chunk = min_t(unsigned int, skb->len,
3543 tp->ucopy.len);
3545 __set_current_state(TASK_RUNNING);
3547 local_bh_enable();
3548 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3549 tp->ucopy.len -= chunk;
3550 tp->copied_seq += chunk;
3551 eaten = (chunk == skb->len && !th->fin);
3552 tcp_rcv_space_adjust(sk);
3554 local_bh_disable();
3557 if (eaten <= 0) {
3558 queue_and_out:
3559 if (eaten < 0 &&
3560 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3561 !sk_stream_rmem_schedule(sk, skb))) {
3562 if (tcp_prune_queue(sk) < 0 ||
3563 !sk_stream_rmem_schedule(sk, skb))
3564 goto drop;
3566 sk_stream_set_owner_r(skb, sk);
3567 __skb_queue_tail(&sk->sk_receive_queue, skb);
3569 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3570 if(skb->len)
3571 tcp_event_data_recv(sk, tp, skb);
3572 if(th->fin)
3573 tcp_fin(skb, sk, th);
3575 if (skb_queue_len(&tp->out_of_order_queue)) {
3576 tcp_ofo_queue(sk);
3578 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3579 * gap in queue is filled.
3581 if (!skb_queue_len(&tp->out_of_order_queue))
3582 tp->ack.pingpong = 0;
3585 if (tp->rx_opt.num_sacks)
3586 tcp_sack_remove(tp);
3588 tcp_fast_path_check(sk, tp);
3590 if (eaten > 0)
3591 __kfree_skb(skb);
3592 else if (!sock_flag(sk, SOCK_DEAD))
3593 sk->sk_data_ready(sk, 0);
3594 return;
3597 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3598 /* A retransmit, 2nd most common case. Force an immediate ack. */
3599 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3600 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3602 out_of_window:
3603 tcp_enter_quickack_mode(tp);
3604 tcp_schedule_ack(tp);
3605 drop:
3606 __kfree_skb(skb);
3607 return;
3610 /* Out of window. F.e. zero window probe. */
3611 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3612 goto out_of_window;
3614 tcp_enter_quickack_mode(tp);
3616 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3617 /* Partial packet, seq < rcv_next < end_seq */
3618 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3619 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3620 TCP_SKB_CB(skb)->end_seq);
3622 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3624 /* If window is closed, drop tail of packet. But after
3625 * remembering D-SACK for its head made in previous line.
3627 if (!tcp_receive_window(tp))
3628 goto out_of_window;
3629 goto queue_and_out;
3632 TCP_ECN_check_ce(tp, skb);
3634 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3635 !sk_stream_rmem_schedule(sk, skb)) {
3636 if (tcp_prune_queue(sk) < 0 ||
3637 !sk_stream_rmem_schedule(sk, skb))
3638 goto drop;
3641 /* Disable header prediction. */
3642 tp->pred_flags = 0;
3643 tcp_schedule_ack(tp);
3645 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3646 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3648 sk_stream_set_owner_r(skb, sk);
3650 if (!skb_peek(&tp->out_of_order_queue)) {
3651 /* Initial out of order segment, build 1 SACK. */
3652 if (tp->rx_opt.sack_ok) {
3653 tp->rx_opt.num_sacks = 1;
3654 tp->rx_opt.dsack = 0;
3655 tp->rx_opt.eff_sacks = 1;
3656 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3657 tp->selective_acks[0].end_seq =
3658 TCP_SKB_CB(skb)->end_seq;
3660 __skb_queue_head(&tp->out_of_order_queue,skb);
3661 } else {
3662 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3663 u32 seq = TCP_SKB_CB(skb)->seq;
3664 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3666 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3667 __skb_append(skb1, skb);
3669 if (!tp->rx_opt.num_sacks ||
3670 tp->selective_acks[0].end_seq != seq)
3671 goto add_sack;
3673 /* Common case: data arrive in order after hole. */
3674 tp->selective_acks[0].end_seq = end_seq;
3675 return;
3678 /* Find place to insert this segment. */
3679 do {
3680 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3681 break;
3682 } while ((skb1 = skb1->prev) !=
3683 (struct sk_buff*)&tp->out_of_order_queue);
3685 /* Do skb overlap to previous one? */
3686 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3687 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3688 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3689 /* All the bits are present. Drop. */
3690 __kfree_skb(skb);
3691 tcp_dsack_set(tp, seq, end_seq);
3692 goto add_sack;
3694 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3695 /* Partial overlap. */
3696 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3697 } else {
3698 skb1 = skb1->prev;
3701 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3703 /* And clean segments covered by new one as whole. */
3704 while ((skb1 = skb->next) !=
3705 (struct sk_buff*)&tp->out_of_order_queue &&
3706 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3707 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3708 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3709 break;
3711 __skb_unlink(skb1, skb1->list);
3712 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3713 __kfree_skb(skb1);
3716 add_sack:
3717 if (tp->rx_opt.sack_ok)
3718 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3722 /* Collapse contiguous sequence of skbs head..tail with
3723 * sequence numbers start..end.
3724 * Segments with FIN/SYN are not collapsed (only because this
3725 * simplifies code)
3727 static void
3728 tcp_collapse(struct sock *sk, struct sk_buff *head,
3729 struct sk_buff *tail, u32 start, u32 end)
3731 struct sk_buff *skb;
3733 /* First, check that queue is collapsable and find
3734 * the point where collapsing can be useful. */
3735 for (skb = head; skb != tail; ) {
3736 /* No new bits? It is possible on ofo queue. */
3737 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3738 struct sk_buff *next = skb->next;
3739 __skb_unlink(skb, skb->list);
3740 __kfree_skb(skb);
3741 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3742 skb = next;
3743 continue;
3746 /* The first skb to collapse is:
3747 * - not SYN/FIN and
3748 * - bloated or contains data before "start" or
3749 * overlaps to the next one.
3751 if (!skb->h.th->syn && !skb->h.th->fin &&
3752 (tcp_win_from_space(skb->truesize) > skb->len ||
3753 before(TCP_SKB_CB(skb)->seq, start) ||
3754 (skb->next != tail &&
3755 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3756 break;
3758 /* Decided to skip this, advance start seq. */
3759 start = TCP_SKB_CB(skb)->end_seq;
3760 skb = skb->next;
3762 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3763 return;
3765 while (before(start, end)) {
3766 struct sk_buff *nskb;
3767 int header = skb_headroom(skb);
3768 int copy = SKB_MAX_ORDER(header, 0);
3770 /* Too big header? This can happen with IPv6. */
3771 if (copy < 0)
3772 return;
3773 if (end-start < copy)
3774 copy = end-start;
3775 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3776 if (!nskb)
3777 return;
3778 skb_reserve(nskb, header);
3779 memcpy(nskb->head, skb->head, header);
3780 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3781 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3782 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3783 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3784 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3785 __skb_insert(nskb, skb->prev, skb, skb->list);
3786 sk_stream_set_owner_r(nskb, sk);
3788 /* Copy data, releasing collapsed skbs. */
3789 while (copy > 0) {
3790 int offset = start - TCP_SKB_CB(skb)->seq;
3791 int size = TCP_SKB_CB(skb)->end_seq - start;
3793 if (offset < 0) BUG();
3794 if (size > 0) {
3795 size = min(copy, size);
3796 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3797 BUG();
3798 TCP_SKB_CB(nskb)->end_seq += size;
3799 copy -= size;
3800 start += size;
3802 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3803 struct sk_buff *next = skb->next;
3804 __skb_unlink(skb, skb->list);
3805 __kfree_skb(skb);
3806 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3807 skb = next;
3808 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3809 return;
3815 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3816 * and tcp_collapse() them until all the queue is collapsed.
3818 static void tcp_collapse_ofo_queue(struct sock *sk)
3820 struct tcp_sock *tp = tcp_sk(sk);
3821 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3822 struct sk_buff *head;
3823 u32 start, end;
3825 if (skb == NULL)
3826 return;
3828 start = TCP_SKB_CB(skb)->seq;
3829 end = TCP_SKB_CB(skb)->end_seq;
3830 head = skb;
3832 for (;;) {
3833 skb = skb->next;
3835 /* Segment is terminated when we see gap or when
3836 * we are at the end of all the queue. */
3837 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3838 after(TCP_SKB_CB(skb)->seq, end) ||
3839 before(TCP_SKB_CB(skb)->end_seq, start)) {
3840 tcp_collapse(sk, head, skb, start, end);
3841 head = skb;
3842 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3843 break;
3844 /* Start new segment */
3845 start = TCP_SKB_CB(skb)->seq;
3846 end = TCP_SKB_CB(skb)->end_seq;
3847 } else {
3848 if (before(TCP_SKB_CB(skb)->seq, start))
3849 start = TCP_SKB_CB(skb)->seq;
3850 if (after(TCP_SKB_CB(skb)->end_seq, end))
3851 end = TCP_SKB_CB(skb)->end_seq;
3856 /* Reduce allocated memory if we can, trying to get
3857 * the socket within its memory limits again.
3859 * Return less than zero if we should start dropping frames
3860 * until the socket owning process reads some of the data
3861 * to stabilize the situation.
3863 static int tcp_prune_queue(struct sock *sk)
3865 struct tcp_sock *tp = tcp_sk(sk);
3867 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3869 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3871 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3872 tcp_clamp_window(sk, tp);
3873 else if (tcp_memory_pressure)
3874 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3876 tcp_collapse_ofo_queue(sk);
3877 tcp_collapse(sk, sk->sk_receive_queue.next,
3878 (struct sk_buff*)&sk->sk_receive_queue,
3879 tp->copied_seq, tp->rcv_nxt);
3880 sk_stream_mem_reclaim(sk);
3882 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3883 return 0;
3885 /* Collapsing did not help, destructive actions follow.
3886 * This must not ever occur. */
3888 /* First, purge the out_of_order queue. */
3889 if (skb_queue_len(&tp->out_of_order_queue)) {
3890 NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
3891 skb_queue_len(&tp->out_of_order_queue));
3892 __skb_queue_purge(&tp->out_of_order_queue);
3894 /* Reset SACK state. A conforming SACK implementation will
3895 * do the same at a timeout based retransmit. When a connection
3896 * is in a sad state like this, we care only about integrity
3897 * of the connection not performance.
3899 if (tp->rx_opt.sack_ok)
3900 tcp_sack_reset(&tp->rx_opt);
3901 sk_stream_mem_reclaim(sk);
3904 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3905 return 0;
3907 /* If we are really being abused, tell the caller to silently
3908 * drop receive data on the floor. It will get retransmitted
3909 * and hopefully then we'll have sufficient space.
3911 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3913 /* Massive buffer overcommit. */
3914 tp->pred_flags = 0;
3915 return -1;
3919 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3920 * As additional protections, we do not touch cwnd in retransmission phases,
3921 * and if application hit its sndbuf limit recently.
3923 void tcp_cwnd_application_limited(struct sock *sk)
3925 struct tcp_sock *tp = tcp_sk(sk);
3927 if (tp->ca_state == TCP_CA_Open &&
3928 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3929 /* Limited by application or receiver window. */
3930 u32 win_used = max(tp->snd_cwnd_used, 2U);
3931 if (win_used < tp->snd_cwnd) {
3932 tp->snd_ssthresh = tcp_current_ssthresh(tp);
3933 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3935 tp->snd_cwnd_used = 0;
3937 tp->snd_cwnd_stamp = tcp_time_stamp;
3941 /* When incoming ACK allowed to free some skb from write_queue,
3942 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3943 * on the exit from tcp input handler.
3945 * PROBLEM: sndbuf expansion does not work well with largesend.
3947 static void tcp_new_space(struct sock *sk)
3949 struct tcp_sock *tp = tcp_sk(sk);
3951 if (tp->packets_out < tp->snd_cwnd &&
3952 !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
3953 !tcp_memory_pressure &&
3954 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
3955 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
3956 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3957 demanded = max_t(unsigned int, tp->snd_cwnd,
3958 tp->reordering + 1);
3959 sndmem *= 2*demanded;
3960 if (sndmem > sk->sk_sndbuf)
3961 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3962 tp->snd_cwnd_stamp = tcp_time_stamp;
3965 sk->sk_write_space(sk);
3968 static inline void tcp_check_space(struct sock *sk)
3970 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3971 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3972 if (sk->sk_socket &&
3973 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3974 tcp_new_space(sk);
3978 static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
3980 struct tcp_sock *tp = tcp_sk(sk);
3982 if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
3983 tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
3984 tcp_write_xmit(sk, tp->nonagle))
3985 tcp_check_probe_timer(sk, tp);
3988 static __inline__ void tcp_data_snd_check(struct sock *sk)
3990 struct sk_buff *skb = sk->sk_send_head;
3992 if (skb != NULL)
3993 __tcp_data_snd_check(sk, skb);
3994 tcp_check_space(sk);
3998 * Check if sending an ack is needed.
4000 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4002 struct tcp_sock *tp = tcp_sk(sk);
4004 /* More than one full frame received... */
4005 if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
4006 /* ... and right edge of window advances far enough.
4007 * (tcp_recvmsg() will send ACK otherwise). Or...
4009 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4010 /* We ACK each frame or... */
4011 tcp_in_quickack_mode(tp) ||
4012 /* We have out of order data. */
4013 (ofo_possible &&
4014 skb_peek(&tp->out_of_order_queue))) {
4015 /* Then ack it now */
4016 tcp_send_ack(sk);
4017 } else {
4018 /* Else, send delayed ack. */
4019 tcp_send_delayed_ack(sk);
4023 static __inline__ void tcp_ack_snd_check(struct sock *sk)
4025 struct tcp_sock *tp = tcp_sk(sk);
4026 if (!tcp_ack_scheduled(tp)) {
4027 /* We sent a data segment already. */
4028 return;
4030 __tcp_ack_snd_check(sk, 1);
4034 * This routine is only called when we have urgent data
4035 * signalled. Its the 'slow' part of tcp_urg. It could be
4036 * moved inline now as tcp_urg is only called from one
4037 * place. We handle URGent data wrong. We have to - as
4038 * BSD still doesn't use the correction from RFC961.
4039 * For 1003.1g we should support a new option TCP_STDURG to permit
4040 * either form (or just set the sysctl tcp_stdurg).
4043 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4045 struct tcp_sock *tp = tcp_sk(sk);
4046 u32 ptr = ntohs(th->urg_ptr);
4048 if (ptr && !sysctl_tcp_stdurg)
4049 ptr--;
4050 ptr += ntohl(th->seq);
4052 /* Ignore urgent data that we've already seen and read. */
4053 if (after(tp->copied_seq, ptr))
4054 return;
4056 /* Do not replay urg ptr.
4058 * NOTE: interesting situation not covered by specs.
4059 * Misbehaving sender may send urg ptr, pointing to segment,
4060 * which we already have in ofo queue. We are not able to fetch
4061 * such data and will stay in TCP_URG_NOTYET until will be eaten
4062 * by recvmsg(). Seems, we are not obliged to handle such wicked
4063 * situations. But it is worth to think about possibility of some
4064 * DoSes using some hypothetical application level deadlock.
4066 if (before(ptr, tp->rcv_nxt))
4067 return;
4069 /* Do we already have a newer (or duplicate) urgent pointer? */
4070 if (tp->urg_data && !after(ptr, tp->urg_seq))
4071 return;
4073 /* Tell the world about our new urgent pointer. */
4074 sk_send_sigurg(sk);
4076 /* We may be adding urgent data when the last byte read was
4077 * urgent. To do this requires some care. We cannot just ignore
4078 * tp->copied_seq since we would read the last urgent byte again
4079 * as data, nor can we alter copied_seq until this data arrives
4080 * or we break the sematics of SIOCATMARK (and thus sockatmark())
4082 * NOTE. Double Dutch. Rendering to plain English: author of comment
4083 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4084 * and expect that both A and B disappear from stream. This is _wrong_.
4085 * Though this happens in BSD with high probability, this is occasional.
4086 * Any application relying on this is buggy. Note also, that fix "works"
4087 * only in this artificial test. Insert some normal data between A and B and we will
4088 * decline of BSD again. Verdict: it is better to remove to trap
4089 * buggy users.
4091 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4092 !sock_flag(sk, SOCK_URGINLINE) &&
4093 tp->copied_seq != tp->rcv_nxt) {
4094 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4095 tp->copied_seq++;
4096 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4097 __skb_unlink(skb, skb->list);
4098 __kfree_skb(skb);
4102 tp->urg_data = TCP_URG_NOTYET;
4103 tp->urg_seq = ptr;
4105 /* Disable header prediction. */
4106 tp->pred_flags = 0;
4109 /* This is the 'fast' part of urgent handling. */
4110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4112 struct tcp_sock *tp = tcp_sk(sk);
4114 /* Check if we get a new urgent pointer - normally not. */
4115 if (th->urg)
4116 tcp_check_urg(sk,th);
4118 /* Do we wait for any urgent data? - normally not... */
4119 if (tp->urg_data == TCP_URG_NOTYET) {
4120 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4121 th->syn;
4123 /* Is the urgent pointer pointing into this packet? */
4124 if (ptr < skb->len) {
4125 u8 tmp;
4126 if (skb_copy_bits(skb, ptr, &tmp, 1))
4127 BUG();
4128 tp->urg_data = TCP_URG_VALID | tmp;
4129 if (!sock_flag(sk, SOCK_DEAD))
4130 sk->sk_data_ready(sk, 0);
4135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4137 struct tcp_sock *tp = tcp_sk(sk);
4138 int chunk = skb->len - hlen;
4139 int err;
4141 local_bh_enable();
4142 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
4143 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4144 else
4145 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4146 tp->ucopy.iov);
4148 if (!err) {
4149 tp->ucopy.len -= chunk;
4150 tp->copied_seq += chunk;
4151 tcp_rcv_space_adjust(sk);
4154 local_bh_disable();
4155 return err;
4158 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4160 int result;
4162 if (sock_owned_by_user(sk)) {
4163 local_bh_enable();
4164 result = __tcp_checksum_complete(skb);
4165 local_bh_disable();
4166 } else {
4167 result = __tcp_checksum_complete(skb);
4169 return result;
4172 static __inline__ int
4173 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4175 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
4176 __tcp_checksum_complete_user(sk, skb);
4180 * TCP receive function for the ESTABLISHED state.
4182 * It is split into a fast path and a slow path. The fast path is
4183 * disabled when:
4184 * - A zero window was announced from us - zero window probing
4185 * is only handled properly in the slow path.
4186 * - Out of order segments arrived.
4187 * - Urgent data is expected.
4188 * - There is no buffer space left
4189 * - Unexpected TCP flags/window values/header lengths are received
4190 * (detected by checking the TCP header against pred_flags)
4191 * - Data is sent in both directions. Fast path only supports pure senders
4192 * or pure receivers (this means either the sequence number or the ack
4193 * value must stay constant)
4194 * - Unexpected TCP option.
4196 * When these conditions are not satisfied it drops into a standard
4197 * receive procedure patterned after RFC793 to handle all cases.
4198 * The first three cases are guaranteed by proper pred_flags setting,
4199 * the rest is checked inline. Fast processing is turned on in
4200 * tcp_data_queue when everything is OK.
4202 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4203 struct tcphdr *th, unsigned len)
4205 struct tcp_sock *tp = tcp_sk(sk);
4208 * Header prediction.
4209 * The code loosely follows the one in the famous
4210 * "30 instruction TCP receive" Van Jacobson mail.
4212 * Van's trick is to deposit buffers into socket queue
4213 * on a device interrupt, to call tcp_recv function
4214 * on the receive process context and checksum and copy
4215 * the buffer to user space. smart...
4217 * Our current scheme is not silly either but we take the
4218 * extra cost of the net_bh soft interrupt processing...
4219 * We do checksum and copy also but from device to kernel.
4222 tp->rx_opt.saw_tstamp = 0;
4224 /* pred_flags is 0xS?10 << 16 + snd_wnd
4225 * if header_predition is to be made
4226 * 'S' will always be tp->tcp_header_len >> 2
4227 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4228 * turn it off (when there are holes in the receive
4229 * space for instance)
4230 * PSH flag is ignored.
4233 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4234 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4235 int tcp_header_len = tp->tcp_header_len;
4237 /* Timestamp header prediction: tcp_header_len
4238 * is automatically equal to th->doff*4 due to pred_flags
4239 * match.
4242 /* Check timestamp */
4243 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4244 __u32 *ptr = (__u32 *)(th + 1);
4246 /* No? Slow path! */
4247 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4248 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4249 goto slow_path;
4251 tp->rx_opt.saw_tstamp = 1;
4252 ++ptr;
4253 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4254 ++ptr;
4255 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4257 /* If PAWS failed, check it more carefully in slow path */
4258 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4259 goto slow_path;
4261 /* DO NOT update ts_recent here, if checksum fails
4262 * and timestamp was corrupted part, it will result
4263 * in a hung connection since we will drop all
4264 * future packets due to the PAWS test.
4268 if (len <= tcp_header_len) {
4269 /* Bulk data transfer: sender */
4270 if (len == tcp_header_len) {
4271 /* Predicted packet is in window by definition.
4272 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4273 * Hence, check seq<=rcv_wup reduces to:
4275 if (tcp_header_len ==
4276 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4277 tp->rcv_nxt == tp->rcv_wup)
4278 tcp_store_ts_recent(tp);
4280 tcp_rcv_rtt_measure_ts(tp, skb);
4282 /* We know that such packets are checksummed
4283 * on entry.
4285 tcp_ack(sk, skb, 0);
4286 __kfree_skb(skb);
4287 tcp_data_snd_check(sk);
4288 return 0;
4289 } else { /* Header too small */
4290 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4291 goto discard;
4293 } else {
4294 int eaten = 0;
4296 if (tp->ucopy.task == current &&
4297 tp->copied_seq == tp->rcv_nxt &&
4298 len - tcp_header_len <= tp->ucopy.len &&
4299 sock_owned_by_user(sk)) {
4300 __set_current_state(TASK_RUNNING);
4302 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
4303 /* Predicted packet is in window by definition.
4304 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4305 * Hence, check seq<=rcv_wup reduces to:
4307 if (tcp_header_len ==
4308 (sizeof(struct tcphdr) +
4309 TCPOLEN_TSTAMP_ALIGNED) &&
4310 tp->rcv_nxt == tp->rcv_wup)
4311 tcp_store_ts_recent(tp);
4313 tcp_rcv_rtt_measure_ts(tp, skb);
4315 __skb_pull(skb, tcp_header_len);
4316 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4317 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4318 eaten = 1;
4321 if (!eaten) {
4322 if (tcp_checksum_complete_user(sk, skb))
4323 goto csum_error;
4325 /* Predicted packet is in window by definition.
4326 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4327 * Hence, check seq<=rcv_wup reduces to:
4329 if (tcp_header_len ==
4330 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4331 tp->rcv_nxt == tp->rcv_wup)
4332 tcp_store_ts_recent(tp);
4334 tcp_rcv_rtt_measure_ts(tp, skb);
4336 if ((int)skb->truesize > sk->sk_forward_alloc)
4337 goto step5;
4339 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4341 /* Bulk data transfer: receiver */
4342 __skb_pull(skb,tcp_header_len);
4343 __skb_queue_tail(&sk->sk_receive_queue, skb);
4344 sk_stream_set_owner_r(skb, sk);
4345 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4348 tcp_event_data_recv(sk, tp, skb);
4350 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4351 /* Well, only one small jumplet in fast path... */
4352 tcp_ack(sk, skb, FLAG_DATA);
4353 tcp_data_snd_check(sk);
4354 if (!tcp_ack_scheduled(tp))
4355 goto no_ack;
4358 __tcp_ack_snd_check(sk, 0);
4359 no_ack:
4360 if (eaten)
4361 __kfree_skb(skb);
4362 else
4363 sk->sk_data_ready(sk, 0);
4364 return 0;
4368 slow_path:
4369 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4370 goto csum_error;
4373 * RFC1323: H1. Apply PAWS check first.
4375 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4376 tcp_paws_discard(tp, skb)) {
4377 if (!th->rst) {
4378 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4379 tcp_send_dupack(sk, skb);
4380 goto discard;
4382 /* Resets are accepted even if PAWS failed.
4384 ts_recent update must be made after we are sure
4385 that the packet is in window.
4390 * Standard slow path.
4393 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4394 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4395 * (RST) segments are validated by checking their SEQ-fields."
4396 * And page 69: "If an incoming segment is not acceptable,
4397 * an acknowledgment should be sent in reply (unless the RST bit
4398 * is set, if so drop the segment and return)".
4400 if (!th->rst)
4401 tcp_send_dupack(sk, skb);
4402 goto discard;
4405 if(th->rst) {
4406 tcp_reset(sk);
4407 goto discard;
4410 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4412 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4413 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4414 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4415 tcp_reset(sk);
4416 return 1;
4419 step5:
4420 if(th->ack)
4421 tcp_ack(sk, skb, FLAG_SLOWPATH);
4423 tcp_rcv_rtt_measure_ts(tp, skb);
4425 /* Process urgent data. */
4426 tcp_urg(sk, skb, th);
4428 /* step 7: process the segment text */
4429 tcp_data_queue(sk, skb);
4431 tcp_data_snd_check(sk);
4432 tcp_ack_snd_check(sk);
4433 return 0;
4435 csum_error:
4436 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4438 discard:
4439 __kfree_skb(skb);
4440 return 0;
4443 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4444 struct tcphdr *th, unsigned len)
4446 struct tcp_sock *tp = tcp_sk(sk);
4447 int saved_clamp = tp->rx_opt.mss_clamp;
4449 tcp_parse_options(skb, &tp->rx_opt, 0);
4451 if (th->ack) {
4452 /* rfc793:
4453 * "If the state is SYN-SENT then
4454 * first check the ACK bit
4455 * If the ACK bit is set
4456 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4457 * a reset (unless the RST bit is set, if so drop
4458 * the segment and return)"
4460 * We do not send data with SYN, so that RFC-correct
4461 * test reduces to:
4463 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4464 goto reset_and_undo;
4466 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4467 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4468 tcp_time_stamp)) {
4469 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4470 goto reset_and_undo;
4473 /* Now ACK is acceptable.
4475 * "If the RST bit is set
4476 * If the ACK was acceptable then signal the user "error:
4477 * connection reset", drop the segment, enter CLOSED state,
4478 * delete TCB, and return."
4481 if (th->rst) {
4482 tcp_reset(sk);
4483 goto discard;
4486 /* rfc793:
4487 * "fifth, if neither of the SYN or RST bits is set then
4488 * drop the segment and return."
4490 * See note below!
4491 * --ANK(990513)
4493 if (!th->syn)
4494 goto discard_and_undo;
4496 /* rfc793:
4497 * "If the SYN bit is on ...
4498 * are acceptable then ...
4499 * (our SYN has been ACKed), change the connection
4500 * state to ESTABLISHED..."
4503 TCP_ECN_rcv_synack(tp, th);
4504 if (tp->ecn_flags&TCP_ECN_OK)
4505 sock_set_flag(sk, SOCK_NO_LARGESEND);
4507 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4508 tcp_ack(sk, skb, FLAG_SLOWPATH);
4510 /* Ok.. it's good. Set up sequence numbers and
4511 * move to established.
4513 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4514 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4516 /* RFC1323: The window in SYN & SYN/ACK segments is
4517 * never scaled.
4519 tp->snd_wnd = ntohs(th->window);
4520 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4522 if (!tp->rx_opt.wscale_ok) {
4523 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4524 tp->window_clamp = min(tp->window_clamp, 65535U);
4527 if (tp->rx_opt.saw_tstamp) {
4528 tp->rx_opt.tstamp_ok = 1;
4529 tp->tcp_header_len =
4530 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4531 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4532 tcp_store_ts_recent(tp);
4533 } else {
4534 tp->tcp_header_len = sizeof(struct tcphdr);
4537 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4538 tp->rx_opt.sack_ok |= 2;
4540 tcp_sync_mss(sk, tp->pmtu_cookie);
4541 tcp_initialize_rcv_mss(sk);
4543 /* Remember, tcp_poll() does not lock socket!
4544 * Change state from SYN-SENT only after copied_seq
4545 * is initialized. */
4546 tp->copied_seq = tp->rcv_nxt;
4547 mb();
4548 tcp_set_state(sk, TCP_ESTABLISHED);
4550 /* Make sure socket is routed, for correct metrics. */
4551 tp->af_specific->rebuild_header(sk);
4553 tcp_init_metrics(sk);
4555 /* Prevent spurious tcp_cwnd_restart() on first data
4556 * packet.
4558 tp->lsndtime = tcp_time_stamp;
4560 tcp_init_buffer_space(sk);
4562 if (sock_flag(sk, SOCK_KEEPOPEN))
4563 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
4565 if (!tp->rx_opt.snd_wscale)
4566 __tcp_fast_path_on(tp, tp->snd_wnd);
4567 else
4568 tp->pred_flags = 0;
4570 if (!sock_flag(sk, SOCK_DEAD)) {
4571 sk->sk_state_change(sk);
4572 sk_wake_async(sk, 0, POLL_OUT);
4575 if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
4576 /* Save one ACK. Data will be ready after
4577 * several ticks, if write_pending is set.
4579 * It may be deleted, but with this feature tcpdumps
4580 * look so _wonderfully_ clever, that I was not able
4581 * to stand against the temptation 8) --ANK
4583 tcp_schedule_ack(tp);
4584 tp->ack.lrcvtime = tcp_time_stamp;
4585 tp->ack.ato = TCP_ATO_MIN;
4586 tcp_incr_quickack(tp);
4587 tcp_enter_quickack_mode(tp);
4588 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
4590 discard:
4591 __kfree_skb(skb);
4592 return 0;
4593 } else {
4594 tcp_send_ack(sk);
4596 return -1;
4599 /* No ACK in the segment */
4601 if (th->rst) {
4602 /* rfc793:
4603 * "If the RST bit is set
4605 * Otherwise (no ACK) drop the segment and return."
4608 goto discard_and_undo;
4611 /* PAWS check. */
4612 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4613 goto discard_and_undo;
4615 if (th->syn) {
4616 /* We see SYN without ACK. It is attempt of
4617 * simultaneous connect with crossed SYNs.
4618 * Particularly, it can be connect to self.
4620 tcp_set_state(sk, TCP_SYN_RECV);
4622 if (tp->rx_opt.saw_tstamp) {
4623 tp->rx_opt.tstamp_ok = 1;
4624 tcp_store_ts_recent(tp);
4625 tp->tcp_header_len =
4626 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4627 } else {
4628 tp->tcp_header_len = sizeof(struct tcphdr);
4631 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4632 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4634 /* RFC1323: The window in SYN & SYN/ACK segments is
4635 * never scaled.
4637 tp->snd_wnd = ntohs(th->window);
4638 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4639 tp->max_window = tp->snd_wnd;
4641 TCP_ECN_rcv_syn(tp, th);
4642 if (tp->ecn_flags&TCP_ECN_OK)
4643 sock_set_flag(sk, SOCK_NO_LARGESEND);
4645 tcp_sync_mss(sk, tp->pmtu_cookie);
4646 tcp_initialize_rcv_mss(sk);
4649 tcp_send_synack(sk);
4650 #if 0
4651 /* Note, we could accept data and URG from this segment.
4652 * There are no obstacles to make this.
4654 * However, if we ignore data in ACKless segments sometimes,
4655 * we have no reasons to accept it sometimes.
4656 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4657 * is not flawless. So, discard packet for sanity.
4658 * Uncomment this return to process the data.
4660 return -1;
4661 #else
4662 goto discard;
4663 #endif
4665 /* "fifth, if neither of the SYN or RST bits is set then
4666 * drop the segment and return."
4669 discard_and_undo:
4670 tcp_clear_options(&tp->rx_opt);
4671 tp->rx_opt.mss_clamp = saved_clamp;
4672 goto discard;
4674 reset_and_undo:
4675 tcp_clear_options(&tp->rx_opt);
4676 tp->rx_opt.mss_clamp = saved_clamp;
4677 return 1;
4682 * This function implements the receiving procedure of RFC 793 for
4683 * all states except ESTABLISHED and TIME_WAIT.
4684 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4685 * address independent.
4688 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4689 struct tcphdr *th, unsigned len)
4691 struct tcp_sock *tp = tcp_sk(sk);
4692 int queued = 0;
4694 tp->rx_opt.saw_tstamp = 0;
4696 switch (sk->sk_state) {
4697 case TCP_CLOSE:
4698 goto discard;
4700 case TCP_LISTEN:
4701 if(th->ack)
4702 return 1;
4704 if(th->rst)
4705 goto discard;
4707 if(th->syn) {
4708 if(tp->af_specific->conn_request(sk, skb) < 0)
4709 return 1;
4711 init_westwood(sk);
4712 init_bictcp(tp);
4714 /* Now we have several options: In theory there is
4715 * nothing else in the frame. KA9Q has an option to
4716 * send data with the syn, BSD accepts data with the
4717 * syn up to the [to be] advertised window and
4718 * Solaris 2.1 gives you a protocol error. For now
4719 * we just ignore it, that fits the spec precisely
4720 * and avoids incompatibilities. It would be nice in
4721 * future to drop through and process the data.
4723 * Now that TTCP is starting to be used we ought to
4724 * queue this data.
4725 * But, this leaves one open to an easy denial of
4726 * service attack, and SYN cookies can't defend
4727 * against this problem. So, we drop the data
4728 * in the interest of security over speed.
4730 goto discard;
4732 goto discard;
4734 case TCP_SYN_SENT:
4735 init_westwood(sk);
4736 init_bictcp(tp);
4738 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4739 if (queued >= 0)
4740 return queued;
4742 /* Do step6 onward by hand. */
4743 tcp_urg(sk, skb, th);
4744 __kfree_skb(skb);
4745 tcp_data_snd_check(sk);
4746 return 0;
4749 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4750 tcp_paws_discard(tp, skb)) {
4751 if (!th->rst) {
4752 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4753 tcp_send_dupack(sk, skb);
4754 goto discard;
4756 /* Reset is accepted even if it did not pass PAWS. */
4759 /* step 1: check sequence number */
4760 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4761 if (!th->rst)
4762 tcp_send_dupack(sk, skb);
4763 goto discard;
4766 /* step 2: check RST bit */
4767 if(th->rst) {
4768 tcp_reset(sk);
4769 goto discard;
4772 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4774 /* step 3: check security and precedence [ignored] */
4776 /* step 4:
4778 * Check for a SYN in window.
4780 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4781 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4782 tcp_reset(sk);
4783 return 1;
4786 /* step 5: check the ACK field */
4787 if (th->ack) {
4788 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4790 switch(sk->sk_state) {
4791 case TCP_SYN_RECV:
4792 if (acceptable) {
4793 tp->copied_seq = tp->rcv_nxt;
4794 mb();
4795 tcp_set_state(sk, TCP_ESTABLISHED);
4796 sk->sk_state_change(sk);
4798 /* Note, that this wakeup is only for marginal
4799 * crossed SYN case. Passively open sockets
4800 * are not waked up, because sk->sk_sleep ==
4801 * NULL and sk->sk_socket == NULL.
4803 if (sk->sk_socket) {
4804 sk_wake_async(sk,0,POLL_OUT);
4807 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4808 tp->snd_wnd = ntohs(th->window) <<
4809 tp->rx_opt.snd_wscale;
4810 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4811 TCP_SKB_CB(skb)->seq);
4813 /* tcp_ack considers this ACK as duplicate
4814 * and does not calculate rtt.
4815 * Fix it at least with timestamps.
4817 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4818 !tp->srtt)
4819 tcp_ack_saw_tstamp(tp, 0);
4821 if (tp->rx_opt.tstamp_ok)
4822 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4824 /* Make sure socket is routed, for
4825 * correct metrics.
4827 tp->af_specific->rebuild_header(sk);
4829 tcp_init_metrics(sk);
4831 /* Prevent spurious tcp_cwnd_restart() on
4832 * first data packet.
4834 tp->lsndtime = tcp_time_stamp;
4836 tcp_initialize_rcv_mss(sk);
4837 tcp_init_buffer_space(sk);
4838 tcp_fast_path_on(tp);
4839 } else {
4840 return 1;
4842 break;
4844 case TCP_FIN_WAIT1:
4845 if (tp->snd_una == tp->write_seq) {
4846 tcp_set_state(sk, TCP_FIN_WAIT2);
4847 sk->sk_shutdown |= SEND_SHUTDOWN;
4848 dst_confirm(sk->sk_dst_cache);
4850 if (!sock_flag(sk, SOCK_DEAD))
4851 /* Wake up lingering close() */
4852 sk->sk_state_change(sk);
4853 else {
4854 int tmo;
4856 if (tp->linger2 < 0 ||
4857 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4858 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4859 tcp_done(sk);
4860 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4861 return 1;
4864 tmo = tcp_fin_time(tp);
4865 if (tmo > TCP_TIMEWAIT_LEN) {
4866 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4867 } else if (th->fin || sock_owned_by_user(sk)) {
4868 /* Bad case. We could lose such FIN otherwise.
4869 * It is not a big problem, but it looks confusing
4870 * and not so rare event. We still can lose it now,
4871 * if it spins in bh_lock_sock(), but it is really
4872 * marginal case.
4874 tcp_reset_keepalive_timer(sk, tmo);
4875 } else {
4876 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4877 goto discard;
4881 break;
4883 case TCP_CLOSING:
4884 if (tp->snd_una == tp->write_seq) {
4885 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4886 goto discard;
4888 break;
4890 case TCP_LAST_ACK:
4891 if (tp->snd_una == tp->write_seq) {
4892 tcp_update_metrics(sk);
4893 tcp_done(sk);
4894 goto discard;
4896 break;
4898 } else
4899 goto discard;
4901 /* step 6: check the URG bit */
4902 tcp_urg(sk, skb, th);
4904 /* step 7: process the segment text */
4905 switch (sk->sk_state) {
4906 case TCP_CLOSE_WAIT:
4907 case TCP_CLOSING:
4908 case TCP_LAST_ACK:
4909 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4910 break;
4911 case TCP_FIN_WAIT1:
4912 case TCP_FIN_WAIT2:
4913 /* RFC 793 says to queue data in these states,
4914 * RFC 1122 says we MUST send a reset.
4915 * BSD 4.4 also does reset.
4917 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4918 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4919 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4920 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4921 tcp_reset(sk);
4922 return 1;
4925 /* Fall through */
4926 case TCP_ESTABLISHED:
4927 tcp_data_queue(sk, skb);
4928 queued = 1;
4929 break;
4932 /* tcp_data could move socket to TIME-WAIT */
4933 if (sk->sk_state != TCP_CLOSE) {
4934 tcp_data_snd_check(sk);
4935 tcp_ack_snd_check(sk);
4938 if (!queued) {
4939 discard:
4940 __kfree_skb(skb);
4942 return 0;
4945 EXPORT_SYMBOL(sysctl_tcp_ecn);
4946 EXPORT_SYMBOL(sysctl_tcp_reordering);
4947 EXPORT_SYMBOL(tcp_parse_options);
4948 EXPORT_SYMBOL(tcp_rcv_established);
4949 EXPORT_SYMBOL(tcp_rcv_state_process);