2 * Broadcom Brahma-B15 CPU read-ahead cache management functions
4 * Copyright (C) 2015-2016 Broadcom
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/err.h>
12 #include <linux/spinlock.h>
14 #include <linux/bitops.h>
15 #include <linux/of_address.h>
16 #include <linux/notifier.h>
17 #include <linux/cpu.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/reboot.h>
21 #include <asm/cacheflush.h>
22 #include <asm/hardware/cache-b15-rac.h>
24 extern void v7_flush_kern_cache_all(void);
26 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
27 #define RAC_CONFIG0_REG (0x78)
28 #define RACENPREF_MASK (0x3)
29 #define RACPREFINST_SHIFT (0)
30 #define RACENINST_SHIFT (2)
31 #define RACPREFDATA_SHIFT (4)
32 #define RACENDATA_SHIFT (6)
33 #define RAC_CPU_SHIFT (8)
34 #define RACCFG_MASK (0xff)
35 #define RAC_CONFIG1_REG (0x7c)
36 #define RAC_FLUSH_REG (0x80)
37 #define FLUSH_RAC (1 << 0)
39 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
40 #define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \
41 RACENPREF_MASK << RACENINST_SHIFT | \
42 1 << RACPREFDATA_SHIFT | \
43 RACENPREF_MASK << RACENDATA_SHIFT)
46 /* Special state where we want to bypass the spinlock and call directly
47 * into the v7 cache maintenance operations during suspend/resume
49 #define RAC_SUSPENDED 1
51 static void __iomem
*b15_rac_base
;
52 static DEFINE_SPINLOCK(rac_lock
);
54 static u32 rac_config0_reg
;
56 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
57 * multi-platform kernels from crashing here as well.
59 static unsigned long b15_rac_flags
;
61 static inline u32
__b15_rac_disable(void)
63 u32 val
= __raw_readl(b15_rac_base
+ RAC_CONFIG0_REG
);
64 __raw_writel(0, b15_rac_base
+ RAC_CONFIG0_REG
);
69 static inline void __b15_rac_flush(void)
73 __raw_writel(FLUSH_RAC
, b15_rac_base
+ RAC_FLUSH_REG
);
75 /* This dmb() is required to force the Bus Interface Unit
76 * to clean oustanding writes, and forces an idle cycle
80 reg
= __raw_readl(b15_rac_base
+ RAC_FLUSH_REG
);
81 } while (reg
& FLUSH_RAC
);
84 static inline u32
b15_rac_disable_and_flush(void)
88 reg
= __b15_rac_disable();
93 static inline void __b15_rac_enable(u32 val
)
95 __raw_writel(val
, b15_rac_base
+ RAC_CONFIG0_REG
);
96 /* dsb() is required here to be consistent with __flush_icache_all() */
100 #define BUILD_RAC_CACHE_OP(name, bar) \
101 void b15_flush_##name(void) \
103 unsigned int do_flush; \
106 if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) { \
112 spin_lock(&rac_lock); \
113 do_flush = test_bit(RAC_ENABLED, &b15_rac_flags); \
115 val = b15_rac_disable_and_flush(); \
120 __b15_rac_enable(val); \
121 spin_unlock(&rac_lock); \
126 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
127 * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
128 * is to prefetch instruction and/or data with a line size of either 64 bytes
129 * or 256 bytes. The rationale is that the data-bus of the CPU interface is
130 * optimized for 256-bytes transactions, and enabling the readahead cache
131 * provides a significant performance boost we want it enabled (typically
132 * twice the performance for a memcpy benchmark application).
134 * The readahead cache is transparent for Modified Virtual Addresses
135 * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
138 * It is however not transparent for the following cache maintenance
139 * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
140 * what we are patching here with our BUILD_RAC_CACHE_OP here.
142 BUILD_RAC_CACHE_OP(kern_cache_all
, nobarrier
);
144 static void b15_rac_enable(void)
149 for_each_possible_cpu(cpu
)
150 enable
|= (RAC_DATA_INST_EN_MASK
<< (cpu
* RAC_CPU_SHIFT
));
152 b15_rac_disable_and_flush();
153 __b15_rac_enable(enable
);
156 static int b15_rac_reboot_notifier(struct notifier_block
*nb
,
157 unsigned long action
,
160 /* During kexec, we are not yet migrated on the boot CPU, so we need to
161 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
162 * suspended such that the hotplug notifier returns early.
164 if (action
== SYS_RESTART
) {
165 spin_lock(&rac_lock
);
166 b15_rac_disable_and_flush();
167 clear_bit(RAC_ENABLED
, &b15_rac_flags
);
168 set_bit(RAC_SUSPENDED
, &b15_rac_flags
);
169 spin_unlock(&rac_lock
);
175 static struct notifier_block b15_rac_reboot_nb
= {
176 .notifier_call
= b15_rac_reboot_notifier
,
179 /* The CPU hotplug case is the most interesting one, we basically need to make
180 * sure that the RAC is disabled for the entire system prior to having a CPU
181 * die, in particular prior to this dying CPU having exited the coherency
184 * Once this CPU is marked dead, we can safely re-enable the RAC for the
185 * remaining CPUs in the system which are still online.
187 * Offlining a CPU is the problematic case, onlining a CPU is not much of an
188 * issue since the CPU and its cache-level hierarchy will start filling with
189 * the RAC disabled, so L1 and L2 only.
191 * In this function, we should NOT have to verify any unsafe setting/condition
194 * It is protected by the RAC_ENABLED flag which is cleared by default, and
195 * being cleared when initial procedure is done. b15_rac_base had been set at
199 * There is a small timing windows, in b15_rac_init(), between
200 * cpuhp_setup_state_*()
203 * However, there is no hotplug activity based on the Linux booting procedure.
205 * Since we have to disable RAC for all cores, we keep RAC on as long as as
206 * possible (disable it as late as possible) to gain the cache benefit.
208 * Thus, dying/dead states are chosen here
210 * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
211 * we would want to consider disabling it as early as possible to benefit the
215 /* Running on the dying CPU */
216 static int b15_rac_dying_cpu(unsigned int cpu
)
218 /* During kexec/reboot, the RAC is disabled via the reboot notifier
221 if (test_bit(RAC_SUSPENDED
, &b15_rac_flags
))
224 spin_lock(&rac_lock
);
226 /* Indicate that we are starting a hotplug procedure */
227 __clear_bit(RAC_ENABLED
, &b15_rac_flags
);
229 /* Disable the readahead cache and save its value to a global */
230 rac_config0_reg
= b15_rac_disable_and_flush();
232 spin_unlock(&rac_lock
);
237 /* Running on a non-dying CPU */
238 static int b15_rac_dead_cpu(unsigned int cpu
)
240 /* During kexec/reboot, the RAC is disabled via the reboot notifier
243 if (test_bit(RAC_SUSPENDED
, &b15_rac_flags
))
246 spin_lock(&rac_lock
);
249 __b15_rac_enable(rac_config0_reg
);
250 __set_bit(RAC_ENABLED
, &b15_rac_flags
);
252 spin_unlock(&rac_lock
);
257 static int b15_rac_suspend(void)
259 /* Suspend the read-ahead cache oeprations, forcing our cache
260 * implementation to fallback to the regular ARMv7 calls.
262 * We are guaranteed to be running on the boot CPU at this point and
263 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
266 rac_config0_reg
= b15_rac_disable_and_flush();
267 set_bit(RAC_SUSPENDED
, &b15_rac_flags
);
272 static void b15_rac_resume(void)
274 /* Coming out of a S3 suspend/resume cycle, the read-ahead cache
275 * register RAC_CONFIG0_REG will be restored to its default value, make
276 * sure we re-enable it and set the enable flag, we are also guaranteed
277 * to run on the boot CPU, so not racy again.
279 __b15_rac_enable(rac_config0_reg
);
280 clear_bit(RAC_SUSPENDED
, &b15_rac_flags
);
283 static struct syscore_ops b15_rac_syscore_ops
= {
284 .suspend
= b15_rac_suspend
,
285 .resume
= b15_rac_resume
,
288 static int __init
b15_rac_init(void)
290 struct device_node
*dn
;
292 u32 reg
, en_mask
= 0;
294 dn
= of_find_compatible_node(NULL
, NULL
, "brcm,brcmstb-cpu-biu-ctrl");
298 if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
301 b15_rac_base
= of_iomap(dn
, 0);
303 pr_err("failed to remap BIU control base\n");
308 ret
= register_reboot_notifier(&b15_rac_reboot_nb
);
310 pr_err("failed to register reboot notifier\n");
311 iounmap(b15_rac_base
);
315 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
)) {
316 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD
,
317 "arm/cache-b15-rac:dead",
318 NULL
, b15_rac_dead_cpu
);
322 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING
,
323 "arm/cache-b15-rac:dying",
324 NULL
, b15_rac_dying_cpu
);
329 if (IS_ENABLED(CONFIG_PM_SLEEP
))
330 register_syscore_ops(&b15_rac_syscore_ops
);
332 spin_lock(&rac_lock
);
333 reg
= __raw_readl(b15_rac_base
+ RAC_CONFIG0_REG
);
334 for_each_possible_cpu(cpu
)
335 en_mask
|= ((1 << RACPREFDATA_SHIFT
) << (cpu
* RAC_CPU_SHIFT
));
336 WARN(reg
& en_mask
, "Read-ahead cache not previously disabled\n");
339 set_bit(RAC_ENABLED
, &b15_rac_flags
);
340 spin_unlock(&rac_lock
);
342 pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
343 b15_rac_base
+ RAC_CONFIG0_REG
);
348 cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING
);
350 unregister_reboot_notifier(&b15_rac_reboot_nb
);
351 iounmap(b15_rac_base
);
356 arch_initcall(b15_rac_init
);