Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / arm64 / crypto / aes-glue.c
blob2fa850e86aa808d1f8ce3f2b25e91f59a14e49ee
1 /*
2 * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <asm/neon.h>
12 #include <asm/hwcap.h>
13 #include <asm/simd.h>
14 #include <crypto/aes.h>
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/simd.h>
17 #include <crypto/internal/skcipher.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
22 #include "aes-ce-setkey.h"
23 #include "aes-ctr-fallback.h"
25 #ifdef USE_V8_CRYPTO_EXTENSIONS
26 #define MODE "ce"
27 #define PRIO 300
28 #define aes_setkey ce_aes_setkey
29 #define aes_expandkey ce_aes_expandkey
30 #define aes_ecb_encrypt ce_aes_ecb_encrypt
31 #define aes_ecb_decrypt ce_aes_ecb_decrypt
32 #define aes_cbc_encrypt ce_aes_cbc_encrypt
33 #define aes_cbc_decrypt ce_aes_cbc_decrypt
34 #define aes_ctr_encrypt ce_aes_ctr_encrypt
35 #define aes_xts_encrypt ce_aes_xts_encrypt
36 #define aes_xts_decrypt ce_aes_xts_decrypt
37 #define aes_mac_update ce_aes_mac_update
38 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
39 #else
40 #define MODE "neon"
41 #define PRIO 200
42 #define aes_setkey crypto_aes_set_key
43 #define aes_expandkey crypto_aes_expand_key
44 #define aes_ecb_encrypt neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt neon_aes_cbc_decrypt
48 #define aes_ctr_encrypt neon_aes_ctr_encrypt
49 #define aes_xts_encrypt neon_aes_xts_encrypt
50 #define aes_xts_decrypt neon_aes_xts_decrypt
51 #define aes_mac_update neon_aes_mac_update
52 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
53 MODULE_ALIAS_CRYPTO("ecb(aes)");
54 MODULE_ALIAS_CRYPTO("cbc(aes)");
55 MODULE_ALIAS_CRYPTO("ctr(aes)");
56 MODULE_ALIAS_CRYPTO("xts(aes)");
57 MODULE_ALIAS_CRYPTO("cmac(aes)");
58 MODULE_ALIAS_CRYPTO("xcbc(aes)");
59 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
60 #endif
62 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
63 MODULE_LICENSE("GPL v2");
65 /* defined in aes-modes.S */
66 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
67 int rounds, int blocks, int first);
68 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
69 int rounds, int blocks, int first);
71 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
72 int rounds, int blocks, u8 iv[], int first);
73 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
74 int rounds, int blocks, u8 iv[], int first);
76 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
77 int rounds, int blocks, u8 ctr[], int first);
79 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
80 int rounds, int blocks, u8 const rk2[], u8 iv[],
81 int first);
82 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
83 int rounds, int blocks, u8 const rk2[], u8 iv[],
84 int first);
86 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
87 int blocks, u8 dg[], int enc_before,
88 int enc_after);
90 struct crypto_aes_xts_ctx {
91 struct crypto_aes_ctx key1;
92 struct crypto_aes_ctx __aligned(8) key2;
95 struct mac_tfm_ctx {
96 struct crypto_aes_ctx key;
97 u8 __aligned(8) consts[];
100 struct mac_desc_ctx {
101 unsigned int len;
102 u8 dg[AES_BLOCK_SIZE];
105 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
106 unsigned int key_len)
108 return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
111 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
112 unsigned int key_len)
114 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
115 int ret;
117 ret = xts_verify_key(tfm, in_key, key_len);
118 if (ret)
119 return ret;
121 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
122 if (!ret)
123 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
124 key_len / 2);
125 if (!ret)
126 return 0;
128 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
129 return -EINVAL;
132 static int ecb_encrypt(struct skcipher_request *req)
134 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
135 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
136 int err, first, rounds = 6 + ctx->key_length / 4;
137 struct skcipher_walk walk;
138 unsigned int blocks;
140 err = skcipher_walk_virt(&walk, req, true);
142 kernel_neon_begin();
143 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
144 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
145 (u8 *)ctx->key_enc, rounds, blocks, first);
146 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
148 kernel_neon_end();
149 return err;
152 static int ecb_decrypt(struct skcipher_request *req)
154 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
155 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
156 int err, first, rounds = 6 + ctx->key_length / 4;
157 struct skcipher_walk walk;
158 unsigned int blocks;
160 err = skcipher_walk_virt(&walk, req, true);
162 kernel_neon_begin();
163 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
164 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
165 (u8 *)ctx->key_dec, rounds, blocks, first);
166 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
168 kernel_neon_end();
169 return err;
172 static int cbc_encrypt(struct skcipher_request *req)
174 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
175 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
176 int err, first, rounds = 6 + ctx->key_length / 4;
177 struct skcipher_walk walk;
178 unsigned int blocks;
180 err = skcipher_walk_virt(&walk, req, true);
182 kernel_neon_begin();
183 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
184 aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
185 (u8 *)ctx->key_enc, rounds, blocks, walk.iv,
186 first);
187 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
189 kernel_neon_end();
190 return err;
193 static int cbc_decrypt(struct skcipher_request *req)
195 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 int err, first, rounds = 6 + ctx->key_length / 4;
198 struct skcipher_walk walk;
199 unsigned int blocks;
201 err = skcipher_walk_virt(&walk, req, true);
203 kernel_neon_begin();
204 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
205 aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 (u8 *)ctx->key_dec, rounds, blocks, walk.iv,
207 first);
208 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
210 kernel_neon_end();
211 return err;
214 static int ctr_encrypt(struct skcipher_request *req)
216 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 int err, first, rounds = 6 + ctx->key_length / 4;
219 struct skcipher_walk walk;
220 int blocks;
222 err = skcipher_walk_virt(&walk, req, true);
224 first = 1;
225 kernel_neon_begin();
226 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
227 aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
228 (u8 *)ctx->key_enc, rounds, blocks, walk.iv,
229 first);
230 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
231 first = 0;
233 if (walk.nbytes) {
234 u8 __aligned(8) tail[AES_BLOCK_SIZE];
235 unsigned int nbytes = walk.nbytes;
236 u8 *tdst = walk.dst.virt.addr;
237 u8 *tsrc = walk.src.virt.addr;
240 * Tell aes_ctr_encrypt() to process a tail block.
242 blocks = -1;
244 aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc, rounds,
245 blocks, walk.iv, first);
246 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
247 err = skcipher_walk_done(&walk, 0);
249 kernel_neon_end();
251 return err;
254 static int ctr_encrypt_sync(struct skcipher_request *req)
256 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
257 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
259 if (!may_use_simd())
260 return aes_ctr_encrypt_fallback(ctx, req);
262 return ctr_encrypt(req);
265 static int xts_encrypt(struct skcipher_request *req)
267 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
268 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
269 int err, first, rounds = 6 + ctx->key1.key_length / 4;
270 struct skcipher_walk walk;
271 unsigned int blocks;
273 err = skcipher_walk_virt(&walk, req, true);
275 kernel_neon_begin();
276 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
277 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
278 (u8 *)ctx->key1.key_enc, rounds, blocks,
279 (u8 *)ctx->key2.key_enc, walk.iv, first);
280 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
282 kernel_neon_end();
284 return err;
287 static int xts_decrypt(struct skcipher_request *req)
289 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
290 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
291 int err, first, rounds = 6 + ctx->key1.key_length / 4;
292 struct skcipher_walk walk;
293 unsigned int blocks;
295 err = skcipher_walk_virt(&walk, req, true);
297 kernel_neon_begin();
298 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
299 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
300 (u8 *)ctx->key1.key_dec, rounds, blocks,
301 (u8 *)ctx->key2.key_enc, walk.iv, first);
302 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
304 kernel_neon_end();
306 return err;
309 static struct skcipher_alg aes_algs[] = { {
310 .base = {
311 .cra_name = "__ecb(aes)",
312 .cra_driver_name = "__ecb-aes-" MODE,
313 .cra_priority = PRIO,
314 .cra_flags = CRYPTO_ALG_INTERNAL,
315 .cra_blocksize = AES_BLOCK_SIZE,
316 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
317 .cra_module = THIS_MODULE,
319 .min_keysize = AES_MIN_KEY_SIZE,
320 .max_keysize = AES_MAX_KEY_SIZE,
321 .setkey = skcipher_aes_setkey,
322 .encrypt = ecb_encrypt,
323 .decrypt = ecb_decrypt,
324 }, {
325 .base = {
326 .cra_name = "__cbc(aes)",
327 .cra_driver_name = "__cbc-aes-" MODE,
328 .cra_priority = PRIO,
329 .cra_flags = CRYPTO_ALG_INTERNAL,
330 .cra_blocksize = AES_BLOCK_SIZE,
331 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
332 .cra_module = THIS_MODULE,
334 .min_keysize = AES_MIN_KEY_SIZE,
335 .max_keysize = AES_MAX_KEY_SIZE,
336 .ivsize = AES_BLOCK_SIZE,
337 .setkey = skcipher_aes_setkey,
338 .encrypt = cbc_encrypt,
339 .decrypt = cbc_decrypt,
340 }, {
341 .base = {
342 .cra_name = "__ctr(aes)",
343 .cra_driver_name = "__ctr-aes-" MODE,
344 .cra_priority = PRIO,
345 .cra_flags = CRYPTO_ALG_INTERNAL,
346 .cra_blocksize = 1,
347 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
348 .cra_module = THIS_MODULE,
350 .min_keysize = AES_MIN_KEY_SIZE,
351 .max_keysize = AES_MAX_KEY_SIZE,
352 .ivsize = AES_BLOCK_SIZE,
353 .chunksize = AES_BLOCK_SIZE,
354 .setkey = skcipher_aes_setkey,
355 .encrypt = ctr_encrypt,
356 .decrypt = ctr_encrypt,
357 }, {
358 .base = {
359 .cra_name = "ctr(aes)",
360 .cra_driver_name = "ctr-aes-" MODE,
361 .cra_priority = PRIO - 1,
362 .cra_blocksize = 1,
363 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
364 .cra_module = THIS_MODULE,
366 .min_keysize = AES_MIN_KEY_SIZE,
367 .max_keysize = AES_MAX_KEY_SIZE,
368 .ivsize = AES_BLOCK_SIZE,
369 .chunksize = AES_BLOCK_SIZE,
370 .setkey = skcipher_aes_setkey,
371 .encrypt = ctr_encrypt_sync,
372 .decrypt = ctr_encrypt_sync,
373 }, {
374 .base = {
375 .cra_name = "__xts(aes)",
376 .cra_driver_name = "__xts-aes-" MODE,
377 .cra_priority = PRIO,
378 .cra_flags = CRYPTO_ALG_INTERNAL,
379 .cra_blocksize = AES_BLOCK_SIZE,
380 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
381 .cra_module = THIS_MODULE,
383 .min_keysize = 2 * AES_MIN_KEY_SIZE,
384 .max_keysize = 2 * AES_MAX_KEY_SIZE,
385 .ivsize = AES_BLOCK_SIZE,
386 .setkey = xts_set_key,
387 .encrypt = xts_encrypt,
388 .decrypt = xts_decrypt,
389 } };
391 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
392 unsigned int key_len)
394 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
395 int err;
397 err = aes_expandkey(&ctx->key, in_key, key_len);
398 if (err)
399 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
401 return err;
404 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
406 u64 a = be64_to_cpu(x->a);
407 u64 b = be64_to_cpu(x->b);
409 y->a = cpu_to_be64((a << 1) | (b >> 63));
410 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
413 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
414 unsigned int key_len)
416 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
417 be128 *consts = (be128 *)ctx->consts;
418 u8 *rk = (u8 *)ctx->key.key_enc;
419 int rounds = 6 + key_len / 4;
420 int err;
422 err = cbcmac_setkey(tfm, in_key, key_len);
423 if (err)
424 return err;
426 /* encrypt the zero vector */
427 kernel_neon_begin();
428 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, rk, rounds, 1, 1);
429 kernel_neon_end();
431 cmac_gf128_mul_by_x(consts, consts);
432 cmac_gf128_mul_by_x(consts + 1, consts);
434 return 0;
437 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
438 unsigned int key_len)
440 static u8 const ks[3][AES_BLOCK_SIZE] = {
441 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
442 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
443 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
446 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
447 u8 *rk = (u8 *)ctx->key.key_enc;
448 int rounds = 6 + key_len / 4;
449 u8 key[AES_BLOCK_SIZE];
450 int err;
452 err = cbcmac_setkey(tfm, in_key, key_len);
453 if (err)
454 return err;
456 kernel_neon_begin();
457 aes_ecb_encrypt(key, ks[0], rk, rounds, 1, 1);
458 aes_ecb_encrypt(ctx->consts, ks[1], rk, rounds, 2, 0);
459 kernel_neon_end();
461 return cbcmac_setkey(tfm, key, sizeof(key));
464 static int mac_init(struct shash_desc *desc)
466 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
468 memset(ctx->dg, 0, AES_BLOCK_SIZE);
469 ctx->len = 0;
471 return 0;
474 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
475 u8 dg[], int enc_before, int enc_after)
477 int rounds = 6 + ctx->key_length / 4;
479 if (may_use_simd()) {
480 kernel_neon_begin();
481 aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
482 enc_after);
483 kernel_neon_end();
484 } else {
485 if (enc_before)
486 __aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
488 while (blocks--) {
489 crypto_xor(dg, in, AES_BLOCK_SIZE);
490 in += AES_BLOCK_SIZE;
492 if (blocks || enc_after)
493 __aes_arm64_encrypt(ctx->key_enc, dg, dg,
494 rounds);
499 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
501 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
502 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
504 while (len > 0) {
505 unsigned int l;
507 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
508 (ctx->len + len) > AES_BLOCK_SIZE) {
510 int blocks = len / AES_BLOCK_SIZE;
512 len %= AES_BLOCK_SIZE;
514 mac_do_update(&tctx->key, p, blocks, ctx->dg,
515 (ctx->len != 0), (len != 0));
517 p += blocks * AES_BLOCK_SIZE;
519 if (!len) {
520 ctx->len = AES_BLOCK_SIZE;
521 break;
523 ctx->len = 0;
526 l = min(len, AES_BLOCK_SIZE - ctx->len);
528 if (l <= AES_BLOCK_SIZE) {
529 crypto_xor(ctx->dg + ctx->len, p, l);
530 ctx->len += l;
531 len -= l;
532 p += l;
536 return 0;
539 static int cbcmac_final(struct shash_desc *desc, u8 *out)
541 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
542 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
544 mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
546 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
548 return 0;
551 static int cmac_final(struct shash_desc *desc, u8 *out)
553 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
554 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
555 u8 *consts = tctx->consts;
557 if (ctx->len != AES_BLOCK_SIZE) {
558 ctx->dg[ctx->len] ^= 0x80;
559 consts += AES_BLOCK_SIZE;
562 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
564 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
566 return 0;
569 static struct shash_alg mac_algs[] = { {
570 .base.cra_name = "cmac(aes)",
571 .base.cra_driver_name = "cmac-aes-" MODE,
572 .base.cra_priority = PRIO,
573 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH,
574 .base.cra_blocksize = AES_BLOCK_SIZE,
575 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
576 2 * AES_BLOCK_SIZE,
577 .base.cra_module = THIS_MODULE,
579 .digestsize = AES_BLOCK_SIZE,
580 .init = mac_init,
581 .update = mac_update,
582 .final = cmac_final,
583 .setkey = cmac_setkey,
584 .descsize = sizeof(struct mac_desc_ctx),
585 }, {
586 .base.cra_name = "xcbc(aes)",
587 .base.cra_driver_name = "xcbc-aes-" MODE,
588 .base.cra_priority = PRIO,
589 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH,
590 .base.cra_blocksize = AES_BLOCK_SIZE,
591 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
592 2 * AES_BLOCK_SIZE,
593 .base.cra_module = THIS_MODULE,
595 .digestsize = AES_BLOCK_SIZE,
596 .init = mac_init,
597 .update = mac_update,
598 .final = cmac_final,
599 .setkey = xcbc_setkey,
600 .descsize = sizeof(struct mac_desc_ctx),
601 }, {
602 .base.cra_name = "cbcmac(aes)",
603 .base.cra_driver_name = "cbcmac-aes-" MODE,
604 .base.cra_priority = PRIO,
605 .base.cra_flags = CRYPTO_ALG_TYPE_SHASH,
606 .base.cra_blocksize = 1,
607 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
608 .base.cra_module = THIS_MODULE,
610 .digestsize = AES_BLOCK_SIZE,
611 .init = mac_init,
612 .update = mac_update,
613 .final = cbcmac_final,
614 .setkey = cbcmac_setkey,
615 .descsize = sizeof(struct mac_desc_ctx),
616 } };
618 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
620 static void aes_exit(void)
622 int i;
624 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
625 if (aes_simd_algs[i])
626 simd_skcipher_free(aes_simd_algs[i]);
628 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
629 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
632 static int __init aes_init(void)
634 struct simd_skcipher_alg *simd;
635 const char *basename;
636 const char *algname;
637 const char *drvname;
638 int err;
639 int i;
641 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
642 if (err)
643 return err;
645 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
646 if (err)
647 goto unregister_ciphers;
649 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
650 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
651 continue;
653 algname = aes_algs[i].base.cra_name + 2;
654 drvname = aes_algs[i].base.cra_driver_name + 2;
655 basename = aes_algs[i].base.cra_driver_name;
656 simd = simd_skcipher_create_compat(algname, drvname, basename);
657 err = PTR_ERR(simd);
658 if (IS_ERR(simd))
659 goto unregister_simds;
661 aes_simd_algs[i] = simd;
664 return 0;
666 unregister_simds:
667 aes_exit();
668 return err;
669 unregister_ciphers:
670 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
671 return err;
674 #ifdef USE_V8_CRYPTO_EXTENSIONS
675 module_cpu_feature_match(AES, aes_init);
676 #else
677 module_init(aes_init);
678 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
679 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
680 #endif
681 module_exit(aes_exit);