Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / arm64 / kernel / module.c
blobf469e04359031c1a172570f756769eb96366675f
1 /*
2 * AArch64 loadable module support.
4 * Copyright (C) 2012 ARM Limited
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * Author: Will Deacon <will.deacon@arm.com>
21 #include <linux/bitops.h>
22 #include <linux/elf.h>
23 #include <linux/gfp.h>
24 #include <linux/kasan.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/moduleloader.h>
28 #include <linux/vmalloc.h>
29 #include <asm/alternative.h>
30 #include <asm/insn.h>
31 #include <asm/sections.h>
33 void *module_alloc(unsigned long size)
35 gfp_t gfp_mask = GFP_KERNEL;
36 void *p;
38 /* Silence the initial allocation */
39 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
40 gfp_mask |= __GFP_NOWARN;
42 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
43 module_alloc_base + MODULES_VSIZE,
44 gfp_mask, PAGE_KERNEL_EXEC, 0,
45 NUMA_NO_NODE, __builtin_return_address(0));
47 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
48 !IS_ENABLED(CONFIG_KASAN))
50 * KASAN can only deal with module allocations being served
51 * from the reserved module region, since the remainder of
52 * the vmalloc region is already backed by zero shadow pages,
53 * and punching holes into it is non-trivial. Since the module
54 * region is not randomized when KASAN is enabled, it is even
55 * less likely that the module region gets exhausted, so we
56 * can simply omit this fallback in that case.
58 p = __vmalloc_node_range(size, MODULE_ALIGN, VMALLOC_START,
59 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
60 NUMA_NO_NODE, __builtin_return_address(0));
62 if (p && (kasan_module_alloc(p, size) < 0)) {
63 vfree(p);
64 return NULL;
67 return p;
70 enum aarch64_reloc_op {
71 RELOC_OP_NONE,
72 RELOC_OP_ABS,
73 RELOC_OP_PREL,
74 RELOC_OP_PAGE,
77 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
79 switch (reloc_op) {
80 case RELOC_OP_ABS:
81 return val;
82 case RELOC_OP_PREL:
83 return val - (u64)place;
84 case RELOC_OP_PAGE:
85 return (val & ~0xfff) - ((u64)place & ~0xfff);
86 case RELOC_OP_NONE:
87 return 0;
90 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
91 return 0;
94 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
96 s64 sval = do_reloc(op, place, val);
98 switch (len) {
99 case 16:
100 *(s16 *)place = sval;
101 if (sval < S16_MIN || sval > U16_MAX)
102 return -ERANGE;
103 break;
104 case 32:
105 *(s32 *)place = sval;
106 if (sval < S32_MIN || sval > U32_MAX)
107 return -ERANGE;
108 break;
109 case 64:
110 *(s64 *)place = sval;
111 break;
112 default:
113 pr_err("Invalid length (%d) for data relocation\n", len);
114 return 0;
116 return 0;
119 enum aarch64_insn_movw_imm_type {
120 AARCH64_INSN_IMM_MOVNZ,
121 AARCH64_INSN_IMM_MOVKZ,
124 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
125 int lsb, enum aarch64_insn_movw_imm_type imm_type)
127 u64 imm;
128 s64 sval;
129 u32 insn = le32_to_cpu(*place);
131 sval = do_reloc(op, place, val);
132 imm = sval >> lsb;
134 if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
136 * For signed MOVW relocations, we have to manipulate the
137 * instruction encoding depending on whether or not the
138 * immediate is less than zero.
140 insn &= ~(3 << 29);
141 if (sval >= 0) {
142 /* >=0: Set the instruction to MOVZ (opcode 10b). */
143 insn |= 2 << 29;
144 } else {
146 * <0: Set the instruction to MOVN (opcode 00b).
147 * Since we've masked the opcode already, we
148 * don't need to do anything other than
149 * inverting the new immediate field.
151 imm = ~imm;
155 /* Update the instruction with the new encoding. */
156 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
157 *place = cpu_to_le32(insn);
159 if (imm > U16_MAX)
160 return -ERANGE;
162 return 0;
165 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
166 int lsb, int len, enum aarch64_insn_imm_type imm_type)
168 u64 imm, imm_mask;
169 s64 sval;
170 u32 insn = le32_to_cpu(*place);
172 /* Calculate the relocation value. */
173 sval = do_reloc(op, place, val);
174 sval >>= lsb;
176 /* Extract the value bits and shift them to bit 0. */
177 imm_mask = (BIT(lsb + len) - 1) >> lsb;
178 imm = sval & imm_mask;
180 /* Update the instruction's immediate field. */
181 insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
182 *place = cpu_to_le32(insn);
185 * Extract the upper value bits (including the sign bit) and
186 * shift them to bit 0.
188 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
191 * Overflow has occurred if the upper bits are not all equal to
192 * the sign bit of the value.
194 if ((u64)(sval + 1) >= 2)
195 return -ERANGE;
197 return 0;
200 int apply_relocate_add(Elf64_Shdr *sechdrs,
201 const char *strtab,
202 unsigned int symindex,
203 unsigned int relsec,
204 struct module *me)
206 unsigned int i;
207 int ovf;
208 bool overflow_check;
209 Elf64_Sym *sym;
210 void *loc;
211 u64 val;
212 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
214 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
215 /* loc corresponds to P in the AArch64 ELF document. */
216 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
217 + rel[i].r_offset;
219 /* sym is the ELF symbol we're referring to. */
220 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
221 + ELF64_R_SYM(rel[i].r_info);
223 /* val corresponds to (S + A) in the AArch64 ELF document. */
224 val = sym->st_value + rel[i].r_addend;
226 /* Check for overflow by default. */
227 overflow_check = true;
229 /* Perform the static relocation. */
230 switch (ELF64_R_TYPE(rel[i].r_info)) {
231 /* Null relocations. */
232 case R_ARM_NONE:
233 case R_AARCH64_NONE:
234 ovf = 0;
235 break;
237 /* Data relocations. */
238 case R_AARCH64_ABS64:
239 overflow_check = false;
240 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
241 break;
242 case R_AARCH64_ABS32:
243 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
244 break;
245 case R_AARCH64_ABS16:
246 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
247 break;
248 case R_AARCH64_PREL64:
249 overflow_check = false;
250 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
251 break;
252 case R_AARCH64_PREL32:
253 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
254 break;
255 case R_AARCH64_PREL16:
256 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
257 break;
259 /* MOVW instruction relocations. */
260 case R_AARCH64_MOVW_UABS_G0_NC:
261 overflow_check = false;
262 case R_AARCH64_MOVW_UABS_G0:
263 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
264 AARCH64_INSN_IMM_MOVKZ);
265 break;
266 case R_AARCH64_MOVW_UABS_G1_NC:
267 overflow_check = false;
268 case R_AARCH64_MOVW_UABS_G1:
269 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
270 AARCH64_INSN_IMM_MOVKZ);
271 break;
272 case R_AARCH64_MOVW_UABS_G2_NC:
273 overflow_check = false;
274 case R_AARCH64_MOVW_UABS_G2:
275 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
276 AARCH64_INSN_IMM_MOVKZ);
277 break;
278 case R_AARCH64_MOVW_UABS_G3:
279 /* We're using the top bits so we can't overflow. */
280 overflow_check = false;
281 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
282 AARCH64_INSN_IMM_MOVKZ);
283 break;
284 case R_AARCH64_MOVW_SABS_G0:
285 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
286 AARCH64_INSN_IMM_MOVNZ);
287 break;
288 case R_AARCH64_MOVW_SABS_G1:
289 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
290 AARCH64_INSN_IMM_MOVNZ);
291 break;
292 case R_AARCH64_MOVW_SABS_G2:
293 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
294 AARCH64_INSN_IMM_MOVNZ);
295 break;
296 case R_AARCH64_MOVW_PREL_G0_NC:
297 overflow_check = false;
298 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
299 AARCH64_INSN_IMM_MOVKZ);
300 break;
301 case R_AARCH64_MOVW_PREL_G0:
302 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
303 AARCH64_INSN_IMM_MOVNZ);
304 break;
305 case R_AARCH64_MOVW_PREL_G1_NC:
306 overflow_check = false;
307 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
308 AARCH64_INSN_IMM_MOVKZ);
309 break;
310 case R_AARCH64_MOVW_PREL_G1:
311 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
312 AARCH64_INSN_IMM_MOVNZ);
313 break;
314 case R_AARCH64_MOVW_PREL_G2_NC:
315 overflow_check = false;
316 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
317 AARCH64_INSN_IMM_MOVKZ);
318 break;
319 case R_AARCH64_MOVW_PREL_G2:
320 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
321 AARCH64_INSN_IMM_MOVNZ);
322 break;
323 case R_AARCH64_MOVW_PREL_G3:
324 /* We're using the top bits so we can't overflow. */
325 overflow_check = false;
326 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
327 AARCH64_INSN_IMM_MOVNZ);
328 break;
330 /* Immediate instruction relocations. */
331 case R_AARCH64_LD_PREL_LO19:
332 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
333 AARCH64_INSN_IMM_19);
334 break;
335 case R_AARCH64_ADR_PREL_LO21:
336 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
337 AARCH64_INSN_IMM_ADR);
338 break;
339 #ifndef CONFIG_ARM64_ERRATUM_843419
340 case R_AARCH64_ADR_PREL_PG_HI21_NC:
341 overflow_check = false;
342 case R_AARCH64_ADR_PREL_PG_HI21:
343 ovf = reloc_insn_imm(RELOC_OP_PAGE, loc, val, 12, 21,
344 AARCH64_INSN_IMM_ADR);
345 break;
346 #endif
347 case R_AARCH64_ADD_ABS_LO12_NC:
348 case R_AARCH64_LDST8_ABS_LO12_NC:
349 overflow_check = false;
350 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
351 AARCH64_INSN_IMM_12);
352 break;
353 case R_AARCH64_LDST16_ABS_LO12_NC:
354 overflow_check = false;
355 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
356 AARCH64_INSN_IMM_12);
357 break;
358 case R_AARCH64_LDST32_ABS_LO12_NC:
359 overflow_check = false;
360 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
361 AARCH64_INSN_IMM_12);
362 break;
363 case R_AARCH64_LDST64_ABS_LO12_NC:
364 overflow_check = false;
365 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
366 AARCH64_INSN_IMM_12);
367 break;
368 case R_AARCH64_LDST128_ABS_LO12_NC:
369 overflow_check = false;
370 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
371 AARCH64_INSN_IMM_12);
372 break;
373 case R_AARCH64_TSTBR14:
374 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
375 AARCH64_INSN_IMM_14);
376 break;
377 case R_AARCH64_CONDBR19:
378 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
379 AARCH64_INSN_IMM_19);
380 break;
381 case R_AARCH64_JUMP26:
382 case R_AARCH64_CALL26:
383 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
384 AARCH64_INSN_IMM_26);
386 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
387 ovf == -ERANGE) {
388 val = module_emit_plt_entry(me, loc, &rel[i], sym);
389 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
390 26, AARCH64_INSN_IMM_26);
392 break;
394 default:
395 pr_err("module %s: unsupported RELA relocation: %llu\n",
396 me->name, ELF64_R_TYPE(rel[i].r_info));
397 return -ENOEXEC;
400 if (overflow_check && ovf == -ERANGE)
401 goto overflow;
405 return 0;
407 overflow:
408 pr_err("module %s: overflow in relocation type %d val %Lx\n",
409 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
410 return -ENOEXEC;
413 int module_finalize(const Elf_Ehdr *hdr,
414 const Elf_Shdr *sechdrs,
415 struct module *me)
417 const Elf_Shdr *s, *se;
418 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
420 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
421 if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
422 apply_alternatives((void *)s->sh_addr, s->sh_size);
424 #ifdef CONFIG_ARM64_MODULE_PLTS
425 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
426 !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
427 me->arch.ftrace_trampoline = (void *)s->sh_addr;
428 #endif
431 return 0;