Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / arm64 / kernel / smp.c
blob3b8ad7be9c3344e419af3513c31eebbcd3ac0602
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
5 * Copyright (C) 2012 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/acpi.h>
21 #include <linux/arm_sdei.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/spinlock.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/hotplug.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/cache.h>
30 #include <linux/profile.h>
31 #include <linux/errno.h>
32 #include <linux/mm.h>
33 #include <linux/err.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/seq_file.h>
37 #include <linux/irq.h>
38 #include <linux/percpu.h>
39 #include <linux/clockchips.h>
40 #include <linux/completion.h>
41 #include <linux/of.h>
42 #include <linux/irq_work.h>
43 #include <linux/kexec.h>
45 #include <asm/alternative.h>
46 #include <asm/atomic.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cpu.h>
49 #include <asm/cputype.h>
50 #include <asm/cpu_ops.h>
51 #include <asm/daifflags.h>
52 #include <asm/mmu_context.h>
53 #include <asm/numa.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/processor.h>
57 #include <asm/smp_plat.h>
58 #include <asm/sections.h>
59 #include <asm/tlbflush.h>
60 #include <asm/ptrace.h>
61 #include <asm/virt.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/ipi.h>
66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
67 EXPORT_PER_CPU_SYMBOL(cpu_number);
70 * as from 2.5, kernels no longer have an init_tasks structure
71 * so we need some other way of telling a new secondary core
72 * where to place its SVC stack
74 struct secondary_data secondary_data;
75 /* Number of CPUs which aren't online, but looping in kernel text. */
76 int cpus_stuck_in_kernel;
78 enum ipi_msg_type {
79 IPI_RESCHEDULE,
80 IPI_CALL_FUNC,
81 IPI_CPU_STOP,
82 IPI_CPU_CRASH_STOP,
83 IPI_TIMER,
84 IPI_IRQ_WORK,
85 IPI_WAKEUP
88 #ifdef CONFIG_ARM64_VHE
90 /* Whether the boot CPU is running in HYP mode or not*/
91 static bool boot_cpu_hyp_mode;
93 static inline void save_boot_cpu_run_el(void)
95 boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
98 static inline bool is_boot_cpu_in_hyp_mode(void)
100 return boot_cpu_hyp_mode;
104 * Verify that a secondary CPU is running the kernel at the same
105 * EL as that of the boot CPU.
107 void verify_cpu_run_el(void)
109 bool in_el2 = is_kernel_in_hyp_mode();
110 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
112 if (in_el2 ^ boot_cpu_el2) {
113 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
114 smp_processor_id(),
115 in_el2 ? 2 : 1,
116 boot_cpu_el2 ? 2 : 1);
117 cpu_panic_kernel();
121 #else
122 static inline void save_boot_cpu_run_el(void) {}
123 #endif
125 #ifdef CONFIG_HOTPLUG_CPU
126 static int op_cpu_kill(unsigned int cpu);
127 #else
128 static inline int op_cpu_kill(unsigned int cpu)
130 return -ENOSYS;
132 #endif
136 * Boot a secondary CPU, and assign it the specified idle task.
137 * This also gives us the initial stack to use for this CPU.
139 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
141 if (cpu_ops[cpu]->cpu_boot)
142 return cpu_ops[cpu]->cpu_boot(cpu);
144 return -EOPNOTSUPP;
147 static DECLARE_COMPLETION(cpu_running);
149 int __cpu_up(unsigned int cpu, struct task_struct *idle)
151 int ret;
152 long status;
155 * We need to tell the secondary core where to find its stack and the
156 * page tables.
158 secondary_data.task = idle;
159 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
160 update_cpu_boot_status(CPU_MMU_OFF);
161 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
164 * Now bring the CPU into our world.
166 ret = boot_secondary(cpu, idle);
167 if (ret == 0) {
169 * CPU was successfully started, wait for it to come online or
170 * time out.
172 wait_for_completion_timeout(&cpu_running,
173 msecs_to_jiffies(1000));
175 if (!cpu_online(cpu)) {
176 pr_crit("CPU%u: failed to come online\n", cpu);
177 ret = -EIO;
179 } else {
180 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
183 secondary_data.task = NULL;
184 secondary_data.stack = NULL;
185 status = READ_ONCE(secondary_data.status);
186 if (ret && status) {
188 if (status == CPU_MMU_OFF)
189 status = READ_ONCE(__early_cpu_boot_status);
191 switch (status) {
192 default:
193 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
194 cpu, status);
195 break;
196 case CPU_KILL_ME:
197 if (!op_cpu_kill(cpu)) {
198 pr_crit("CPU%u: died during early boot\n", cpu);
199 break;
201 /* Fall through */
202 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
203 case CPU_STUCK_IN_KERNEL:
204 pr_crit("CPU%u: is stuck in kernel\n", cpu);
205 cpus_stuck_in_kernel++;
206 break;
207 case CPU_PANIC_KERNEL:
208 panic("CPU%u detected unsupported configuration\n", cpu);
212 return ret;
216 * This is the secondary CPU boot entry. We're using this CPUs
217 * idle thread stack, but a set of temporary page tables.
219 asmlinkage void secondary_start_kernel(void)
221 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
222 struct mm_struct *mm = &init_mm;
223 unsigned int cpu;
225 cpu = task_cpu(current);
226 set_my_cpu_offset(per_cpu_offset(cpu));
229 * All kernel threads share the same mm context; grab a
230 * reference and switch to it.
232 mmgrab(mm);
233 current->active_mm = mm;
236 * TTBR0 is only used for the identity mapping at this stage. Make it
237 * point to zero page to avoid speculatively fetching new entries.
239 cpu_uninstall_idmap();
241 preempt_disable();
242 trace_hardirqs_off();
245 * If the system has established the capabilities, make sure
246 * this CPU ticks all of those. If it doesn't, the CPU will
247 * fail to come online.
249 check_local_cpu_capabilities();
251 if (cpu_ops[cpu]->cpu_postboot)
252 cpu_ops[cpu]->cpu_postboot();
255 * Log the CPU info before it is marked online and might get read.
257 cpuinfo_store_cpu();
260 * Enable GIC and timers.
262 notify_cpu_starting(cpu);
264 store_cpu_topology(cpu);
267 * OK, now it's safe to let the boot CPU continue. Wait for
268 * the CPU migration code to notice that the CPU is online
269 * before we continue.
271 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
272 cpu, (unsigned long)mpidr,
273 read_cpuid_id());
274 update_cpu_boot_status(CPU_BOOT_SUCCESS);
275 set_cpu_online(cpu, true);
276 complete(&cpu_running);
278 local_daif_restore(DAIF_PROCCTX);
281 * OK, it's off to the idle thread for us
283 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
286 #ifdef CONFIG_HOTPLUG_CPU
287 static int op_cpu_disable(unsigned int cpu)
290 * If we don't have a cpu_die method, abort before we reach the point
291 * of no return. CPU0 may not have an cpu_ops, so test for it.
293 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
294 return -EOPNOTSUPP;
297 * We may need to abort a hot unplug for some other mechanism-specific
298 * reason.
300 if (cpu_ops[cpu]->cpu_disable)
301 return cpu_ops[cpu]->cpu_disable(cpu);
303 return 0;
307 * __cpu_disable runs on the processor to be shutdown.
309 int __cpu_disable(void)
311 unsigned int cpu = smp_processor_id();
312 int ret;
314 ret = op_cpu_disable(cpu);
315 if (ret)
316 return ret;
319 * Take this CPU offline. Once we clear this, we can't return,
320 * and we must not schedule until we're ready to give up the cpu.
322 set_cpu_online(cpu, false);
325 * OK - migrate IRQs away from this CPU
327 irq_migrate_all_off_this_cpu();
329 return 0;
332 static int op_cpu_kill(unsigned int cpu)
335 * If we have no means of synchronising with the dying CPU, then assume
336 * that it is really dead. We can only wait for an arbitrary length of
337 * time and hope that it's dead, so let's skip the wait and just hope.
339 if (!cpu_ops[cpu]->cpu_kill)
340 return 0;
342 return cpu_ops[cpu]->cpu_kill(cpu);
346 * called on the thread which is asking for a CPU to be shutdown -
347 * waits until shutdown has completed, or it is timed out.
349 void __cpu_die(unsigned int cpu)
351 int err;
353 if (!cpu_wait_death(cpu, 5)) {
354 pr_crit("CPU%u: cpu didn't die\n", cpu);
355 return;
357 pr_notice("CPU%u: shutdown\n", cpu);
360 * Now that the dying CPU is beyond the point of no return w.r.t.
361 * in-kernel synchronisation, try to get the firwmare to help us to
362 * verify that it has really left the kernel before we consider
363 * clobbering anything it might still be using.
365 err = op_cpu_kill(cpu);
366 if (err)
367 pr_warn("CPU%d may not have shut down cleanly: %d\n",
368 cpu, err);
372 * Called from the idle thread for the CPU which has been shutdown.
375 void cpu_die(void)
377 unsigned int cpu = smp_processor_id();
379 idle_task_exit();
381 local_daif_mask();
383 /* Tell __cpu_die() that this CPU is now safe to dispose of */
384 (void)cpu_report_death();
387 * Actually shutdown the CPU. This must never fail. The specific hotplug
388 * mechanism must perform all required cache maintenance to ensure that
389 * no dirty lines are lost in the process of shutting down the CPU.
391 cpu_ops[cpu]->cpu_die(cpu);
393 BUG();
395 #endif
398 * Kill the calling secondary CPU, early in bringup before it is turned
399 * online.
401 void cpu_die_early(void)
403 int cpu = smp_processor_id();
405 pr_crit("CPU%d: will not boot\n", cpu);
407 /* Mark this CPU absent */
408 set_cpu_present(cpu, 0);
410 #ifdef CONFIG_HOTPLUG_CPU
411 update_cpu_boot_status(CPU_KILL_ME);
412 /* Check if we can park ourselves */
413 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
414 cpu_ops[cpu]->cpu_die(cpu);
415 #endif
416 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
418 cpu_park_loop();
421 static void __init hyp_mode_check(void)
423 if (is_hyp_mode_available())
424 pr_info("CPU: All CPU(s) started at EL2\n");
425 else if (is_hyp_mode_mismatched())
426 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
427 "CPU: CPUs started in inconsistent modes");
428 else
429 pr_info("CPU: All CPU(s) started at EL1\n");
432 void __init smp_cpus_done(unsigned int max_cpus)
434 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
435 setup_cpu_features();
436 hyp_mode_check();
437 apply_alternatives_all();
438 mark_linear_text_alias_ro();
441 void __init smp_prepare_boot_cpu(void)
443 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
445 * Initialise the static keys early as they may be enabled by the
446 * cpufeature code.
448 jump_label_init();
449 cpuinfo_store_boot_cpu();
450 save_boot_cpu_run_el();
452 * Run the errata work around checks on the boot CPU, once we have
453 * initialised the cpu feature infrastructure from
454 * cpuinfo_store_boot_cpu() above.
456 update_cpu_errata_workarounds();
459 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
461 const __be32 *cell;
462 u64 hwid;
465 * A cpu node with missing "reg" property is
466 * considered invalid to build a cpu_logical_map
467 * entry.
469 cell = of_get_property(dn, "reg", NULL);
470 if (!cell) {
471 pr_err("%pOF: missing reg property\n", dn);
472 return INVALID_HWID;
475 hwid = of_read_number(cell, of_n_addr_cells(dn));
477 * Non affinity bits must be set to 0 in the DT
479 if (hwid & ~MPIDR_HWID_BITMASK) {
480 pr_err("%pOF: invalid reg property\n", dn);
481 return INVALID_HWID;
483 return hwid;
487 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
488 * entries and check for duplicates. If any is found just ignore the
489 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
490 * matching valid MPIDR values.
492 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
494 unsigned int i;
496 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
497 if (cpu_logical_map(i) == hwid)
498 return true;
499 return false;
503 * Initialize cpu operations for a logical cpu and
504 * set it in the possible mask on success
506 static int __init smp_cpu_setup(int cpu)
508 if (cpu_read_ops(cpu))
509 return -ENODEV;
511 if (cpu_ops[cpu]->cpu_init(cpu))
512 return -ENODEV;
514 set_cpu_possible(cpu, true);
516 return 0;
519 static bool bootcpu_valid __initdata;
520 static unsigned int cpu_count = 1;
522 #ifdef CONFIG_ACPI
523 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
525 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
527 return &cpu_madt_gicc[cpu];
531 * acpi_map_gic_cpu_interface - parse processor MADT entry
533 * Carry out sanity checks on MADT processor entry and initialize
534 * cpu_logical_map on success
536 static void __init
537 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
539 u64 hwid = processor->arm_mpidr;
541 if (!(processor->flags & ACPI_MADT_ENABLED)) {
542 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
543 return;
546 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
547 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
548 return;
551 if (is_mpidr_duplicate(cpu_count, hwid)) {
552 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
553 return;
556 /* Check if GICC structure of boot CPU is available in the MADT */
557 if (cpu_logical_map(0) == hwid) {
558 if (bootcpu_valid) {
559 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
560 hwid);
561 return;
563 bootcpu_valid = true;
564 cpu_madt_gicc[0] = *processor;
565 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
566 return;
569 if (cpu_count >= NR_CPUS)
570 return;
572 /* map the logical cpu id to cpu MPIDR */
573 cpu_logical_map(cpu_count) = hwid;
575 cpu_madt_gicc[cpu_count] = *processor;
578 * Set-up the ACPI parking protocol cpu entries
579 * while initializing the cpu_logical_map to
580 * avoid parsing MADT entries multiple times for
581 * nothing (ie a valid cpu_logical_map entry should
582 * contain a valid parking protocol data set to
583 * initialize the cpu if the parking protocol is
584 * the only available enable method).
586 acpi_set_mailbox_entry(cpu_count, processor);
588 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
590 cpu_count++;
593 static int __init
594 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
595 const unsigned long end)
597 struct acpi_madt_generic_interrupt *processor;
599 processor = (struct acpi_madt_generic_interrupt *)header;
600 if (BAD_MADT_GICC_ENTRY(processor, end))
601 return -EINVAL;
603 acpi_table_print_madt_entry(header);
605 acpi_map_gic_cpu_interface(processor);
607 return 0;
609 #else
610 #define acpi_table_parse_madt(...) do { } while (0)
611 #endif
614 * Enumerate the possible CPU set from the device tree and build the
615 * cpu logical map array containing MPIDR values related to logical
616 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
618 static void __init of_parse_and_init_cpus(void)
620 struct device_node *dn;
622 for_each_node_by_type(dn, "cpu") {
623 u64 hwid = of_get_cpu_mpidr(dn);
625 if (hwid == INVALID_HWID)
626 goto next;
628 if (is_mpidr_duplicate(cpu_count, hwid)) {
629 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
630 dn);
631 goto next;
635 * The numbering scheme requires that the boot CPU
636 * must be assigned logical id 0. Record it so that
637 * the logical map built from DT is validated and can
638 * be used.
640 if (hwid == cpu_logical_map(0)) {
641 if (bootcpu_valid) {
642 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
643 dn);
644 goto next;
647 bootcpu_valid = true;
648 early_map_cpu_to_node(0, of_node_to_nid(dn));
651 * cpu_logical_map has already been
652 * initialized and the boot cpu doesn't need
653 * the enable-method so continue without
654 * incrementing cpu.
656 continue;
659 if (cpu_count >= NR_CPUS)
660 goto next;
662 pr_debug("cpu logical map 0x%llx\n", hwid);
663 cpu_logical_map(cpu_count) = hwid;
665 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
666 next:
667 cpu_count++;
672 * Enumerate the possible CPU set from the device tree or ACPI and build the
673 * cpu logical map array containing MPIDR values related to logical
674 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
676 void __init smp_init_cpus(void)
678 int i;
680 if (acpi_disabled)
681 of_parse_and_init_cpus();
682 else
684 * do a walk of MADT to determine how many CPUs
685 * we have including disabled CPUs, and get information
686 * we need for SMP init
688 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
689 acpi_parse_gic_cpu_interface, 0);
691 if (cpu_count > nr_cpu_ids)
692 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
693 cpu_count, nr_cpu_ids);
695 if (!bootcpu_valid) {
696 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
697 return;
701 * We need to set the cpu_logical_map entries before enabling
702 * the cpus so that cpu processor description entries (DT cpu nodes
703 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
704 * with entries in cpu_logical_map while initializing the cpus.
705 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
707 for (i = 1; i < nr_cpu_ids; i++) {
708 if (cpu_logical_map(i) != INVALID_HWID) {
709 if (smp_cpu_setup(i))
710 cpu_logical_map(i) = INVALID_HWID;
715 void __init smp_prepare_cpus(unsigned int max_cpus)
717 int err;
718 unsigned int cpu;
719 unsigned int this_cpu;
721 init_cpu_topology();
723 this_cpu = smp_processor_id();
724 store_cpu_topology(this_cpu);
725 numa_store_cpu_info(this_cpu);
728 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
729 * secondary CPUs present.
731 if (max_cpus == 0)
732 return;
735 * Initialise the present map (which describes the set of CPUs
736 * actually populated at the present time) and release the
737 * secondaries from the bootloader.
739 for_each_possible_cpu(cpu) {
741 per_cpu(cpu_number, cpu) = cpu;
743 if (cpu == smp_processor_id())
744 continue;
746 if (!cpu_ops[cpu])
747 continue;
749 err = cpu_ops[cpu]->cpu_prepare(cpu);
750 if (err)
751 continue;
753 set_cpu_present(cpu, true);
754 numa_store_cpu_info(cpu);
758 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
760 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
762 __smp_cross_call = fn;
765 static const char *ipi_types[NR_IPI] __tracepoint_string = {
766 #define S(x,s) [x] = s
767 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
768 S(IPI_CALL_FUNC, "Function call interrupts"),
769 S(IPI_CPU_STOP, "CPU stop interrupts"),
770 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
771 S(IPI_TIMER, "Timer broadcast interrupts"),
772 S(IPI_IRQ_WORK, "IRQ work interrupts"),
773 S(IPI_WAKEUP, "CPU wake-up interrupts"),
776 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
778 trace_ipi_raise(target, ipi_types[ipinr]);
779 __smp_cross_call(target, ipinr);
782 void show_ipi_list(struct seq_file *p, int prec)
784 unsigned int cpu, i;
786 for (i = 0; i < NR_IPI; i++) {
787 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
788 prec >= 4 ? " " : "");
789 for_each_online_cpu(cpu)
790 seq_printf(p, "%10u ",
791 __get_irq_stat(cpu, ipi_irqs[i]));
792 seq_printf(p, " %s\n", ipi_types[i]);
796 u64 smp_irq_stat_cpu(unsigned int cpu)
798 u64 sum = 0;
799 int i;
801 for (i = 0; i < NR_IPI; i++)
802 sum += __get_irq_stat(cpu, ipi_irqs[i]);
804 return sum;
807 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
809 smp_cross_call(mask, IPI_CALL_FUNC);
812 void arch_send_call_function_single_ipi(int cpu)
814 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
817 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
818 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
820 smp_cross_call(mask, IPI_WAKEUP);
822 #endif
824 #ifdef CONFIG_IRQ_WORK
825 void arch_irq_work_raise(void)
827 if (__smp_cross_call)
828 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
830 #endif
833 * ipi_cpu_stop - handle IPI from smp_send_stop()
835 static void ipi_cpu_stop(unsigned int cpu)
837 set_cpu_online(cpu, false);
839 local_daif_mask();
840 sdei_mask_local_cpu();
842 while (1)
843 cpu_relax();
846 #ifdef CONFIG_KEXEC_CORE
847 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
848 #endif
850 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
852 #ifdef CONFIG_KEXEC_CORE
853 crash_save_cpu(regs, cpu);
855 atomic_dec(&waiting_for_crash_ipi);
857 local_irq_disable();
858 sdei_mask_local_cpu();
860 #ifdef CONFIG_HOTPLUG_CPU
861 if (cpu_ops[cpu]->cpu_die)
862 cpu_ops[cpu]->cpu_die(cpu);
863 #endif
865 /* just in case */
866 cpu_park_loop();
867 #endif
871 * Main handler for inter-processor interrupts
873 void handle_IPI(int ipinr, struct pt_regs *regs)
875 unsigned int cpu = smp_processor_id();
876 struct pt_regs *old_regs = set_irq_regs(regs);
878 if ((unsigned)ipinr < NR_IPI) {
879 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
880 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
883 switch (ipinr) {
884 case IPI_RESCHEDULE:
885 scheduler_ipi();
886 break;
888 case IPI_CALL_FUNC:
889 irq_enter();
890 generic_smp_call_function_interrupt();
891 irq_exit();
892 break;
894 case IPI_CPU_STOP:
895 irq_enter();
896 ipi_cpu_stop(cpu);
897 irq_exit();
898 break;
900 case IPI_CPU_CRASH_STOP:
901 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
902 irq_enter();
903 ipi_cpu_crash_stop(cpu, regs);
905 unreachable();
907 break;
909 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
910 case IPI_TIMER:
911 irq_enter();
912 tick_receive_broadcast();
913 irq_exit();
914 break;
915 #endif
917 #ifdef CONFIG_IRQ_WORK
918 case IPI_IRQ_WORK:
919 irq_enter();
920 irq_work_run();
921 irq_exit();
922 break;
923 #endif
925 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
926 case IPI_WAKEUP:
927 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
928 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
929 cpu);
930 break;
931 #endif
933 default:
934 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
935 break;
938 if ((unsigned)ipinr < NR_IPI)
939 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
940 set_irq_regs(old_regs);
943 void smp_send_reschedule(int cpu)
945 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
948 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
949 void tick_broadcast(const struct cpumask *mask)
951 smp_cross_call(mask, IPI_TIMER);
953 #endif
955 void smp_send_stop(void)
957 unsigned long timeout;
959 if (num_online_cpus() > 1) {
960 cpumask_t mask;
962 cpumask_copy(&mask, cpu_online_mask);
963 cpumask_clear_cpu(smp_processor_id(), &mask);
965 if (system_state <= SYSTEM_RUNNING)
966 pr_crit("SMP: stopping secondary CPUs\n");
967 smp_cross_call(&mask, IPI_CPU_STOP);
970 /* Wait up to one second for other CPUs to stop */
971 timeout = USEC_PER_SEC;
972 while (num_online_cpus() > 1 && timeout--)
973 udelay(1);
975 if (num_online_cpus() > 1)
976 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
977 cpumask_pr_args(cpu_online_mask));
979 sdei_mask_local_cpu();
982 #ifdef CONFIG_KEXEC_CORE
983 void crash_smp_send_stop(void)
985 static int cpus_stopped;
986 cpumask_t mask;
987 unsigned long timeout;
990 * This function can be called twice in panic path, but obviously
991 * we execute this only once.
993 if (cpus_stopped)
994 return;
996 cpus_stopped = 1;
998 if (num_online_cpus() == 1) {
999 sdei_mask_local_cpu();
1000 return;
1003 cpumask_copy(&mask, cpu_online_mask);
1004 cpumask_clear_cpu(smp_processor_id(), &mask);
1006 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1008 pr_crit("SMP: stopping secondary CPUs\n");
1009 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1011 /* Wait up to one second for other CPUs to stop */
1012 timeout = USEC_PER_SEC;
1013 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1014 udelay(1);
1016 if (atomic_read(&waiting_for_crash_ipi) > 0)
1017 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1018 cpumask_pr_args(&mask));
1020 sdei_mask_local_cpu();
1023 bool smp_crash_stop_failed(void)
1025 return (atomic_read(&waiting_for_crash_ipi) > 0);
1027 #endif
1030 * not supported here
1032 int setup_profiling_timer(unsigned int multiplier)
1034 return -EINVAL;
1037 static bool have_cpu_die(void)
1039 #ifdef CONFIG_HOTPLUG_CPU
1040 int any_cpu = raw_smp_processor_id();
1042 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1043 return true;
1044 #endif
1045 return false;
1048 bool cpus_are_stuck_in_kernel(void)
1050 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1052 return !!cpus_stuck_in_kernel || smp_spin_tables;