1 // SPDX-License-Identifier: GPL-2.0
2 /* irq.c: UltraSparc IRQ handling/init/registry.
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/kmemleak.h>
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <linux/atomic.h>
32 #include <asm/iommu.h>
34 #include <asm/oplib.h>
36 #include <asm/timer.h>
38 #include <asm/starfire.h>
39 #include <linux/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
51 struct ino_bucket
*ivector_table
;
52 unsigned long ivector_table_pa
;
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa
)
62 __asm__
__volatile__("ldxa [%1] %2, %0"
65 offsetof(struct ino_bucket
,
67 "i" (ASI_PHYS_USE_EC
));
72 static void bucket_clear_chain_pa(unsigned long bucket_pa
)
74 __asm__
__volatile__("stxa %%g0, [%0] %1"
77 offsetof(struct ino_bucket
,
79 "i" (ASI_PHYS_USE_EC
));
82 static unsigned int bucket_get_irq(unsigned long bucket_pa
)
86 __asm__
__volatile__("lduwa [%1] %2, %0"
89 offsetof(struct ino_bucket
,
91 "i" (ASI_PHYS_USE_EC
));
96 static void bucket_set_irq(unsigned long bucket_pa
, unsigned int irq
)
98 __asm__
__volatile__("stwa %0, [%1] %2"
102 offsetof(struct ino_bucket
,
104 "i" (ASI_PHYS_USE_EC
));
107 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109 static unsigned long hvirq_major __initdata
;
110 static int __init
early_hvirq_major(char *p
)
112 int rc
= kstrtoul(p
, 10, &hvirq_major
);
116 early_param("hvirq", early_hvirq_major
);
118 static int hv_irq_version
;
120 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121 * based interfaces, but:
123 * 1) Several OSs, Solaris and Linux included, use them even when only
124 * negotiating version 1.0 (or failing to negotiate at all). So the
125 * hypervisor has a workaround that provides the VIRQ interfaces even
126 * when only verion 1.0 of the API is in use.
128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
129 * interfaces only were actually hooked up for LDC interrupts, even
130 * though the Hypervisor specification clearly stated:
132 * The new interrupt API functions will be available to a guest
133 * when it negotiates version 2.0 in the interrupt API group 0x2. When
134 * a guest negotiates version 2.0, all interrupt sources will only
135 * support using the cookie interface, and any attempt to use the
136 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137 * ENOTSUPPORTED error being returned.
139 * with an emphasis on "all interrupt sources".
141 * To correct this, major version 3.0 was created which does actually
142 * support VIRQs for all interrupt sources (not just LDC devices). So
143 * if we want to move completely over the cookie based VIRQs we must
144 * negotiate major version 3.0 or later of HV_GRP_INTR.
146 static bool sun4v_cookie_only_virqs(void)
148 if (hv_irq_version
>= 3)
153 static void __init
irq_init_hv(void)
155 unsigned long hv_error
, major
, minor
= 0;
157 if (tlb_type
!= hypervisor
)
165 hv_error
= sun4v_hvapi_register(HV_GRP_INTR
, major
, &minor
);
167 hv_irq_version
= major
;
171 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
173 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
176 /* This function is for the timer interrupt.*/
177 int __init
arch_probe_nr_irqs(void)
182 #define DEFAULT_NUM_IVECS (0xfffU)
183 static unsigned int nr_ivec
= DEFAULT_NUM_IVECS
;
184 #define NUM_IVECS (nr_ivec)
186 static unsigned int __init
size_nr_ivec(void)
188 if (tlb_type
== hypervisor
) {
189 switch (sun4v_chip_type
) {
190 /* Athena's devhandle|devino is large.*/
191 case SUN4V_CHIP_SPARC64X
:
199 struct irq_handler_data
{
202 unsigned int dev_handle
;
203 unsigned int dev_ino
;
205 unsigned long sysino
;
207 struct ino_bucket bucket
;
212 static inline unsigned int irq_data_to_handle(struct irq_data
*data
)
214 struct irq_handler_data
*ihd
= irq_data_get_irq_handler_data(data
);
216 return ihd
->dev_handle
;
219 static inline unsigned int irq_data_to_ino(struct irq_data
*data
)
221 struct irq_handler_data
*ihd
= irq_data_get_irq_handler_data(data
);
226 static inline unsigned long irq_data_to_sysino(struct irq_data
*data
)
228 struct irq_handler_data
*ihd
= irq_data_get_irq_handler_data(data
);
233 void irq_free(unsigned int irq
)
235 void *data
= irq_get_handler_data(irq
);
238 irq_set_handler_data(irq
, NULL
);
239 irq_free_descs(irq
, 1);
242 unsigned int irq_alloc(unsigned int dev_handle
, unsigned int dev_ino
)
246 irq
= __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL
, NULL
);
255 static unsigned int cookie_exists(u32 devhandle
, unsigned int devino
)
257 unsigned long hv_err
, cookie
;
258 struct ino_bucket
*bucket
;
259 unsigned int irq
= 0U;
261 hv_err
= sun4v_vintr_get_cookie(devhandle
, devino
, &cookie
);
263 pr_err("HV get cookie failed hv_err = %ld\n", hv_err
);
267 if (cookie
& ((1UL << 63UL))) {
269 bucket
= (struct ino_bucket
*) __va(cookie
);
276 static unsigned int sysino_exists(u32 devhandle
, unsigned int devino
)
278 unsigned long sysino
= sun4v_devino_to_sysino(devhandle
, devino
);
279 struct ino_bucket
*bucket
;
282 bucket
= &ivector_table
[sysino
];
283 irq
= bucket_get_irq(__pa(bucket
));
288 void ack_bad_irq(unsigned int irq
)
290 pr_crit("BAD IRQ ack %d\n", irq
);
293 void irq_install_pre_handler(int irq
,
294 void (*func
)(unsigned int, void *, void *),
295 void *arg1
, void *arg2
)
297 pr_warn("IRQ pre handler NOT supported.\n");
301 * /proc/interrupts printing:
303 int arch_show_interrupts(struct seq_file
*p
, int prec
)
307 seq_printf(p
, "NMI: ");
308 for_each_online_cpu(j
)
309 seq_printf(p
, "%10u ", cpu_data(j
).__nmi_count
);
310 seq_printf(p
, " Non-maskable interrupts\n");
314 static unsigned int sun4u_compute_tid(unsigned long imap
, unsigned long cpuid
)
318 if (this_is_starfire
) {
319 tid
= starfire_translate(imap
, cpuid
);
320 tid
<<= IMAP_TID_SHIFT
;
323 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
326 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
327 if ((ver
>> 32UL) == __JALAPENO_ID
||
328 (ver
>> 32UL) == __SERRANO_ID
) {
329 tid
= cpuid
<< IMAP_TID_SHIFT
;
330 tid
&= IMAP_TID_JBUS
;
332 unsigned int a
= cpuid
& 0x1f;
333 unsigned int n
= (cpuid
>> 5) & 0x1f;
335 tid
= ((a
<< IMAP_AID_SHIFT
) |
336 (n
<< IMAP_NID_SHIFT
));
337 tid
&= (IMAP_AID_SAFARI
|
341 tid
= cpuid
<< IMAP_TID_SHIFT
;
350 static int irq_choose_cpu(unsigned int irq
, const struct cpumask
*affinity
)
355 cpumask_copy(&mask
, affinity
);
356 if (cpumask_equal(&mask
, cpu_online_mask
)) {
357 cpuid
= map_to_cpu(irq
);
361 cpumask_and(&tmp
, cpu_online_mask
, &mask
);
362 cpuid
= cpumask_empty(&tmp
) ? map_to_cpu(irq
) : cpumask_first(&tmp
);
368 #define irq_choose_cpu(irq, affinity) \
369 real_hard_smp_processor_id()
372 static void sun4u_irq_enable(struct irq_data
*data
)
374 struct irq_handler_data
*handler_data
;
376 handler_data
= irq_data_get_irq_handler_data(data
);
377 if (likely(handler_data
)) {
378 unsigned long cpuid
, imap
, val
;
381 cpuid
= irq_choose_cpu(data
->irq
,
382 irq_data_get_affinity_mask(data
));
383 imap
= handler_data
->imap
;
385 tid
= sun4u_compute_tid(imap
, cpuid
);
387 val
= upa_readq(imap
);
388 val
&= ~(IMAP_TID_UPA
| IMAP_TID_JBUS
|
389 IMAP_AID_SAFARI
| IMAP_NID_SAFARI
);
390 val
|= tid
| IMAP_VALID
;
391 upa_writeq(val
, imap
);
392 upa_writeq(ICLR_IDLE
, handler_data
->iclr
);
396 static int sun4u_set_affinity(struct irq_data
*data
,
397 const struct cpumask
*mask
, bool force
)
399 struct irq_handler_data
*handler_data
;
401 handler_data
= irq_data_get_irq_handler_data(data
);
402 if (likely(handler_data
)) {
403 unsigned long cpuid
, imap
, val
;
406 cpuid
= irq_choose_cpu(data
->irq
, mask
);
407 imap
= handler_data
->imap
;
409 tid
= sun4u_compute_tid(imap
, cpuid
);
411 val
= upa_readq(imap
);
412 val
&= ~(IMAP_TID_UPA
| IMAP_TID_JBUS
|
413 IMAP_AID_SAFARI
| IMAP_NID_SAFARI
);
414 val
|= tid
| IMAP_VALID
;
415 upa_writeq(val
, imap
);
416 upa_writeq(ICLR_IDLE
, handler_data
->iclr
);
422 /* Don't do anything. The desc->status check for IRQ_DISABLED in
423 * handler_irq() will skip the handler call and that will leave the
424 * interrupt in the sent state. The next ->enable() call will hit the
425 * ICLR register to reset the state machine.
427 * This scheme is necessary, instead of clearing the Valid bit in the
428 * IMAP register, to handle the case of IMAP registers being shared by
429 * multiple INOs (and thus ICLR registers). Since we use a different
430 * virtual IRQ for each shared IMAP instance, the generic code thinks
431 * there is only one user so it prematurely calls ->disable() on
434 * We have to provide an explicit ->disable() method instead of using
435 * NULL to get the default. The reason is that if the generic code
436 * sees that, it also hooks up a default ->shutdown method which
437 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
439 static void sun4u_irq_disable(struct irq_data
*data
)
443 static void sun4u_irq_eoi(struct irq_data
*data
)
445 struct irq_handler_data
*handler_data
;
447 handler_data
= irq_data_get_irq_handler_data(data
);
448 if (likely(handler_data
))
449 upa_writeq(ICLR_IDLE
, handler_data
->iclr
);
452 static void sun4v_irq_enable(struct irq_data
*data
)
454 unsigned long cpuid
= irq_choose_cpu(data
->irq
,
455 irq_data_get_affinity_mask(data
));
456 unsigned int ino
= irq_data_to_sysino(data
);
459 err
= sun4v_intr_settarget(ino
, cpuid
);
461 printk(KERN_ERR
"sun4v_intr_settarget(%x,%lu): "
462 "err(%d)\n", ino
, cpuid
, err
);
463 err
= sun4v_intr_setstate(ino
, HV_INTR_STATE_IDLE
);
465 printk(KERN_ERR
"sun4v_intr_setstate(%x): "
466 "err(%d)\n", ino
, err
);
467 err
= sun4v_intr_setenabled(ino
, HV_INTR_ENABLED
);
469 printk(KERN_ERR
"sun4v_intr_setenabled(%x): err(%d)\n",
473 static int sun4v_set_affinity(struct irq_data
*data
,
474 const struct cpumask
*mask
, bool force
)
476 unsigned long cpuid
= irq_choose_cpu(data
->irq
, mask
);
477 unsigned int ino
= irq_data_to_sysino(data
);
480 err
= sun4v_intr_settarget(ino
, cpuid
);
482 printk(KERN_ERR
"sun4v_intr_settarget(%x,%lu): "
483 "err(%d)\n", ino
, cpuid
, err
);
488 static void sun4v_irq_disable(struct irq_data
*data
)
490 unsigned int ino
= irq_data_to_sysino(data
);
493 err
= sun4v_intr_setenabled(ino
, HV_INTR_DISABLED
);
495 printk(KERN_ERR
"sun4v_intr_setenabled(%x): "
496 "err(%d)\n", ino
, err
);
499 static void sun4v_irq_eoi(struct irq_data
*data
)
501 unsigned int ino
= irq_data_to_sysino(data
);
504 err
= sun4v_intr_setstate(ino
, HV_INTR_STATE_IDLE
);
506 printk(KERN_ERR
"sun4v_intr_setstate(%x): "
507 "err(%d)\n", ino
, err
);
510 static void sun4v_virq_enable(struct irq_data
*data
)
512 unsigned long dev_handle
= irq_data_to_handle(data
);
513 unsigned long dev_ino
= irq_data_to_ino(data
);
517 cpuid
= irq_choose_cpu(data
->irq
, irq_data_get_affinity_mask(data
));
519 err
= sun4v_vintr_set_target(dev_handle
, dev_ino
, cpuid
);
521 printk(KERN_ERR
"sun4v_vintr_set_target(%lx,%lx,%lu): "
523 dev_handle
, dev_ino
, cpuid
, err
);
524 err
= sun4v_vintr_set_state(dev_handle
, dev_ino
,
527 printk(KERN_ERR
"sun4v_vintr_set_state(%lx,%lx,"
528 "HV_INTR_STATE_IDLE): err(%d)\n",
529 dev_handle
, dev_ino
, err
);
530 err
= sun4v_vintr_set_valid(dev_handle
, dev_ino
,
533 printk(KERN_ERR
"sun4v_vintr_set_state(%lx,%lx,"
534 "HV_INTR_ENABLED): err(%d)\n",
535 dev_handle
, dev_ino
, err
);
538 static int sun4v_virt_set_affinity(struct irq_data
*data
,
539 const struct cpumask
*mask
, bool force
)
541 unsigned long dev_handle
= irq_data_to_handle(data
);
542 unsigned long dev_ino
= irq_data_to_ino(data
);
546 cpuid
= irq_choose_cpu(data
->irq
, mask
);
548 err
= sun4v_vintr_set_target(dev_handle
, dev_ino
, cpuid
);
550 printk(KERN_ERR
"sun4v_vintr_set_target(%lx,%lx,%lu): "
552 dev_handle
, dev_ino
, cpuid
, err
);
557 static void sun4v_virq_disable(struct irq_data
*data
)
559 unsigned long dev_handle
= irq_data_to_handle(data
);
560 unsigned long dev_ino
= irq_data_to_ino(data
);
564 err
= sun4v_vintr_set_valid(dev_handle
, dev_ino
,
567 printk(KERN_ERR
"sun4v_vintr_set_state(%lx,%lx,"
568 "HV_INTR_DISABLED): err(%d)\n",
569 dev_handle
, dev_ino
, err
);
572 static void sun4v_virq_eoi(struct irq_data
*data
)
574 unsigned long dev_handle
= irq_data_to_handle(data
);
575 unsigned long dev_ino
= irq_data_to_ino(data
);
578 err
= sun4v_vintr_set_state(dev_handle
, dev_ino
,
581 printk(KERN_ERR
"sun4v_vintr_set_state(%lx,%lx,"
582 "HV_INTR_STATE_IDLE): err(%d)\n",
583 dev_handle
, dev_ino
, err
);
586 static struct irq_chip sun4u_irq
= {
588 .irq_enable
= sun4u_irq_enable
,
589 .irq_disable
= sun4u_irq_disable
,
590 .irq_eoi
= sun4u_irq_eoi
,
591 .irq_set_affinity
= sun4u_set_affinity
,
592 .flags
= IRQCHIP_EOI_IF_HANDLED
,
595 static struct irq_chip sun4v_irq
= {
597 .irq_enable
= sun4v_irq_enable
,
598 .irq_disable
= sun4v_irq_disable
,
599 .irq_eoi
= sun4v_irq_eoi
,
600 .irq_set_affinity
= sun4v_set_affinity
,
601 .flags
= IRQCHIP_EOI_IF_HANDLED
,
604 static struct irq_chip sun4v_virq
= {
606 .irq_enable
= sun4v_virq_enable
,
607 .irq_disable
= sun4v_virq_disable
,
608 .irq_eoi
= sun4v_virq_eoi
,
609 .irq_set_affinity
= sun4v_virt_set_affinity
,
610 .flags
= IRQCHIP_EOI_IF_HANDLED
,
613 unsigned int build_irq(int inofixup
, unsigned long iclr
, unsigned long imap
)
615 struct irq_handler_data
*handler_data
;
616 struct ino_bucket
*bucket
;
620 BUG_ON(tlb_type
== hypervisor
);
622 ino
= (upa_readq(imap
) & (IMAP_IGN
| IMAP_INO
)) + inofixup
;
623 bucket
= &ivector_table
[ino
];
624 irq
= bucket_get_irq(__pa(bucket
));
626 irq
= irq_alloc(0, ino
);
627 bucket_set_irq(__pa(bucket
), irq
);
628 irq_set_chip_and_handler_name(irq
, &sun4u_irq
,
629 handle_fasteoi_irq
, "IVEC");
632 handler_data
= irq_get_handler_data(irq
);
633 if (unlikely(handler_data
))
636 handler_data
= kzalloc(sizeof(struct irq_handler_data
), GFP_ATOMIC
);
637 if (unlikely(!handler_data
)) {
638 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
641 irq_set_handler_data(irq
, handler_data
);
643 handler_data
->imap
= imap
;
644 handler_data
->iclr
= iclr
;
650 static unsigned int sun4v_build_common(u32 devhandle
, unsigned int devino
,
651 void (*handler_data_init
)(struct irq_handler_data
*data
,
652 u32 devhandle
, unsigned int devino
),
653 struct irq_chip
*chip
)
655 struct irq_handler_data
*data
;
658 irq
= irq_alloc(devhandle
, devino
);
662 data
= kzalloc(sizeof(struct irq_handler_data
), GFP_ATOMIC
);
663 if (unlikely(!data
)) {
664 pr_err("IRQ handler data allocation failed.\n");
670 irq_set_handler_data(irq
, data
);
671 handler_data_init(data
, devhandle
, devino
);
672 irq_set_chip_and_handler_name(irq
, chip
, handle_fasteoi_irq
, "IVEC");
679 static unsigned long cookie_assign(unsigned int irq
, u32 devhandle
,
682 struct irq_handler_data
*ihd
= irq_get_handler_data(irq
);
683 unsigned long hv_error
, cookie
;
685 /* handler_irq needs to find the irq. cookie is seen signed in
686 * sun4v_dev_mondo and treated as a non ivector_table delivery.
688 ihd
->bucket
.__irq
= irq
;
689 cookie
= ~__pa(&ihd
->bucket
);
691 hv_error
= sun4v_vintr_set_cookie(devhandle
, devino
, cookie
);
693 pr_err("HV vintr set cookie failed = %ld\n", hv_error
);
698 static void cookie_handler_data(struct irq_handler_data
*data
,
699 u32 devhandle
, unsigned int devino
)
701 data
->dev_handle
= devhandle
;
702 data
->dev_ino
= devino
;
705 static unsigned int cookie_build_irq(u32 devhandle
, unsigned int devino
,
706 struct irq_chip
*chip
)
708 unsigned long hv_error
;
711 irq
= sun4v_build_common(devhandle
, devino
, cookie_handler_data
, chip
);
713 hv_error
= cookie_assign(irq
, devhandle
, devino
);
722 static unsigned int sun4v_build_cookie(u32 devhandle
, unsigned int devino
)
726 irq
= cookie_exists(devhandle
, devino
);
730 irq
= cookie_build_irq(devhandle
, devino
, &sun4v_virq
);
736 static void sysino_set_bucket(unsigned int irq
)
738 struct irq_handler_data
*ihd
= irq_get_handler_data(irq
);
739 struct ino_bucket
*bucket
;
740 unsigned long sysino
;
742 sysino
= sun4v_devino_to_sysino(ihd
->dev_handle
, ihd
->dev_ino
);
743 BUG_ON(sysino
>= nr_ivec
);
744 bucket
= &ivector_table
[sysino
];
745 bucket_set_irq(__pa(bucket
), irq
);
748 static void sysino_handler_data(struct irq_handler_data
*data
,
749 u32 devhandle
, unsigned int devino
)
751 unsigned long sysino
;
753 sysino
= sun4v_devino_to_sysino(devhandle
, devino
);
754 data
->sysino
= sysino
;
757 static unsigned int sysino_build_irq(u32 devhandle
, unsigned int devino
,
758 struct irq_chip
*chip
)
762 irq
= sun4v_build_common(devhandle
, devino
, sysino_handler_data
, chip
);
766 sysino_set_bucket(irq
);
771 static int sun4v_build_sysino(u32 devhandle
, unsigned int devino
)
775 irq
= sysino_exists(devhandle
, devino
);
779 irq
= sysino_build_irq(devhandle
, devino
, &sun4v_irq
);
784 unsigned int sun4v_build_irq(u32 devhandle
, unsigned int devino
)
788 if (sun4v_cookie_only_virqs())
789 irq
= sun4v_build_cookie(devhandle
, devino
);
791 irq
= sun4v_build_sysino(devhandle
, devino
);
796 unsigned int sun4v_build_virq(u32 devhandle
, unsigned int devino
)
800 irq
= cookie_build_irq(devhandle
, devino
, &sun4v_virq
);
804 /* This is borrowed from the original function.
806 irq_set_status_flags(irq
, IRQ_NOAUTOEN
);
812 void *hardirq_stack
[NR_CPUS
];
813 void *softirq_stack
[NR_CPUS
];
815 void __irq_entry
handler_irq(int pil
, struct pt_regs
*regs
)
817 unsigned long pstate
, bucket_pa
;
818 struct pt_regs
*old_regs
;
821 clear_softint(1 << pil
);
823 old_regs
= set_irq_regs(regs
);
826 /* Grab an atomic snapshot of the pending IVECs. */
827 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
828 "wrpr %0, %3, %%pstate\n\t"
831 "wrpr %0, 0x0, %%pstate\n\t"
832 : "=&r" (pstate
), "=&r" (bucket_pa
)
833 : "r" (irq_work_pa(smp_processor_id())),
837 orig_sp
= set_hardirq_stack();
840 unsigned long next_pa
;
843 next_pa
= bucket_get_chain_pa(bucket_pa
);
844 irq
= bucket_get_irq(bucket_pa
);
845 bucket_clear_chain_pa(bucket_pa
);
847 generic_handle_irq(irq
);
852 restore_hardirq_stack(orig_sp
);
855 set_irq_regs(old_regs
);
858 void do_softirq_own_stack(void)
860 void *orig_sp
, *sp
= softirq_stack
[smp_processor_id()];
862 sp
+= THREAD_SIZE
- 192 - STACK_BIAS
;
864 __asm__
__volatile__("mov %%sp, %0\n\t"
869 __asm__
__volatile__("mov %0, %%sp"
873 #ifdef CONFIG_HOTPLUG_CPU
874 void fixup_irqs(void)
878 for (irq
= 0; irq
< NR_IRQS
; irq
++) {
879 struct irq_desc
*desc
= irq_to_desc(irq
);
880 struct irq_data
*data
;
885 data
= irq_desc_get_irq_data(desc
);
886 raw_spin_lock_irqsave(&desc
->lock
, flags
);
887 if (desc
->action
&& !irqd_is_per_cpu(data
)) {
888 if (data
->chip
->irq_set_affinity
)
889 data
->chip
->irq_set_affinity(data
,
890 irq_data_get_affinity_mask(data
),
893 raw_spin_unlock_irqrestore(&desc
->lock
, flags
);
896 tick_ops
->disable_irq();
907 static struct sun5_timer
*prom_timers
;
908 static u64 prom_limit0
, prom_limit1
;
910 static void map_prom_timers(void)
912 struct device_node
*dp
;
913 const unsigned int *addr
;
915 /* PROM timer node hangs out in the top level of device siblings... */
916 dp
= of_find_node_by_path("/");
919 if (!strcmp(dp
->name
, "counter-timer"))
924 /* Assume if node is not present, PROM uses different tick mechanism
925 * which we should not care about.
928 prom_timers
= (struct sun5_timer
*) 0;
932 /* If PROM is really using this, it must be mapped by him. */
933 addr
= of_get_property(dp
, "address", NULL
);
935 prom_printf("PROM does not have timer mapped, trying to continue.\n");
936 prom_timers
= (struct sun5_timer
*) 0;
939 prom_timers
= (struct sun5_timer
*) ((unsigned long)addr
[0]);
942 static void kill_prom_timer(void)
947 /* Save them away for later. */
948 prom_limit0
= prom_timers
->limit0
;
949 prom_limit1
= prom_timers
->limit1
;
951 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
952 * We turn both off here just to be paranoid.
954 prom_timers
->limit0
= 0;
955 prom_timers
->limit1
= 0;
957 /* Wheee, eat the interrupt packet too... */
958 __asm__
__volatile__(
960 " ldxa [%%g0] %0, %%g1\n"
961 " ldxa [%%g2] %1, %%g1\n"
962 " stxa %%g0, [%%g0] %0\n"
965 : "i" (ASI_INTR_RECEIVE
), "i" (ASI_INTR_R
)
969 void notrace
init_irqwork_curcpu(void)
971 int cpu
= hard_smp_processor_id();
973 trap_block
[cpu
].irq_worklist_pa
= 0UL;
976 /* Please be very careful with register_one_mondo() and
977 * sun4v_register_mondo_queues().
979 * On SMP this gets invoked from the CPU trampoline before
980 * the cpu has fully taken over the trap table from OBP,
981 * and it's kernel stack + %g6 thread register state is
982 * not fully cooked yet.
984 * Therefore you cannot make any OBP calls, not even prom_printf,
985 * from these two routines.
987 static void notrace
register_one_mondo(unsigned long paddr
, unsigned long type
,
990 unsigned long num_entries
= (qmask
+ 1) / 64;
991 unsigned long status
;
993 status
= sun4v_cpu_qconf(type
, paddr
, num_entries
);
994 if (status
!= HV_EOK
) {
995 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
996 "err %lu\n", type
, paddr
, num_entries
, status
);
1001 void notrace
sun4v_register_mondo_queues(int this_cpu
)
1003 struct trap_per_cpu
*tb
= &trap_block
[this_cpu
];
1005 register_one_mondo(tb
->cpu_mondo_pa
, HV_CPU_QUEUE_CPU_MONDO
,
1006 tb
->cpu_mondo_qmask
);
1007 register_one_mondo(tb
->dev_mondo_pa
, HV_CPU_QUEUE_DEVICE_MONDO
,
1008 tb
->dev_mondo_qmask
);
1009 register_one_mondo(tb
->resum_mondo_pa
, HV_CPU_QUEUE_RES_ERROR
,
1011 register_one_mondo(tb
->nonresum_mondo_pa
, HV_CPU_QUEUE_NONRES_ERROR
,
1012 tb
->nonresum_qmask
);
1015 /* Each queue region must be a power of 2 multiple of 64 bytes in
1016 * size. The base real address must be aligned to the size of the
1017 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1019 static void __init
alloc_one_queue(unsigned long *pa_ptr
, unsigned long qmask
)
1021 unsigned long size
= PAGE_ALIGN(qmask
+ 1);
1022 unsigned long order
= get_order(size
);
1025 p
= __get_free_pages(GFP_KERNEL
| __GFP_ZERO
, order
);
1027 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1034 static void __init
init_cpu_send_mondo_info(struct trap_per_cpu
*tb
)
1040 BUILD_BUG_ON((NR_CPUS
* sizeof(u16
)) > PAGE_SIZE
);
1042 /* Make sure mondo block is 64byte aligned */
1043 p
= kzalloc(127, GFP_KERNEL
);
1045 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1048 mondo
= (void *)(((unsigned long)p
+ 63) & ~0x3f);
1049 tb
->cpu_mondo_block_pa
= __pa(mondo
);
1051 page
= get_zeroed_page(GFP_KERNEL
);
1053 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1057 tb
->cpu_list_pa
= __pa(page
);
1061 /* Allocate mondo and error queues for all possible cpus. */
1062 static void __init
sun4v_init_mondo_queues(void)
1066 for_each_possible_cpu(cpu
) {
1067 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
1069 alloc_one_queue(&tb
->cpu_mondo_pa
, tb
->cpu_mondo_qmask
);
1070 alloc_one_queue(&tb
->dev_mondo_pa
, tb
->dev_mondo_qmask
);
1071 alloc_one_queue(&tb
->resum_mondo_pa
, tb
->resum_qmask
);
1072 alloc_one_queue(&tb
->resum_kernel_buf_pa
, tb
->resum_qmask
);
1073 alloc_one_queue(&tb
->nonresum_mondo_pa
, tb
->nonresum_qmask
);
1074 alloc_one_queue(&tb
->nonresum_kernel_buf_pa
,
1075 tb
->nonresum_qmask
);
1079 static void __init
init_send_mondo_info(void)
1083 for_each_possible_cpu(cpu
) {
1084 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
1086 init_cpu_send_mondo_info(tb
);
1090 static struct irqaction timer_irq_action
= {
1094 static void __init
irq_ivector_init(void)
1096 unsigned long size
, order
;
1099 /* If we are doing cookie only VIRQs then we do not need the ivector
1100 * table to process interrupts.
1102 if (sun4v_cookie_only_virqs())
1105 ivecs
= size_nr_ivec();
1106 size
= sizeof(struct ino_bucket
) * ivecs
;
1107 order
= get_order(size
);
1108 ivector_table
= (struct ino_bucket
*)
1109 __get_free_pages(GFP_KERNEL
| __GFP_ZERO
, order
);
1110 if (!ivector_table
) {
1111 prom_printf("Fatal error, cannot allocate ivector_table\n");
1114 __flush_dcache_range((unsigned long) ivector_table
,
1115 ((unsigned long) ivector_table
) + size
);
1117 ivector_table_pa
= __pa(ivector_table
);
1120 /* Only invoked on boot processor.*/
1121 void __init
init_IRQ(void)
1128 if (tlb_type
== hypervisor
)
1129 sun4v_init_mondo_queues();
1131 init_send_mondo_info();
1133 if (tlb_type
== hypervisor
) {
1134 /* Load up the boot cpu's entries. */
1135 sun4v_register_mondo_queues(hard_smp_processor_id());
1138 /* We need to clear any IRQ's pending in the soft interrupt
1139 * registers, a spurious one could be left around from the
1140 * PROM timer which we just disabled.
1142 clear_softint(get_softint());
1144 /* Now that ivector table is initialized, it is safe
1145 * to receive IRQ vector traps. We will normally take
1146 * one or two right now, in case some device PROM used
1147 * to boot us wants to speak to us. We just ignore them.
1149 __asm__
__volatile__("rdpr %%pstate, %%g1\n\t"
1150 "or %%g1, %0, %%g1\n\t"
1151 "wrpr %%g1, 0x0, %%pstate"
1156 irq_to_desc(0)->action
= &timer_irq_action
;