Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / sparc / kernel / kprobes.c
blobab4ba43479410fed04c5bb870b50f26a41de01b5
1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/kprobes.c
4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
5 */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/kdebug.h>
11 #include <linux/slab.h>
12 #include <linux/context_tracking.h>
13 #include <asm/signal.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
17 /* We do not have hardware single-stepping on sparc64.
18 * So we implement software single-stepping with breakpoint
19 * traps. The top-level scheme is similar to that used
20 * in the x86 kprobes implementation.
22 * In the kprobe->ainsn.insn[] array we store the original
23 * instruction at index zero and a break instruction at
24 * index one.
26 * When we hit a kprobe we:
27 * - Run the pre-handler
28 * - Remember "regs->tnpc" and interrupt level stored in
29 * "regs->tstate" so we can restore them later
30 * - Disable PIL interrupts
31 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
33 * - Mark that we are actively in a kprobe
35 * At this point we wait for the second breakpoint at
36 * kprobe->ainsn.insn[1] to hit. When it does we:
37 * - Run the post-handler
38 * - Set regs->tpc to "remembered" regs->tnpc stored above,
39 * restore the PIL interrupt level in "regs->tstate" as well
40 * - Make any adjustments necessary to regs->tnpc in order
41 * to handle relative branches correctly. See below.
42 * - Mark that we are no longer actively in a kprobe.
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
52 if ((unsigned long) p->addr & 0x3UL)
53 return -EILSEQ;
55 p->ainsn.insn[0] = *p->addr;
56 flushi(&p->ainsn.insn[0]);
58 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
59 flushi(&p->ainsn.insn[1]);
61 p->opcode = *p->addr;
62 return 0;
65 void __kprobes arch_arm_kprobe(struct kprobe *p)
67 *p->addr = BREAKPOINT_INSTRUCTION;
68 flushi(p->addr);
71 void __kprobes arch_disarm_kprobe(struct kprobe *p)
73 *p->addr = p->opcode;
74 flushi(p->addr);
77 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
79 kcb->prev_kprobe.kp = kprobe_running();
80 kcb->prev_kprobe.status = kcb->kprobe_status;
81 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
82 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
87 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 kcb->kprobe_status = kcb->prev_kprobe.status;
89 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
90 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
93 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
94 struct kprobe_ctlblk *kcb)
96 __this_cpu_write(current_kprobe, p);
97 kcb->kprobe_orig_tnpc = regs->tnpc;
98 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
101 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102 struct kprobe_ctlblk *kcb)
104 regs->tstate |= TSTATE_PIL;
106 /*single step inline, if it a breakpoint instruction*/
107 if (p->opcode == BREAKPOINT_INSTRUCTION) {
108 regs->tpc = (unsigned long) p->addr;
109 regs->tnpc = kcb->kprobe_orig_tnpc;
110 } else {
111 regs->tpc = (unsigned long) &p->ainsn.insn[0];
112 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
116 static int __kprobes kprobe_handler(struct pt_regs *regs)
118 struct kprobe *p;
119 void *addr = (void *) regs->tpc;
120 int ret = 0;
121 struct kprobe_ctlblk *kcb;
124 * We don't want to be preempted for the entire
125 * duration of kprobe processing
127 preempt_disable();
128 kcb = get_kprobe_ctlblk();
130 if (kprobe_running()) {
131 p = get_kprobe(addr);
132 if (p) {
133 if (kcb->kprobe_status == KPROBE_HIT_SS) {
134 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135 kcb->kprobe_orig_tstate_pil);
136 goto no_kprobe;
138 /* We have reentered the kprobe_handler(), since
139 * another probe was hit while within the handler.
140 * We here save the original kprobes variables and
141 * just single step on the instruction of the new probe
142 * without calling any user handlers.
144 save_previous_kprobe(kcb);
145 set_current_kprobe(p, regs, kcb);
146 kprobes_inc_nmissed_count(p);
147 kcb->kprobe_status = KPROBE_REENTER;
148 prepare_singlestep(p, regs, kcb);
149 return 1;
150 } else {
151 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
152 /* The breakpoint instruction was removed by
153 * another cpu right after we hit, no further
154 * handling of this interrupt is appropriate
156 ret = 1;
157 goto no_kprobe;
159 p = __this_cpu_read(current_kprobe);
160 if (p->break_handler && p->break_handler(p, regs))
161 goto ss_probe;
163 goto no_kprobe;
166 p = get_kprobe(addr);
167 if (!p) {
168 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
170 * The breakpoint instruction was removed right
171 * after we hit it. Another cpu has removed
172 * either a probepoint or a debugger breakpoint
173 * at this address. In either case, no further
174 * handling of this interrupt is appropriate.
176 ret = 1;
178 /* Not one of ours: let kernel handle it */
179 goto no_kprobe;
182 set_current_kprobe(p, regs, kcb);
183 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
184 if (p->pre_handler && p->pre_handler(p, regs))
185 return 1;
187 ss_probe:
188 prepare_singlestep(p, regs, kcb);
189 kcb->kprobe_status = KPROBE_HIT_SS;
190 return 1;
192 no_kprobe:
193 preempt_enable_no_resched();
194 return ret;
197 /* If INSN is a relative control transfer instruction,
198 * return the corrected branch destination value.
200 * regs->tpc and regs->tnpc still hold the values of the
201 * program counters at the time of trap due to the execution
202 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
205 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
206 struct pt_regs *regs)
208 unsigned long real_pc = (unsigned long) p->addr;
210 /* Branch not taken, no mods necessary. */
211 if (regs->tnpc == regs->tpc + 0x4UL)
212 return real_pc + 0x8UL;
214 /* The three cases are call, branch w/prediction,
215 * and traditional branch.
217 if ((insn & 0xc0000000) == 0x40000000 ||
218 (insn & 0xc1c00000) == 0x00400000 ||
219 (insn & 0xc1c00000) == 0x00800000) {
220 unsigned long ainsn_addr;
222 ainsn_addr = (unsigned long) &p->ainsn.insn[0];
224 /* The instruction did all the work for us
225 * already, just apply the offset to the correct
226 * instruction location.
228 return (real_pc + (regs->tnpc - ainsn_addr));
231 /* It is jmpl or some other absolute PC modification instruction,
232 * leave NPC as-is.
234 return regs->tnpc;
237 /* If INSN is an instruction which writes it's PC location
238 * into a destination register, fix that up.
240 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
241 unsigned long real_pc)
243 unsigned long *slot = NULL;
245 /* Simplest case is 'call', which always uses %o7 */
246 if ((insn & 0xc0000000) == 0x40000000) {
247 slot = &regs->u_regs[UREG_I7];
250 /* 'jmpl' encodes the register inside of the opcode */
251 if ((insn & 0xc1f80000) == 0x81c00000) {
252 unsigned long rd = ((insn >> 25) & 0x1f);
254 if (rd <= 15) {
255 slot = &regs->u_regs[rd];
256 } else {
257 /* Hard case, it goes onto the stack. */
258 flushw_all();
260 rd -= 16;
261 slot = (unsigned long *)
262 (regs->u_regs[UREG_FP] + STACK_BIAS);
263 slot += rd;
266 if (slot != NULL)
267 *slot = real_pc;
271 * Called after single-stepping. p->addr is the address of the
272 * instruction which has been replaced by the breakpoint
273 * instruction. To avoid the SMP problems that can occur when we
274 * temporarily put back the original opcode to single-step, we
275 * single-stepped a copy of the instruction. The address of this
276 * copy is &p->ainsn.insn[0].
278 * This function prepares to return from the post-single-step
279 * breakpoint trap.
281 static void __kprobes resume_execution(struct kprobe *p,
282 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
284 u32 insn = p->ainsn.insn[0];
286 regs->tnpc = relbranch_fixup(insn, p, regs);
288 /* This assignment must occur after relbranch_fixup() */
289 regs->tpc = kcb->kprobe_orig_tnpc;
291 retpc_fixup(regs, insn, (unsigned long) p->addr);
293 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
294 kcb->kprobe_orig_tstate_pil);
297 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
299 struct kprobe *cur = kprobe_running();
300 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
302 if (!cur)
303 return 0;
305 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
306 kcb->kprobe_status = KPROBE_HIT_SSDONE;
307 cur->post_handler(cur, regs, 0);
310 resume_execution(cur, regs, kcb);
312 /*Restore back the original saved kprobes variables and continue. */
313 if (kcb->kprobe_status == KPROBE_REENTER) {
314 restore_previous_kprobe(kcb);
315 goto out;
317 reset_current_kprobe();
318 out:
319 preempt_enable_no_resched();
321 return 1;
324 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
326 struct kprobe *cur = kprobe_running();
327 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
328 const struct exception_table_entry *entry;
330 switch(kcb->kprobe_status) {
331 case KPROBE_HIT_SS:
332 case KPROBE_REENTER:
334 * We are here because the instruction being single
335 * stepped caused a page fault. We reset the current
336 * kprobe and the tpc points back to the probe address
337 * and allow the page fault handler to continue as a
338 * normal page fault.
340 regs->tpc = (unsigned long)cur->addr;
341 regs->tnpc = kcb->kprobe_orig_tnpc;
342 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
343 kcb->kprobe_orig_tstate_pil);
344 if (kcb->kprobe_status == KPROBE_REENTER)
345 restore_previous_kprobe(kcb);
346 else
347 reset_current_kprobe();
348 preempt_enable_no_resched();
349 break;
350 case KPROBE_HIT_ACTIVE:
351 case KPROBE_HIT_SSDONE:
353 * We increment the nmissed count for accounting,
354 * we can also use npre/npostfault count for accounting
355 * these specific fault cases.
357 kprobes_inc_nmissed_count(cur);
360 * We come here because instructions in the pre/post
361 * handler caused the page_fault, this could happen
362 * if handler tries to access user space by
363 * copy_from_user(), get_user() etc. Let the
364 * user-specified handler try to fix it first.
366 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
367 return 1;
370 * In case the user-specified fault handler returned
371 * zero, try to fix up.
374 entry = search_exception_tables(regs->tpc);
375 if (entry) {
376 regs->tpc = entry->fixup;
377 regs->tnpc = regs->tpc + 4;
378 return 1;
382 * fixup_exception() could not handle it,
383 * Let do_page_fault() fix it.
385 break;
386 default:
387 break;
390 return 0;
394 * Wrapper routine to for handling exceptions.
396 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
397 unsigned long val, void *data)
399 struct die_args *args = (struct die_args *)data;
400 int ret = NOTIFY_DONE;
402 if (args->regs && user_mode(args->regs))
403 return ret;
405 switch (val) {
406 case DIE_DEBUG:
407 if (kprobe_handler(args->regs))
408 ret = NOTIFY_STOP;
409 break;
410 case DIE_DEBUG_2:
411 if (post_kprobe_handler(args->regs))
412 ret = NOTIFY_STOP;
413 break;
414 default:
415 break;
417 return ret;
420 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
421 struct pt_regs *regs)
423 enum ctx_state prev_state = exception_enter();
425 BUG_ON(trap_level != 0x170 && trap_level != 0x171);
427 if (user_mode(regs)) {
428 local_irq_enable();
429 bad_trap(regs, trap_level);
430 goto out;
433 /* trap_level == 0x170 --> ta 0x70
434 * trap_level == 0x171 --> ta 0x71
436 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
437 (trap_level == 0x170) ? "debug" : "debug_2",
438 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
439 bad_trap(regs, trap_level);
440 out:
441 exception_exit(prev_state);
444 /* Jprobes support. */
445 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
447 struct jprobe *jp = container_of(p, struct jprobe, kp);
448 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
450 memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
452 regs->tpc = (unsigned long) jp->entry;
453 regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
454 regs->tstate |= TSTATE_PIL;
456 return 1;
459 void __kprobes jprobe_return(void)
461 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
462 register unsigned long orig_fp asm("g1");
464 orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
465 __asm__ __volatile__("\n"
466 "1: cmp %%sp, %0\n\t"
467 "blu,a,pt %%xcc, 1b\n\t"
468 " restore\n\t"
469 ".globl jprobe_return_trap_instruction\n"
470 "jprobe_return_trap_instruction:\n\t"
471 "ta 0x70"
472 : /* no outputs */
473 : "r" (orig_fp));
476 extern void jprobe_return_trap_instruction(void);
478 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
480 u32 *addr = (u32 *) regs->tpc;
481 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
483 if (addr == (u32 *) jprobe_return_trap_instruction) {
484 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
485 preempt_enable_no_resched();
486 return 1;
488 return 0;
491 /* The value stored in the return address register is actually 2
492 * instructions before where the callee will return to.
493 * Sequences usually look something like this
495 * call some_function <--- return register points here
496 * nop <--- call delay slot
497 * whatever <--- where callee returns to
499 * To keep trampoline_probe_handler logic simpler, we normalize the
500 * value kept in ri->ret_addr so we don't need to keep adjusting it
501 * back and forth.
503 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
504 struct pt_regs *regs)
506 ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
508 /* Replace the return addr with trampoline addr */
509 regs->u_regs[UREG_RETPC] =
510 ((unsigned long)kretprobe_trampoline) - 8;
514 * Called when the probe at kretprobe trampoline is hit
516 static int __kprobes trampoline_probe_handler(struct kprobe *p,
517 struct pt_regs *regs)
519 struct kretprobe_instance *ri = NULL;
520 struct hlist_head *head, empty_rp;
521 struct hlist_node *tmp;
522 unsigned long flags, orig_ret_address = 0;
523 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
525 INIT_HLIST_HEAD(&empty_rp);
526 kretprobe_hash_lock(current, &head, &flags);
529 * It is possible to have multiple instances associated with a given
530 * task either because an multiple functions in the call path
531 * have a return probe installed on them, and/or more than one return
532 * return probe was registered for a target function.
534 * We can handle this because:
535 * - instances are always inserted at the head of the list
536 * - when multiple return probes are registered for the same
537 * function, the first instance's ret_addr will point to the
538 * real return address, and all the rest will point to
539 * kretprobe_trampoline
541 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
542 if (ri->task != current)
543 /* another task is sharing our hash bucket */
544 continue;
546 if (ri->rp && ri->rp->handler)
547 ri->rp->handler(ri, regs);
549 orig_ret_address = (unsigned long)ri->ret_addr;
550 recycle_rp_inst(ri, &empty_rp);
552 if (orig_ret_address != trampoline_address)
554 * This is the real return address. Any other
555 * instances associated with this task are for
556 * other calls deeper on the call stack
558 break;
561 kretprobe_assert(ri, orig_ret_address, trampoline_address);
562 regs->tpc = orig_ret_address;
563 regs->tnpc = orig_ret_address + 4;
565 reset_current_kprobe();
566 kretprobe_hash_unlock(current, &flags);
567 preempt_enable_no_resched();
569 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
570 hlist_del(&ri->hlist);
571 kfree(ri);
574 * By returning a non-zero value, we are telling
575 * kprobe_handler() that we don't want the post_handler
576 * to run (and have re-enabled preemption)
578 return 1;
581 static void __used kretprobe_trampoline_holder(void)
583 asm volatile(".global kretprobe_trampoline\n"
584 "kretprobe_trampoline:\n"
585 "\tnop\n"
586 "\tnop\n");
588 static struct kprobe trampoline_p = {
589 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
590 .pre_handler = trampoline_probe_handler
593 int __init arch_init_kprobes(void)
595 return register_kprobe(&trampoline_p);
598 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
600 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
601 return 1;
603 return 0;