1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/kprobes.c
4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/kdebug.h>
11 #include <linux/slab.h>
12 #include <linux/context_tracking.h>
13 #include <asm/signal.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
17 /* We do not have hardware single-stepping on sparc64.
18 * So we implement software single-stepping with breakpoint
19 * traps. The top-level scheme is similar to that used
20 * in the x86 kprobes implementation.
22 * In the kprobe->ainsn.insn[] array we store the original
23 * instruction at index zero and a break instruction at
26 * When we hit a kprobe we:
27 * - Run the pre-handler
28 * - Remember "regs->tnpc" and interrupt level stored in
29 * "regs->tstate" so we can restore them later
30 * - Disable PIL interrupts
31 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
33 * - Mark that we are actively in a kprobe
35 * At this point we wait for the second breakpoint at
36 * kprobe->ainsn.insn[1] to hit. When it does we:
37 * - Run the post-handler
38 * - Set regs->tpc to "remembered" regs->tnpc stored above,
39 * restore the PIL interrupt level in "regs->tstate" as well
40 * - Make any adjustments necessary to regs->tnpc in order
41 * to handle relative branches correctly. See below.
42 * - Mark that we are no longer actively in a kprobe.
45 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
46 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
48 struct kretprobe_blackpoint kretprobe_blacklist
[] = {{NULL
, NULL
}};
50 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
52 if ((unsigned long) p
->addr
& 0x3UL
)
55 p
->ainsn
.insn
[0] = *p
->addr
;
56 flushi(&p
->ainsn
.insn
[0]);
58 p
->ainsn
.insn
[1] = BREAKPOINT_INSTRUCTION_2
;
59 flushi(&p
->ainsn
.insn
[1]);
65 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
67 *p
->addr
= BREAKPOINT_INSTRUCTION
;
71 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
77 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
79 kcb
->prev_kprobe
.kp
= kprobe_running();
80 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
81 kcb
->prev_kprobe
.orig_tnpc
= kcb
->kprobe_orig_tnpc
;
82 kcb
->prev_kprobe
.orig_tstate_pil
= kcb
->kprobe_orig_tstate_pil
;
85 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
87 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
88 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
89 kcb
->kprobe_orig_tnpc
= kcb
->prev_kprobe
.orig_tnpc
;
90 kcb
->kprobe_orig_tstate_pil
= kcb
->prev_kprobe
.orig_tstate_pil
;
93 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
94 struct kprobe_ctlblk
*kcb
)
96 __this_cpu_write(current_kprobe
, p
);
97 kcb
->kprobe_orig_tnpc
= regs
->tnpc
;
98 kcb
->kprobe_orig_tstate_pil
= (regs
->tstate
& TSTATE_PIL
);
101 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
102 struct kprobe_ctlblk
*kcb
)
104 regs
->tstate
|= TSTATE_PIL
;
106 /*single step inline, if it a breakpoint instruction*/
107 if (p
->opcode
== BREAKPOINT_INSTRUCTION
) {
108 regs
->tpc
= (unsigned long) p
->addr
;
109 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
111 regs
->tpc
= (unsigned long) &p
->ainsn
.insn
[0];
112 regs
->tnpc
= (unsigned long) &p
->ainsn
.insn
[1];
116 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
119 void *addr
= (void *) regs
->tpc
;
121 struct kprobe_ctlblk
*kcb
;
124 * We don't want to be preempted for the entire
125 * duration of kprobe processing
128 kcb
= get_kprobe_ctlblk();
130 if (kprobe_running()) {
131 p
= get_kprobe(addr
);
133 if (kcb
->kprobe_status
== KPROBE_HIT_SS
) {
134 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
135 kcb
->kprobe_orig_tstate_pil
);
138 /* We have reentered the kprobe_handler(), since
139 * another probe was hit while within the handler.
140 * We here save the original kprobes variables and
141 * just single step on the instruction of the new probe
142 * without calling any user handlers.
144 save_previous_kprobe(kcb
);
145 set_current_kprobe(p
, regs
, kcb
);
146 kprobes_inc_nmissed_count(p
);
147 kcb
->kprobe_status
= KPROBE_REENTER
;
148 prepare_singlestep(p
, regs
, kcb
);
151 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
152 /* The breakpoint instruction was removed by
153 * another cpu right after we hit, no further
154 * handling of this interrupt is appropriate
159 p
= __this_cpu_read(current_kprobe
);
160 if (p
->break_handler
&& p
->break_handler(p
, regs
))
166 p
= get_kprobe(addr
);
168 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
170 * The breakpoint instruction was removed right
171 * after we hit it. Another cpu has removed
172 * either a probepoint or a debugger breakpoint
173 * at this address. In either case, no further
174 * handling of this interrupt is appropriate.
178 /* Not one of ours: let kernel handle it */
182 set_current_kprobe(p
, regs
, kcb
);
183 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
184 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
188 prepare_singlestep(p
, regs
, kcb
);
189 kcb
->kprobe_status
= KPROBE_HIT_SS
;
193 preempt_enable_no_resched();
197 /* If INSN is a relative control transfer instruction,
198 * return the corrected branch destination value.
200 * regs->tpc and regs->tnpc still hold the values of the
201 * program counters at the time of trap due to the execution
202 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
205 static unsigned long __kprobes
relbranch_fixup(u32 insn
, struct kprobe
*p
,
206 struct pt_regs
*regs
)
208 unsigned long real_pc
= (unsigned long) p
->addr
;
210 /* Branch not taken, no mods necessary. */
211 if (regs
->tnpc
== regs
->tpc
+ 0x4UL
)
212 return real_pc
+ 0x8UL
;
214 /* The three cases are call, branch w/prediction,
215 * and traditional branch.
217 if ((insn
& 0xc0000000) == 0x40000000 ||
218 (insn
& 0xc1c00000) == 0x00400000 ||
219 (insn
& 0xc1c00000) == 0x00800000) {
220 unsigned long ainsn_addr
;
222 ainsn_addr
= (unsigned long) &p
->ainsn
.insn
[0];
224 /* The instruction did all the work for us
225 * already, just apply the offset to the correct
226 * instruction location.
228 return (real_pc
+ (regs
->tnpc
- ainsn_addr
));
231 /* It is jmpl or some other absolute PC modification instruction,
237 /* If INSN is an instruction which writes it's PC location
238 * into a destination register, fix that up.
240 static void __kprobes
retpc_fixup(struct pt_regs
*regs
, u32 insn
,
241 unsigned long real_pc
)
243 unsigned long *slot
= NULL
;
245 /* Simplest case is 'call', which always uses %o7 */
246 if ((insn
& 0xc0000000) == 0x40000000) {
247 slot
= ®s
->u_regs
[UREG_I7
];
250 /* 'jmpl' encodes the register inside of the opcode */
251 if ((insn
& 0xc1f80000) == 0x81c00000) {
252 unsigned long rd
= ((insn
>> 25) & 0x1f);
255 slot
= ®s
->u_regs
[rd
];
257 /* Hard case, it goes onto the stack. */
261 slot
= (unsigned long *)
262 (regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
271 * Called after single-stepping. p->addr is the address of the
272 * instruction which has been replaced by the breakpoint
273 * instruction. To avoid the SMP problems that can occur when we
274 * temporarily put back the original opcode to single-step, we
275 * single-stepped a copy of the instruction. The address of this
276 * copy is &p->ainsn.insn[0].
278 * This function prepares to return from the post-single-step
281 static void __kprobes
resume_execution(struct kprobe
*p
,
282 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
284 u32 insn
= p
->ainsn
.insn
[0];
286 regs
->tnpc
= relbranch_fixup(insn
, p
, regs
);
288 /* This assignment must occur after relbranch_fixup() */
289 regs
->tpc
= kcb
->kprobe_orig_tnpc
;
291 retpc_fixup(regs
, insn
, (unsigned long) p
->addr
);
293 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
294 kcb
->kprobe_orig_tstate_pil
);
297 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
299 struct kprobe
*cur
= kprobe_running();
300 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
305 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
306 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
307 cur
->post_handler(cur
, regs
, 0);
310 resume_execution(cur
, regs
, kcb
);
312 /*Restore back the original saved kprobes variables and continue. */
313 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
314 restore_previous_kprobe(kcb
);
317 reset_current_kprobe();
319 preempt_enable_no_resched();
324 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
326 struct kprobe
*cur
= kprobe_running();
327 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
328 const struct exception_table_entry
*entry
;
330 switch(kcb
->kprobe_status
) {
334 * We are here because the instruction being single
335 * stepped caused a page fault. We reset the current
336 * kprobe and the tpc points back to the probe address
337 * and allow the page fault handler to continue as a
340 regs
->tpc
= (unsigned long)cur
->addr
;
341 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
342 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
343 kcb
->kprobe_orig_tstate_pil
);
344 if (kcb
->kprobe_status
== KPROBE_REENTER
)
345 restore_previous_kprobe(kcb
);
347 reset_current_kprobe();
348 preempt_enable_no_resched();
350 case KPROBE_HIT_ACTIVE
:
351 case KPROBE_HIT_SSDONE
:
353 * We increment the nmissed count for accounting,
354 * we can also use npre/npostfault count for accounting
355 * these specific fault cases.
357 kprobes_inc_nmissed_count(cur
);
360 * We come here because instructions in the pre/post
361 * handler caused the page_fault, this could happen
362 * if handler tries to access user space by
363 * copy_from_user(), get_user() etc. Let the
364 * user-specified handler try to fix it first.
366 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
370 * In case the user-specified fault handler returned
371 * zero, try to fix up.
374 entry
= search_exception_tables(regs
->tpc
);
376 regs
->tpc
= entry
->fixup
;
377 regs
->tnpc
= regs
->tpc
+ 4;
382 * fixup_exception() could not handle it,
383 * Let do_page_fault() fix it.
394 * Wrapper routine to for handling exceptions.
396 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
397 unsigned long val
, void *data
)
399 struct die_args
*args
= (struct die_args
*)data
;
400 int ret
= NOTIFY_DONE
;
402 if (args
->regs
&& user_mode(args
->regs
))
407 if (kprobe_handler(args
->regs
))
411 if (post_kprobe_handler(args
->regs
))
420 asmlinkage
void __kprobes
kprobe_trap(unsigned long trap_level
,
421 struct pt_regs
*regs
)
423 enum ctx_state prev_state
= exception_enter();
425 BUG_ON(trap_level
!= 0x170 && trap_level
!= 0x171);
427 if (user_mode(regs
)) {
429 bad_trap(regs
, trap_level
);
433 /* trap_level == 0x170 --> ta 0x70
434 * trap_level == 0x171 --> ta 0x71
436 if (notify_die((trap_level
== 0x170) ? DIE_DEBUG
: DIE_DEBUG_2
,
437 (trap_level
== 0x170) ? "debug" : "debug_2",
438 regs
, 0, trap_level
, SIGTRAP
) != NOTIFY_STOP
)
439 bad_trap(regs
, trap_level
);
441 exception_exit(prev_state
);
444 /* Jprobes support. */
445 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
447 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
448 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
450 memcpy(&(kcb
->jprobe_saved_regs
), regs
, sizeof(*regs
));
452 regs
->tpc
= (unsigned long) jp
->entry
;
453 regs
->tnpc
= ((unsigned long) jp
->entry
) + 0x4UL
;
454 regs
->tstate
|= TSTATE_PIL
;
459 void __kprobes
jprobe_return(void)
461 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
462 register unsigned long orig_fp
asm("g1");
464 orig_fp
= kcb
->jprobe_saved_regs
.u_regs
[UREG_FP
];
465 __asm__
__volatile__("\n"
466 "1: cmp %%sp, %0\n\t"
467 "blu,a,pt %%xcc, 1b\n\t"
469 ".globl jprobe_return_trap_instruction\n"
470 "jprobe_return_trap_instruction:\n\t"
476 extern void jprobe_return_trap_instruction(void);
478 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
480 u32
*addr
= (u32
*) regs
->tpc
;
481 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
483 if (addr
== (u32
*) jprobe_return_trap_instruction
) {
484 memcpy(regs
, &(kcb
->jprobe_saved_regs
), sizeof(*regs
));
485 preempt_enable_no_resched();
491 /* The value stored in the return address register is actually 2
492 * instructions before where the callee will return to.
493 * Sequences usually look something like this
495 * call some_function <--- return register points here
496 * nop <--- call delay slot
497 * whatever <--- where callee returns to
499 * To keep trampoline_probe_handler logic simpler, we normalize the
500 * value kept in ri->ret_addr so we don't need to keep adjusting it
503 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
504 struct pt_regs
*regs
)
506 ri
->ret_addr
= (kprobe_opcode_t
*)(regs
->u_regs
[UREG_RETPC
] + 8);
508 /* Replace the return addr with trampoline addr */
509 regs
->u_regs
[UREG_RETPC
] =
510 ((unsigned long)kretprobe_trampoline
) - 8;
514 * Called when the probe at kretprobe trampoline is hit
516 static int __kprobes
trampoline_probe_handler(struct kprobe
*p
,
517 struct pt_regs
*regs
)
519 struct kretprobe_instance
*ri
= NULL
;
520 struct hlist_head
*head
, empty_rp
;
521 struct hlist_node
*tmp
;
522 unsigned long flags
, orig_ret_address
= 0;
523 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
525 INIT_HLIST_HEAD(&empty_rp
);
526 kretprobe_hash_lock(current
, &head
, &flags
);
529 * It is possible to have multiple instances associated with a given
530 * task either because an multiple functions in the call path
531 * have a return probe installed on them, and/or more than one return
532 * return probe was registered for a target function.
534 * We can handle this because:
535 * - instances are always inserted at the head of the list
536 * - when multiple return probes are registered for the same
537 * function, the first instance's ret_addr will point to the
538 * real return address, and all the rest will point to
539 * kretprobe_trampoline
541 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
542 if (ri
->task
!= current
)
543 /* another task is sharing our hash bucket */
546 if (ri
->rp
&& ri
->rp
->handler
)
547 ri
->rp
->handler(ri
, regs
);
549 orig_ret_address
= (unsigned long)ri
->ret_addr
;
550 recycle_rp_inst(ri
, &empty_rp
);
552 if (orig_ret_address
!= trampoline_address
)
554 * This is the real return address. Any other
555 * instances associated with this task are for
556 * other calls deeper on the call stack
561 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
562 regs
->tpc
= orig_ret_address
;
563 regs
->tnpc
= orig_ret_address
+ 4;
565 reset_current_kprobe();
566 kretprobe_hash_unlock(current
, &flags
);
567 preempt_enable_no_resched();
569 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
570 hlist_del(&ri
->hlist
);
574 * By returning a non-zero value, we are telling
575 * kprobe_handler() that we don't want the post_handler
576 * to run (and have re-enabled preemption)
581 static void __used
kretprobe_trampoline_holder(void)
583 asm volatile(".global kretprobe_trampoline\n"
584 "kretprobe_trampoline:\n"
588 static struct kprobe trampoline_p
= {
589 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
590 .pre_handler
= trampoline_probe_handler
593 int __init
arch_init_kprobes(void)
595 return register_kprobe(&trampoline_p
);
598 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
600 if (p
->addr
== (kprobe_opcode_t
*)&kretprobe_trampoline
)