1 // SPDX-License-Identifier: GPL-2.0
2 /* Performance event support for sparc64.
4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
6 * This code is based almost entirely upon the x86 perf event
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
16 #include <linux/perf_event.h>
17 #include <linux/kprobes.h>
18 #include <linux/ftrace.h>
19 #include <linux/kernel.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
23 #include <asm/stacktrace.h>
24 #include <asm/cpudata.h>
25 #include <linux/uaccess.h>
26 #include <linux/atomic.h>
29 #include <asm/cacheflush.h>
34 /* Two classes of sparc64 chips currently exist. All of which have
35 * 32-bit counters which can generate overflow interrupts on the
36 * transition from 0xffffffff to 0.
38 * All chips upto and including SPARC-T3 have two performance
39 * counters. The two 32-bit counters are accessed in one go using a
40 * single 64-bit register.
42 * On these older chips both counters are controlled using a single
43 * control register. The only way to stop all sampling is to clear
44 * all of the context (user, supervisor, hypervisor) sampling enable
45 * bits. But these bits apply to both counters, thus the two counters
46 * can't be enabled/disabled individually.
48 * Furthermore, the control register on these older chips have two
49 * event fields, one for each of the two counters. It's thus nearly
50 * impossible to have one counter going while keeping the other one
51 * stopped. Therefore it is possible to get overflow interrupts for
52 * counters not currently "in use" and that condition must be checked
53 * in the overflow interrupt handler.
55 * So we use a hack, in that we program inactive counters with the
56 * "sw_count0" and "sw_count1" events. These count how many times
57 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
58 * unusual way to encode a NOP and therefore will not trigger in
61 * Starting with SPARC-T4 we have one control register per counter.
62 * And the counters are stored in individual registers. The registers
63 * for the counters are 64-bit but only a 32-bit counter is
64 * implemented. The event selections on SPARC-T4 lack any
65 * restrictions, therefore we can elide all of the complicated
66 * conflict resolution code we have for SPARC-T3 and earlier chips.
69 #define MAX_HWEVENTS 4
71 #define MAX_PERIOD ((1UL << 32) - 1)
73 #define PIC_UPPER_INDEX 0
74 #define PIC_LOWER_INDEX 1
75 #define PIC_NO_INDEX -1
77 struct cpu_hw_events
{
78 /* Number of events currently scheduled onto this cpu.
79 * This tells how many entries in the arrays below
84 /* Number of new events added since the last hw_perf_disable().
85 * This works because the perf event layer always adds new
86 * events inside of a perf_{disable,enable}() sequence.
90 /* Array of events current scheduled on this cpu. */
91 struct perf_event
*event
[MAX_HWEVENTS
];
93 /* Array of encoded longs, specifying the %pcr register
94 * encoding and the mask of PIC counters this even can
95 * be scheduled on. See perf_event_encode() et al.
97 unsigned long events
[MAX_HWEVENTS
];
99 /* The current counter index assigned to an event. When the
100 * event hasn't been programmed into the cpu yet, this will
101 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
102 * we ought to schedule the event.
104 int current_idx
[MAX_HWEVENTS
];
106 /* Software copy of %pcr register(s) on this cpu. */
107 u64 pcr
[MAX_HWEVENTS
];
109 /* Enabled/disable state. */
112 unsigned int txn_flags
;
114 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = { .enabled
= 1, };
116 /* An event map describes the characteristics of a performance
117 * counter event. In particular it gives the encoding as well as
118 * a mask telling which counters the event can be measured on.
120 * The mask is unused on SPARC-T4 and later.
122 struct perf_event_map
{
125 #define PIC_NONE 0x00
126 #define PIC_UPPER 0x01
127 #define PIC_LOWER 0x02
130 /* Encode a perf_event_map entry into a long. */
131 static unsigned long perf_event_encode(const struct perf_event_map
*pmap
)
133 return ((unsigned long) pmap
->encoding
<< 16) | pmap
->pic_mask
;
136 static u8
perf_event_get_msk(unsigned long val
)
141 static u64
perf_event_get_enc(unsigned long val
)
146 #define C(x) PERF_COUNT_HW_CACHE_##x
148 #define CACHE_OP_UNSUPPORTED 0xfffe
149 #define CACHE_OP_NONSENSE 0xffff
151 typedef struct perf_event_map cache_map_t
152 [PERF_COUNT_HW_CACHE_MAX
]
153 [PERF_COUNT_HW_CACHE_OP_MAX
]
154 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
157 const struct perf_event_map
*(*event_map
)(int);
158 const cache_map_t
*cache_map
;
160 u32 (*read_pmc
)(int);
161 void (*write_pmc
)(int, u64
);
172 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
173 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
179 static u32
sparc_default_read_pmc(int idx
)
183 val
= pcr_ops
->read_pic(0);
184 if (idx
== PIC_UPPER_INDEX
)
187 return val
& 0xffffffff;
190 static void sparc_default_write_pmc(int idx
, u64 val
)
192 u64 shift
, mask
, pic
;
195 if (idx
== PIC_UPPER_INDEX
)
198 mask
= ((u64
) 0xffffffff) << shift
;
201 pic
= pcr_ops
->read_pic(0);
204 pcr_ops
->write_pic(0, pic
);
207 static const struct perf_event_map ultra3_perfmon_event_map
[] = {
208 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x0000, PIC_UPPER
| PIC_LOWER
},
209 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x0001, PIC_UPPER
| PIC_LOWER
},
210 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0009, PIC_LOWER
},
211 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0009, PIC_UPPER
},
214 static const struct perf_event_map
*ultra3_event_map(int event_id
)
216 return &ultra3_perfmon_event_map
[event_id
];
219 static const cache_map_t ultra3_cache_map
= {
222 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
223 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
226 [C(RESULT_ACCESS
)] = { 0x0a, PIC_LOWER
},
227 [C(RESULT_MISS
)] = { 0x0a, PIC_UPPER
},
230 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
231 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
236 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
237 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
240 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
241 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
243 [ C(OP_PREFETCH
) ] = {
244 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
245 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
250 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
, },
251 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
, },
254 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
},
255 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
},
258 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
259 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
264 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
265 [C(RESULT_MISS
)] = { 0x12, PIC_UPPER
, },
268 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
269 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
271 [ C(OP_PREFETCH
) ] = {
272 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
273 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
278 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
279 [C(RESULT_MISS
)] = { 0x11, PIC_UPPER
, },
282 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
283 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
285 [ C(OP_PREFETCH
) ] = {
286 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
287 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
292 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
293 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
296 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
297 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
299 [ C(OP_PREFETCH
) ] = {
300 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
301 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
306 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
307 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
310 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
311 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
313 [ C(OP_PREFETCH
) ] = {
314 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
315 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
320 static const struct sparc_pmu ultra3_pmu
= {
321 .event_map
= ultra3_event_map
,
322 .cache_map
= &ultra3_cache_map
,
323 .max_events
= ARRAY_SIZE(ultra3_perfmon_event_map
),
324 .read_pmc
= sparc_default_read_pmc
,
325 .write_pmc
= sparc_default_write_pmc
,
329 .user_bit
= PCR_UTRACE
,
330 .priv_bit
= PCR_STRACE
,
333 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
334 SPARC_PMU_HAS_CONFLICTS
),
340 /* Niagara1 is very limited. The upper PIC is hard-locked to count
341 * only instructions, so it is free running which creates all kinds of
342 * problems. Some hardware designs make one wonder if the creator
343 * even looked at how this stuff gets used by software.
345 static const struct perf_event_map niagara1_perfmon_event_map
[] = {
346 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, PIC_UPPER
},
347 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, PIC_UPPER
},
348 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0, PIC_NONE
},
349 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x03, PIC_LOWER
},
352 static const struct perf_event_map
*niagara1_event_map(int event_id
)
354 return &niagara1_perfmon_event_map
[event_id
];
357 static const cache_map_t niagara1_cache_map
= {
360 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
361 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
364 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
365 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
368 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
369 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
374 [C(RESULT_ACCESS
)] = { 0x00, PIC_UPPER
},
375 [C(RESULT_MISS
)] = { 0x02, PIC_LOWER
, },
378 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
379 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
381 [ C(OP_PREFETCH
) ] = {
382 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
383 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
388 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
389 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
392 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
393 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
396 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
397 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
402 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
403 [C(RESULT_MISS
)] = { 0x05, PIC_LOWER
, },
406 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
407 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
409 [ C(OP_PREFETCH
) ] = {
410 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
411 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
416 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
417 [C(RESULT_MISS
)] = { 0x04, PIC_LOWER
, },
420 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
421 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
423 [ C(OP_PREFETCH
) ] = {
424 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
425 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
430 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
431 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
434 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
435 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
437 [ C(OP_PREFETCH
) ] = {
438 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
439 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
444 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
445 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
448 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
449 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
451 [ C(OP_PREFETCH
) ] = {
452 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
453 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
458 static const struct sparc_pmu niagara1_pmu
= {
459 .event_map
= niagara1_event_map
,
460 .cache_map
= &niagara1_cache_map
,
461 .max_events
= ARRAY_SIZE(niagara1_perfmon_event_map
),
462 .read_pmc
= sparc_default_read_pmc
,
463 .write_pmc
= sparc_default_write_pmc
,
467 .user_bit
= PCR_UTRACE
,
468 .priv_bit
= PCR_STRACE
,
471 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
472 SPARC_PMU_HAS_CONFLICTS
),
478 static const struct perf_event_map niagara2_perfmon_event_map
[] = {
479 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
480 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
481 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0208, PIC_UPPER
| PIC_LOWER
},
482 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0302, PIC_UPPER
| PIC_LOWER
},
483 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x0201, PIC_UPPER
| PIC_LOWER
},
484 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x0202, PIC_UPPER
| PIC_LOWER
},
487 static const struct perf_event_map
*niagara2_event_map(int event_id
)
489 return &niagara2_perfmon_event_map
[event_id
];
492 static const cache_map_t niagara2_cache_map
= {
495 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
496 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
499 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
500 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
503 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
504 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
509 [C(RESULT_ACCESS
)] = { 0x02ff, PIC_UPPER
| PIC_LOWER
, },
510 [C(RESULT_MISS
)] = { 0x0301, PIC_UPPER
| PIC_LOWER
, },
513 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
514 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
516 [ C(OP_PREFETCH
) ] = {
517 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
518 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
523 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
524 [C(RESULT_MISS
)] = { 0x0330, PIC_UPPER
| PIC_LOWER
, },
527 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
528 [C(RESULT_MISS
)] = { 0x0320, PIC_UPPER
| PIC_LOWER
, },
531 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
532 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
537 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
538 [C(RESULT_MISS
)] = { 0x0b08, PIC_UPPER
| PIC_LOWER
, },
541 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
542 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
544 [ C(OP_PREFETCH
) ] = {
545 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
546 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
551 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
552 [C(RESULT_MISS
)] = { 0xb04, PIC_UPPER
| PIC_LOWER
, },
555 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
556 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
558 [ C(OP_PREFETCH
) ] = {
559 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
560 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
565 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
566 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
569 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
570 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
572 [ C(OP_PREFETCH
) ] = {
573 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
574 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
579 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
580 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
583 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
584 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
586 [ C(OP_PREFETCH
) ] = {
587 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
588 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
593 static const struct sparc_pmu niagara2_pmu
= {
594 .event_map
= niagara2_event_map
,
595 .cache_map
= &niagara2_cache_map
,
596 .max_events
= ARRAY_SIZE(niagara2_perfmon_event_map
),
597 .read_pmc
= sparc_default_read_pmc
,
598 .write_pmc
= sparc_default_write_pmc
,
602 .user_bit
= PCR_UTRACE
,
603 .priv_bit
= PCR_STRACE
,
604 .hv_bit
= PCR_N2_HTRACE
,
608 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
609 SPARC_PMU_HAS_CONFLICTS
),
615 static const struct perf_event_map niagara4_perfmon_event_map
[] = {
616 [PERF_COUNT_HW_CPU_CYCLES
] = { (26 << 6) },
617 [PERF_COUNT_HW_INSTRUCTIONS
] = { (3 << 6) | 0x3f },
618 [PERF_COUNT_HW_CACHE_REFERENCES
] = { (3 << 6) | 0x04 },
619 [PERF_COUNT_HW_CACHE_MISSES
] = { (16 << 6) | 0x07 },
620 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { (4 << 6) | 0x01 },
621 [PERF_COUNT_HW_BRANCH_MISSES
] = { (25 << 6) | 0x0f },
624 static const struct perf_event_map
*niagara4_event_map(int event_id
)
626 return &niagara4_perfmon_event_map
[event_id
];
629 static const cache_map_t niagara4_cache_map
= {
632 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x04 },
633 [C(RESULT_MISS
)] = { (16 << 6) | 0x07 },
636 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x08 },
637 [C(RESULT_MISS
)] = { (16 << 6) | 0x07 },
640 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
641 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
646 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x3f },
647 [C(RESULT_MISS
)] = { (11 << 6) | 0x03 },
650 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
651 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
653 [ C(OP_PREFETCH
) ] = {
654 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
655 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
660 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x04 },
661 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
664 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x08 },
665 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
668 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
669 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
674 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
675 [C(RESULT_MISS
)] = { (17 << 6) | 0x3f },
678 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
679 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
681 [ C(OP_PREFETCH
) ] = {
682 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
683 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
688 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
689 [C(RESULT_MISS
)] = { (6 << 6) | 0x3f },
692 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
693 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
695 [ C(OP_PREFETCH
) ] = {
696 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
697 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
702 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
703 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
706 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
707 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
709 [ C(OP_PREFETCH
) ] = {
710 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
711 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
716 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
717 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
720 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
721 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
723 [ C(OP_PREFETCH
) ] = {
724 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
725 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
730 static u32
sparc_vt_read_pmc(int idx
)
732 u64 val
= pcr_ops
->read_pic(idx
);
734 return val
& 0xffffffff;
737 static void sparc_vt_write_pmc(int idx
, u64 val
)
741 pcr
= pcr_ops
->read_pcr(idx
);
742 /* ensure ov and ntc are reset */
743 pcr
&= ~(PCR_N4_OV
| PCR_N4_NTC
);
745 pcr_ops
->write_pic(idx
, val
& 0xffffffff);
747 pcr_ops
->write_pcr(idx
, pcr
);
750 static const struct sparc_pmu niagara4_pmu
= {
751 .event_map
= niagara4_event_map
,
752 .cache_map
= &niagara4_cache_map
,
753 .max_events
= ARRAY_SIZE(niagara4_perfmon_event_map
),
754 .read_pmc
= sparc_vt_read_pmc
,
755 .write_pmc
= sparc_vt_write_pmc
,
759 .user_bit
= PCR_N4_UTRACE
,
760 .priv_bit
= PCR_N4_STRACE
,
762 /* We explicitly don't support hypervisor tracing. The T4
763 * generates the overflow event for precise events via a trap
764 * which will not be generated (ie. it's completely lost) if
765 * we happen to be in the hypervisor when the event triggers.
766 * Essentially, the overflow event reporting is completely
767 * unusable when you have hypervisor mode tracing enabled.
771 .irq_bit
= PCR_N4_TOE
,
780 static const struct sparc_pmu sparc_m7_pmu
= {
781 .event_map
= niagara4_event_map
,
782 .cache_map
= &niagara4_cache_map
,
783 .max_events
= ARRAY_SIZE(niagara4_perfmon_event_map
),
784 .read_pmc
= sparc_vt_read_pmc
,
785 .write_pmc
= sparc_vt_write_pmc
,
789 .user_bit
= PCR_N4_UTRACE
,
790 .priv_bit
= PCR_N4_STRACE
,
792 /* We explicitly don't support hypervisor tracing. */
795 .irq_bit
= PCR_N4_TOE
,
803 static const struct sparc_pmu
*sparc_pmu __read_mostly
;
805 static u64
event_encoding(u64 event_id
, int idx
)
807 if (idx
== PIC_UPPER_INDEX
)
808 event_id
<<= sparc_pmu
->upper_shift
;
810 event_id
<<= sparc_pmu
->lower_shift
;
814 static u64
mask_for_index(int idx
)
816 return event_encoding(sparc_pmu
->event_mask
, idx
);
819 static u64
nop_for_index(int idx
)
821 return event_encoding(idx
== PIC_UPPER_INDEX
?
822 sparc_pmu
->upper_nop
:
823 sparc_pmu
->lower_nop
, idx
);
826 static inline void sparc_pmu_enable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
828 u64 enc
, val
, mask
= mask_for_index(idx
);
831 if (sparc_pmu
->num_pcrs
> 1)
834 enc
= perf_event_get_enc(cpuc
->events
[idx
]);
836 val
= cpuc
->pcr
[pcr_index
];
838 val
|= event_encoding(enc
, idx
);
839 cpuc
->pcr
[pcr_index
] = val
;
841 pcr_ops
->write_pcr(pcr_index
, cpuc
->pcr
[pcr_index
]);
844 static inline void sparc_pmu_disable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
846 u64 mask
= mask_for_index(idx
);
847 u64 nop
= nop_for_index(idx
);
851 if (sparc_pmu
->num_pcrs
> 1)
854 val
= cpuc
->pcr
[pcr_index
];
857 cpuc
->pcr
[pcr_index
] = val
;
859 pcr_ops
->write_pcr(pcr_index
, cpuc
->pcr
[pcr_index
]);
862 static u64
sparc_perf_event_update(struct perf_event
*event
,
863 struct hw_perf_event
*hwc
, int idx
)
866 u64 prev_raw_count
, new_raw_count
;
870 prev_raw_count
= local64_read(&hwc
->prev_count
);
871 new_raw_count
= sparc_pmu
->read_pmc(idx
);
873 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
874 new_raw_count
) != prev_raw_count
)
877 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
880 local64_add(delta
, &event
->count
);
881 local64_sub(delta
, &hwc
->period_left
);
883 return new_raw_count
;
886 static int sparc_perf_event_set_period(struct perf_event
*event
,
887 struct hw_perf_event
*hwc
, int idx
)
889 s64 left
= local64_read(&hwc
->period_left
);
890 s64 period
= hwc
->sample_period
;
893 if (unlikely(left
<= -period
)) {
895 local64_set(&hwc
->period_left
, left
);
896 hwc
->last_period
= period
;
900 if (unlikely(left
<= 0)) {
902 local64_set(&hwc
->period_left
, left
);
903 hwc
->last_period
= period
;
906 if (left
> MAX_PERIOD
)
909 local64_set(&hwc
->prev_count
, (u64
)-left
);
911 sparc_pmu
->write_pmc(idx
, (u64
)(-left
) & 0xffffffff);
913 perf_event_update_userpage(event
);
918 static void read_in_all_counters(struct cpu_hw_events
*cpuc
)
922 for (i
= 0; i
< cpuc
->n_events
; i
++) {
923 struct perf_event
*cp
= cpuc
->event
[i
];
925 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
&&
926 cpuc
->current_idx
[i
] != cp
->hw
.idx
) {
927 sparc_perf_event_update(cp
, &cp
->hw
,
928 cpuc
->current_idx
[i
]);
929 cpuc
->current_idx
[i
] = PIC_NO_INDEX
;
934 /* On this PMU all PICs are programmed using a single PCR. Calculate
935 * the combined control register value.
937 * For such chips we require that all of the events have the same
938 * configuration, so just fetch the settings from the first entry.
940 static void calculate_single_pcr(struct cpu_hw_events
*cpuc
)
947 /* Assign to counters all unassigned events. */
948 for (i
= 0; i
< cpuc
->n_events
; i
++) {
949 struct perf_event
*cp
= cpuc
->event
[i
];
950 struct hw_perf_event
*hwc
= &cp
->hw
;
954 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
957 sparc_perf_event_set_period(cp
, hwc
, idx
);
958 cpuc
->current_idx
[i
] = idx
;
960 enc
= perf_event_get_enc(cpuc
->events
[i
]);
961 cpuc
->pcr
[0] &= ~mask_for_index(idx
);
962 if (hwc
->state
& PERF_HES_STOPPED
)
963 cpuc
->pcr
[0] |= nop_for_index(idx
);
965 cpuc
->pcr
[0] |= event_encoding(enc
, idx
);
968 cpuc
->pcr
[0] |= cpuc
->event
[0]->hw
.config_base
;
971 static void sparc_pmu_start(struct perf_event
*event
, int flags
);
973 /* On this PMU each PIC has it's own PCR control register. */
974 static void calculate_multiple_pcrs(struct cpu_hw_events
*cpuc
)
981 for (i
= 0; i
< cpuc
->n_events
; i
++) {
982 struct perf_event
*cp
= cpuc
->event
[i
];
983 struct hw_perf_event
*hwc
= &cp
->hw
;
986 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
989 cpuc
->current_idx
[i
] = idx
;
991 sparc_pmu_start(cp
, PERF_EF_RELOAD
);
994 for (i
= 0; i
< cpuc
->n_events
; i
++) {
995 struct perf_event
*cp
= cpuc
->event
[i
];
996 int idx
= cp
->hw
.idx
;
998 cpuc
->pcr
[idx
] |= cp
->hw
.config_base
;
1002 /* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1005 static void update_pcrs_for_enable(struct cpu_hw_events
*cpuc
)
1008 read_in_all_counters(cpuc
);
1010 if (sparc_pmu
->num_pcrs
== 1) {
1011 calculate_single_pcr(cpuc
);
1013 calculate_multiple_pcrs(cpuc
);
1017 static void sparc_pmu_enable(struct pmu
*pmu
)
1019 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1029 update_pcrs_for_enable(cpuc
);
1031 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1032 pcr_ops
->write_pcr(i
, cpuc
->pcr
[i
]);
1035 static void sparc_pmu_disable(struct pmu
*pmu
)
1037 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1046 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++) {
1047 u64 val
= cpuc
->pcr
[i
];
1049 val
&= ~(sparc_pmu
->user_bit
| sparc_pmu
->priv_bit
|
1050 sparc_pmu
->hv_bit
| sparc_pmu
->irq_bit
);
1052 pcr_ops
->write_pcr(i
, cpuc
->pcr
[i
]);
1056 static int active_event_index(struct cpu_hw_events
*cpuc
,
1057 struct perf_event
*event
)
1061 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1062 if (cpuc
->event
[i
] == event
)
1065 BUG_ON(i
== cpuc
->n_events
);
1066 return cpuc
->current_idx
[i
];
1069 static void sparc_pmu_start(struct perf_event
*event
, int flags
)
1071 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1072 int idx
= active_event_index(cpuc
, event
);
1074 if (flags
& PERF_EF_RELOAD
) {
1075 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1076 sparc_perf_event_set_period(event
, &event
->hw
, idx
);
1079 event
->hw
.state
= 0;
1081 sparc_pmu_enable_event(cpuc
, &event
->hw
, idx
);
1084 static void sparc_pmu_stop(struct perf_event
*event
, int flags
)
1086 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1087 int idx
= active_event_index(cpuc
, event
);
1089 if (!(event
->hw
.state
& PERF_HES_STOPPED
)) {
1090 sparc_pmu_disable_event(cpuc
, &event
->hw
, idx
);
1091 event
->hw
.state
|= PERF_HES_STOPPED
;
1094 if (!(event
->hw
.state
& PERF_HES_UPTODATE
) && (flags
& PERF_EF_UPDATE
)) {
1095 sparc_perf_event_update(event
, &event
->hw
, idx
);
1096 event
->hw
.state
|= PERF_HES_UPTODATE
;
1100 static void sparc_pmu_del(struct perf_event
*event
, int _flags
)
1102 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1103 unsigned long flags
;
1106 local_irq_save(flags
);
1108 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1109 if (event
== cpuc
->event
[i
]) {
1110 /* Absorb the final count and turn off the
1113 sparc_pmu_stop(event
, PERF_EF_UPDATE
);
1115 /* Shift remaining entries down into
1116 * the existing slot.
1118 while (++i
< cpuc
->n_events
) {
1119 cpuc
->event
[i
- 1] = cpuc
->event
[i
];
1120 cpuc
->events
[i
- 1] = cpuc
->events
[i
];
1121 cpuc
->current_idx
[i
- 1] =
1122 cpuc
->current_idx
[i
];
1125 perf_event_update_userpage(event
);
1132 local_irq_restore(flags
);
1135 static void sparc_pmu_read(struct perf_event
*event
)
1137 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1138 int idx
= active_event_index(cpuc
, event
);
1139 struct hw_perf_event
*hwc
= &event
->hw
;
1141 sparc_perf_event_update(event
, hwc
, idx
);
1144 static atomic_t active_events
= ATOMIC_INIT(0);
1145 static DEFINE_MUTEX(pmc_grab_mutex
);
1147 static void perf_stop_nmi_watchdog(void *unused
)
1149 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1152 stop_nmi_watchdog(NULL
);
1153 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1154 cpuc
->pcr
[i
] = pcr_ops
->read_pcr(i
);
1157 static void perf_event_grab_pmc(void)
1159 if (atomic_inc_not_zero(&active_events
))
1162 mutex_lock(&pmc_grab_mutex
);
1163 if (atomic_read(&active_events
) == 0) {
1164 if (atomic_read(&nmi_active
) > 0) {
1165 on_each_cpu(perf_stop_nmi_watchdog
, NULL
, 1);
1166 BUG_ON(atomic_read(&nmi_active
) != 0);
1168 atomic_inc(&active_events
);
1170 mutex_unlock(&pmc_grab_mutex
);
1173 static void perf_event_release_pmc(void)
1175 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_grab_mutex
)) {
1176 if (atomic_read(&nmi_active
) == 0)
1177 on_each_cpu(start_nmi_watchdog
, NULL
, 1);
1178 mutex_unlock(&pmc_grab_mutex
);
1182 static const struct perf_event_map
*sparc_map_cache_event(u64 config
)
1184 unsigned int cache_type
, cache_op
, cache_result
;
1185 const struct perf_event_map
*pmap
;
1187 if (!sparc_pmu
->cache_map
)
1188 return ERR_PTR(-ENOENT
);
1190 cache_type
= (config
>> 0) & 0xff;
1191 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
1192 return ERR_PTR(-EINVAL
);
1194 cache_op
= (config
>> 8) & 0xff;
1195 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
1196 return ERR_PTR(-EINVAL
);
1198 cache_result
= (config
>> 16) & 0xff;
1199 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1200 return ERR_PTR(-EINVAL
);
1202 pmap
= &((*sparc_pmu
->cache_map
)[cache_type
][cache_op
][cache_result
]);
1204 if (pmap
->encoding
== CACHE_OP_UNSUPPORTED
)
1205 return ERR_PTR(-ENOENT
);
1207 if (pmap
->encoding
== CACHE_OP_NONSENSE
)
1208 return ERR_PTR(-EINVAL
);
1213 static void hw_perf_event_destroy(struct perf_event
*event
)
1215 perf_event_release_pmc();
1218 /* Make sure all events can be scheduled into the hardware at
1219 * the same time. This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success. These are pending indexes. When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1228 static int sparc_check_constraints(struct perf_event
**evts
,
1229 unsigned long *events
, int n_ev
)
1231 u8 msk0
= 0, msk1
= 0;
1234 /* This case is possible when we are invoked from
1235 * hw_perf_group_sched_in().
1240 if (n_ev
> sparc_pmu
->max_hw_events
)
1243 if (!(sparc_pmu
->flags
& SPARC_PMU_HAS_CONFLICTS
)) {
1246 for (i
= 0; i
< n_ev
; i
++)
1247 evts
[i
]->hw
.idx
= i
;
1251 msk0
= perf_event_get_msk(events
[0]);
1253 if (msk0
& PIC_LOWER
)
1258 msk1
= perf_event_get_msk(events
[1]);
1260 /* If both events can go on any counter, OK. */
1261 if (msk0
== (PIC_UPPER
| PIC_LOWER
) &&
1262 msk1
== (PIC_UPPER
| PIC_LOWER
))
1265 /* If one event is limited to a specific counter,
1266 * and the other can go on both, OK.
1268 if ((msk0
== PIC_UPPER
|| msk0
== PIC_LOWER
) &&
1269 msk1
== (PIC_UPPER
| PIC_LOWER
)) {
1270 if (msk0
& PIC_LOWER
)
1275 if ((msk1
== PIC_UPPER
|| msk1
== PIC_LOWER
) &&
1276 msk0
== (PIC_UPPER
| PIC_LOWER
)) {
1277 if (msk1
& PIC_UPPER
)
1282 /* If the events are fixed to different counters, OK. */
1283 if ((msk0
== PIC_UPPER
&& msk1
== PIC_LOWER
) ||
1284 (msk0
== PIC_LOWER
&& msk1
== PIC_UPPER
)) {
1285 if (msk0
& PIC_LOWER
)
1290 /* Otherwise, there is a conflict. */
1294 evts
[0]->hw
.idx
= idx0
;
1296 evts
[1]->hw
.idx
= idx0
^ 1;
1300 static int check_excludes(struct perf_event
**evts
, int n_prev
, int n_new
)
1302 int eu
= 0, ek
= 0, eh
= 0;
1303 struct perf_event
*event
;
1306 if (!(sparc_pmu
->flags
& SPARC_PMU_ALL_EXCLUDES_SAME
))
1314 for (i
= 0; i
< n
; i
++) {
1317 eu
= event
->attr
.exclude_user
;
1318 ek
= event
->attr
.exclude_kernel
;
1319 eh
= event
->attr
.exclude_hv
;
1321 } else if (event
->attr
.exclude_user
!= eu
||
1322 event
->attr
.exclude_kernel
!= ek
||
1323 event
->attr
.exclude_hv
!= eh
) {
1331 static int collect_events(struct perf_event
*group
, int max_count
,
1332 struct perf_event
*evts
[], unsigned long *events
,
1335 struct perf_event
*event
;
1338 if (!is_software_event(group
)) {
1342 events
[n
] = group
->hw
.event_base
;
1343 current_idx
[n
++] = PIC_NO_INDEX
;
1345 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1346 if (!is_software_event(event
) &&
1347 event
->state
!= PERF_EVENT_STATE_OFF
) {
1351 events
[n
] = event
->hw
.event_base
;
1352 current_idx
[n
++] = PIC_NO_INDEX
;
1358 static int sparc_pmu_add(struct perf_event
*event
, int ef_flags
)
1360 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1361 int n0
, ret
= -EAGAIN
;
1362 unsigned long flags
;
1364 local_irq_save(flags
);
1366 n0
= cpuc
->n_events
;
1367 if (n0
>= sparc_pmu
->max_hw_events
)
1370 cpuc
->event
[n0
] = event
;
1371 cpuc
->events
[n0
] = event
->hw
.event_base
;
1372 cpuc
->current_idx
[n0
] = PIC_NO_INDEX
;
1374 event
->hw
.state
= PERF_HES_UPTODATE
;
1375 if (!(ef_flags
& PERF_EF_START
))
1376 event
->hw
.state
|= PERF_HES_STOPPED
;
1379 * If group events scheduling transaction was started,
1380 * skip the schedulability test here, it will be performed
1381 * at commit time(->commit_txn) as a whole
1383 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1386 if (check_excludes(cpuc
->event
, n0
, 1))
1388 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n0
+ 1))
1397 local_irq_restore(flags
);
1401 static int sparc_pmu_event_init(struct perf_event
*event
)
1403 struct perf_event_attr
*attr
= &event
->attr
;
1404 struct perf_event
*evts
[MAX_HWEVENTS
];
1405 struct hw_perf_event
*hwc
= &event
->hw
;
1406 unsigned long events
[MAX_HWEVENTS
];
1407 int current_idx_dmy
[MAX_HWEVENTS
];
1408 const struct perf_event_map
*pmap
;
1411 if (atomic_read(&nmi_active
) < 0)
1414 /* does not support taken branch sampling */
1415 if (has_branch_stack(event
))
1418 switch (attr
->type
) {
1419 case PERF_TYPE_HARDWARE
:
1420 if (attr
->config
>= sparc_pmu
->max_events
)
1422 pmap
= sparc_pmu
->event_map(attr
->config
);
1425 case PERF_TYPE_HW_CACHE
:
1426 pmap
= sparc_map_cache_event(attr
->config
);
1428 return PTR_ERR(pmap
);
1441 hwc
->event_base
= perf_event_encode(pmap
);
1444 * User gives us "(encoding << 16) | pic_mask" for
1445 * PERF_TYPE_RAW events.
1447 hwc
->event_base
= attr
->config
;
1450 /* We save the enable bits in the config_base. */
1451 hwc
->config_base
= sparc_pmu
->irq_bit
;
1452 if (!attr
->exclude_user
)
1453 hwc
->config_base
|= sparc_pmu
->user_bit
;
1454 if (!attr
->exclude_kernel
)
1455 hwc
->config_base
|= sparc_pmu
->priv_bit
;
1456 if (!attr
->exclude_hv
)
1457 hwc
->config_base
|= sparc_pmu
->hv_bit
;
1460 if (event
->group_leader
!= event
) {
1461 n
= collect_events(event
->group_leader
,
1462 sparc_pmu
->max_hw_events
- 1,
1463 evts
, events
, current_idx_dmy
);
1467 events
[n
] = hwc
->event_base
;
1470 if (check_excludes(evts
, n
, 1))
1473 if (sparc_check_constraints(evts
, events
, n
+ 1))
1476 hwc
->idx
= PIC_NO_INDEX
;
1478 /* Try to do all error checking before this point, as unwinding
1479 * state after grabbing the PMC is difficult.
1481 perf_event_grab_pmc();
1482 event
->destroy
= hw_perf_event_destroy
;
1484 if (!hwc
->sample_period
) {
1485 hwc
->sample_period
= MAX_PERIOD
;
1486 hwc
->last_period
= hwc
->sample_period
;
1487 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1498 static void sparc_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1500 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1502 WARN_ON_ONCE(cpuhw
->txn_flags
); /* txn already in flight */
1504 cpuhw
->txn_flags
= txn_flags
;
1505 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1508 perf_pmu_disable(pmu
);
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1516 static void sparc_pmu_cancel_txn(struct pmu
*pmu
)
1518 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1519 unsigned int txn_flags
;
1521 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1523 txn_flags
= cpuhw
->txn_flags
;
1524 cpuhw
->txn_flags
= 0;
1525 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1528 perf_pmu_enable(pmu
);
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1536 static int sparc_pmu_commit_txn(struct pmu
*pmu
)
1538 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1544 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1546 if (cpuc
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1547 cpuc
->txn_flags
= 0;
1552 if (check_excludes(cpuc
->event
, 0, n
))
1554 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n
))
1557 cpuc
->txn_flags
= 0;
1558 perf_pmu_enable(pmu
);
1562 static struct pmu pmu
= {
1563 .pmu_enable
= sparc_pmu_enable
,
1564 .pmu_disable
= sparc_pmu_disable
,
1565 .event_init
= sparc_pmu_event_init
,
1566 .add
= sparc_pmu_add
,
1567 .del
= sparc_pmu_del
,
1568 .start
= sparc_pmu_start
,
1569 .stop
= sparc_pmu_stop
,
1570 .read
= sparc_pmu_read
,
1571 .start_txn
= sparc_pmu_start_txn
,
1572 .cancel_txn
= sparc_pmu_cancel_txn
,
1573 .commit_txn
= sparc_pmu_commit_txn
,
1576 void perf_event_print_debug(void)
1578 unsigned long flags
;
1584 local_irq_save(flags
);
1586 cpu
= smp_processor_id();
1589 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1590 pr_info("CPU#%d: PCR%d[%016llx]\n",
1591 cpu
, i
, pcr_ops
->read_pcr(i
));
1592 for (i
= 0; i
< sparc_pmu
->num_pic_regs
; i
++)
1593 pr_info("CPU#%d: PIC%d[%016llx]\n",
1594 cpu
, i
, pcr_ops
->read_pic(i
));
1596 local_irq_restore(flags
);
1599 static int __kprobes
perf_event_nmi_handler(struct notifier_block
*self
,
1600 unsigned long cmd
, void *__args
)
1602 struct die_args
*args
= __args
;
1603 struct perf_sample_data data
;
1604 struct cpu_hw_events
*cpuc
;
1605 struct pt_regs
*regs
;
1608 if (!atomic_read(&active_events
))
1621 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1623 /* If the PMU has the TOE IRQ enable bits, we need to do a
1624 * dummy write to the %pcr to clear the overflow bits and thus
1627 * Do this before we peek at the counters to determine
1628 * overflow so we don't lose any events.
1630 if (sparc_pmu
->irq_bit
&&
1631 sparc_pmu
->num_pcrs
== 1)
1632 pcr_ops
->write_pcr(0, cpuc
->pcr
[0]);
1634 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1635 struct perf_event
*event
= cpuc
->event
[i
];
1636 int idx
= cpuc
->current_idx
[i
];
1637 struct hw_perf_event
*hwc
;
1640 if (sparc_pmu
->irq_bit
&&
1641 sparc_pmu
->num_pcrs
> 1)
1642 pcr_ops
->write_pcr(idx
, cpuc
->pcr
[idx
]);
1645 val
= sparc_perf_event_update(event
, hwc
, idx
);
1646 if (val
& (1ULL << 31))
1649 perf_sample_data_init(&data
, 0, hwc
->last_period
);
1650 if (!sparc_perf_event_set_period(event
, hwc
, idx
))
1653 if (perf_event_overflow(event
, &data
, regs
))
1654 sparc_pmu_stop(event
, 0);
1660 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1661 .notifier_call
= perf_event_nmi_handler
,
1664 static bool __init
supported_pmu(void)
1666 if (!strcmp(sparc_pmu_type
, "ultra3") ||
1667 !strcmp(sparc_pmu_type
, "ultra3+") ||
1668 !strcmp(sparc_pmu_type
, "ultra3i") ||
1669 !strcmp(sparc_pmu_type
, "ultra4+")) {
1670 sparc_pmu
= &ultra3_pmu
;
1673 if (!strcmp(sparc_pmu_type
, "niagara")) {
1674 sparc_pmu
= &niagara1_pmu
;
1677 if (!strcmp(sparc_pmu_type
, "niagara2") ||
1678 !strcmp(sparc_pmu_type
, "niagara3")) {
1679 sparc_pmu
= &niagara2_pmu
;
1682 if (!strcmp(sparc_pmu_type
, "niagara4") ||
1683 !strcmp(sparc_pmu_type
, "niagara5")) {
1684 sparc_pmu
= &niagara4_pmu
;
1687 if (!strcmp(sparc_pmu_type
, "sparc-m7")) {
1688 sparc_pmu
= &sparc_m7_pmu
;
1694 static int __init
init_hw_perf_events(void)
1698 pr_info("Performance events: ");
1700 err
= pcr_arch_init();
1701 if (err
|| !supported_pmu()) {
1702 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type
);
1706 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type
);
1708 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1709 register_die_notifier(&perf_event_nmi_notifier
);
1713 pure_initcall(init_hw_perf_events
);
1715 void perf_callchain_kernel(struct perf_callchain_entry_ctx
*entry
,
1716 struct pt_regs
*regs
)
1718 unsigned long ksp
, fp
;
1719 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1723 stack_trace_flush();
1725 perf_callchain_store(entry
, regs
->tpc
);
1727 ksp
= regs
->u_regs
[UREG_I6
];
1728 fp
= ksp
+ STACK_BIAS
;
1730 struct sparc_stackf
*sf
;
1731 struct pt_regs
*regs
;
1734 if (!kstack_valid(current_thread_info(), fp
))
1737 sf
= (struct sparc_stackf
*) fp
;
1738 regs
= (struct pt_regs
*) (sf
+ 1);
1740 if (kstack_is_trap_frame(current_thread_info(), regs
)) {
1741 if (user_mode(regs
))
1744 fp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1746 pc
= sf
->callers_pc
;
1747 fp
= (unsigned long)sf
->fp
+ STACK_BIAS
;
1749 perf_callchain_store(entry
, pc
);
1750 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751 if ((pc
+ 8UL) == (unsigned long) &return_to_handler
) {
1752 int index
= current
->curr_ret_stack
;
1753 if (current
->ret_stack
&& index
>= graph
) {
1754 pc
= current
->ret_stack
[index
- graph
].ret
;
1755 perf_callchain_store(entry
, pc
);
1760 } while (entry
->nr
< entry
->max_stack
);
1764 valid_user_frame(const void __user
*fp
, unsigned long size
)
1766 /* addresses should be at least 4-byte aligned */
1767 if (((unsigned long) fp
) & 3)
1770 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
1773 static void perf_callchain_user_64(struct perf_callchain_entry_ctx
*entry
,
1774 struct pt_regs
*regs
)
1778 ufp
= regs
->u_regs
[UREG_FP
] + STACK_BIAS
;
1780 struct sparc_stackf __user
*usf
;
1781 struct sparc_stackf sf
;
1784 usf
= (struct sparc_stackf __user
*)ufp
;
1785 if (!valid_user_frame(usf
, sizeof(sf
)))
1788 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1792 ufp
= (unsigned long)sf
.fp
+ STACK_BIAS
;
1793 perf_callchain_store(entry
, pc
);
1794 } while (entry
->nr
< entry
->max_stack
);
1797 static void perf_callchain_user_32(struct perf_callchain_entry_ctx
*entry
,
1798 struct pt_regs
*regs
)
1802 ufp
= regs
->u_regs
[UREG_FP
] & 0xffffffffUL
;
1806 if (thread32_stack_is_64bit(ufp
)) {
1807 struct sparc_stackf __user
*usf
;
1808 struct sparc_stackf sf
;
1811 usf
= (struct sparc_stackf __user
*)ufp
;
1812 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1814 pc
= sf
.callers_pc
& 0xffffffff;
1815 ufp
= ((unsigned long) sf
.fp
) & 0xffffffff;
1817 struct sparc_stackf32 __user
*usf
;
1818 struct sparc_stackf32 sf
;
1819 usf
= (struct sparc_stackf32 __user
*)ufp
;
1820 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1823 ufp
= (unsigned long)sf
.fp
;
1825 perf_callchain_store(entry
, pc
);
1826 } while (entry
->nr
< entry
->max_stack
);
1830 perf_callchain_user(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
1832 u64 saved_fault_address
= current_thread_info()->fault_address
;
1833 u8 saved_fault_code
= get_thread_fault_code();
1834 mm_segment_t old_fs
;
1836 perf_callchain_store(entry
, regs
->tpc
);
1846 pagefault_disable();
1848 if (test_thread_flag(TIF_32BIT
))
1849 perf_callchain_user_32(entry
, regs
);
1851 perf_callchain_user_64(entry
, regs
);
1856 set_thread_fault_code(saved_fault_code
);
1857 current_thread_info()->fault_address
= saved_fault_address
;