Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / sparc / kernel / perf_event.c
blob5c1f54758312808bc9e2e70d1953bfa324f1e40b
1 // SPDX-License-Identifier: GPL-2.0
2 /* Performance event support for sparc64.
4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
6 * This code is based almost entirely upon the x86 perf event
7 * code, which is:
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
16 #include <linux/perf_event.h>
17 #include <linux/kprobes.h>
18 #include <linux/ftrace.h>
19 #include <linux/kernel.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
23 #include <asm/stacktrace.h>
24 #include <asm/cpudata.h>
25 #include <linux/uaccess.h>
26 #include <linux/atomic.h>
27 #include <asm/nmi.h>
28 #include <asm/pcr.h>
29 #include <asm/cacheflush.h>
31 #include "kernel.h"
32 #include "kstack.h"
34 /* Two classes of sparc64 chips currently exist. All of which have
35 * 32-bit counters which can generate overflow interrupts on the
36 * transition from 0xffffffff to 0.
38 * All chips upto and including SPARC-T3 have two performance
39 * counters. The two 32-bit counters are accessed in one go using a
40 * single 64-bit register.
42 * On these older chips both counters are controlled using a single
43 * control register. The only way to stop all sampling is to clear
44 * all of the context (user, supervisor, hypervisor) sampling enable
45 * bits. But these bits apply to both counters, thus the two counters
46 * can't be enabled/disabled individually.
48 * Furthermore, the control register on these older chips have two
49 * event fields, one for each of the two counters. It's thus nearly
50 * impossible to have one counter going while keeping the other one
51 * stopped. Therefore it is possible to get overflow interrupts for
52 * counters not currently "in use" and that condition must be checked
53 * in the overflow interrupt handler.
55 * So we use a hack, in that we program inactive counters with the
56 * "sw_count0" and "sw_count1" events. These count how many times
57 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
58 * unusual way to encode a NOP and therefore will not trigger in
59 * normal code.
61 * Starting with SPARC-T4 we have one control register per counter.
62 * And the counters are stored in individual registers. The registers
63 * for the counters are 64-bit but only a 32-bit counter is
64 * implemented. The event selections on SPARC-T4 lack any
65 * restrictions, therefore we can elide all of the complicated
66 * conflict resolution code we have for SPARC-T3 and earlier chips.
69 #define MAX_HWEVENTS 4
70 #define MAX_PCRS 4
71 #define MAX_PERIOD ((1UL << 32) - 1)
73 #define PIC_UPPER_INDEX 0
74 #define PIC_LOWER_INDEX 1
75 #define PIC_NO_INDEX -1
77 struct cpu_hw_events {
78 /* Number of events currently scheduled onto this cpu.
79 * This tells how many entries in the arrays below
80 * are valid.
82 int n_events;
84 /* Number of new events added since the last hw_perf_disable().
85 * This works because the perf event layer always adds new
86 * events inside of a perf_{disable,enable}() sequence.
88 int n_added;
90 /* Array of events current scheduled on this cpu. */
91 struct perf_event *event[MAX_HWEVENTS];
93 /* Array of encoded longs, specifying the %pcr register
94 * encoding and the mask of PIC counters this even can
95 * be scheduled on. See perf_event_encode() et al.
97 unsigned long events[MAX_HWEVENTS];
99 /* The current counter index assigned to an event. When the
100 * event hasn't been programmed into the cpu yet, this will
101 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
102 * we ought to schedule the event.
104 int current_idx[MAX_HWEVENTS];
106 /* Software copy of %pcr register(s) on this cpu. */
107 u64 pcr[MAX_HWEVENTS];
109 /* Enabled/disable state. */
110 int enabled;
112 unsigned int txn_flags;
114 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
116 /* An event map describes the characteristics of a performance
117 * counter event. In particular it gives the encoding as well as
118 * a mask telling which counters the event can be measured on.
120 * The mask is unused on SPARC-T4 and later.
122 struct perf_event_map {
123 u16 encoding;
124 u8 pic_mask;
125 #define PIC_NONE 0x00
126 #define PIC_UPPER 0x01
127 #define PIC_LOWER 0x02
130 /* Encode a perf_event_map entry into a long. */
131 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
133 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
136 static u8 perf_event_get_msk(unsigned long val)
138 return val & 0xff;
141 static u64 perf_event_get_enc(unsigned long val)
143 return val >> 16;
146 #define C(x) PERF_COUNT_HW_CACHE_##x
148 #define CACHE_OP_UNSUPPORTED 0xfffe
149 #define CACHE_OP_NONSENSE 0xffff
151 typedef struct perf_event_map cache_map_t
152 [PERF_COUNT_HW_CACHE_MAX]
153 [PERF_COUNT_HW_CACHE_OP_MAX]
154 [PERF_COUNT_HW_CACHE_RESULT_MAX];
156 struct sparc_pmu {
157 const struct perf_event_map *(*event_map)(int);
158 const cache_map_t *cache_map;
159 int max_events;
160 u32 (*read_pmc)(int);
161 void (*write_pmc)(int, u64);
162 int upper_shift;
163 int lower_shift;
164 int event_mask;
165 int user_bit;
166 int priv_bit;
167 int hv_bit;
168 int irq_bit;
169 int upper_nop;
170 int lower_nop;
171 unsigned int flags;
172 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
173 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
174 int max_hw_events;
175 int num_pcrs;
176 int num_pic_regs;
179 static u32 sparc_default_read_pmc(int idx)
181 u64 val;
183 val = pcr_ops->read_pic(0);
184 if (idx == PIC_UPPER_INDEX)
185 val >>= 32;
187 return val & 0xffffffff;
190 static void sparc_default_write_pmc(int idx, u64 val)
192 u64 shift, mask, pic;
194 shift = 0;
195 if (idx == PIC_UPPER_INDEX)
196 shift = 32;
198 mask = ((u64) 0xffffffff) << shift;
199 val <<= shift;
201 pic = pcr_ops->read_pic(0);
202 pic &= ~mask;
203 pic |= val;
204 pcr_ops->write_pic(0, pic);
207 static const struct perf_event_map ultra3_perfmon_event_map[] = {
208 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
211 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
214 static const struct perf_event_map *ultra3_event_map(int event_id)
216 return &ultra3_perfmon_event_map[event_id];
219 static const cache_map_t ultra3_cache_map = {
220 [C(L1D)] = {
221 [C(OP_READ)] = {
222 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
223 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
225 [C(OP_WRITE)] = {
226 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
227 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
229 [C(OP_PREFETCH)] = {
230 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
231 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
234 [C(L1I)] = {
235 [C(OP_READ)] = {
236 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
237 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
239 [ C(OP_WRITE) ] = {
240 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
241 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
243 [ C(OP_PREFETCH) ] = {
244 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
245 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
248 [C(LL)] = {
249 [C(OP_READ)] = {
250 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
251 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
253 [C(OP_WRITE)] = {
254 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
255 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
257 [C(OP_PREFETCH)] = {
258 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
259 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
262 [C(DTLB)] = {
263 [C(OP_READ)] = {
264 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
265 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
267 [ C(OP_WRITE) ] = {
268 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
269 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
271 [ C(OP_PREFETCH) ] = {
272 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
273 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
276 [C(ITLB)] = {
277 [C(OP_READ)] = {
278 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
281 [ C(OP_WRITE) ] = {
282 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
283 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
285 [ C(OP_PREFETCH) ] = {
286 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
287 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
290 [C(BPU)] = {
291 [C(OP_READ)] = {
292 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
293 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
295 [ C(OP_WRITE) ] = {
296 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
297 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
299 [ C(OP_PREFETCH) ] = {
300 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
304 [C(NODE)] = {
305 [C(OP_READ)] = {
306 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
309 [ C(OP_WRITE) ] = {
310 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
311 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
313 [ C(OP_PREFETCH) ] = {
314 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
315 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
320 static const struct sparc_pmu ultra3_pmu = {
321 .event_map = ultra3_event_map,
322 .cache_map = &ultra3_cache_map,
323 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
324 .read_pmc = sparc_default_read_pmc,
325 .write_pmc = sparc_default_write_pmc,
326 .upper_shift = 11,
327 .lower_shift = 4,
328 .event_mask = 0x3f,
329 .user_bit = PCR_UTRACE,
330 .priv_bit = PCR_STRACE,
331 .upper_nop = 0x1c,
332 .lower_nop = 0x14,
333 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
334 SPARC_PMU_HAS_CONFLICTS),
335 .max_hw_events = 2,
336 .num_pcrs = 1,
337 .num_pic_regs = 1,
340 /* Niagara1 is very limited. The upper PIC is hard-locked to count
341 * only instructions, so it is free running which creates all kinds of
342 * problems. Some hardware designs make one wonder if the creator
343 * even looked at how this stuff gets used by software.
345 static const struct perf_event_map niagara1_perfmon_event_map[] = {
346 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
348 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
349 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
352 static const struct perf_event_map *niagara1_event_map(int event_id)
354 return &niagara1_perfmon_event_map[event_id];
357 static const cache_map_t niagara1_cache_map = {
358 [C(L1D)] = {
359 [C(OP_READ)] = {
360 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
361 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
363 [C(OP_WRITE)] = {
364 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
365 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
367 [C(OP_PREFETCH)] = {
368 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
369 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
372 [C(L1I)] = {
373 [C(OP_READ)] = {
374 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
375 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
377 [ C(OP_WRITE) ] = {
378 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
379 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
381 [ C(OP_PREFETCH) ] = {
382 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
383 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
386 [C(LL)] = {
387 [C(OP_READ)] = {
388 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
389 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
391 [C(OP_WRITE)] = {
392 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
393 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
395 [C(OP_PREFETCH)] = {
396 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
397 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
400 [C(DTLB)] = {
401 [C(OP_READ)] = {
402 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
403 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
405 [ C(OP_WRITE) ] = {
406 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
407 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
409 [ C(OP_PREFETCH) ] = {
410 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
411 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
414 [C(ITLB)] = {
415 [C(OP_READ)] = {
416 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
417 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
419 [ C(OP_WRITE) ] = {
420 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
421 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
423 [ C(OP_PREFETCH) ] = {
424 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
425 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
428 [C(BPU)] = {
429 [C(OP_READ)] = {
430 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
433 [ C(OP_WRITE) ] = {
434 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
435 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
437 [ C(OP_PREFETCH) ] = {
438 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
439 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
442 [C(NODE)] = {
443 [C(OP_READ)] = {
444 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
445 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
447 [ C(OP_WRITE) ] = {
448 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
449 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
451 [ C(OP_PREFETCH) ] = {
452 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
453 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
458 static const struct sparc_pmu niagara1_pmu = {
459 .event_map = niagara1_event_map,
460 .cache_map = &niagara1_cache_map,
461 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
462 .read_pmc = sparc_default_read_pmc,
463 .write_pmc = sparc_default_write_pmc,
464 .upper_shift = 0,
465 .lower_shift = 4,
466 .event_mask = 0x7,
467 .user_bit = PCR_UTRACE,
468 .priv_bit = PCR_STRACE,
469 .upper_nop = 0x0,
470 .lower_nop = 0x0,
471 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
472 SPARC_PMU_HAS_CONFLICTS),
473 .max_hw_events = 2,
474 .num_pcrs = 1,
475 .num_pic_regs = 1,
478 static const struct perf_event_map niagara2_perfmon_event_map[] = {
479 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
484 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
487 static const struct perf_event_map *niagara2_event_map(int event_id)
489 return &niagara2_perfmon_event_map[event_id];
492 static const cache_map_t niagara2_cache_map = {
493 [C(L1D)] = {
494 [C(OP_READ)] = {
495 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
496 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
498 [C(OP_WRITE)] = {
499 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
500 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
502 [C(OP_PREFETCH)] = {
503 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
504 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
507 [C(L1I)] = {
508 [C(OP_READ)] = {
509 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
510 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
512 [ C(OP_WRITE) ] = {
513 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
514 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
516 [ C(OP_PREFETCH) ] = {
517 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
518 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
521 [C(LL)] = {
522 [C(OP_READ)] = {
523 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
524 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
526 [C(OP_WRITE)] = {
527 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
528 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
530 [C(OP_PREFETCH)] = {
531 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
532 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
535 [C(DTLB)] = {
536 [C(OP_READ)] = {
537 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
538 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
540 [ C(OP_WRITE) ] = {
541 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
542 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
544 [ C(OP_PREFETCH) ] = {
545 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
546 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
549 [C(ITLB)] = {
550 [C(OP_READ)] = {
551 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
552 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
554 [ C(OP_WRITE) ] = {
555 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
556 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
558 [ C(OP_PREFETCH) ] = {
559 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
560 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
563 [C(BPU)] = {
564 [C(OP_READ)] = {
565 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
566 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
568 [ C(OP_WRITE) ] = {
569 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
570 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
572 [ C(OP_PREFETCH) ] = {
573 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
574 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
577 [C(NODE)] = {
578 [C(OP_READ)] = {
579 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
580 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
582 [ C(OP_WRITE) ] = {
583 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
584 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
586 [ C(OP_PREFETCH) ] = {
587 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
588 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
593 static const struct sparc_pmu niagara2_pmu = {
594 .event_map = niagara2_event_map,
595 .cache_map = &niagara2_cache_map,
596 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
597 .read_pmc = sparc_default_read_pmc,
598 .write_pmc = sparc_default_write_pmc,
599 .upper_shift = 19,
600 .lower_shift = 6,
601 .event_mask = 0xfff,
602 .user_bit = PCR_UTRACE,
603 .priv_bit = PCR_STRACE,
604 .hv_bit = PCR_N2_HTRACE,
605 .irq_bit = 0x30,
606 .upper_nop = 0x220,
607 .lower_nop = 0x220,
608 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
609 SPARC_PMU_HAS_CONFLICTS),
610 .max_hw_events = 2,
611 .num_pcrs = 1,
612 .num_pic_regs = 1,
615 static const struct perf_event_map niagara4_perfmon_event_map[] = {
616 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
617 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
618 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
619 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
620 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
621 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
624 static const struct perf_event_map *niagara4_event_map(int event_id)
626 return &niagara4_perfmon_event_map[event_id];
629 static const cache_map_t niagara4_cache_map = {
630 [C(L1D)] = {
631 [C(OP_READ)] = {
632 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
633 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
635 [C(OP_WRITE)] = {
636 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
637 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
639 [C(OP_PREFETCH)] = {
640 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
641 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
644 [C(L1I)] = {
645 [C(OP_READ)] = {
646 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
647 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
649 [ C(OP_WRITE) ] = {
650 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
651 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
653 [ C(OP_PREFETCH) ] = {
654 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
655 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
658 [C(LL)] = {
659 [C(OP_READ)] = {
660 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
661 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
663 [C(OP_WRITE)] = {
664 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
665 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
667 [C(OP_PREFETCH)] = {
668 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
669 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
672 [C(DTLB)] = {
673 [C(OP_READ)] = {
674 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
675 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
677 [ C(OP_WRITE) ] = {
678 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
679 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
681 [ C(OP_PREFETCH) ] = {
682 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
683 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
686 [C(ITLB)] = {
687 [C(OP_READ)] = {
688 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
689 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
691 [ C(OP_WRITE) ] = {
692 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
693 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
695 [ C(OP_PREFETCH) ] = {
696 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
697 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
700 [C(BPU)] = {
701 [C(OP_READ)] = {
702 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
703 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
705 [ C(OP_WRITE) ] = {
706 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
707 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
709 [ C(OP_PREFETCH) ] = {
710 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
711 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
714 [C(NODE)] = {
715 [C(OP_READ)] = {
716 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
717 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
719 [ C(OP_WRITE) ] = {
720 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
721 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
723 [ C(OP_PREFETCH) ] = {
724 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
725 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
730 static u32 sparc_vt_read_pmc(int idx)
732 u64 val = pcr_ops->read_pic(idx);
734 return val & 0xffffffff;
737 static void sparc_vt_write_pmc(int idx, u64 val)
739 u64 pcr;
741 pcr = pcr_ops->read_pcr(idx);
742 /* ensure ov and ntc are reset */
743 pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
745 pcr_ops->write_pic(idx, val & 0xffffffff);
747 pcr_ops->write_pcr(idx, pcr);
750 static const struct sparc_pmu niagara4_pmu = {
751 .event_map = niagara4_event_map,
752 .cache_map = &niagara4_cache_map,
753 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
754 .read_pmc = sparc_vt_read_pmc,
755 .write_pmc = sparc_vt_write_pmc,
756 .upper_shift = 5,
757 .lower_shift = 5,
758 .event_mask = 0x7ff,
759 .user_bit = PCR_N4_UTRACE,
760 .priv_bit = PCR_N4_STRACE,
762 /* We explicitly don't support hypervisor tracing. The T4
763 * generates the overflow event for precise events via a trap
764 * which will not be generated (ie. it's completely lost) if
765 * we happen to be in the hypervisor when the event triggers.
766 * Essentially, the overflow event reporting is completely
767 * unusable when you have hypervisor mode tracing enabled.
769 .hv_bit = 0,
771 .irq_bit = PCR_N4_TOE,
772 .upper_nop = 0,
773 .lower_nop = 0,
774 .flags = 0,
775 .max_hw_events = 4,
776 .num_pcrs = 4,
777 .num_pic_regs = 4,
780 static const struct sparc_pmu sparc_m7_pmu = {
781 .event_map = niagara4_event_map,
782 .cache_map = &niagara4_cache_map,
783 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
784 .read_pmc = sparc_vt_read_pmc,
785 .write_pmc = sparc_vt_write_pmc,
786 .upper_shift = 5,
787 .lower_shift = 5,
788 .event_mask = 0x7ff,
789 .user_bit = PCR_N4_UTRACE,
790 .priv_bit = PCR_N4_STRACE,
792 /* We explicitly don't support hypervisor tracing. */
793 .hv_bit = 0,
795 .irq_bit = PCR_N4_TOE,
796 .upper_nop = 0,
797 .lower_nop = 0,
798 .flags = 0,
799 .max_hw_events = 4,
800 .num_pcrs = 4,
801 .num_pic_regs = 4,
803 static const struct sparc_pmu *sparc_pmu __read_mostly;
805 static u64 event_encoding(u64 event_id, int idx)
807 if (idx == PIC_UPPER_INDEX)
808 event_id <<= sparc_pmu->upper_shift;
809 else
810 event_id <<= sparc_pmu->lower_shift;
811 return event_id;
814 static u64 mask_for_index(int idx)
816 return event_encoding(sparc_pmu->event_mask, idx);
819 static u64 nop_for_index(int idx)
821 return event_encoding(idx == PIC_UPPER_INDEX ?
822 sparc_pmu->upper_nop :
823 sparc_pmu->lower_nop, idx);
826 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
828 u64 enc, val, mask = mask_for_index(idx);
829 int pcr_index = 0;
831 if (sparc_pmu->num_pcrs > 1)
832 pcr_index = idx;
834 enc = perf_event_get_enc(cpuc->events[idx]);
836 val = cpuc->pcr[pcr_index];
837 val &= ~mask;
838 val |= event_encoding(enc, idx);
839 cpuc->pcr[pcr_index] = val;
841 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
844 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
846 u64 mask = mask_for_index(idx);
847 u64 nop = nop_for_index(idx);
848 int pcr_index = 0;
849 u64 val;
851 if (sparc_pmu->num_pcrs > 1)
852 pcr_index = idx;
854 val = cpuc->pcr[pcr_index];
855 val &= ~mask;
856 val |= nop;
857 cpuc->pcr[pcr_index] = val;
859 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
862 static u64 sparc_perf_event_update(struct perf_event *event,
863 struct hw_perf_event *hwc, int idx)
865 int shift = 64 - 32;
866 u64 prev_raw_count, new_raw_count;
867 s64 delta;
869 again:
870 prev_raw_count = local64_read(&hwc->prev_count);
871 new_raw_count = sparc_pmu->read_pmc(idx);
873 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
874 new_raw_count) != prev_raw_count)
875 goto again;
877 delta = (new_raw_count << shift) - (prev_raw_count << shift);
878 delta >>= shift;
880 local64_add(delta, &event->count);
881 local64_sub(delta, &hwc->period_left);
883 return new_raw_count;
886 static int sparc_perf_event_set_period(struct perf_event *event,
887 struct hw_perf_event *hwc, int idx)
889 s64 left = local64_read(&hwc->period_left);
890 s64 period = hwc->sample_period;
891 int ret = 0;
893 if (unlikely(left <= -period)) {
894 left = period;
895 local64_set(&hwc->period_left, left);
896 hwc->last_period = period;
897 ret = 1;
900 if (unlikely(left <= 0)) {
901 left += period;
902 local64_set(&hwc->period_left, left);
903 hwc->last_period = period;
904 ret = 1;
906 if (left > MAX_PERIOD)
907 left = MAX_PERIOD;
909 local64_set(&hwc->prev_count, (u64)-left);
911 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
913 perf_event_update_userpage(event);
915 return ret;
918 static void read_in_all_counters(struct cpu_hw_events *cpuc)
920 int i;
922 for (i = 0; i < cpuc->n_events; i++) {
923 struct perf_event *cp = cpuc->event[i];
925 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
926 cpuc->current_idx[i] != cp->hw.idx) {
927 sparc_perf_event_update(cp, &cp->hw,
928 cpuc->current_idx[i]);
929 cpuc->current_idx[i] = PIC_NO_INDEX;
934 /* On this PMU all PICs are programmed using a single PCR. Calculate
935 * the combined control register value.
937 * For such chips we require that all of the events have the same
938 * configuration, so just fetch the settings from the first entry.
940 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
942 int i;
944 if (!cpuc->n_added)
945 goto out;
947 /* Assign to counters all unassigned events. */
948 for (i = 0; i < cpuc->n_events; i++) {
949 struct perf_event *cp = cpuc->event[i];
950 struct hw_perf_event *hwc = &cp->hw;
951 int idx = hwc->idx;
952 u64 enc;
954 if (cpuc->current_idx[i] != PIC_NO_INDEX)
955 continue;
957 sparc_perf_event_set_period(cp, hwc, idx);
958 cpuc->current_idx[i] = idx;
960 enc = perf_event_get_enc(cpuc->events[i]);
961 cpuc->pcr[0] &= ~mask_for_index(idx);
962 if (hwc->state & PERF_HES_STOPPED)
963 cpuc->pcr[0] |= nop_for_index(idx);
964 else
965 cpuc->pcr[0] |= event_encoding(enc, idx);
967 out:
968 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
971 static void sparc_pmu_start(struct perf_event *event, int flags);
973 /* On this PMU each PIC has it's own PCR control register. */
974 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
976 int i;
978 if (!cpuc->n_added)
979 goto out;
981 for (i = 0; i < cpuc->n_events; i++) {
982 struct perf_event *cp = cpuc->event[i];
983 struct hw_perf_event *hwc = &cp->hw;
984 int idx = hwc->idx;
986 if (cpuc->current_idx[i] != PIC_NO_INDEX)
987 continue;
989 cpuc->current_idx[i] = idx;
991 sparc_pmu_start(cp, PERF_EF_RELOAD);
993 out:
994 for (i = 0; i < cpuc->n_events; i++) {
995 struct perf_event *cp = cpuc->event[i];
996 int idx = cp->hw.idx;
998 cpuc->pcr[idx] |= cp->hw.config_base;
1002 /* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1005 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1007 if (cpuc->n_added)
1008 read_in_all_counters(cpuc);
1010 if (sparc_pmu->num_pcrs == 1) {
1011 calculate_single_pcr(cpuc);
1012 } else {
1013 calculate_multiple_pcrs(cpuc);
1017 static void sparc_pmu_enable(struct pmu *pmu)
1019 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020 int i;
1022 if (cpuc->enabled)
1023 return;
1025 cpuc->enabled = 1;
1026 barrier();
1028 if (cpuc->n_events)
1029 update_pcrs_for_enable(cpuc);
1031 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1035 static void sparc_pmu_disable(struct pmu *pmu)
1037 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038 int i;
1040 if (!cpuc->enabled)
1041 return;
1043 cpuc->enabled = 0;
1044 cpuc->n_added = 0;
1046 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047 u64 val = cpuc->pcr[i];
1049 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051 cpuc->pcr[i] = val;
1052 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1056 static int active_event_index(struct cpu_hw_events *cpuc,
1057 struct perf_event *event)
1059 int i;
1061 for (i = 0; i < cpuc->n_events; i++) {
1062 if (cpuc->event[i] == event)
1063 break;
1065 BUG_ON(i == cpuc->n_events);
1066 return cpuc->current_idx[i];
1069 static void sparc_pmu_start(struct perf_event *event, int flags)
1071 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072 int idx = active_event_index(cpuc, event);
1074 if (flags & PERF_EF_RELOAD) {
1075 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076 sparc_perf_event_set_period(event, &event->hw, idx);
1079 event->hw.state = 0;
1081 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1084 static void sparc_pmu_stop(struct perf_event *event, int flags)
1086 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087 int idx = active_event_index(cpuc, event);
1089 if (!(event->hw.state & PERF_HES_STOPPED)) {
1090 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091 event->hw.state |= PERF_HES_STOPPED;
1094 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095 sparc_perf_event_update(event, &event->hw, idx);
1096 event->hw.state |= PERF_HES_UPTODATE;
1100 static void sparc_pmu_del(struct perf_event *event, int _flags)
1102 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103 unsigned long flags;
1104 int i;
1106 local_irq_save(flags);
1108 for (i = 0; i < cpuc->n_events; i++) {
1109 if (event == cpuc->event[i]) {
1110 /* Absorb the final count and turn off the
1111 * event.
1113 sparc_pmu_stop(event, PERF_EF_UPDATE);
1115 /* Shift remaining entries down into
1116 * the existing slot.
1118 while (++i < cpuc->n_events) {
1119 cpuc->event[i - 1] = cpuc->event[i];
1120 cpuc->events[i - 1] = cpuc->events[i];
1121 cpuc->current_idx[i - 1] =
1122 cpuc->current_idx[i];
1125 perf_event_update_userpage(event);
1127 cpuc->n_events--;
1128 break;
1132 local_irq_restore(flags);
1135 static void sparc_pmu_read(struct perf_event *event)
1137 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138 int idx = active_event_index(cpuc, event);
1139 struct hw_perf_event *hwc = &event->hw;
1141 sparc_perf_event_update(event, hwc, idx);
1144 static atomic_t active_events = ATOMIC_INIT(0);
1145 static DEFINE_MUTEX(pmc_grab_mutex);
1147 static void perf_stop_nmi_watchdog(void *unused)
1149 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150 int i;
1152 stop_nmi_watchdog(NULL);
1153 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1157 static void perf_event_grab_pmc(void)
1159 if (atomic_inc_not_zero(&active_events))
1160 return;
1162 mutex_lock(&pmc_grab_mutex);
1163 if (atomic_read(&active_events) == 0) {
1164 if (atomic_read(&nmi_active) > 0) {
1165 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166 BUG_ON(atomic_read(&nmi_active) != 0);
1168 atomic_inc(&active_events);
1170 mutex_unlock(&pmc_grab_mutex);
1173 static void perf_event_release_pmc(void)
1175 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176 if (atomic_read(&nmi_active) == 0)
1177 on_each_cpu(start_nmi_watchdog, NULL, 1);
1178 mutex_unlock(&pmc_grab_mutex);
1182 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1184 unsigned int cache_type, cache_op, cache_result;
1185 const struct perf_event_map *pmap;
1187 if (!sparc_pmu->cache_map)
1188 return ERR_PTR(-ENOENT);
1190 cache_type = (config >> 0) & 0xff;
1191 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192 return ERR_PTR(-EINVAL);
1194 cache_op = (config >> 8) & 0xff;
1195 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196 return ERR_PTR(-EINVAL);
1198 cache_result = (config >> 16) & 0xff;
1199 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200 return ERR_PTR(-EINVAL);
1202 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1204 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205 return ERR_PTR(-ENOENT);
1207 if (pmap->encoding == CACHE_OP_NONSENSE)
1208 return ERR_PTR(-EINVAL);
1210 return pmap;
1213 static void hw_perf_event_destroy(struct perf_event *event)
1215 perf_event_release_pmc();
1218 /* Make sure all events can be scheduled into the hardware at
1219 * the same time. This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success. These are pending indexes. When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1228 static int sparc_check_constraints(struct perf_event **evts,
1229 unsigned long *events, int n_ev)
1231 u8 msk0 = 0, msk1 = 0;
1232 int idx0 = 0;
1234 /* This case is possible when we are invoked from
1235 * hw_perf_group_sched_in().
1237 if (!n_ev)
1238 return 0;
1240 if (n_ev > sparc_pmu->max_hw_events)
1241 return -1;
1243 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244 int i;
1246 for (i = 0; i < n_ev; i++)
1247 evts[i]->hw.idx = i;
1248 return 0;
1251 msk0 = perf_event_get_msk(events[0]);
1252 if (n_ev == 1) {
1253 if (msk0 & PIC_LOWER)
1254 idx0 = 1;
1255 goto success;
1257 BUG_ON(n_ev != 2);
1258 msk1 = perf_event_get_msk(events[1]);
1260 /* If both events can go on any counter, OK. */
1261 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262 msk1 == (PIC_UPPER | PIC_LOWER))
1263 goto success;
1265 /* If one event is limited to a specific counter,
1266 * and the other can go on both, OK.
1268 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269 msk1 == (PIC_UPPER | PIC_LOWER)) {
1270 if (msk0 & PIC_LOWER)
1271 idx0 = 1;
1272 goto success;
1275 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276 msk0 == (PIC_UPPER | PIC_LOWER)) {
1277 if (msk1 & PIC_UPPER)
1278 idx0 = 1;
1279 goto success;
1282 /* If the events are fixed to different counters, OK. */
1283 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285 if (msk0 & PIC_LOWER)
1286 idx0 = 1;
1287 goto success;
1290 /* Otherwise, there is a conflict. */
1291 return -1;
1293 success:
1294 evts[0]->hw.idx = idx0;
1295 if (n_ev == 2)
1296 evts[1]->hw.idx = idx0 ^ 1;
1297 return 0;
1300 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1302 int eu = 0, ek = 0, eh = 0;
1303 struct perf_event *event;
1304 int i, n, first;
1306 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307 return 0;
1309 n = n_prev + n_new;
1310 if (n <= 1)
1311 return 0;
1313 first = 1;
1314 for (i = 0; i < n; i++) {
1315 event = evts[i];
1316 if (first) {
1317 eu = event->attr.exclude_user;
1318 ek = event->attr.exclude_kernel;
1319 eh = event->attr.exclude_hv;
1320 first = 0;
1321 } else if (event->attr.exclude_user != eu ||
1322 event->attr.exclude_kernel != ek ||
1323 event->attr.exclude_hv != eh) {
1324 return -EAGAIN;
1328 return 0;
1331 static int collect_events(struct perf_event *group, int max_count,
1332 struct perf_event *evts[], unsigned long *events,
1333 int *current_idx)
1335 struct perf_event *event;
1336 int n = 0;
1338 if (!is_software_event(group)) {
1339 if (n >= max_count)
1340 return -1;
1341 evts[n] = group;
1342 events[n] = group->hw.event_base;
1343 current_idx[n++] = PIC_NO_INDEX;
1345 list_for_each_entry(event, &group->sibling_list, group_entry) {
1346 if (!is_software_event(event) &&
1347 event->state != PERF_EVENT_STATE_OFF) {
1348 if (n >= max_count)
1349 return -1;
1350 evts[n] = event;
1351 events[n] = event->hw.event_base;
1352 current_idx[n++] = PIC_NO_INDEX;
1355 return n;
1358 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361 int n0, ret = -EAGAIN;
1362 unsigned long flags;
1364 local_irq_save(flags);
1366 n0 = cpuc->n_events;
1367 if (n0 >= sparc_pmu->max_hw_events)
1368 goto out;
1370 cpuc->event[n0] = event;
1371 cpuc->events[n0] = event->hw.event_base;
1372 cpuc->current_idx[n0] = PIC_NO_INDEX;
1374 event->hw.state = PERF_HES_UPTODATE;
1375 if (!(ef_flags & PERF_EF_START))
1376 event->hw.state |= PERF_HES_STOPPED;
1379 * If group events scheduling transaction was started,
1380 * skip the schedulability test here, it will be performed
1381 * at commit time(->commit_txn) as a whole
1383 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384 goto nocheck;
1386 if (check_excludes(cpuc->event, n0, 1))
1387 goto out;
1388 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389 goto out;
1391 nocheck:
1392 cpuc->n_events++;
1393 cpuc->n_added++;
1395 ret = 0;
1396 out:
1397 local_irq_restore(flags);
1398 return ret;
1401 static int sparc_pmu_event_init(struct perf_event *event)
1403 struct perf_event_attr *attr = &event->attr;
1404 struct perf_event *evts[MAX_HWEVENTS];
1405 struct hw_perf_event *hwc = &event->hw;
1406 unsigned long events[MAX_HWEVENTS];
1407 int current_idx_dmy[MAX_HWEVENTS];
1408 const struct perf_event_map *pmap;
1409 int n;
1411 if (atomic_read(&nmi_active) < 0)
1412 return -ENODEV;
1414 /* does not support taken branch sampling */
1415 if (has_branch_stack(event))
1416 return -EOPNOTSUPP;
1418 switch (attr->type) {
1419 case PERF_TYPE_HARDWARE:
1420 if (attr->config >= sparc_pmu->max_events)
1421 return -EINVAL;
1422 pmap = sparc_pmu->event_map(attr->config);
1423 break;
1425 case PERF_TYPE_HW_CACHE:
1426 pmap = sparc_map_cache_event(attr->config);
1427 if (IS_ERR(pmap))
1428 return PTR_ERR(pmap);
1429 break;
1431 case PERF_TYPE_RAW:
1432 pmap = NULL;
1433 break;
1435 default:
1436 return -ENOENT;
1440 if (pmap) {
1441 hwc->event_base = perf_event_encode(pmap);
1442 } else {
1444 * User gives us "(encoding << 16) | pic_mask" for
1445 * PERF_TYPE_RAW events.
1447 hwc->event_base = attr->config;
1450 /* We save the enable bits in the config_base. */
1451 hwc->config_base = sparc_pmu->irq_bit;
1452 if (!attr->exclude_user)
1453 hwc->config_base |= sparc_pmu->user_bit;
1454 if (!attr->exclude_kernel)
1455 hwc->config_base |= sparc_pmu->priv_bit;
1456 if (!attr->exclude_hv)
1457 hwc->config_base |= sparc_pmu->hv_bit;
1459 n = 0;
1460 if (event->group_leader != event) {
1461 n = collect_events(event->group_leader,
1462 sparc_pmu->max_hw_events - 1,
1463 evts, events, current_idx_dmy);
1464 if (n < 0)
1465 return -EINVAL;
1467 events[n] = hwc->event_base;
1468 evts[n] = event;
1470 if (check_excludes(evts, n, 1))
1471 return -EINVAL;
1473 if (sparc_check_constraints(evts, events, n + 1))
1474 return -EINVAL;
1476 hwc->idx = PIC_NO_INDEX;
1478 /* Try to do all error checking before this point, as unwinding
1479 * state after grabbing the PMC is difficult.
1481 perf_event_grab_pmc();
1482 event->destroy = hw_perf_event_destroy;
1484 if (!hwc->sample_period) {
1485 hwc->sample_period = MAX_PERIOD;
1486 hwc->last_period = hwc->sample_period;
1487 local64_set(&hwc->period_left, hwc->sample_period);
1490 return 0;
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1498 static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1500 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1502 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1504 cpuhw->txn_flags = txn_flags;
1505 if (txn_flags & ~PERF_PMU_TXN_ADD)
1506 return;
1508 perf_pmu_disable(pmu);
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1516 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1518 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 unsigned int txn_flags;
1521 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1523 txn_flags = cpuhw->txn_flags;
1524 cpuhw->txn_flags = 0;
1525 if (txn_flags & ~PERF_PMU_TXN_ADD)
1526 return;
1528 perf_pmu_enable(pmu);
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1536 static int sparc_pmu_commit_txn(struct pmu *pmu)
1538 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539 int n;
1541 if (!sparc_pmu)
1542 return -EINVAL;
1544 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1546 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547 cpuc->txn_flags = 0;
1548 return 0;
1551 n = cpuc->n_events;
1552 if (check_excludes(cpuc->event, 0, n))
1553 return -EINVAL;
1554 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555 return -EAGAIN;
1557 cpuc->txn_flags = 0;
1558 perf_pmu_enable(pmu);
1559 return 0;
1562 static struct pmu pmu = {
1563 .pmu_enable = sparc_pmu_enable,
1564 .pmu_disable = sparc_pmu_disable,
1565 .event_init = sparc_pmu_event_init,
1566 .add = sparc_pmu_add,
1567 .del = sparc_pmu_del,
1568 .start = sparc_pmu_start,
1569 .stop = sparc_pmu_stop,
1570 .read = sparc_pmu_read,
1571 .start_txn = sparc_pmu_start_txn,
1572 .cancel_txn = sparc_pmu_cancel_txn,
1573 .commit_txn = sparc_pmu_commit_txn,
1576 void perf_event_print_debug(void)
1578 unsigned long flags;
1579 int cpu, i;
1581 if (!sparc_pmu)
1582 return;
1584 local_irq_save(flags);
1586 cpu = smp_processor_id();
1588 pr_info("\n");
1589 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590 pr_info("CPU#%d: PCR%d[%016llx]\n",
1591 cpu, i, pcr_ops->read_pcr(i));
1592 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593 pr_info("CPU#%d: PIC%d[%016llx]\n",
1594 cpu, i, pcr_ops->read_pic(i));
1596 local_irq_restore(flags);
1599 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600 unsigned long cmd, void *__args)
1602 struct die_args *args = __args;
1603 struct perf_sample_data data;
1604 struct cpu_hw_events *cpuc;
1605 struct pt_regs *regs;
1606 int i;
1608 if (!atomic_read(&active_events))
1609 return NOTIFY_DONE;
1611 switch (cmd) {
1612 case DIE_NMI:
1613 break;
1615 default:
1616 return NOTIFY_DONE;
1619 regs = args->regs;
1621 cpuc = this_cpu_ptr(&cpu_hw_events);
1623 /* If the PMU has the TOE IRQ enable bits, we need to do a
1624 * dummy write to the %pcr to clear the overflow bits and thus
1625 * the interrupt.
1627 * Do this before we peek at the counters to determine
1628 * overflow so we don't lose any events.
1630 if (sparc_pmu->irq_bit &&
1631 sparc_pmu->num_pcrs == 1)
1632 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1634 for (i = 0; i < cpuc->n_events; i++) {
1635 struct perf_event *event = cpuc->event[i];
1636 int idx = cpuc->current_idx[i];
1637 struct hw_perf_event *hwc;
1638 u64 val;
1640 if (sparc_pmu->irq_bit &&
1641 sparc_pmu->num_pcrs > 1)
1642 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1644 hwc = &event->hw;
1645 val = sparc_perf_event_update(event, hwc, idx);
1646 if (val & (1ULL << 31))
1647 continue;
1649 perf_sample_data_init(&data, 0, hwc->last_period);
1650 if (!sparc_perf_event_set_period(event, hwc, idx))
1651 continue;
1653 if (perf_event_overflow(event, &data, regs))
1654 sparc_pmu_stop(event, 0);
1657 return NOTIFY_STOP;
1660 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661 .notifier_call = perf_event_nmi_handler,
1664 static bool __init supported_pmu(void)
1666 if (!strcmp(sparc_pmu_type, "ultra3") ||
1667 !strcmp(sparc_pmu_type, "ultra3+") ||
1668 !strcmp(sparc_pmu_type, "ultra3i") ||
1669 !strcmp(sparc_pmu_type, "ultra4+")) {
1670 sparc_pmu = &ultra3_pmu;
1671 return true;
1673 if (!strcmp(sparc_pmu_type, "niagara")) {
1674 sparc_pmu = &niagara1_pmu;
1675 return true;
1677 if (!strcmp(sparc_pmu_type, "niagara2") ||
1678 !strcmp(sparc_pmu_type, "niagara3")) {
1679 sparc_pmu = &niagara2_pmu;
1680 return true;
1682 if (!strcmp(sparc_pmu_type, "niagara4") ||
1683 !strcmp(sparc_pmu_type, "niagara5")) {
1684 sparc_pmu = &niagara4_pmu;
1685 return true;
1687 if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688 sparc_pmu = &sparc_m7_pmu;
1689 return true;
1691 return false;
1694 static int __init init_hw_perf_events(void)
1696 int err;
1698 pr_info("Performance events: ");
1700 err = pcr_arch_init();
1701 if (err || !supported_pmu()) {
1702 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703 return 0;
1706 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1708 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709 register_die_notifier(&perf_event_nmi_notifier);
1711 return 0;
1713 pure_initcall(init_hw_perf_events);
1715 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716 struct pt_regs *regs)
1718 unsigned long ksp, fp;
1719 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720 int graph = 0;
1721 #endif
1723 stack_trace_flush();
1725 perf_callchain_store(entry, regs->tpc);
1727 ksp = regs->u_regs[UREG_I6];
1728 fp = ksp + STACK_BIAS;
1729 do {
1730 struct sparc_stackf *sf;
1731 struct pt_regs *regs;
1732 unsigned long pc;
1734 if (!kstack_valid(current_thread_info(), fp))
1735 break;
1737 sf = (struct sparc_stackf *) fp;
1738 regs = (struct pt_regs *) (sf + 1);
1740 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741 if (user_mode(regs))
1742 break;
1743 pc = regs->tpc;
1744 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745 } else {
1746 pc = sf->callers_pc;
1747 fp = (unsigned long)sf->fp + STACK_BIAS;
1749 perf_callchain_store(entry, pc);
1750 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752 int index = current->curr_ret_stack;
1753 if (current->ret_stack && index >= graph) {
1754 pc = current->ret_stack[index - graph].ret;
1755 perf_callchain_store(entry, pc);
1756 graph++;
1759 #endif
1760 } while (entry->nr < entry->max_stack);
1763 static inline int
1764 valid_user_frame(const void __user *fp, unsigned long size)
1766 /* addresses should be at least 4-byte aligned */
1767 if (((unsigned long) fp) & 3)
1768 return 0;
1770 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1773 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774 struct pt_regs *regs)
1776 unsigned long ufp;
1778 ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1779 do {
1780 struct sparc_stackf __user *usf;
1781 struct sparc_stackf sf;
1782 unsigned long pc;
1784 usf = (struct sparc_stackf __user *)ufp;
1785 if (!valid_user_frame(usf, sizeof(sf)))
1786 break;
1788 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789 break;
1791 pc = sf.callers_pc;
1792 ufp = (unsigned long)sf.fp + STACK_BIAS;
1793 perf_callchain_store(entry, pc);
1794 } while (entry->nr < entry->max_stack);
1797 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798 struct pt_regs *regs)
1800 unsigned long ufp;
1802 ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1803 do {
1804 unsigned long pc;
1806 if (thread32_stack_is_64bit(ufp)) {
1807 struct sparc_stackf __user *usf;
1808 struct sparc_stackf sf;
1810 ufp += STACK_BIAS;
1811 usf = (struct sparc_stackf __user *)ufp;
1812 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813 break;
1814 pc = sf.callers_pc & 0xffffffff;
1815 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816 } else {
1817 struct sparc_stackf32 __user *usf;
1818 struct sparc_stackf32 sf;
1819 usf = (struct sparc_stackf32 __user *)ufp;
1820 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821 break;
1822 pc = sf.callers_pc;
1823 ufp = (unsigned long)sf.fp;
1825 perf_callchain_store(entry, pc);
1826 } while (entry->nr < entry->max_stack);
1829 void
1830 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1832 u64 saved_fault_address = current_thread_info()->fault_address;
1833 u8 saved_fault_code = get_thread_fault_code();
1834 mm_segment_t old_fs;
1836 perf_callchain_store(entry, regs->tpc);
1838 if (!current->mm)
1839 return;
1841 old_fs = get_fs();
1842 set_fs(USER_DS);
1844 flushw_user();
1846 pagefault_disable();
1848 if (test_thread_flag(TIF_32BIT))
1849 perf_callchain_user_32(entry, regs);
1850 else
1851 perf_callchain_user_64(entry, regs);
1853 pagefault_enable();
1855 set_fs(old_fs);
1856 set_thread_fault_code(saved_fault_code);
1857 current_thread_info()->fault_address = saved_fault_address;