Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / sparc / kernel / process_64.c
blob318efd784a0b3cfd707cb400a633793d64981eb2
1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/process.c
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
9 /*
10 * This file handles the architecture-dependent parts of process handling..
13 #include <stdarg.h>
15 #include <linux/errno.h>
16 #include <linux/export.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/fs.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/compat.h>
31 #include <linux/tick.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/perf_event.h>
35 #include <linux/elfcore.h>
36 #include <linux/sysrq.h>
37 #include <linux/nmi.h>
38 #include <linux/context_tracking.h>
40 #include <linux/uaccess.h>
41 #include <asm/page.h>
42 #include <asm/pgalloc.h>
43 #include <asm/pgtable.h>
44 #include <asm/processor.h>
45 #include <asm/pstate.h>
46 #include <asm/elf.h>
47 #include <asm/fpumacro.h>
48 #include <asm/head.h>
49 #include <asm/cpudata.h>
50 #include <asm/mmu_context.h>
51 #include <asm/unistd.h>
52 #include <asm/hypervisor.h>
53 #include <asm/syscalls.h>
54 #include <asm/irq_regs.h>
55 #include <asm/smp.h>
56 #include <asm/pcr.h>
58 #include "kstack.h"
60 /* Idle loop support on sparc64. */
61 void arch_cpu_idle(void)
63 if (tlb_type != hypervisor) {
64 touch_nmi_watchdog();
65 local_irq_enable();
66 } else {
67 unsigned long pstate;
69 local_irq_enable();
71 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
72 * the cpu sleep hypervisor call.
74 __asm__ __volatile__(
75 "rdpr %%pstate, %0\n\t"
76 "andn %0, %1, %0\n\t"
77 "wrpr %0, %%g0, %%pstate"
78 : "=&r" (pstate)
79 : "i" (PSTATE_IE));
81 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
82 sun4v_cpu_yield();
83 /* If resumed by cpu_poke then we need to explicitly
84 * call scheduler_ipi().
86 scheduler_poke();
89 /* Re-enable interrupts. */
90 __asm__ __volatile__(
91 "rdpr %%pstate, %0\n\t"
92 "or %0, %1, %0\n\t"
93 "wrpr %0, %%g0, %%pstate"
94 : "=&r" (pstate)
95 : "i" (PSTATE_IE));
99 #ifdef CONFIG_HOTPLUG_CPU
100 void arch_cpu_idle_dead(void)
102 sched_preempt_enable_no_resched();
103 cpu_play_dead();
105 #endif
107 #ifdef CONFIG_COMPAT
108 static void show_regwindow32(struct pt_regs *regs)
110 struct reg_window32 __user *rw;
111 struct reg_window32 r_w;
112 mm_segment_t old_fs;
114 __asm__ __volatile__ ("flushw");
115 rw = compat_ptr((unsigned int)regs->u_regs[14]);
116 old_fs = get_fs();
117 set_fs (USER_DS);
118 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
119 set_fs (old_fs);
120 return;
123 set_fs (old_fs);
124 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
125 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
126 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
127 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
128 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
129 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
130 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
131 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
133 #else
134 #define show_regwindow32(regs) do { } while (0)
135 #endif
137 static void show_regwindow(struct pt_regs *regs)
139 struct reg_window __user *rw;
140 struct reg_window *rwk;
141 struct reg_window r_w;
142 mm_segment_t old_fs;
144 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
145 __asm__ __volatile__ ("flushw");
146 rw = (struct reg_window __user *)
147 (regs->u_regs[14] + STACK_BIAS);
148 rwk = (struct reg_window *)
149 (regs->u_regs[14] + STACK_BIAS);
150 if (!(regs->tstate & TSTATE_PRIV)) {
151 old_fs = get_fs();
152 set_fs (USER_DS);
153 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
154 set_fs (old_fs);
155 return;
157 rwk = &r_w;
158 set_fs (old_fs);
160 } else {
161 show_regwindow32(regs);
162 return;
164 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
165 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
166 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
167 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
168 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
169 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
170 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
171 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
172 if (regs->tstate & TSTATE_PRIV)
173 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
176 void show_regs(struct pt_regs *regs)
178 show_regs_print_info(KERN_DEFAULT);
180 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
181 regs->tpc, regs->tnpc, regs->y, print_tainted());
182 printk("TPC: <%pS>\n", (void *) regs->tpc);
183 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
184 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
185 regs->u_regs[3]);
186 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
187 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
188 regs->u_regs[7]);
189 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
190 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
191 regs->u_regs[11]);
192 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
193 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
194 regs->u_regs[15]);
195 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
196 show_regwindow(regs);
197 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
200 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
201 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
203 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
204 int this_cpu)
206 struct global_reg_snapshot *rp;
208 flushw_all();
210 rp = &global_cpu_snapshot[this_cpu].reg;
212 rp->tstate = regs->tstate;
213 rp->tpc = regs->tpc;
214 rp->tnpc = regs->tnpc;
215 rp->o7 = regs->u_regs[UREG_I7];
217 if (regs->tstate & TSTATE_PRIV) {
218 struct reg_window *rw;
220 rw = (struct reg_window *)
221 (regs->u_regs[UREG_FP] + STACK_BIAS);
222 if (kstack_valid(tp, (unsigned long) rw)) {
223 rp->i7 = rw->ins[7];
224 rw = (struct reg_window *)
225 (rw->ins[6] + STACK_BIAS);
226 if (kstack_valid(tp, (unsigned long) rw))
227 rp->rpc = rw->ins[7];
229 } else {
230 rp->i7 = 0;
231 rp->rpc = 0;
233 rp->thread = tp;
236 /* In order to avoid hangs we do not try to synchronize with the
237 * global register dump client cpus. The last store they make is to
238 * the thread pointer, so do a short poll waiting for that to become
239 * non-NULL.
241 static void __global_reg_poll(struct global_reg_snapshot *gp)
243 int limit = 0;
245 while (!gp->thread && ++limit < 100) {
246 barrier();
247 udelay(1);
251 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
253 struct thread_info *tp = current_thread_info();
254 struct pt_regs *regs = get_irq_regs();
255 unsigned long flags;
256 int this_cpu, cpu;
258 if (!regs)
259 regs = tp->kregs;
261 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
263 this_cpu = raw_smp_processor_id();
265 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
267 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
268 __global_reg_self(tp, regs, this_cpu);
270 smp_fetch_global_regs();
272 for_each_cpu(cpu, mask) {
273 struct global_reg_snapshot *gp;
275 if (exclude_self && cpu == this_cpu)
276 continue;
278 gp = &global_cpu_snapshot[cpu].reg;
280 __global_reg_poll(gp);
282 tp = gp->thread;
283 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
284 (cpu == this_cpu ? '*' : ' '), cpu,
285 gp->tstate, gp->tpc, gp->tnpc,
286 ((tp && tp->task) ? tp->task->comm : "NULL"),
287 ((tp && tp->task) ? tp->task->pid : -1));
289 if (gp->tstate & TSTATE_PRIV) {
290 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
291 (void *) gp->tpc,
292 (void *) gp->o7,
293 (void *) gp->i7,
294 (void *) gp->rpc);
295 } else {
296 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
297 gp->tpc, gp->o7, gp->i7, gp->rpc);
300 touch_nmi_watchdog();
303 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
308 #ifdef CONFIG_MAGIC_SYSRQ
310 static void sysrq_handle_globreg(int key)
312 trigger_all_cpu_backtrace();
315 static struct sysrq_key_op sparc_globalreg_op = {
316 .handler = sysrq_handle_globreg,
317 .help_msg = "global-regs(y)",
318 .action_msg = "Show Global CPU Regs",
321 static void __global_pmu_self(int this_cpu)
323 struct global_pmu_snapshot *pp;
324 int i, num;
326 if (!pcr_ops)
327 return;
329 pp = &global_cpu_snapshot[this_cpu].pmu;
331 num = 1;
332 if (tlb_type == hypervisor &&
333 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
334 num = 4;
336 for (i = 0; i < num; i++) {
337 pp->pcr[i] = pcr_ops->read_pcr(i);
338 pp->pic[i] = pcr_ops->read_pic(i);
342 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
344 int limit = 0;
346 while (!pp->pcr[0] && ++limit < 100) {
347 barrier();
348 udelay(1);
352 static void pmu_snapshot_all_cpus(void)
354 unsigned long flags;
355 int this_cpu, cpu;
357 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
359 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
361 this_cpu = raw_smp_processor_id();
363 __global_pmu_self(this_cpu);
365 smp_fetch_global_pmu();
367 for_each_online_cpu(cpu) {
368 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
370 __global_pmu_poll(pp);
372 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
373 (cpu == this_cpu ? '*' : ' '), cpu,
374 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
375 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
377 touch_nmi_watchdog();
380 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
382 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
385 static void sysrq_handle_globpmu(int key)
387 pmu_snapshot_all_cpus();
390 static struct sysrq_key_op sparc_globalpmu_op = {
391 .handler = sysrq_handle_globpmu,
392 .help_msg = "global-pmu(x)",
393 .action_msg = "Show Global PMU Regs",
396 static int __init sparc_sysrq_init(void)
398 int ret = register_sysrq_key('y', &sparc_globalreg_op);
400 if (!ret)
401 ret = register_sysrq_key('x', &sparc_globalpmu_op);
402 return ret;
405 core_initcall(sparc_sysrq_init);
407 #endif
409 /* Free current thread data structures etc.. */
410 void exit_thread(struct task_struct *tsk)
412 struct thread_info *t = task_thread_info(tsk);
414 if (t->utraps) {
415 if (t->utraps[0] < 2)
416 kfree (t->utraps);
417 else
418 t->utraps[0]--;
422 void flush_thread(void)
424 struct thread_info *t = current_thread_info();
425 struct mm_struct *mm;
427 mm = t->task->mm;
428 if (mm)
429 tsb_context_switch(mm);
431 set_thread_wsaved(0);
433 /* Clear FPU register state. */
434 t->fpsaved[0] = 0;
437 /* It's a bit more tricky when 64-bit tasks are involved... */
438 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
440 bool stack_64bit = test_thread_64bit_stack(psp);
441 unsigned long fp, distance, rval;
443 if (stack_64bit) {
444 csp += STACK_BIAS;
445 psp += STACK_BIAS;
446 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
447 fp += STACK_BIAS;
448 if (test_thread_flag(TIF_32BIT))
449 fp &= 0xffffffff;
450 } else
451 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
453 /* Now align the stack as this is mandatory in the Sparc ABI
454 * due to how register windows work. This hides the
455 * restriction from thread libraries etc.
457 csp &= ~15UL;
459 distance = fp - psp;
460 rval = (csp - distance);
461 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
462 rval = 0;
463 else if (!stack_64bit) {
464 if (put_user(((u32)csp),
465 &(((struct reg_window32 __user *)rval)->ins[6])))
466 rval = 0;
467 } else {
468 if (put_user(((u64)csp - STACK_BIAS),
469 &(((struct reg_window __user *)rval)->ins[6])))
470 rval = 0;
471 else
472 rval = rval - STACK_BIAS;
475 return rval;
478 /* Standard stuff. */
479 static inline void shift_window_buffer(int first_win, int last_win,
480 struct thread_info *t)
482 int i;
484 for (i = first_win; i < last_win; i++) {
485 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
486 memcpy(&t->reg_window[i], &t->reg_window[i+1],
487 sizeof(struct reg_window));
491 void synchronize_user_stack(void)
493 struct thread_info *t = current_thread_info();
494 unsigned long window;
496 flush_user_windows();
497 if ((window = get_thread_wsaved()) != 0) {
498 window -= 1;
499 do {
500 struct reg_window *rwin = &t->reg_window[window];
501 int winsize = sizeof(struct reg_window);
502 unsigned long sp;
504 sp = t->rwbuf_stkptrs[window];
506 if (test_thread_64bit_stack(sp))
507 sp += STACK_BIAS;
508 else
509 winsize = sizeof(struct reg_window32);
511 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
512 shift_window_buffer(window, get_thread_wsaved() - 1, t);
513 set_thread_wsaved(get_thread_wsaved() - 1);
515 } while (window--);
519 static void stack_unaligned(unsigned long sp)
521 siginfo_t info;
523 info.si_signo = SIGBUS;
524 info.si_errno = 0;
525 info.si_code = BUS_ADRALN;
526 info.si_addr = (void __user *) sp;
527 info.si_trapno = 0;
528 force_sig_info(SIGBUS, &info, current);
531 void fault_in_user_windows(void)
533 struct thread_info *t = current_thread_info();
534 unsigned long window;
536 flush_user_windows();
537 window = get_thread_wsaved();
539 if (likely(window != 0)) {
540 window -= 1;
541 do {
542 struct reg_window *rwin = &t->reg_window[window];
543 int winsize = sizeof(struct reg_window);
544 unsigned long sp;
546 sp = t->rwbuf_stkptrs[window];
548 if (test_thread_64bit_stack(sp))
549 sp += STACK_BIAS;
550 else
551 winsize = sizeof(struct reg_window32);
553 if (unlikely(sp & 0x7UL))
554 stack_unaligned(sp);
556 if (unlikely(copy_to_user((char __user *)sp,
557 rwin, winsize)))
558 goto barf;
559 } while (window--);
561 set_thread_wsaved(0);
562 return;
564 barf:
565 set_thread_wsaved(window + 1);
566 user_exit();
567 do_exit(SIGILL);
570 asmlinkage long sparc_do_fork(unsigned long clone_flags,
571 unsigned long stack_start,
572 struct pt_regs *regs,
573 unsigned long stack_size)
575 int __user *parent_tid_ptr, *child_tid_ptr;
576 unsigned long orig_i1 = regs->u_regs[UREG_I1];
577 long ret;
579 #ifdef CONFIG_COMPAT
580 if (test_thread_flag(TIF_32BIT)) {
581 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
582 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
583 } else
584 #endif
586 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
587 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
590 ret = do_fork(clone_flags, stack_start, stack_size,
591 parent_tid_ptr, child_tid_ptr);
593 /* If we get an error and potentially restart the system
594 * call, we're screwed because copy_thread() clobbered
595 * the parent's %o1. So detect that case and restore it
596 * here.
598 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
599 regs->u_regs[UREG_I1] = orig_i1;
601 return ret;
604 /* Copy a Sparc thread. The fork() return value conventions
605 * under SunOS are nothing short of bletcherous:
606 * Parent --> %o0 == childs pid, %o1 == 0
607 * Child --> %o0 == parents pid, %o1 == 1
609 int copy_thread(unsigned long clone_flags, unsigned long sp,
610 unsigned long arg, struct task_struct *p)
612 struct thread_info *t = task_thread_info(p);
613 struct pt_regs *regs = current_pt_regs();
614 struct sparc_stackf *parent_sf;
615 unsigned long child_stack_sz;
616 char *child_trap_frame;
618 /* Calculate offset to stack_frame & pt_regs */
619 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
620 child_trap_frame = (task_stack_page(p) +
621 (THREAD_SIZE - child_stack_sz));
623 t->new_child = 1;
624 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
625 t->kregs = (struct pt_regs *) (child_trap_frame +
626 sizeof(struct sparc_stackf));
627 t->fpsaved[0] = 0;
629 if (unlikely(p->flags & PF_KTHREAD)) {
630 memset(child_trap_frame, 0, child_stack_sz);
631 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
632 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
633 t->current_ds = ASI_P;
634 t->kregs->u_regs[UREG_G1] = sp; /* function */
635 t->kregs->u_regs[UREG_G2] = arg;
636 return 0;
639 parent_sf = ((struct sparc_stackf *) regs) - 1;
640 memcpy(child_trap_frame, parent_sf, child_stack_sz);
641 if (t->flags & _TIF_32BIT) {
642 sp &= 0x00000000ffffffffUL;
643 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
645 t->kregs->u_regs[UREG_FP] = sp;
646 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
647 (regs->tstate + 1) & TSTATE_CWP;
648 t->current_ds = ASI_AIUS;
649 if (sp != regs->u_regs[UREG_FP]) {
650 unsigned long csp;
652 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
653 if (!csp)
654 return -EFAULT;
655 t->kregs->u_regs[UREG_FP] = csp;
657 if (t->utraps)
658 t->utraps[0]++;
660 /* Set the return value for the child. */
661 t->kregs->u_regs[UREG_I0] = current->pid;
662 t->kregs->u_regs[UREG_I1] = 1;
664 /* Set the second return value for the parent. */
665 regs->u_regs[UREG_I1] = 0;
667 if (clone_flags & CLONE_SETTLS)
668 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
670 return 0;
673 typedef struct {
674 union {
675 unsigned int pr_regs[32];
676 unsigned long pr_dregs[16];
677 } pr_fr;
678 unsigned int __unused;
679 unsigned int pr_fsr;
680 unsigned char pr_qcnt;
681 unsigned char pr_q_entrysize;
682 unsigned char pr_en;
683 unsigned int pr_q[64];
684 } elf_fpregset_t32;
687 * fill in the fpu structure for a core dump.
689 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
691 unsigned long *kfpregs = current_thread_info()->fpregs;
692 unsigned long fprs = current_thread_info()->fpsaved[0];
694 if (test_thread_flag(TIF_32BIT)) {
695 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
697 if (fprs & FPRS_DL)
698 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
699 sizeof(unsigned int) * 32);
700 else
701 memset(&fpregs32->pr_fr.pr_regs[0], 0,
702 sizeof(unsigned int) * 32);
703 fpregs32->pr_qcnt = 0;
704 fpregs32->pr_q_entrysize = 8;
705 memset(&fpregs32->pr_q[0], 0,
706 (sizeof(unsigned int) * 64));
707 if (fprs & FPRS_FEF) {
708 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
709 fpregs32->pr_en = 1;
710 } else {
711 fpregs32->pr_fsr = 0;
712 fpregs32->pr_en = 0;
714 } else {
715 if(fprs & FPRS_DL)
716 memcpy(&fpregs->pr_regs[0], kfpregs,
717 sizeof(unsigned int) * 32);
718 else
719 memset(&fpregs->pr_regs[0], 0,
720 sizeof(unsigned int) * 32);
721 if(fprs & FPRS_DU)
722 memcpy(&fpregs->pr_regs[16], kfpregs+16,
723 sizeof(unsigned int) * 32);
724 else
725 memset(&fpregs->pr_regs[16], 0,
726 sizeof(unsigned int) * 32);
727 if(fprs & FPRS_FEF) {
728 fpregs->pr_fsr = current_thread_info()->xfsr[0];
729 fpregs->pr_gsr = current_thread_info()->gsr[0];
730 } else {
731 fpregs->pr_fsr = fpregs->pr_gsr = 0;
733 fpregs->pr_fprs = fprs;
735 return 1;
737 EXPORT_SYMBOL(dump_fpu);
739 unsigned long get_wchan(struct task_struct *task)
741 unsigned long pc, fp, bias = 0;
742 struct thread_info *tp;
743 struct reg_window *rw;
744 unsigned long ret = 0;
745 int count = 0;
747 if (!task || task == current ||
748 task->state == TASK_RUNNING)
749 goto out;
751 tp = task_thread_info(task);
752 bias = STACK_BIAS;
753 fp = task_thread_info(task)->ksp + bias;
755 do {
756 if (!kstack_valid(tp, fp))
757 break;
758 rw = (struct reg_window *) fp;
759 pc = rw->ins[7];
760 if (!in_sched_functions(pc)) {
761 ret = pc;
762 goto out;
764 fp = rw->ins[6] + bias;
765 } while (++count < 16);
767 out:
768 return ret;