Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / tile / kernel / pci_gx.c
blob9aa238ac7b3582a6894b03295811b60f02874e9e
1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/mmzone.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/capability.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/irq.h>
25 #include <linux/msi.h>
26 #include <linux/io.h>
27 #include <linux/uaccess.h>
28 #include <linux/ctype.h>
30 #include <asm/processor.h>
31 #include <asm/sections.h>
32 #include <asm/byteorder.h>
34 #include <gxio/iorpc_globals.h>
35 #include <gxio/kiorpc.h>
36 #include <gxio/trio.h>
37 #include <gxio/iorpc_trio.h>
38 #include <hv/drv_trio_intf.h>
40 #include <arch/sim.h>
43 * This file contains the routines to search for PCI buses,
44 * enumerate the buses, and configure any attached devices.
47 #define DEBUG_PCI_CFG 0
49 #if DEBUG_PCI_CFG
50 #define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
51 pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
52 size, val, bus, dev, func, offset & 0xFFF);
53 #define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
54 pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
55 size, val, bus, dev, func, offset & 0xFFF);
56 #else
57 #define TRACE_CFG_WR(...)
58 #define TRACE_CFG_RD(...)
59 #endif
61 static int pci_probe = 1;
63 /* Information on the PCIe RC ports configuration. */
64 static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
67 * On some platforms with one or more Gx endpoint ports, we need to
68 * delay the PCIe RC port probe for a few seconds to work around
69 * a HW PCIe link-training bug. The exact delay is specified with
70 * a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
71 * where T is the TRIO instance number, P is the port number and S is
72 * the delay in seconds. If the argument is specified, but the delay is
73 * not provided, the value will be DEFAULT_RC_DELAY.
75 static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
77 /* Default number of seconds that the PCIe RC port probe can be delayed. */
78 #define DEFAULT_RC_DELAY 10
80 /* The PCI I/O space size in each PCI domain. */
81 #define IO_SPACE_SIZE 0x10000
83 /* Provide shorter versions of some very long constant names. */
84 #define AUTO_CONFIG_RC \
85 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC
86 #define AUTO_CONFIG_RC_G1 \
87 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1
88 #define AUTO_CONFIG_EP \
89 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT
90 #define AUTO_CONFIG_EP_G1 \
91 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1
93 /* Array of the PCIe ports configuration info obtained from the BIB. */
94 struct pcie_trio_ports_property pcie_ports[TILEGX_NUM_TRIO];
96 /* Number of configured TRIO instances. */
97 int num_trio_shims;
99 /* All drivers share the TRIO contexts defined here. */
100 gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
102 /* Pointer to an array of PCIe RC controllers. */
103 struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
104 int num_rc_controllers;
106 static struct pci_ops tile_cfg_ops;
108 /* Mask of CPUs that should receive PCIe interrupts. */
109 static struct cpumask intr_cpus_map;
112 * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
113 * For now, we simply send interrupts to non-dataplane CPUs.
114 * We may implement methods to allow user to specify the target CPUs,
115 * e.g. via boot arguments.
117 static int tile_irq_cpu(int irq)
119 unsigned int count;
120 int i = 0;
121 int cpu;
123 count = cpumask_weight(&intr_cpus_map);
124 if (unlikely(count == 0)) {
125 pr_warn("intr_cpus_map empty, interrupts will be delivered to dataplane tiles\n");
126 return irq % (smp_height * smp_width);
129 count = irq % count;
130 for_each_cpu(cpu, &intr_cpus_map) {
131 if (i++ == count)
132 break;
134 return cpu;
137 /* Open a file descriptor to the TRIO shim. */
138 static int tile_pcie_open(int trio_index)
140 gxio_trio_context_t *context = &trio_contexts[trio_index];
141 int ret;
142 int mac;
144 /* This opens a file descriptor to the TRIO shim. */
145 ret = gxio_trio_init(context, trio_index);
146 if (ret < 0)
147 goto gxio_trio_init_failure;
149 /* Allocate an ASID for the kernel. */
150 ret = gxio_trio_alloc_asids(context, 1, 0, 0);
151 if (ret < 0) {
152 pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
153 trio_index);
154 goto asid_alloc_failure;
157 context->asid = ret;
159 #ifdef USE_SHARED_PCIE_CONFIG_REGION
161 * Alloc a PIO region for config access, shared by all MACs per TRIO.
162 * This shouldn't fail since the kernel is supposed to the first
163 * client of the TRIO's PIO regions.
165 ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
166 if (ret < 0) {
167 pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
168 trio_index);
169 goto pio_alloc_failure;
172 context->pio_cfg_index = ret;
175 * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
176 * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
178 ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
179 0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
180 if (ret < 0) {
181 pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
182 trio_index);
183 goto pio_alloc_failure;
185 #endif
187 /* Get the properties of the PCIe ports on this TRIO instance. */
188 ret = gxio_trio_get_port_property(context, &pcie_ports[trio_index]);
189 if (ret < 0) {
190 pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d, on TRIO %d\n",
191 ret, trio_index);
192 goto get_port_property_failure;
195 context->mmio_base_mac =
196 iorpc_ioremap(context->fd, 0, HV_TRIO_CONFIG_IOREMAP_SIZE);
197 if (context->mmio_base_mac == NULL) {
198 pr_err("PCI: TRIO config space mapping failure, error %d, on TRIO %d\n",
199 ret, trio_index);
200 ret = -ENOMEM;
202 goto trio_mmio_mapping_failure;
205 /* Check the port strap state which will override the BIB setting. */
206 for (mac = 0; mac < TILEGX_TRIO_PCIES; mac++) {
207 TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
208 unsigned int reg_offset;
210 /* Ignore ports that are not specified in the BIB. */
211 if (!pcie_ports[trio_index].ports[mac].allow_rc &&
212 !pcie_ports[trio_index].ports[mac].allow_ep)
213 continue;
215 reg_offset =
216 (TRIO_PCIE_INTFC_PORT_CONFIG <<
217 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
218 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
219 TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
220 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
222 port_config.word =
223 __gxio_mmio_read(context->mmio_base_mac + reg_offset);
225 if (port_config.strap_state != AUTO_CONFIG_RC &&
226 port_config.strap_state != AUTO_CONFIG_RC_G1) {
228 * If this is really intended to be an EP port, record
229 * it so that the endpoint driver will know about it.
231 if (port_config.strap_state == AUTO_CONFIG_EP ||
232 port_config.strap_state == AUTO_CONFIG_EP_G1)
233 pcie_ports[trio_index].ports[mac].allow_ep = 1;
237 return ret;
239 trio_mmio_mapping_failure:
240 get_port_property_failure:
241 asid_alloc_failure:
242 #ifdef USE_SHARED_PCIE_CONFIG_REGION
243 pio_alloc_failure:
244 #endif
245 hv_dev_close(context->fd);
246 gxio_trio_init_failure:
247 context->fd = -1;
249 return ret;
252 static int __init tile_trio_init(void)
254 int i;
256 /* We loop over all the TRIO shims. */
257 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
258 if (tile_pcie_open(i) < 0)
259 continue;
260 num_trio_shims++;
263 return 0;
265 postcore_initcall(tile_trio_init);
267 static void tilegx_legacy_irq_ack(struct irq_data *d)
269 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
272 static void tilegx_legacy_irq_mask(struct irq_data *d)
274 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
277 static void tilegx_legacy_irq_unmask(struct irq_data *d)
279 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
282 static struct irq_chip tilegx_legacy_irq_chip = {
283 .name = "tilegx_legacy_irq",
284 .irq_ack = tilegx_legacy_irq_ack,
285 .irq_mask = tilegx_legacy_irq_mask,
286 .irq_unmask = tilegx_legacy_irq_unmask,
288 /* TBD: support set_affinity. */
292 * This is a wrapper function of the kernel level-trigger interrupt
293 * handler handle_level_irq() for PCI legacy interrupts. The TRIO
294 * is configured such that only INTx Assert interrupts are proxied
295 * to Linux which just calls handle_level_irq() after clearing the
296 * MAC INTx Assert status bit associated with this interrupt.
298 static void trio_handle_level_irq(struct irq_desc *desc)
300 struct pci_controller *controller = irq_desc_get_handler_data(desc);
301 gxio_trio_context_t *trio_context = controller->trio;
302 uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
303 int mac = controller->mac;
304 unsigned int reg_offset;
305 uint64_t level_mask;
307 handle_level_irq(desc);
310 * Clear the INTx Level status, otherwise future interrupts are
311 * not sent.
313 reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
314 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
315 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
316 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
317 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
319 level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
321 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
325 * Create kernel irqs and set up the handlers for the legacy interrupts.
326 * Also some minimum initialization for the MSI support.
328 static int tile_init_irqs(struct pci_controller *controller)
330 int i;
331 int j;
332 int irq;
333 int result;
335 cpumask_copy(&intr_cpus_map, cpu_online_mask);
338 for (i = 0; i < 4; i++) {
339 gxio_trio_context_t *context = controller->trio;
340 int cpu;
342 /* Ask the kernel to allocate an IRQ. */
343 irq = irq_alloc_hwirq(-1);
344 if (!irq) {
345 pr_err("PCI: no free irq vectors, failed for %d\n", i);
346 goto free_irqs;
348 controller->irq_intx_table[i] = irq;
350 /* Distribute the 4 IRQs to different tiles. */
351 cpu = tile_irq_cpu(irq);
353 /* Configure the TRIO intr binding for this IRQ. */
354 result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
355 cpu_y(cpu), KERNEL_PL,
356 irq, controller->mac, i);
357 if (result < 0) {
358 pr_err("PCI: MAC intx config failed for %d\n", i);
360 goto free_irqs;
363 /* Register the IRQ handler with the kernel. */
364 irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
365 trio_handle_level_irq);
366 irq_set_chip_data(irq, (void *)(uint64_t)i);
367 irq_set_handler_data(irq, controller);
370 return 0;
372 free_irqs:
373 for (j = 0; j < i; j++)
374 irq_free_hwirq(controller->irq_intx_table[j]);
376 return -1;
380 * Return 1 if the port is strapped to operate in RC mode.
382 static int
383 strapped_for_rc(gxio_trio_context_t *trio_context, int mac)
385 TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
386 unsigned int reg_offset;
388 /* Check the port configuration. */
389 reg_offset =
390 (TRIO_PCIE_INTFC_PORT_CONFIG <<
391 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
392 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
393 TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
394 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
395 port_config.word =
396 __gxio_mmio_read(trio_context->mmio_base_mac + reg_offset);
398 if (port_config.strap_state == AUTO_CONFIG_RC ||
399 port_config.strap_state == AUTO_CONFIG_RC_G1)
400 return 1;
401 else
402 return 0;
406 * Find valid controllers and fill in pci_controller structs for each
407 * of them.
409 * Return the number of controllers discovered.
411 int __init tile_pci_init(void)
413 int ctl_index = 0;
414 int i, j;
416 if (!pci_probe) {
417 pr_info("PCI: disabled by boot argument\n");
418 return 0;
421 pr_info("PCI: Searching for controllers...\n");
423 if (num_trio_shims == 0 || sim_is_simulator())
424 return 0;
427 * Now determine which PCIe ports are configured to operate in RC
428 * mode. There is a difference in the port configuration capability
429 * between the Gx36 and Gx72 devices.
431 * The Gx36 has configuration capability for each of the 3 PCIe
432 * interfaces (disable, auto endpoint, auto RC, etc.).
433 * On the Gx72, you can only select one of the 3 PCIe interfaces per
434 * TRIO to train automatically. Further, the allowable training modes
435 * are reduced to four options (auto endpoint, auto RC, stream x1,
436 * stream x4).
438 * For Gx36 ports, it must be allowed to be in RC mode by the
439 * Board Information Block, and the hardware strapping pins must be
440 * set to RC mode.
442 * For Gx72 ports, the port will operate in RC mode if either of the
443 * following is true:
444 * 1. It is allowed to be in RC mode by the Board Information Block,
445 * and the BIB doesn't allow the EP mode.
446 * 2. It is allowed to be in either the RC or the EP mode by the BIB,
447 * and the hardware strapping pin is set to RC mode.
449 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
450 gxio_trio_context_t *context = &trio_contexts[i];
452 if (context->fd < 0)
453 continue;
455 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
456 int is_rc = 0;
458 if (pcie_ports[i].is_gx72 &&
459 pcie_ports[i].ports[j].allow_rc) {
460 if (!pcie_ports[i].ports[j].allow_ep ||
461 strapped_for_rc(context, j))
462 is_rc = 1;
463 } else if (pcie_ports[i].ports[j].allow_rc &&
464 strapped_for_rc(context, j)) {
465 is_rc = 1;
467 if (is_rc) {
468 pcie_rc[i][j] = 1;
469 num_rc_controllers++;
474 /* Return if no PCIe ports are configured to operate in RC mode. */
475 if (num_rc_controllers == 0)
476 return 0;
478 /* Set the TRIO pointer and MAC index for each PCIe RC port. */
479 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
480 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
481 if (pcie_rc[i][j]) {
482 pci_controllers[ctl_index].trio =
483 &trio_contexts[i];
484 pci_controllers[ctl_index].mac = j;
485 pci_controllers[ctl_index].trio_index = i;
486 ctl_index++;
487 if (ctl_index == num_rc_controllers)
488 goto out;
493 out:
494 /* Configure each PCIe RC port. */
495 for (i = 0; i < num_rc_controllers; i++) {
497 /* Configure the PCIe MAC to run in RC mode. */
498 struct pci_controller *controller = &pci_controllers[i];
500 controller->index = i;
501 controller->ops = &tile_cfg_ops;
503 controller->io_space.start = PCIBIOS_MIN_IO +
504 (i * IO_SPACE_SIZE);
505 controller->io_space.end = controller->io_space.start +
506 IO_SPACE_SIZE - 1;
507 BUG_ON(controller->io_space.end > IO_SPACE_LIMIT);
508 controller->io_space.flags = IORESOURCE_IO;
509 snprintf(controller->io_space_name,
510 sizeof(controller->io_space_name),
511 "PCI I/O domain %d", i);
512 controller->io_space.name = controller->io_space_name;
515 * The PCI memory resource is located above the PA space.
516 * For every host bridge, the BAR window or the MMIO aperture
517 * is in range [3GB, 4GB - 1] of a 4GB space beyond the
518 * PA space.
520 controller->mem_offset = TILE_PCI_MEM_START +
521 (i * TILE_PCI_BAR_WINDOW_TOP);
522 controller->mem_space.start = controller->mem_offset +
523 TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
524 controller->mem_space.end = controller->mem_offset +
525 TILE_PCI_BAR_WINDOW_TOP - 1;
526 controller->mem_space.flags = IORESOURCE_MEM;
527 snprintf(controller->mem_space_name,
528 sizeof(controller->mem_space_name),
529 "PCI mem domain %d", i);
530 controller->mem_space.name = controller->mem_space_name;
533 return num_rc_controllers;
537 * (pin - 1) converts from the PCI standard's [1:4] convention to
538 * a normal [0:3] range.
540 static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
542 struct pci_controller *controller =
543 (struct pci_controller *)dev->sysdata;
544 return controller->irq_intx_table[pin - 1];
547 static void fixup_read_and_payload_sizes(struct pci_controller *controller)
549 gxio_trio_context_t *trio_context = controller->trio;
550 struct pci_bus *root_bus = controller->root_bus;
551 TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
552 TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
553 unsigned int reg_offset;
554 struct pci_bus *child;
555 int mac;
556 int err;
558 mac = controller->mac;
560 /* Set our max read request size to be 4KB. */
561 reg_offset =
562 (TRIO_PCIE_RC_DEVICE_CONTROL <<
563 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
564 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
565 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
566 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
568 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
569 reg_offset);
570 dev_control.max_read_req_sz = 5;
571 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
572 dev_control.word);
575 * Set the max payload size supported by this Gx PCIe MAC.
576 * Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
577 * experiments have shown that setting MPS to 256 yields the
578 * best performance.
580 reg_offset =
581 (TRIO_PCIE_RC_DEVICE_CAP <<
582 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
583 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
584 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
585 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
587 rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
588 reg_offset);
589 rc_dev_cap.mps_sup = 1;
590 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
591 rc_dev_cap.word);
593 /* Configure PCI Express MPS setting. */
594 list_for_each_entry(child, &root_bus->children, node)
595 pcie_bus_configure_settings(child);
598 * Set the mac_config register in trio based on the MPS/MRS of the link.
600 reg_offset =
601 (TRIO_PCIE_RC_DEVICE_CONTROL <<
602 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
603 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
604 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
605 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
607 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
608 reg_offset);
610 err = gxio_trio_set_mps_mrs(trio_context,
611 dev_control.max_payload_size,
612 dev_control.max_read_req_sz,
613 mac);
614 if (err < 0) {
615 pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, MAC %d on TRIO %d\n",
616 mac, controller->trio_index);
620 static int setup_pcie_rc_delay(char *str)
622 unsigned long delay = 0;
623 unsigned long trio_index;
624 unsigned long mac;
626 if (str == NULL || !isdigit(*str))
627 return -EINVAL;
628 trio_index = simple_strtoul(str, (char **)&str, 10);
629 if (trio_index >= TILEGX_NUM_TRIO)
630 return -EINVAL;
632 if (*str != ',')
633 return -EINVAL;
635 str++;
636 if (!isdigit(*str))
637 return -EINVAL;
638 mac = simple_strtoul(str, (char **)&str, 10);
639 if (mac >= TILEGX_TRIO_PCIES)
640 return -EINVAL;
642 if (*str != '\0') {
643 if (*str != ',')
644 return -EINVAL;
646 str++;
647 if (!isdigit(*str))
648 return -EINVAL;
649 delay = simple_strtoul(str, (char **)&str, 10);
652 rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
653 return 0;
655 early_param("pcie_rc_delay", setup_pcie_rc_delay);
657 /* PCI initialization entry point, called by subsys_initcall. */
658 int __init pcibios_init(void)
660 resource_size_t offset;
661 LIST_HEAD(resources);
662 int next_busno;
663 struct pci_host_bridge *bridge;
664 int i;
666 tile_pci_init();
668 if (num_rc_controllers == 0)
669 return 0;
672 * Delay a bit in case devices aren't ready. Some devices are
673 * known to require at least 20ms here, but we use a more
674 * conservative value.
676 msleep(250);
678 /* Scan all of the recorded PCI controllers. */
679 for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
680 struct pci_controller *controller = &pci_controllers[i];
681 gxio_trio_context_t *trio_context = controller->trio;
682 TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
683 TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
684 struct pci_bus *bus;
685 unsigned int reg_offset;
686 unsigned int class_code_revision;
687 int trio_index;
688 int mac;
689 int ret;
691 if (trio_context->fd < 0)
692 continue;
694 trio_index = controller->trio_index;
695 mac = controller->mac;
698 * Check for PCIe link-up status to decide if we need
699 * to force the link to come up.
701 reg_offset =
702 (TRIO_PCIE_INTFC_PORT_STATUS <<
703 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
704 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
705 TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
706 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
708 port_status.word =
709 __gxio_mmio_read(trio_context->mmio_base_mac +
710 reg_offset);
711 if (!port_status.dl_up) {
712 if (rc_delay[trio_index][mac]) {
713 pr_info("Delaying PCIe RC TRIO init %d sec on MAC %d on TRIO %d\n",
714 rc_delay[trio_index][mac], mac,
715 trio_index);
716 msleep(rc_delay[trio_index][mac] * 1000);
718 ret = gxio_trio_force_rc_link_up(trio_context, mac);
719 if (ret < 0)
720 pr_err("PCI: PCIE_FORCE_LINK_UP failure, MAC %d on TRIO %d\n",
721 mac, trio_index);
724 pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n",
725 i, trio_index, controller->mac);
727 /* Delay the bus probe if needed. */
728 if (rc_delay[trio_index][mac]) {
729 pr_info("Delaying PCIe RC bus enumerating %d sec on MAC %d on TRIO %d\n",
730 rc_delay[trio_index][mac], mac, trio_index);
731 msleep(rc_delay[trio_index][mac] * 1000);
732 } else {
734 * Wait a bit here because some EP devices
735 * take longer to come up.
737 msleep(1000);
740 /* Check for PCIe link-up status again. */
741 port_status.word =
742 __gxio_mmio_read(trio_context->mmio_base_mac +
743 reg_offset);
744 if (!port_status.dl_up) {
745 if (pcie_ports[trio_index].ports[mac].removable) {
746 pr_info("PCI: link is down, MAC %d on TRIO %d\n",
747 mac, trio_index);
748 pr_info("This is expected if no PCIe card is connected to this link\n");
749 } else
750 pr_err("PCI: link is down, MAC %d on TRIO %d\n",
751 mac, trio_index);
752 continue;
756 * Ensure that the link can come out of L1 power down state.
757 * Strictly speaking, this is needed only in the case of
758 * heavy RC-initiated DMAs.
760 reg_offset =
761 (TRIO_PCIE_INTFC_TX_FIFO_CTL <<
762 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
763 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
764 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
765 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
766 tx_fifo_ctl.word =
767 __gxio_mmio_read(trio_context->mmio_base_mac +
768 reg_offset);
769 tx_fifo_ctl.min_p_credits = 0;
770 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
771 tx_fifo_ctl.word);
774 * Change the device ID so that Linux bus crawl doesn't confuse
775 * the internal bridge with any Tilera endpoints.
777 reg_offset =
778 (TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
779 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
780 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
781 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
782 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
784 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
785 (TILERA_GX36_RC_DEV_ID <<
786 TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
787 TILERA_VENDOR_ID);
789 /* Set the internal P2P bridge class code. */
790 reg_offset =
791 (TRIO_PCIE_RC_REVISION_ID <<
792 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
793 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
794 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
795 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
797 class_code_revision =
798 __gxio_mmio_read32(trio_context->mmio_base_mac +
799 reg_offset);
800 class_code_revision = (class_code_revision & 0xff) |
801 (PCI_CLASS_BRIDGE_PCI << 16);
803 __gxio_mmio_write32(trio_context->mmio_base_mac +
804 reg_offset, class_code_revision);
806 #ifdef USE_SHARED_PCIE_CONFIG_REGION
808 /* Map in the MMIO space for the PIO region. */
809 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
810 (((unsigned long long)mac) <<
811 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
813 #else
815 /* Alloc a PIO region for PCI config access per MAC. */
816 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
817 if (ret < 0) {
818 pr_err("PCI: PCI CFG PIO alloc failure for mac %d on TRIO %d, give up\n",
819 mac, trio_index);
821 continue;
824 trio_context->pio_cfg_index[mac] = ret;
826 /* For PIO CFG, the bus_address_hi parameter is 0. */
827 ret = gxio_trio_init_pio_region_aux(trio_context,
828 trio_context->pio_cfg_index[mac],
829 mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
830 if (ret < 0) {
831 pr_err("PCI: PCI CFG PIO init failure for mac %d on TRIO %d, give up\n",
832 mac, trio_index);
834 continue;
837 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
838 (((unsigned long long)mac) <<
839 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
841 #endif
844 * To save VMALLOC space, we take advantage of the fact that
845 * bit 29 in the PIO CFG address format is reserved 0. With
846 * TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT being 30,
847 * this cuts VMALLOC space usage from 1GB to 512MB per mac.
849 trio_context->mmio_base_pio_cfg[mac] =
850 iorpc_ioremap(trio_context->fd, offset, (1UL <<
851 (TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT - 1)));
852 if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
853 pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
854 mac, trio_index);
856 continue;
859 /* Initialize the PCIe interrupts. */
860 if (tile_init_irqs(controller)) {
861 pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
862 mac, trio_index);
864 continue;
868 * The PCI memory resource is located above the PA space.
869 * The memory range for the PCI root bus should not overlap
870 * with the physical RAM.
872 pci_add_resource_offset(&resources, &controller->mem_space,
873 controller->mem_offset);
874 pci_add_resource(&resources, &controller->io_space);
875 controller->first_busno = next_busno;
877 bridge = pci_alloc_host_bridge(0);
878 if (!bridge)
879 break;
881 list_splice_init(&resources, &bridge->windows);
882 bridge->dev.parent = NULL;
883 bridge->sysdata = controller;
884 bridge->busnr = next_busno;
885 bridge->ops = controller->ops;
886 bridge->swizzle_irq = pci_common_swizzle;
887 bridge->map_irq = tile_map_irq;
889 pci_scan_root_bus_bridge(bridge);
890 bus = bridge->bus;
891 controller->root_bus = bus;
892 next_busno = bus->busn_res.end + 1;
896 * This comes from the generic Linux PCI driver.
898 * It allocates all of the resources (I/O memory, etc)
899 * associated with the devices read in above.
901 pci_assign_unassigned_resources();
903 /* Record the I/O resources in the PCI controller structure. */
904 for (i = 0; i < num_rc_controllers; i++) {
905 struct pci_controller *controller = &pci_controllers[i];
906 gxio_trio_context_t *trio_context = controller->trio;
907 struct pci_bus *root_bus = pci_controllers[i].root_bus;
908 int ret;
909 int j;
912 * Skip controllers that are not properly initialized or
913 * have down links.
915 if (root_bus == NULL)
916 continue;
918 /* Configure the max_payload_size values for this domain. */
919 fixup_read_and_payload_sizes(controller);
921 /* Alloc a PIO region for PCI memory access for each RC port. */
922 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
923 if (ret < 0) {
924 pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, give up\n",
925 controller->trio_index, controller->mac);
927 continue;
930 controller->pio_mem_index = ret;
933 * For PIO MEM, the bus_address_hi parameter is hard-coded 0
934 * because we always assign 32-bit PCI bus BAR ranges.
936 ret = gxio_trio_init_pio_region_aux(trio_context,
937 controller->pio_mem_index,
938 controller->mac,
941 if (ret < 0) {
942 pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, give up\n",
943 controller->trio_index, controller->mac);
945 continue;
948 #ifdef CONFIG_TILE_PCI_IO
950 * Alloc a PIO region for PCI I/O space access for each RC port.
952 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
953 if (ret < 0) {
954 pr_err("PCI: I/O PIO alloc failure on TRIO %d mac %d, give up\n",
955 controller->trio_index, controller->mac);
957 continue;
960 controller->pio_io_index = ret;
963 * For PIO IO, the bus_address_hi parameter is hard-coded 0
964 * because PCI I/O address space is 32-bit.
966 ret = gxio_trio_init_pio_region_aux(trio_context,
967 controller->pio_io_index,
968 controller->mac,
970 HV_TRIO_PIO_FLAG_IO_SPACE);
971 if (ret < 0) {
972 pr_err("PCI: I/O PIO init failure on TRIO %d mac %d, give up\n",
973 controller->trio_index, controller->mac);
975 continue;
977 #endif
980 * Configure a Mem-Map region for each memory controller so
981 * that Linux can map all of its PA space to the PCI bus.
982 * Use the IOMMU to handle hash-for-home memory.
984 for_each_online_node(j) {
985 unsigned long start_pfn = node_start_pfn[j];
986 unsigned long end_pfn = node_end_pfn[j];
987 unsigned long nr_pages = end_pfn - start_pfn;
989 ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
991 if (ret < 0) {
992 pr_err("PCI: Mem-Map alloc failure on TRIO %d mac %d for MC %d, give up\n",
993 controller->trio_index, controller->mac,
996 goto alloc_mem_map_failed;
999 controller->mem_maps[j] = ret;
1002 * Initialize the Mem-Map and the I/O MMU so that all
1003 * the physical memory can be accessed by the endpoint
1004 * devices. The base bus address is set to the base CPA
1005 * of this memory controller plus an offset (see pci.h).
1006 * The region's base VA is set to the base CPA. The
1007 * I/O MMU table essentially translates the CPA to
1008 * the real PA. Implicitly, for node 0, we create
1009 * a separate Mem-Map region that serves as the inbound
1010 * window for legacy 32-bit devices. This is a direct
1011 * map of the low 4GB CPA space.
1013 ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
1014 controller->mem_maps[j],
1015 start_pfn << PAGE_SHIFT,
1016 nr_pages << PAGE_SHIFT,
1017 trio_context->asid,
1018 controller->mac,
1019 (start_pfn << PAGE_SHIFT) +
1020 TILE_PCI_MEM_MAP_BASE_OFFSET,
1022 GXIO_TRIO_ORDER_MODE_UNORDERED);
1023 if (ret < 0) {
1024 pr_err("PCI: Mem-Map init failure on TRIO %d mac %d for MC %d, give up\n",
1025 controller->trio_index, controller->mac,
1028 goto alloc_mem_map_failed;
1030 continue;
1032 alloc_mem_map_failed:
1033 break;
1036 pci_bus_add_devices(root_bus);
1039 return 0;
1041 subsys_initcall(pcibios_init);
1043 /* Process any "pci=" kernel boot arguments. */
1044 char *__init pcibios_setup(char *str)
1046 if (!strcmp(str, "off")) {
1047 pci_probe = 0;
1048 return NULL;
1050 return str;
1054 * Called for each device after PCI setup is done.
1055 * We initialize the PCI device capabilities conservatively, assuming that
1056 * all devices can only address the 32-bit DMA space. The exception here is
1057 * that the device dma_offset is set to the value that matches the 64-bit
1058 * capable devices. This is OK because dma_offset is not used by legacy
1059 * dma_ops, nor by the hybrid dma_ops's streaming DMAs, which are 64-bit ops.
1060 * This implementation matches the kernel design of setting PCI devices'
1061 * coherent_dma_mask to 0xffffffffull by default, allowing the device drivers
1062 * to skip calling pci_set_consistent_dma_mask(DMA_BIT_MASK(32)).
1064 static void pcibios_fixup_final(struct pci_dev *pdev)
1066 set_dma_ops(&pdev->dev, gx_legacy_pci_dma_map_ops);
1067 set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
1068 pdev->dev.archdata.max_direct_dma_addr =
1069 TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
1070 pdev->dev.coherent_dma_mask = TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
1072 DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
1074 /* Map a PCI MMIO bus address into VA space. */
1075 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
1077 struct pci_controller *controller = NULL;
1078 resource_size_t bar_start;
1079 resource_size_t bar_end;
1080 resource_size_t offset;
1081 resource_size_t start;
1082 resource_size_t end;
1083 int trio_fd;
1084 int i;
1086 start = phys_addr;
1087 end = phys_addr + size - 1;
1090 * By searching phys_addr in each controller's mem_space, we can
1091 * determine the controller that should accept the PCI memory access.
1093 for (i = 0; i < num_rc_controllers; i++) {
1095 * Skip controllers that are not properly initialized or
1096 * have down links.
1098 if (pci_controllers[i].root_bus == NULL)
1099 continue;
1101 bar_start = pci_controllers[i].mem_space.start;
1102 bar_end = pci_controllers[i].mem_space.end;
1104 if ((start >= bar_start) && (end <= bar_end)) {
1105 controller = &pci_controllers[i];
1106 break;
1110 if (controller == NULL)
1111 return NULL;
1113 trio_fd = controller->trio->fd;
1115 /* Convert the resource start to the bus address offset. */
1116 start = phys_addr - controller->mem_offset;
1118 offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
1120 /* We need to keep the PCI bus address's in-page offset in the VA. */
1121 return iorpc_ioremap(trio_fd, offset, size) +
1122 (start & (PAGE_SIZE - 1));
1124 EXPORT_SYMBOL(ioremap);
1126 #ifdef CONFIG_TILE_PCI_IO
1127 /* Map a PCI I/O address into VA space. */
1128 void __iomem *ioport_map(unsigned long port, unsigned int size)
1130 struct pci_controller *controller = NULL;
1131 resource_size_t bar_start;
1132 resource_size_t bar_end;
1133 resource_size_t offset;
1134 resource_size_t start;
1135 resource_size_t end;
1136 int trio_fd;
1137 int i;
1139 start = port;
1140 end = port + size - 1;
1143 * By searching the port in each controller's io_space, we can
1144 * determine the controller that should accept the PCI I/O access.
1146 for (i = 0; i < num_rc_controllers; i++) {
1148 * Skip controllers that are not properly initialized or
1149 * have down links.
1151 if (pci_controllers[i].root_bus == NULL)
1152 continue;
1154 bar_start = pci_controllers[i].io_space.start;
1155 bar_end = pci_controllers[i].io_space.end;
1157 if ((start >= bar_start) && (end <= bar_end)) {
1158 controller = &pci_controllers[i];
1159 break;
1163 if (controller == NULL)
1164 return NULL;
1166 trio_fd = controller->trio->fd;
1168 /* Convert the resource start to the bus address offset. */
1169 port -= controller->io_space.start;
1171 offset = HV_TRIO_PIO_OFFSET(controller->pio_io_index) + port;
1173 /* We need to keep the PCI bus address's in-page offset in the VA. */
1174 return iorpc_ioremap(trio_fd, offset, size) + (port & (PAGE_SIZE - 1));
1176 EXPORT_SYMBOL(ioport_map);
1178 void ioport_unmap(void __iomem *addr)
1180 iounmap(addr);
1182 EXPORT_SYMBOL(ioport_unmap);
1183 #endif
1185 void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
1187 iounmap(addr);
1189 EXPORT_SYMBOL(pci_iounmap);
1191 /****************************************************************
1193 * Tile PCI config space read/write routines
1195 ****************************************************************/
1198 * These are the normal read and write ops
1199 * These are expanded with macros from pci_bus_read_config_byte() etc.
1201 * devfn is the combined PCI device & function.
1203 * offset is in bytes, from the start of config space for the
1204 * specified bus & device.
1206 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
1207 int size, u32 *val)
1209 struct pci_controller *controller = bus->sysdata;
1210 gxio_trio_context_t *trio_context = controller->trio;
1211 int busnum = bus->number & 0xff;
1212 int device = PCI_SLOT(devfn);
1213 int function = PCI_FUNC(devfn);
1214 int config_type = 1;
1215 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1216 void *mmio_addr;
1219 * Map all accesses to the local device on root bus into the
1220 * MMIO space of the MAC. Accesses to the downstream devices
1221 * go to the PIO space.
1223 if (pci_is_root_bus(bus)) {
1224 if (device == 0) {
1226 * This is the internal downstream P2P bridge,
1227 * access directly.
1229 unsigned int reg_offset;
1231 reg_offset = ((offset & 0xFFF) <<
1232 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1233 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1234 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1235 (controller->mac <<
1236 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1238 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1240 goto valid_device;
1242 } else {
1244 * We fake an empty device for (device > 0),
1245 * since there is only one device on bus 0.
1247 goto invalid_device;
1252 * Accesses to the directly attached device have to be
1253 * sent as type-0 configs.
1255 if (busnum == (controller->first_busno + 1)) {
1257 * There is only one device off of our built-in P2P bridge.
1259 if (device != 0)
1260 goto invalid_device;
1262 config_type = 0;
1265 cfg_addr.word = 0;
1266 cfg_addr.reg_addr = (offset & 0xFFF);
1267 cfg_addr.fn = function;
1268 cfg_addr.dev = device;
1269 cfg_addr.bus = busnum;
1270 cfg_addr.type = config_type;
1273 * Note that we don't set the mac field in cfg_addr because the
1274 * mapping is per port.
1276 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1277 cfg_addr.word;
1279 valid_device:
1281 switch (size) {
1282 case 4:
1283 *val = __gxio_mmio_read32(mmio_addr);
1284 break;
1286 case 2:
1287 *val = __gxio_mmio_read16(mmio_addr);
1288 break;
1290 case 1:
1291 *val = __gxio_mmio_read8(mmio_addr);
1292 break;
1294 default:
1295 return PCIBIOS_FUNC_NOT_SUPPORTED;
1298 TRACE_CFG_RD(size, *val, busnum, device, function, offset);
1300 return 0;
1302 invalid_device:
1304 switch (size) {
1305 case 4:
1306 *val = 0xFFFFFFFF;
1307 break;
1309 case 2:
1310 *val = 0xFFFF;
1311 break;
1313 case 1:
1314 *val = 0xFF;
1315 break;
1317 default:
1318 return PCIBIOS_FUNC_NOT_SUPPORTED;
1321 return 0;
1326 * See tile_cfg_read() for relevant comments.
1327 * Note that "val" is the value to write, not a pointer to that value.
1329 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
1330 int size, u32 val)
1332 struct pci_controller *controller = bus->sysdata;
1333 gxio_trio_context_t *trio_context = controller->trio;
1334 int busnum = bus->number & 0xff;
1335 int device = PCI_SLOT(devfn);
1336 int function = PCI_FUNC(devfn);
1337 int config_type = 1;
1338 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1339 void *mmio_addr;
1340 u32 val_32 = (u32)val;
1341 u16 val_16 = (u16)val;
1342 u8 val_8 = (u8)val;
1345 * Map all accesses to the local device on root bus into the
1346 * MMIO space of the MAC. Accesses to the downstream devices
1347 * go to the PIO space.
1349 if (pci_is_root_bus(bus)) {
1350 if (device == 0) {
1352 * This is the internal downstream P2P bridge,
1353 * access directly.
1355 unsigned int reg_offset;
1357 reg_offset = ((offset & 0xFFF) <<
1358 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1359 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1360 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1361 (controller->mac <<
1362 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1364 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1366 goto valid_device;
1368 } else {
1370 * We fake an empty device for (device > 0),
1371 * since there is only one device on bus 0.
1373 goto invalid_device;
1378 * Accesses to the directly attached device have to be
1379 * sent as type-0 configs.
1381 if (busnum == (controller->first_busno + 1)) {
1383 * There is only one device off of our built-in P2P bridge.
1385 if (device != 0)
1386 goto invalid_device;
1388 config_type = 0;
1391 cfg_addr.word = 0;
1392 cfg_addr.reg_addr = (offset & 0xFFF);
1393 cfg_addr.fn = function;
1394 cfg_addr.dev = device;
1395 cfg_addr.bus = busnum;
1396 cfg_addr.type = config_type;
1399 * Note that we don't set the mac field in cfg_addr because the
1400 * mapping is per port.
1402 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1403 cfg_addr.word;
1405 valid_device:
1407 switch (size) {
1408 case 4:
1409 __gxio_mmio_write32(mmio_addr, val_32);
1410 TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
1411 break;
1413 case 2:
1414 __gxio_mmio_write16(mmio_addr, val_16);
1415 TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
1416 break;
1418 case 1:
1419 __gxio_mmio_write8(mmio_addr, val_8);
1420 TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
1421 break;
1423 default:
1424 return PCIBIOS_FUNC_NOT_SUPPORTED;
1427 invalid_device:
1429 return 0;
1433 static struct pci_ops tile_cfg_ops = {
1434 .read = tile_cfg_read,
1435 .write = tile_cfg_write,
1439 /* MSI support starts here. */
1440 static unsigned int tilegx_msi_startup(struct irq_data *d)
1442 if (irq_data_get_msi_desc(d))
1443 pci_msi_unmask_irq(d);
1445 return 0;
1448 static void tilegx_msi_ack(struct irq_data *d)
1450 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
1453 static void tilegx_msi_mask(struct irq_data *d)
1455 pci_msi_mask_irq(d);
1456 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
1459 static void tilegx_msi_unmask(struct irq_data *d)
1461 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
1462 pci_msi_unmask_irq(d);
1465 static struct irq_chip tilegx_msi_chip = {
1466 .name = "tilegx_msi",
1467 .irq_startup = tilegx_msi_startup,
1468 .irq_ack = tilegx_msi_ack,
1469 .irq_mask = tilegx_msi_mask,
1470 .irq_unmask = tilegx_msi_unmask,
1472 /* TBD: support set_affinity. */
1475 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
1477 struct pci_controller *controller;
1478 gxio_trio_context_t *trio_context;
1479 struct msi_msg msg;
1480 int default_irq;
1481 uint64_t mem_map_base;
1482 uint64_t mem_map_limit;
1483 u64 msi_addr;
1484 int mem_map;
1485 int cpu;
1486 int irq;
1487 int ret;
1489 irq = irq_alloc_hwirq(-1);
1490 if (!irq)
1491 return -ENOSPC;
1494 * Since we use a 64-bit Mem-Map to accept the MSI write, we fail
1495 * devices that are not capable of generating a 64-bit message address.
1496 * These devices will fall back to using the legacy interrupts.
1497 * Most PCIe endpoint devices do support 64-bit message addressing.
1499 if (desc->msi_attrib.is_64 == 0) {
1500 dev_info(&pdev->dev, "64-bit MSI message address not supported, falling back to legacy interrupts\n");
1502 ret = -ENOMEM;
1503 goto is_64_failure;
1506 default_irq = desc->msi_attrib.default_irq;
1507 controller = irq_get_handler_data(default_irq);
1509 BUG_ON(!controller);
1511 trio_context = controller->trio;
1514 * Allocate a scatter-queue that will accept the MSI write and
1515 * trigger the TILE-side interrupts. We use the scatter-queue regions
1516 * before the mem map regions, because the latter are needed by more
1517 * applications.
1519 mem_map = gxio_trio_alloc_scatter_queues(trio_context, 1, 0, 0);
1520 if (mem_map >= 0) {
1521 TRIO_MAP_SQ_DOORBELL_FMT_t doorbell_template = {{
1522 .pop = 0,
1523 .doorbell = 1,
1526 mem_map += TRIO_NUM_MAP_MEM_REGIONS;
1527 mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
1528 mem_map * MEM_MAP_INTR_REGION_SIZE;
1529 mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
1531 msi_addr = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 8;
1532 msg.data = (unsigned int)doorbell_template.word;
1533 } else {
1534 /* SQ regions are out, allocate from map mem regions. */
1535 mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
1536 if (mem_map < 0) {
1537 dev_info(&pdev->dev, "%s Mem-Map alloc failure - failed to initialize MSI interrupts - falling back to legacy interrupts\n",
1538 desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
1539 ret = -ENOMEM;
1540 goto msi_mem_map_alloc_failure;
1543 mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
1544 mem_map * MEM_MAP_INTR_REGION_SIZE;
1545 mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
1547 msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 -
1548 TRIO_MAP_MEM_REG_INT0;
1550 msg.data = mem_map;
1553 /* We try to distribute different IRQs to different tiles. */
1554 cpu = tile_irq_cpu(irq);
1557 * Now call up to the HV to configure the MSI interrupt and
1558 * set up the IPI binding.
1560 ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
1561 KERNEL_PL, irq, controller->mac,
1562 mem_map, mem_map_base, mem_map_limit,
1563 trio_context->asid);
1564 if (ret < 0) {
1565 dev_info(&pdev->dev, "HV MSI config failed\n");
1567 goto hv_msi_config_failure;
1570 irq_set_msi_desc(irq, desc);
1572 msg.address_hi = msi_addr >> 32;
1573 msg.address_lo = msi_addr & 0xffffffff;
1575 pci_write_msi_msg(irq, &msg);
1576 irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
1577 irq_set_handler_data(irq, controller);
1579 return 0;
1581 hv_msi_config_failure:
1582 /* Free mem-map */
1583 msi_mem_map_alloc_failure:
1584 is_64_failure:
1585 irq_free_hwirq(irq);
1586 return ret;
1589 void arch_teardown_msi_irq(unsigned int irq)
1591 irq_free_hwirq(irq);