Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / arch / tile / kernel / single_step.c
blob479d8033a8010042d2010aa3ce41c3ef2b80e6c7
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/slab.h>
20 #include <linux/thread_info.h>
21 #include <linux/uaccess.h>
22 #include <linux/mman.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/prctl.h>
26 #include <asm/cacheflush.h>
27 #include <asm/traps.h>
28 #include <linux/uaccess.h>
29 #include <asm/unaligned.h>
30 #include <arch/abi.h>
31 #include <arch/spr_def.h>
32 #include <arch/opcode.h>
35 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
37 #define signExtend17(val) sign_extend((val), 17)
38 #define TILE_X1_MASK (0xffffffffULL << 31)
40 enum mem_op {
41 MEMOP_NONE,
42 MEMOP_LOAD,
43 MEMOP_STORE,
44 MEMOP_LOAD_POSTINCR,
45 MEMOP_STORE_POSTINCR
48 static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
49 s32 offset)
51 tilepro_bundle_bits result;
53 /* mask out the old offset */
54 tilepro_bundle_bits mask = create_BrOff_X1(-1);
55 result = n & (~mask);
57 /* or in the new offset */
58 result |= create_BrOff_X1(offset);
60 return result;
63 static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
64 int src)
66 tilepro_bundle_bits result;
67 tilepro_bundle_bits op;
69 result = n & (~TILE_X1_MASK);
71 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
72 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
73 create_Dest_X1(dest) |
74 create_SrcB_X1(TREG_ZERO) |
75 create_SrcA_X1(src) ;
77 result |= op;
78 return result;
81 static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
83 return move_X1(n, TREG_ZERO, TREG_ZERO);
86 static inline tilepro_bundle_bits addi_X1(
87 tilepro_bundle_bits n, int dest, int src, int imm)
89 n &= ~TILE_X1_MASK;
91 n |= (create_SrcA_X1(src) |
92 create_Dest_X1(dest) |
93 create_Imm8_X1(imm) |
94 create_S_X1(0) |
95 create_Opcode_X1(IMM_0_OPCODE_X1) |
96 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
98 return n;
101 static tilepro_bundle_bits rewrite_load_store_unaligned(
102 struct single_step_state *state,
103 tilepro_bundle_bits bundle,
104 struct pt_regs *regs,
105 enum mem_op mem_op,
106 int size, int sign_ext)
108 unsigned char __user *addr;
109 int val_reg, addr_reg, err, val;
110 int align_ctl;
112 align_ctl = unaligned_fixup;
113 switch (task_thread_info(current)->align_ctl) {
114 case PR_UNALIGN_NOPRINT:
115 align_ctl = 1;
116 break;
117 case PR_UNALIGN_SIGBUS:
118 align_ctl = 0;
119 break;
122 /* Get address and value registers */
123 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
124 addr_reg = get_SrcA_Y2(bundle);
125 val_reg = get_SrcBDest_Y2(bundle);
126 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
127 addr_reg = get_SrcA_X1(bundle);
128 val_reg = get_Dest_X1(bundle);
129 } else {
130 addr_reg = get_SrcA_X1(bundle);
131 val_reg = get_SrcB_X1(bundle);
135 * If registers are not GPRs, don't try to handle it.
137 * FIXME: we could handle non-GPR loads by getting the real value
138 * from memory, writing it to the single step buffer, using a
139 * temp_reg to hold a pointer to that memory, then executing that
140 * instruction and resetting temp_reg. For non-GPR stores, it's a
141 * little trickier; we could use the single step buffer for that
142 * too, but we'd have to add some more state bits so that we could
143 * call back in here to copy that value to the real target. For
144 * now, we just handle the simple case.
146 if ((val_reg >= PTREGS_NR_GPRS &&
147 (val_reg != TREG_ZERO ||
148 mem_op == MEMOP_LOAD ||
149 mem_op == MEMOP_LOAD_POSTINCR)) ||
150 addr_reg >= PTREGS_NR_GPRS)
151 return bundle;
153 /* If it's aligned, don't handle it specially */
154 addr = (void __user *)regs->regs[addr_reg];
155 if (((unsigned long)addr % size) == 0)
156 return bundle;
159 * Return SIGBUS with the unaligned address, if requested.
160 * Note that we return SIGBUS even for completely invalid addresses
161 * as long as they are in fact unaligned; this matches what the
162 * tilepro hardware would be doing, if it could provide us with the
163 * actual bad address in an SPR, which it doesn't.
165 if (align_ctl == 0) {
166 siginfo_t info;
168 clear_siginfo(&info);
169 info.si_signo = SIGBUS;
170 info.si_code = BUS_ADRALN;
171 info.si_addr = addr;
173 trace_unhandled_signal("unaligned trap", regs,
174 (unsigned long)addr, SIGBUS);
175 force_sig_info(info.si_signo, &info, current);
176 return (tilepro_bundle_bits) 0;
179 /* Handle unaligned load/store */
180 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
181 unsigned short val_16;
182 switch (size) {
183 case 2:
184 err = copy_from_user(&val_16, addr, sizeof(val_16));
185 val = sign_ext ? ((short)val_16) : val_16;
186 break;
187 case 4:
188 err = copy_from_user(&val, addr, sizeof(val));
189 break;
190 default:
191 BUG();
193 if (err == 0) {
194 state->update_reg = val_reg;
195 state->update_value = val;
196 state->update = 1;
198 } else {
199 unsigned short val_16;
200 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
201 switch (size) {
202 case 2:
203 val_16 = val;
204 err = copy_to_user(addr, &val_16, sizeof(val_16));
205 break;
206 case 4:
207 err = copy_to_user(addr, &val, sizeof(val));
208 break;
209 default:
210 BUG();
214 if (err) {
215 siginfo_t info;
217 clear_siginfo(&info);
218 info.si_signo = SIGBUS;
219 info.si_code = BUS_ADRALN;
220 info.si_addr = addr;
222 trace_unhandled_signal("bad address for unaligned fixup", regs,
223 (unsigned long)addr, SIGBUS);
224 force_sig_info(info.si_signo, &info, current);
225 return (tilepro_bundle_bits) 0;
228 if (unaligned_printk || unaligned_fixup_count == 0) {
229 pr_info("Process %d/%s: PC %#lx: Fixup of unaligned %s at %#lx\n",
230 current->pid, current->comm, regs->pc,
231 mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR ?
232 "load" : "store",
233 (unsigned long)addr);
234 if (!unaligned_printk) {
235 #define P pr_info
236 P("\n");
237 P("Unaligned fixups in the kernel will slow your application considerably.\n");
238 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
239 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
240 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
241 P("access will become a SIGBUS you can debug. No further warnings will be\n");
242 P("shown so as to avoid additional slowdown, but you can track the number\n");
243 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
244 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
245 P("\n");
246 #undef P
249 ++unaligned_fixup_count;
251 if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
252 /* Convert the Y2 instruction to a prefetch. */
253 bundle &= ~(create_SrcBDest_Y2(-1) |
254 create_Opcode_Y2(-1));
255 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
256 create_Opcode_Y2(LW_OPCODE_Y2));
257 /* Replace the load postincr with an addi */
258 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
259 bundle = addi_X1(bundle, addr_reg, addr_reg,
260 get_Imm8_X1(bundle));
261 /* Replace the store postincr with an addi */
262 } else if (mem_op == MEMOP_STORE_POSTINCR) {
263 bundle = addi_X1(bundle, addr_reg, addr_reg,
264 get_Dest_Imm8_X1(bundle));
265 } else {
266 /* Convert the X1 instruction to a nop. */
267 bundle &= ~(create_Opcode_X1(-1) |
268 create_UnShOpcodeExtension_X1(-1) |
269 create_UnOpcodeExtension_X1(-1));
270 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
271 create_UnShOpcodeExtension_X1(
272 UN_0_SHUN_0_OPCODE_X1) |
273 create_UnOpcodeExtension_X1(
274 NOP_UN_0_SHUN_0_OPCODE_X1));
277 return bundle;
281 * Called after execve() has started the new image. This allows us
282 * to reset the info state. Note that the the mmap'ed memory, if there
283 * was any, has already been unmapped by the exec.
285 void single_step_execve(void)
287 struct thread_info *ti = current_thread_info();
288 kfree(ti->step_state);
289 ti->step_state = NULL;
293 * single_step_once() - entry point when single stepping has been triggered.
294 * @regs: The machine register state
296 * When we arrive at this routine via a trampoline, the single step
297 * engine copies the executing bundle to the single step buffer.
298 * If the instruction is a condition branch, then the target is
299 * reset to one past the next instruction. If the instruction
300 * sets the lr, then that is noted. If the instruction is a jump
301 * or call, then the new target pc is preserved and the current
302 * bundle instruction set to null.
304 * The necessary post-single-step rewriting information is stored in
305 * single_step_state-> We use data segment values because the
306 * stack will be rewound when we run the rewritten single-stepped
307 * instruction.
309 void single_step_once(struct pt_regs *regs)
311 extern tilepro_bundle_bits __single_step_ill_insn;
312 extern tilepro_bundle_bits __single_step_j_insn;
313 extern tilepro_bundle_bits __single_step_addli_insn;
314 extern tilepro_bundle_bits __single_step_auli_insn;
315 struct thread_info *info = (void *)current_thread_info();
316 struct single_step_state *state = info->step_state;
317 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
318 tilepro_bundle_bits __user *buffer, *pc;
319 tilepro_bundle_bits bundle;
320 int temp_reg;
321 int target_reg = TREG_LR;
322 int err;
323 enum mem_op mem_op = MEMOP_NONE;
324 int size = 0, sign_ext = 0; /* happy compiler */
325 int align_ctl;
327 align_ctl = unaligned_fixup;
328 switch (task_thread_info(current)->align_ctl) {
329 case PR_UNALIGN_NOPRINT:
330 align_ctl = 1;
331 break;
332 case PR_UNALIGN_SIGBUS:
333 align_ctl = 0;
334 break;
337 asm(
338 " .pushsection .rodata.single_step\n"
339 " .align 8\n"
340 " .globl __single_step_ill_insn\n"
341 "__single_step_ill_insn:\n"
342 " ill\n"
343 " .globl __single_step_addli_insn\n"
344 "__single_step_addli_insn:\n"
345 " { nop; addli r0, zero, 0 }\n"
346 " .globl __single_step_auli_insn\n"
347 "__single_step_auli_insn:\n"
348 " { nop; auli r0, r0, 0 }\n"
349 " .globl __single_step_j_insn\n"
350 "__single_step_j_insn:\n"
351 " j .\n"
352 " .popsection\n"
356 * Enable interrupts here to allow touching userspace and the like.
357 * The callers expect this: do_trap() already has interrupts
358 * enabled, and do_work_pending() handles functions that enable
359 * interrupts internally.
361 local_irq_enable();
363 if (state == NULL) {
364 /* allocate a page of writable, executable memory */
365 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
366 if (state == NULL) {
367 pr_err("Out of kernel memory trying to single-step\n");
368 return;
371 /* allocate a cache line of writable, executable memory */
372 buffer = (void __user *) vm_mmap(NULL, 0, 64,
373 PROT_EXEC | PROT_READ | PROT_WRITE,
374 MAP_PRIVATE | MAP_ANONYMOUS,
377 if (IS_ERR((void __force *)buffer)) {
378 kfree(state);
379 pr_err("Out of kernel pages trying to single-step\n");
380 return;
383 state->buffer = buffer;
384 state->is_enabled = 0;
386 info->step_state = state;
388 /* Validate our stored instruction patterns */
389 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
390 ADDLI_OPCODE_X1);
391 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
392 AULI_OPCODE_X1);
393 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
394 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
395 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
399 * If we are returning from a syscall, we still haven't hit the
400 * "ill" for the swint1 instruction. So back the PC up to be
401 * pointing at the swint1, but we'll actually return directly
402 * back to the "ill" so we come back in via SIGILL as if we
403 * had "executed" the swint1 without ever being in kernel space.
405 if (regs->faultnum == INT_SWINT_1)
406 regs->pc -= 8;
408 pc = (tilepro_bundle_bits __user *)(regs->pc);
409 if (get_user(bundle, pc) != 0) {
410 pr_err("Couldn't read instruction at %p trying to step\n", pc);
411 return;
414 /* We'll follow the instruction with 2 ill op bundles */
415 state->orig_pc = (unsigned long)pc;
416 state->next_pc = (unsigned long)(pc + 1);
417 state->branch_next_pc = 0;
418 state->update = 0;
420 if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
421 /* two wide, check for control flow */
422 int opcode = get_Opcode_X1(bundle);
424 switch (opcode) {
425 /* branches */
426 case BRANCH_OPCODE_X1:
428 s32 offset = signExtend17(get_BrOff_X1(bundle));
431 * For branches, we use a rewriting trick to let the
432 * hardware evaluate whether the branch is taken or
433 * untaken. We record the target offset and then
434 * rewrite the branch instruction to target 1 insn
435 * ahead if the branch is taken. We then follow the
436 * rewritten branch with two bundles, each containing
437 * an "ill" instruction. The supervisor examines the
438 * pc after the single step code is executed, and if
439 * the pc is the first ill instruction, then the
440 * branch (if any) was not taken. If the pc is the
441 * second ill instruction, then the branch was
442 * taken. The new pc is computed for these cases, and
443 * inserted into the registers for the thread. If
444 * the pc is the start of the single step code, then
445 * an exception or interrupt was taken before the
446 * code started processing, and the same "original"
447 * pc is restored. This change, different from the
448 * original implementation, has the advantage of
449 * executing a single user instruction.
451 state->branch_next_pc = (unsigned long)(pc + offset);
453 /* rewrite branch offset to go forward one bundle */
454 bundle = set_BrOff_X1(bundle, 2);
456 break;
458 /* jumps */
459 case JALB_OPCODE_X1:
460 case JALF_OPCODE_X1:
461 state->update = 1;
462 state->next_pc =
463 (unsigned long) (pc + get_JOffLong_X1(bundle));
464 break;
466 case JB_OPCODE_X1:
467 case JF_OPCODE_X1:
468 state->next_pc =
469 (unsigned long) (pc + get_JOffLong_X1(bundle));
470 bundle = nop_X1(bundle);
471 break;
473 case SPECIAL_0_OPCODE_X1:
474 switch (get_RRROpcodeExtension_X1(bundle)) {
475 /* jump-register */
476 case JALRP_SPECIAL_0_OPCODE_X1:
477 case JALR_SPECIAL_0_OPCODE_X1:
478 state->update = 1;
479 state->next_pc =
480 regs->regs[get_SrcA_X1(bundle)];
481 break;
483 case JRP_SPECIAL_0_OPCODE_X1:
484 case JR_SPECIAL_0_OPCODE_X1:
485 state->next_pc =
486 regs->regs[get_SrcA_X1(bundle)];
487 bundle = nop_X1(bundle);
488 break;
490 case LNK_SPECIAL_0_OPCODE_X1:
491 state->update = 1;
492 target_reg = get_Dest_X1(bundle);
493 break;
495 /* stores */
496 case SH_SPECIAL_0_OPCODE_X1:
497 mem_op = MEMOP_STORE;
498 size = 2;
499 break;
501 case SW_SPECIAL_0_OPCODE_X1:
502 mem_op = MEMOP_STORE;
503 size = 4;
504 break;
506 break;
508 /* loads and iret */
509 case SHUN_0_OPCODE_X1:
510 if (get_UnShOpcodeExtension_X1(bundle) ==
511 UN_0_SHUN_0_OPCODE_X1) {
512 switch (get_UnOpcodeExtension_X1(bundle)) {
513 case LH_UN_0_SHUN_0_OPCODE_X1:
514 mem_op = MEMOP_LOAD;
515 size = 2;
516 sign_ext = 1;
517 break;
519 case LH_U_UN_0_SHUN_0_OPCODE_X1:
520 mem_op = MEMOP_LOAD;
521 size = 2;
522 sign_ext = 0;
523 break;
525 case LW_UN_0_SHUN_0_OPCODE_X1:
526 mem_op = MEMOP_LOAD;
527 size = 4;
528 break;
530 case IRET_UN_0_SHUN_0_OPCODE_X1:
532 unsigned long ex0_0 = __insn_mfspr(
533 SPR_EX_CONTEXT_0_0);
534 unsigned long ex0_1 = __insn_mfspr(
535 SPR_EX_CONTEXT_0_1);
537 * Special-case it if we're iret'ing
538 * to PL0 again. Otherwise just let
539 * it run and it will generate SIGILL.
541 if (EX1_PL(ex0_1) == USER_PL) {
542 state->next_pc = ex0_0;
543 regs->ex1 = ex0_1;
544 bundle = nop_X1(bundle);
549 break;
551 /* postincrement operations */
552 case IMM_0_OPCODE_X1:
553 switch (get_ImmOpcodeExtension_X1(bundle)) {
554 case LWADD_IMM_0_OPCODE_X1:
555 mem_op = MEMOP_LOAD_POSTINCR;
556 size = 4;
557 break;
559 case LHADD_IMM_0_OPCODE_X1:
560 mem_op = MEMOP_LOAD_POSTINCR;
561 size = 2;
562 sign_ext = 1;
563 break;
565 case LHADD_U_IMM_0_OPCODE_X1:
566 mem_op = MEMOP_LOAD_POSTINCR;
567 size = 2;
568 sign_ext = 0;
569 break;
571 case SWADD_IMM_0_OPCODE_X1:
572 mem_op = MEMOP_STORE_POSTINCR;
573 size = 4;
574 break;
576 case SHADD_IMM_0_OPCODE_X1:
577 mem_op = MEMOP_STORE_POSTINCR;
578 size = 2;
579 break;
581 default:
582 break;
584 break;
587 if (state->update) {
589 * Get an available register. We start with a
590 * bitmask with 1's for available registers.
591 * We truncate to the low 32 registers since
592 * we are guaranteed to have set bits in the
593 * low 32 bits, then use ctz to pick the first.
595 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
596 (1ULL << get_SrcA_X0(bundle)) |
597 (1ULL << get_SrcB_X0(bundle)) |
598 (1ULL << target_reg));
599 temp_reg = __builtin_ctz(mask);
600 state->update_reg = temp_reg;
601 state->update_value = regs->regs[temp_reg];
602 regs->regs[temp_reg] = (unsigned long) (pc+1);
603 regs->flags |= PT_FLAGS_RESTORE_REGS;
604 bundle = move_X1(bundle, target_reg, temp_reg);
606 } else {
607 int opcode = get_Opcode_Y2(bundle);
609 switch (opcode) {
610 /* loads */
611 case LH_OPCODE_Y2:
612 mem_op = MEMOP_LOAD;
613 size = 2;
614 sign_ext = 1;
615 break;
617 case LH_U_OPCODE_Y2:
618 mem_op = MEMOP_LOAD;
619 size = 2;
620 sign_ext = 0;
621 break;
623 case LW_OPCODE_Y2:
624 mem_op = MEMOP_LOAD;
625 size = 4;
626 break;
628 /* stores */
629 case SH_OPCODE_Y2:
630 mem_op = MEMOP_STORE;
631 size = 2;
632 break;
634 case SW_OPCODE_Y2:
635 mem_op = MEMOP_STORE;
636 size = 4;
637 break;
642 * Check if we need to rewrite an unaligned load/store.
643 * Returning zero is a special value meaning we generated a signal.
645 if (mem_op != MEMOP_NONE && align_ctl >= 0) {
646 bundle = rewrite_load_store_unaligned(state, bundle, regs,
647 mem_op, size, sign_ext);
648 if (bundle == 0)
649 return;
652 /* write the bundle to our execution area */
653 buffer = state->buffer;
654 err = __put_user(bundle, buffer++);
657 * If we're really single-stepping, we take an INT_ILL after.
658 * If we're just handling an unaligned access, we can just
659 * jump directly back to where we were in user code.
661 if (is_single_step) {
662 err |= __put_user(__single_step_ill_insn, buffer++);
663 err |= __put_user(__single_step_ill_insn, buffer++);
664 } else {
665 long delta;
667 if (state->update) {
668 /* We have some state to update; do it inline */
669 int ha16;
670 bundle = __single_step_addli_insn;
671 bundle |= create_Dest_X1(state->update_reg);
672 bundle |= create_Imm16_X1(state->update_value);
673 err |= __put_user(bundle, buffer++);
674 bundle = __single_step_auli_insn;
675 bundle |= create_Dest_X1(state->update_reg);
676 bundle |= create_SrcA_X1(state->update_reg);
677 ha16 = (state->update_value + 0x8000) >> 16;
678 bundle |= create_Imm16_X1(ha16);
679 err |= __put_user(bundle, buffer++);
680 state->update = 0;
683 /* End with a jump back to the next instruction */
684 delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
685 (unsigned long)buffer) >>
686 TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
687 bundle = __single_step_j_insn;
688 bundle |= create_JOffLong_X1(delta);
689 err |= __put_user(bundle, buffer++);
692 if (err) {
693 pr_err("Fault when writing to single-step buffer\n");
694 return;
698 * Flush the buffer.
699 * We do a local flush only, since this is a thread-specific buffer.
701 __flush_icache_range((unsigned long)state->buffer,
702 (unsigned long)buffer);
704 /* Indicate enabled */
705 state->is_enabled = is_single_step;
706 regs->pc = (unsigned long)state->buffer;
708 /* Fault immediately if we are coming back from a syscall. */
709 if (regs->faultnum == INT_SWINT_1)
710 regs->pc += 8;
713 #else
715 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
719 * Called directly on the occasion of an interrupt.
721 * If the process doesn't have single step set, then we use this as an
722 * opportunity to turn single step off.
724 * It has been mentioned that we could conditionally turn off single stepping
725 * on each entry into the kernel and rely on single_step_once to turn it
726 * on for the processes that matter (as we already do), but this
727 * implementation is somewhat more efficient in that we muck with registers
728 * once on a bum interrupt rather than on every entry into the kernel.
730 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
731 * so we have to run through this process again before we can say that an
732 * instruction has executed.
734 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
735 * it changes the PC. If it hasn't changed, then we know that the interrupt
736 * wasn't generated by swint and we'll need to run this process again before
737 * we can say an instruction has executed.
739 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
740 * on with our lives.
743 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
745 unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
746 struct thread_info *info = (void *)current_thread_info();
747 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
748 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
750 if (is_single_step == 0) {
751 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
753 } else if ((*ss_pc != regs->pc) ||
754 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
756 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
757 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
758 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
759 send_sigtrap(current, regs);
765 * Called from need_singlestep. Set up the control registers and the enable
766 * register, then return back.
769 void single_step_once(struct pt_regs *regs)
771 unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
772 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
774 *ss_pc = regs->pc;
775 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
776 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
777 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
778 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
781 void single_step_execve(void)
783 /* Nothing */
786 #endif /* !__tilegx__ */