2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return !list_empty_careful(&hctx
->dispatch
) ||
67 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
88 struct hd_struct
*part
;
89 unsigned int *inflight
;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
93 struct request
*rq
, void *priv
,
96 struct mq_inflight
*mi
= priv
;
98 if (blk_mq_rq_state(rq
) == MQ_RQ_IN_FLIGHT
) {
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
105 if (rq
->part
== mi
->part
)
107 if (mi
->part
->partno
)
112 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
113 unsigned int inflight
[2])
115 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
117 inflight
[0] = inflight
[1] = 0;
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
121 void blk_freeze_queue_start(struct request_queue
*q
)
125 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
126 if (freeze_depth
== 1) {
127 percpu_ref_kill(&q
->q_usage_counter
);
129 blk_mq_run_hw_queues(q
, false);
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
134 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
136 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
141 unsigned long timeout
)
143 return wait_event_timeout(q
->mq_freeze_wq
,
144 percpu_ref_is_zero(&q
->q_usage_counter
),
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
153 void blk_freeze_queue(struct request_queue
*q
)
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
162 blk_freeze_queue_start(q
);
165 blk_mq_freeze_queue_wait(q
);
168 void blk_mq_freeze_queue(struct request_queue
*q
)
171 * ...just an alias to keep freeze and unfreeze actions balanced
172 * in the blk_mq_* namespace
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
178 void blk_mq_unfreeze_queue(struct request_queue
*q
)
182 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
183 WARN_ON_ONCE(freeze_depth
< 0);
185 percpu_ref_reinit(&q
->q_usage_counter
);
186 wake_up_all(&q
->mq_freeze_wq
);
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193 * mpt3sas driver such that this function can be removed.
195 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
199 spin_lock_irqsave(q
->queue_lock
, flags
);
200 queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
201 spin_unlock_irqrestore(q
->queue_lock
, flags
);
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
206 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
209 * Note: this function does not prevent that the struct request end_io()
210 * callback function is invoked. Once this function is returned, we make
211 * sure no dispatch can happen until the queue is unquiesced via
212 * blk_mq_unquiesce_queue().
214 void blk_mq_quiesce_queue(struct request_queue
*q
)
216 struct blk_mq_hw_ctx
*hctx
;
220 blk_mq_quiesce_queue_nowait(q
);
222 queue_for_each_hw_ctx(q
, hctx
, i
) {
223 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
224 synchronize_srcu(hctx
->srcu
);
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
234 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
237 * This function recovers queue into the state before quiescing
238 * which is done by blk_mq_quiesce_queue.
240 void blk_mq_unquiesce_queue(struct request_queue
*q
)
244 spin_lock_irqsave(q
->queue_lock
, flags
);
245 queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
246 spin_unlock_irqrestore(q
->queue_lock
, flags
);
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q
, true);
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
253 void blk_mq_wake_waiters(struct request_queue
*q
)
255 struct blk_mq_hw_ctx
*hctx
;
258 queue_for_each_hw_ctx(q
, hctx
, i
)
259 if (blk_mq_hw_queue_mapped(hctx
))
260 blk_mq_tag_wakeup_all(hctx
->tags
, true);
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
265 return blk_mq_has_free_tags(hctx
->tags
);
267 EXPORT_SYMBOL(blk_mq_can_queue
);
269 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
270 unsigned int tag
, unsigned int op
)
272 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
273 struct request
*rq
= tags
->static_rqs
[tag
];
274 req_flags_t rq_flags
= 0;
276 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
278 rq
->internal_tag
= tag
;
280 if (blk_mq_tag_busy(data
->hctx
)) {
281 rq_flags
= RQF_MQ_INFLIGHT
;
282 atomic_inc(&data
->hctx
->nr_active
);
285 rq
->internal_tag
= -1;
286 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
289 /* csd/requeue_work/fifo_time is initialized before use */
291 rq
->mq_ctx
= data
->ctx
;
292 rq
->rq_flags
= rq_flags
;
295 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
296 rq
->rq_flags
|= RQF_PREEMPT
;
297 if (blk_queue_io_stat(data
->q
))
298 rq
->rq_flags
|= RQF_IO_STAT
;
299 INIT_LIST_HEAD(&rq
->queuelist
);
300 INIT_HLIST_NODE(&rq
->hash
);
301 RB_CLEAR_NODE(&rq
->rb_node
);
304 rq
->start_time
= jiffies
;
305 rq
->nr_phys_segments
= 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307 rq
->nr_integrity_segments
= 0;
310 /* tag was already set */
314 INIT_LIST_HEAD(&rq
->timeout_list
);
318 rq
->end_io_data
= NULL
;
321 #ifdef CONFIG_BLK_CGROUP
323 set_start_time_ns(rq
);
324 rq
->io_start_time_ns
= 0;
327 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
331 static struct request
*blk_mq_get_request(struct request_queue
*q
,
332 struct bio
*bio
, unsigned int op
,
333 struct blk_mq_alloc_data
*data
)
335 struct elevator_queue
*e
= q
->elevator
;
338 bool put_ctx_on_error
= false;
340 blk_queue_enter_live(q
);
342 if (likely(!data
->ctx
)) {
343 data
->ctx
= blk_mq_get_ctx(q
);
344 put_ctx_on_error
= true;
346 if (likely(!data
->hctx
))
347 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
349 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
352 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
355 * Flush requests are special and go directly to the
358 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
)
359 e
->type
->ops
.mq
.limit_depth(op
, data
);
362 tag
= blk_mq_get_tag(data
);
363 if (tag
== BLK_MQ_TAG_FAIL
) {
364 if (put_ctx_on_error
) {
365 blk_mq_put_ctx(data
->ctx
);
372 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
373 if (!op_is_flush(op
)) {
375 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
376 if (e
->type
->icq_cache
&& rq_ioc(bio
))
377 blk_mq_sched_assign_ioc(rq
, bio
);
379 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
380 rq
->rq_flags
|= RQF_ELVPRIV
;
383 data
->hctx
->queued
++;
387 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
388 blk_mq_req_flags_t flags
)
390 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
394 ret
= blk_queue_enter(q
, flags
);
398 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
402 return ERR_PTR(-EWOULDBLOCK
);
404 blk_mq_put_ctx(alloc_data
.ctx
);
407 rq
->__sector
= (sector_t
) -1;
408 rq
->bio
= rq
->biotail
= NULL
;
411 EXPORT_SYMBOL(blk_mq_alloc_request
);
413 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
414 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
416 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
427 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
428 return ERR_PTR(-EINVAL
);
430 if (hctx_idx
>= q
->nr_hw_queues
)
431 return ERR_PTR(-EIO
);
433 ret
= blk_queue_enter(q
, flags
);
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
441 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
442 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
444 return ERR_PTR(-EXDEV
);
446 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
447 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
449 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
453 return ERR_PTR(-EWOULDBLOCK
);
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
459 void blk_mq_free_request(struct request
*rq
)
461 struct request_queue
*q
= rq
->q
;
462 struct elevator_queue
*e
= q
->elevator
;
463 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
464 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
465 const int sched_tag
= rq
->internal_tag
;
467 if (rq
->rq_flags
& RQF_ELVPRIV
) {
468 if (e
&& e
->type
->ops
.mq
.finish_request
)
469 e
->type
->ops
.mq
.finish_request(rq
);
471 put_io_context(rq
->elv
.icq
->ioc
);
476 ctx
->rq_completed
[rq_is_sync(rq
)]++;
477 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
478 atomic_dec(&hctx
->nr_active
);
480 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
481 laptop_io_completion(q
->backing_dev_info
);
483 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
486 blk_put_rl(blk_rq_rl(rq
));
488 blk_mq_rq_update_state(rq
, MQ_RQ_IDLE
);
490 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
492 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
493 blk_mq_sched_restart(hctx
);
496 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
498 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
500 blk_account_io_done(rq
);
503 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
504 rq
->end_io(rq
, error
);
506 if (unlikely(blk_bidi_rq(rq
)))
507 blk_mq_free_request(rq
->next_rq
);
508 blk_mq_free_request(rq
);
511 EXPORT_SYMBOL(__blk_mq_end_request
);
513 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
515 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
517 __blk_mq_end_request(rq
, error
);
519 EXPORT_SYMBOL(blk_mq_end_request
);
521 static void __blk_mq_complete_request_remote(void *data
)
523 struct request
*rq
= data
;
525 rq
->q
->softirq_done_fn(rq
);
528 static void __blk_mq_complete_request(struct request
*rq
)
530 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
534 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
);
535 blk_mq_rq_update_state(rq
, MQ_RQ_COMPLETE
);
537 if (rq
->internal_tag
!= -1)
538 blk_mq_sched_completed_request(rq
);
539 if (rq
->rq_flags
& RQF_STATS
) {
540 blk_mq_poll_stats_start(rq
->q
);
544 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
545 rq
->q
->softirq_done_fn(rq
);
550 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
551 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
553 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
554 rq
->csd
.func
= __blk_mq_complete_request_remote
;
557 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
559 rq
->q
->softirq_done_fn(rq
);
564 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
565 __releases(hctx
->srcu
)
567 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
570 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
573 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
574 __acquires(hctx
->srcu
)
576 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
577 /* shut up gcc false positive */
581 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
584 static void blk_mq_rq_update_aborted_gstate(struct request
*rq
, u64 gstate
)
589 * blk_mq_rq_aborted_gstate() is used from the completion path and
590 * can thus be called from irq context. u64_stats_fetch in the
591 * middle of update on the same CPU leads to lockup. Disable irq
594 local_irq_save(flags
);
595 u64_stats_update_begin(&rq
->aborted_gstate_sync
);
596 rq
->aborted_gstate
= gstate
;
597 u64_stats_update_end(&rq
->aborted_gstate_sync
);
598 local_irq_restore(flags
);
601 static u64
blk_mq_rq_aborted_gstate(struct request
*rq
)
607 start
= u64_stats_fetch_begin(&rq
->aborted_gstate_sync
);
608 aborted_gstate
= rq
->aborted_gstate
;
609 } while (u64_stats_fetch_retry(&rq
->aborted_gstate_sync
, start
));
611 return aborted_gstate
;
615 * blk_mq_complete_request - end I/O on a request
616 * @rq: the request being processed
619 * Ends all I/O on a request. It does not handle partial completions.
620 * The actual completion happens out-of-order, through a IPI handler.
622 void blk_mq_complete_request(struct request
*rq
)
624 struct request_queue
*q
= rq
->q
;
625 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, rq
->mq_ctx
->cpu
);
628 if (unlikely(blk_should_fake_timeout(q
)))
632 * If @rq->aborted_gstate equals the current instance, timeout is
633 * claiming @rq and we lost. This is synchronized through
634 * hctx_lock(). See blk_mq_timeout_work() for details.
636 * Completion path never blocks and we can directly use RCU here
637 * instead of hctx_lock() which can be either RCU or SRCU.
638 * However, that would complicate paths which want to synchronize
639 * against us. Let stay in sync with the issue path so that
640 * hctx_lock() covers both issue and completion paths.
642 hctx_lock(hctx
, &srcu_idx
);
643 if (blk_mq_rq_aborted_gstate(rq
) != rq
->gstate
)
644 __blk_mq_complete_request(rq
);
645 hctx_unlock(hctx
, srcu_idx
);
647 EXPORT_SYMBOL(blk_mq_complete_request
);
649 int blk_mq_request_started(struct request
*rq
)
651 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
653 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
655 void blk_mq_start_request(struct request
*rq
)
657 struct request_queue
*q
= rq
->q
;
659 blk_mq_sched_started_request(rq
);
661 trace_block_rq_issue(q
, rq
);
663 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
664 blk_stat_set_issue(&rq
->issue_stat
, blk_rq_sectors(rq
));
665 rq
->rq_flags
|= RQF_STATS
;
666 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
669 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
672 * Mark @rq in-flight which also advances the generation number,
673 * and register for timeout. Protect with a seqcount to allow the
674 * timeout path to read both @rq->gstate and @rq->deadline
677 * This is the only place where a request is marked in-flight. If
678 * the timeout path reads an in-flight @rq->gstate, the
679 * @rq->deadline it reads together under @rq->gstate_seq is
680 * guaranteed to be the matching one.
683 write_seqcount_begin(&rq
->gstate_seq
);
685 blk_mq_rq_update_state(rq
, MQ_RQ_IN_FLIGHT
);
688 write_seqcount_end(&rq
->gstate_seq
);
691 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
693 * Make sure space for the drain appears. We know we can do
694 * this because max_hw_segments has been adjusted to be one
695 * fewer than the device can handle.
697 rq
->nr_phys_segments
++;
700 EXPORT_SYMBOL(blk_mq_start_request
);
703 * When we reach here because queue is busy, it's safe to change the state
704 * to IDLE without checking @rq->aborted_gstate because we should still be
705 * holding the RCU read lock and thus protected against timeout.
707 static void __blk_mq_requeue_request(struct request
*rq
)
709 struct request_queue
*q
= rq
->q
;
711 blk_mq_put_driver_tag(rq
);
713 trace_block_rq_requeue(q
, rq
);
714 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
715 blk_mq_sched_requeue_request(rq
);
717 if (blk_mq_rq_state(rq
) != MQ_RQ_IDLE
) {
718 blk_mq_rq_update_state(rq
, MQ_RQ_IDLE
);
719 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
720 rq
->nr_phys_segments
--;
724 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
726 __blk_mq_requeue_request(rq
);
728 BUG_ON(blk_queued_rq(rq
));
729 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
731 EXPORT_SYMBOL(blk_mq_requeue_request
);
733 static void blk_mq_requeue_work(struct work_struct
*work
)
735 struct request_queue
*q
=
736 container_of(work
, struct request_queue
, requeue_work
.work
);
738 struct request
*rq
, *next
;
740 spin_lock_irq(&q
->requeue_lock
);
741 list_splice_init(&q
->requeue_list
, &rq_list
);
742 spin_unlock_irq(&q
->requeue_lock
);
744 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
745 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
748 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
749 list_del_init(&rq
->queuelist
);
750 blk_mq_sched_insert_request(rq
, true, false, false);
753 while (!list_empty(&rq_list
)) {
754 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
755 list_del_init(&rq
->queuelist
);
756 blk_mq_sched_insert_request(rq
, false, false, false);
759 blk_mq_run_hw_queues(q
, false);
762 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
763 bool kick_requeue_list
)
765 struct request_queue
*q
= rq
->q
;
769 * We abuse this flag that is otherwise used by the I/O scheduler to
770 * request head insertion from the workqueue.
772 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
774 spin_lock_irqsave(&q
->requeue_lock
, flags
);
776 rq
->rq_flags
|= RQF_SOFTBARRIER
;
777 list_add(&rq
->queuelist
, &q
->requeue_list
);
779 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
781 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
783 if (kick_requeue_list
)
784 blk_mq_kick_requeue_list(q
);
786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
788 void blk_mq_kick_requeue_list(struct request_queue
*q
)
790 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
792 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
794 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
797 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
798 msecs_to_jiffies(msecs
));
800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
802 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
804 if (tag
< tags
->nr_tags
) {
805 prefetch(tags
->rqs
[tag
]);
806 return tags
->rqs
[tag
];
811 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
813 struct blk_mq_timeout_data
{
815 unsigned int next_set
;
816 unsigned int nr_expired
;
819 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
821 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
822 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
824 req
->rq_flags
|= RQF_MQ_TIMEOUT_EXPIRED
;
827 ret
= ops
->timeout(req
, reserved
);
831 __blk_mq_complete_request(req
);
833 case BLK_EH_RESET_TIMER
:
835 * As nothing prevents from completion happening while
836 * ->aborted_gstate is set, this may lead to ignored
837 * completions and further spurious timeouts.
839 blk_mq_rq_update_aborted_gstate(req
, 0);
842 case BLK_EH_NOT_HANDLED
:
845 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
850 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
851 struct request
*rq
, void *priv
, bool reserved
)
853 struct blk_mq_timeout_data
*data
= priv
;
854 unsigned long gstate
, deadline
;
859 if (rq
->rq_flags
& RQF_MQ_TIMEOUT_EXPIRED
)
862 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
864 start
= read_seqcount_begin(&rq
->gstate_seq
);
865 gstate
= READ_ONCE(rq
->gstate
);
866 deadline
= blk_rq_deadline(rq
);
867 if (!read_seqcount_retry(&rq
->gstate_seq
, start
))
872 /* if in-flight && overdue, mark for abortion */
873 if ((gstate
& MQ_RQ_STATE_MASK
) == MQ_RQ_IN_FLIGHT
&&
874 time_after_eq(jiffies
, deadline
)) {
875 blk_mq_rq_update_aborted_gstate(rq
, gstate
);
878 } else if (!data
->next_set
|| time_after(data
->next
, deadline
)) {
879 data
->next
= deadline
;
884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx
*hctx
,
885 struct request
*rq
, void *priv
, bool reserved
)
888 * We marked @rq->aborted_gstate and waited for RCU. If there were
889 * completions that we lost to, they would have finished and
890 * updated @rq->gstate by now; otherwise, the completion path is
891 * now guaranteed to see @rq->aborted_gstate and yield. If
892 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
894 if (!(rq
->rq_flags
& RQF_MQ_TIMEOUT_EXPIRED
) &&
895 READ_ONCE(rq
->gstate
) == rq
->aborted_gstate
)
896 blk_mq_rq_timed_out(rq
, reserved
);
899 static void blk_mq_timeout_work(struct work_struct
*work
)
901 struct request_queue
*q
=
902 container_of(work
, struct request_queue
, timeout_work
);
903 struct blk_mq_timeout_data data
= {
908 struct blk_mq_hw_ctx
*hctx
;
911 /* A deadlock might occur if a request is stuck requiring a
912 * timeout at the same time a queue freeze is waiting
913 * completion, since the timeout code would not be able to
914 * acquire the queue reference here.
916 * That's why we don't use blk_queue_enter here; instead, we use
917 * percpu_ref_tryget directly, because we need to be able to
918 * obtain a reference even in the short window between the queue
919 * starting to freeze, by dropping the first reference in
920 * blk_freeze_queue_start, and the moment the last request is
921 * consumed, marked by the instant q_usage_counter reaches
924 if (!percpu_ref_tryget(&q
->q_usage_counter
))
927 /* scan for the expired ones and set their ->aborted_gstate */
928 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
930 if (data
.nr_expired
) {
931 bool has_rcu
= false;
934 * Wait till everyone sees ->aborted_gstate. The
935 * sequential waits for SRCUs aren't ideal. If this ever
936 * becomes a problem, we can add per-hw_ctx rcu_head and
939 queue_for_each_hw_ctx(q
, hctx
, i
) {
940 if (!hctx
->nr_expired
)
943 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
946 synchronize_srcu(hctx
->srcu
);
948 hctx
->nr_expired
= 0;
953 /* terminate the ones we won */
954 blk_mq_queue_tag_busy_iter(q
, blk_mq_terminate_expired
, NULL
);
958 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
959 mod_timer(&q
->timeout
, data
.next
);
962 * Request timeouts are handled as a forward rolling timer. If
963 * we end up here it means that no requests are pending and
964 * also that no request has been pending for a while. Mark
967 queue_for_each_hw_ctx(q
, hctx
, i
) {
968 /* the hctx may be unmapped, so check it here */
969 if (blk_mq_hw_queue_mapped(hctx
))
970 blk_mq_tag_idle(hctx
);
976 struct flush_busy_ctx_data
{
977 struct blk_mq_hw_ctx
*hctx
;
978 struct list_head
*list
;
981 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
983 struct flush_busy_ctx_data
*flush_data
= data
;
984 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
985 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
987 sbitmap_clear_bit(sb
, bitnr
);
988 spin_lock(&ctx
->lock
);
989 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
990 spin_unlock(&ctx
->lock
);
995 * Process software queues that have been marked busy, splicing them
996 * to the for-dispatch
998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
1000 struct flush_busy_ctx_data data
= {
1005 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
1009 struct dispatch_rq_data
{
1010 struct blk_mq_hw_ctx
*hctx
;
1014 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1017 struct dispatch_rq_data
*dispatch_data
= data
;
1018 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1019 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1021 spin_lock(&ctx
->lock
);
1022 if (unlikely(!list_empty(&ctx
->rq_list
))) {
1023 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
1024 list_del_init(&dispatch_data
->rq
->queuelist
);
1025 if (list_empty(&ctx
->rq_list
))
1026 sbitmap_clear_bit(sb
, bitnr
);
1028 spin_unlock(&ctx
->lock
);
1030 return !dispatch_data
->rq
;
1033 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1034 struct blk_mq_ctx
*start
)
1036 unsigned off
= start
? start
->index_hw
: 0;
1037 struct dispatch_rq_data data
= {
1042 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1043 dispatch_rq_from_ctx
, &data
);
1048 static inline unsigned int queued_to_index(unsigned int queued
)
1053 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
1056 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
1059 struct blk_mq_alloc_data data
= {
1061 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
1062 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
1065 might_sleep_if(wait
);
1070 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
1071 data
.flags
|= BLK_MQ_REQ_RESERVED
;
1073 rq
->tag
= blk_mq_get_tag(&data
);
1075 if (blk_mq_tag_busy(data
.hctx
)) {
1076 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
1077 atomic_inc(&data
.hctx
->nr_active
);
1079 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1085 return rq
->tag
!= -1;
1088 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1089 int flags
, void *key
)
1091 struct blk_mq_hw_ctx
*hctx
;
1093 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1095 list_del_init(&wait
->entry
);
1096 blk_mq_run_hw_queue(hctx
, true);
1101 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1102 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1103 * restart. For both cases, take care to check the condition again after
1104 * marking us as waiting.
1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
**hctx
,
1109 struct blk_mq_hw_ctx
*this_hctx
= *hctx
;
1110 struct sbq_wait_state
*ws
;
1111 wait_queue_entry_t
*wait
;
1114 if (!(this_hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1115 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &this_hctx
->state
))
1116 set_bit(BLK_MQ_S_SCHED_RESTART
, &this_hctx
->state
);
1119 * It's possible that a tag was freed in the window between the
1120 * allocation failure and adding the hardware queue to the wait
1123 * Don't clear RESTART here, someone else could have set it.
1124 * At most this will cost an extra queue run.
1126 return blk_mq_get_driver_tag(rq
, hctx
, false);
1129 wait
= &this_hctx
->dispatch_wait
;
1130 if (!list_empty_careful(&wait
->entry
))
1133 spin_lock(&this_hctx
->lock
);
1134 if (!list_empty(&wait
->entry
)) {
1135 spin_unlock(&this_hctx
->lock
);
1139 ws
= bt_wait_ptr(&this_hctx
->tags
->bitmap_tags
, this_hctx
);
1140 add_wait_queue(&ws
->wait
, wait
);
1143 * It's possible that a tag was freed in the window between the
1144 * allocation failure and adding the hardware queue to the wait
1147 ret
= blk_mq_get_driver_tag(rq
, hctx
, false);
1149 spin_unlock(&this_hctx
->lock
);
1154 * We got a tag, remove ourselves from the wait queue to ensure
1155 * someone else gets the wakeup.
1157 spin_lock_irq(&ws
->wait
.lock
);
1158 list_del_init(&wait
->entry
);
1159 spin_unlock_irq(&ws
->wait
.lock
);
1160 spin_unlock(&this_hctx
->lock
);
1165 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1167 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1170 struct blk_mq_hw_ctx
*hctx
;
1171 struct request
*rq
, *nxt
;
1172 bool no_tag
= false;
1174 blk_status_t ret
= BLK_STS_OK
;
1176 if (list_empty(list
))
1179 WARN_ON(!list_is_singular(list
) && got_budget
);
1182 * Now process all the entries, sending them to the driver.
1184 errors
= queued
= 0;
1186 struct blk_mq_queue_data bd
;
1188 rq
= list_first_entry(list
, struct request
, queuelist
);
1189 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
1191 * The initial allocation attempt failed, so we need to
1192 * rerun the hardware queue when a tag is freed. The
1193 * waitqueue takes care of that. If the queue is run
1194 * before we add this entry back on the dispatch list,
1195 * we'll re-run it below.
1197 if (!blk_mq_mark_tag_wait(&hctx
, rq
)) {
1199 blk_mq_put_dispatch_budget(hctx
);
1201 * For non-shared tags, the RESTART check
1204 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1210 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
)) {
1211 blk_mq_put_driver_tag(rq
);
1215 list_del_init(&rq
->queuelist
);
1220 * Flag last if we have no more requests, or if we have more
1221 * but can't assign a driver tag to it.
1223 if (list_empty(list
))
1226 nxt
= list_first_entry(list
, struct request
, queuelist
);
1227 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1230 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1231 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1233 * If an I/O scheduler has been configured and we got a
1234 * driver tag for the next request already, free it
1237 if (!list_empty(list
)) {
1238 nxt
= list_first_entry(list
, struct request
, queuelist
);
1239 blk_mq_put_driver_tag(nxt
);
1241 list_add(&rq
->queuelist
, list
);
1242 __blk_mq_requeue_request(rq
);
1246 if (unlikely(ret
!= BLK_STS_OK
)) {
1248 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1253 } while (!list_empty(list
));
1255 hctx
->dispatched
[queued_to_index(queued
)]++;
1258 * Any items that need requeuing? Stuff them into hctx->dispatch,
1259 * that is where we will continue on next queue run.
1261 if (!list_empty(list
)) {
1264 spin_lock(&hctx
->lock
);
1265 list_splice_init(list
, &hctx
->dispatch
);
1266 spin_unlock(&hctx
->lock
);
1269 * If SCHED_RESTART was set by the caller of this function and
1270 * it is no longer set that means that it was cleared by another
1271 * thread and hence that a queue rerun is needed.
1273 * If 'no_tag' is set, that means that we failed getting
1274 * a driver tag with an I/O scheduler attached. If our dispatch
1275 * waitqueue is no longer active, ensure that we run the queue
1276 * AFTER adding our entries back to the list.
1278 * If no I/O scheduler has been configured it is possible that
1279 * the hardware queue got stopped and restarted before requests
1280 * were pushed back onto the dispatch list. Rerun the queue to
1281 * avoid starvation. Notes:
1282 * - blk_mq_run_hw_queue() checks whether or not a queue has
1283 * been stopped before rerunning a queue.
1284 * - Some but not all block drivers stop a queue before
1285 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1288 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1289 * bit is set, run queue after a delay to avoid IO stalls
1290 * that could otherwise occur if the queue is idle.
1292 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1293 if (!needs_restart
||
1294 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1295 blk_mq_run_hw_queue(hctx
, true);
1296 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1297 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1300 return (queued
+ errors
) != 0;
1303 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1308 * We should be running this queue from one of the CPUs that
1311 * There are at least two related races now between setting
1312 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1313 * __blk_mq_run_hw_queue():
1315 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1316 * but later it becomes online, then this warning is harmless
1319 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1320 * but later it becomes offline, then the warning can't be
1321 * triggered, and we depend on blk-mq timeout handler to
1322 * handle dispatched requests to this hctx
1324 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1325 cpu_online(hctx
->next_cpu
)) {
1326 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1327 raw_smp_processor_id(),
1328 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1333 * We can't run the queue inline with ints disabled. Ensure that
1334 * we catch bad users of this early.
1336 WARN_ON_ONCE(in_interrupt());
1338 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1340 hctx_lock(hctx
, &srcu_idx
);
1341 blk_mq_sched_dispatch_requests(hctx
);
1342 hctx_unlock(hctx
, srcu_idx
);
1346 * It'd be great if the workqueue API had a way to pass
1347 * in a mask and had some smarts for more clever placement.
1348 * For now we just round-robin here, switching for every
1349 * BLK_MQ_CPU_WORK_BATCH queued items.
1351 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1355 if (hctx
->queue
->nr_hw_queues
== 1)
1356 return WORK_CPU_UNBOUND
;
1358 if (--hctx
->next_cpu_batch
<= 0) {
1361 next_cpu
= cpumask_next_and(hctx
->next_cpu
, hctx
->cpumask
,
1363 if (next_cpu
>= nr_cpu_ids
)
1364 next_cpu
= cpumask_first_and(hctx
->cpumask
,cpu_online_mask
);
1367 * No online CPU is found, so have to make sure hctx->next_cpu
1368 * is set correctly for not breaking workqueue.
1370 if (next_cpu
>= nr_cpu_ids
)
1371 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1373 hctx
->next_cpu
= next_cpu
;
1374 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1378 * Do unbound schedule if we can't find a online CPU for this hctx,
1379 * and it should only happen in the path of handling CPU DEAD.
1381 if (!cpu_online(hctx
->next_cpu
)) {
1388 * Make sure to re-select CPU next time once after CPUs
1389 * in hctx->cpumask become online again.
1391 hctx
->next_cpu_batch
= 1;
1392 return WORK_CPU_UNBOUND
;
1394 return hctx
->next_cpu
;
1397 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1398 unsigned long msecs
)
1400 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1403 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1406 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1407 int cpu
= get_cpu();
1408 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1409 __blk_mq_run_hw_queue(hctx
);
1417 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1418 msecs_to_jiffies(msecs
));
1421 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1423 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1425 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1427 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1433 * When queue is quiesced, we may be switching io scheduler, or
1434 * updating nr_hw_queues, or other things, and we can't run queue
1435 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1437 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1440 hctx_lock(hctx
, &srcu_idx
);
1441 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1442 blk_mq_hctx_has_pending(hctx
);
1443 hctx_unlock(hctx
, srcu_idx
);
1446 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1452 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1454 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1456 struct blk_mq_hw_ctx
*hctx
;
1459 queue_for_each_hw_ctx(q
, hctx
, i
) {
1460 if (blk_mq_hctx_stopped(hctx
))
1463 blk_mq_run_hw_queue(hctx
, async
);
1466 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1469 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1470 * @q: request queue.
1472 * The caller is responsible for serializing this function against
1473 * blk_mq_{start,stop}_hw_queue().
1475 bool blk_mq_queue_stopped(struct request_queue
*q
)
1477 struct blk_mq_hw_ctx
*hctx
;
1480 queue_for_each_hw_ctx(q
, hctx
, i
)
1481 if (blk_mq_hctx_stopped(hctx
))
1486 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1489 * This function is often used for pausing .queue_rq() by driver when
1490 * there isn't enough resource or some conditions aren't satisfied, and
1491 * BLK_STS_RESOURCE is usually returned.
1493 * We do not guarantee that dispatch can be drained or blocked
1494 * after blk_mq_stop_hw_queue() returns. Please use
1495 * blk_mq_quiesce_queue() for that requirement.
1497 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1499 cancel_delayed_work(&hctx
->run_work
);
1501 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1503 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1506 * This function is often used for pausing .queue_rq() by driver when
1507 * there isn't enough resource or some conditions aren't satisfied, and
1508 * BLK_STS_RESOURCE is usually returned.
1510 * We do not guarantee that dispatch can be drained or blocked
1511 * after blk_mq_stop_hw_queues() returns. Please use
1512 * blk_mq_quiesce_queue() for that requirement.
1514 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1516 struct blk_mq_hw_ctx
*hctx
;
1519 queue_for_each_hw_ctx(q
, hctx
, i
)
1520 blk_mq_stop_hw_queue(hctx
);
1522 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1524 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1526 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1528 blk_mq_run_hw_queue(hctx
, false);
1530 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1532 void blk_mq_start_hw_queues(struct request_queue
*q
)
1534 struct blk_mq_hw_ctx
*hctx
;
1537 queue_for_each_hw_ctx(q
, hctx
, i
)
1538 blk_mq_start_hw_queue(hctx
);
1540 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1542 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1544 if (!blk_mq_hctx_stopped(hctx
))
1547 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1548 blk_mq_run_hw_queue(hctx
, async
);
1550 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1552 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1554 struct blk_mq_hw_ctx
*hctx
;
1557 queue_for_each_hw_ctx(q
, hctx
, i
)
1558 blk_mq_start_stopped_hw_queue(hctx
, async
);
1560 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1562 static void blk_mq_run_work_fn(struct work_struct
*work
)
1564 struct blk_mq_hw_ctx
*hctx
;
1566 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1569 * If we are stopped, don't run the queue. The exception is if
1570 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1571 * the STOPPED bit and run it.
1573 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)) {
1574 if (!test_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
))
1577 clear_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1578 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1581 __blk_mq_run_hw_queue(hctx
);
1585 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1587 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1591 * Stop the hw queue, then modify currently delayed work.
1592 * This should prevent us from running the queue prematurely.
1593 * Mark the queue as auto-clearing STOPPED when it runs.
1595 blk_mq_stop_hw_queue(hctx
);
1596 set_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1597 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1599 msecs_to_jiffies(msecs
));
1601 EXPORT_SYMBOL(blk_mq_delay_queue
);
1603 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1607 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1609 lockdep_assert_held(&ctx
->lock
);
1611 trace_block_rq_insert(hctx
->queue
, rq
);
1614 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1616 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1619 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1622 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1624 lockdep_assert_held(&ctx
->lock
);
1626 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1627 blk_mq_hctx_mark_pending(hctx
, ctx
);
1631 * Should only be used carefully, when the caller knows we want to
1632 * bypass a potential IO scheduler on the target device.
1634 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1636 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1637 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1639 spin_lock(&hctx
->lock
);
1640 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1641 spin_unlock(&hctx
->lock
);
1644 blk_mq_run_hw_queue(hctx
, false);
1647 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1648 struct list_head
*list
)
1652 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1655 spin_lock(&ctx
->lock
);
1656 while (!list_empty(list
)) {
1659 rq
= list_first_entry(list
, struct request
, queuelist
);
1660 BUG_ON(rq
->mq_ctx
!= ctx
);
1661 list_del_init(&rq
->queuelist
);
1662 __blk_mq_insert_req_list(hctx
, rq
, false);
1664 blk_mq_hctx_mark_pending(hctx
, ctx
);
1665 spin_unlock(&ctx
->lock
);
1668 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1670 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1671 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1673 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1674 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1675 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1678 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1680 struct blk_mq_ctx
*this_ctx
;
1681 struct request_queue
*this_q
;
1684 LIST_HEAD(ctx_list
);
1687 list_splice_init(&plug
->mq_list
, &list
);
1689 list_sort(NULL
, &list
, plug_ctx_cmp
);
1695 while (!list_empty(&list
)) {
1696 rq
= list_entry_rq(list
.next
);
1697 list_del_init(&rq
->queuelist
);
1699 if (rq
->mq_ctx
!= this_ctx
) {
1701 trace_block_unplug(this_q
, depth
, from_schedule
);
1702 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1707 this_ctx
= rq
->mq_ctx
;
1713 list_add_tail(&rq
->queuelist
, &ctx_list
);
1717 * If 'this_ctx' is set, we know we have entries to complete
1718 * on 'ctx_list'. Do those.
1721 trace_block_unplug(this_q
, depth
, from_schedule
);
1722 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1727 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1729 blk_init_request_from_bio(rq
, bio
);
1731 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1733 blk_account_io_start(rq
, true);
1736 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx
*hctx
,
1737 struct blk_mq_ctx
*ctx
,
1740 spin_lock(&ctx
->lock
);
1741 __blk_mq_insert_request(hctx
, rq
, false);
1742 spin_unlock(&ctx
->lock
);
1745 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1748 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1750 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1753 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1757 struct request_queue
*q
= rq
->q
;
1758 struct blk_mq_queue_data bd
= {
1762 blk_qc_t new_cookie
;
1765 new_cookie
= request_to_qc_t(hctx
, rq
);
1768 * For OK queue, we are done. For error, caller may kill it.
1769 * Any other error (busy), just add it to our list as we
1770 * previously would have done.
1772 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1775 *cookie
= new_cookie
;
1777 case BLK_STS_RESOURCE
:
1778 case BLK_STS_DEV_RESOURCE
:
1779 __blk_mq_requeue_request(rq
);
1782 *cookie
= BLK_QC_T_NONE
;
1789 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1794 struct request_queue
*q
= rq
->q
;
1795 bool run_queue
= true;
1798 * RCU or SRCU read lock is needed before checking quiesced flag.
1800 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1801 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1802 * and avoid driver to try to dispatch again.
1804 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1806 bypass_insert
= false;
1810 if (q
->elevator
&& !bypass_insert
)
1813 if (!blk_mq_get_driver_tag(rq
, NULL
, false))
1816 if (!blk_mq_get_dispatch_budget(hctx
)) {
1817 blk_mq_put_driver_tag(rq
);
1821 return __blk_mq_issue_directly(hctx
, rq
, cookie
);
1824 return BLK_STS_RESOURCE
;
1826 blk_mq_sched_insert_request(rq
, false, run_queue
, false);
1830 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1831 struct request
*rq
, blk_qc_t
*cookie
)
1836 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1838 hctx_lock(hctx
, &srcu_idx
);
1840 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1841 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1842 blk_mq_sched_insert_request(rq
, false, true, false);
1843 else if (ret
!= BLK_STS_OK
)
1844 blk_mq_end_request(rq
, ret
);
1846 hctx_unlock(hctx
, srcu_idx
);
1849 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
)
1853 blk_qc_t unused_cookie
;
1854 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1855 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1857 hctx_lock(hctx
, &srcu_idx
);
1858 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true);
1859 hctx_unlock(hctx
, srcu_idx
);
1864 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1866 const int is_sync
= op_is_sync(bio
->bi_opf
);
1867 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1868 struct blk_mq_alloc_data data
= { .flags
= 0 };
1870 unsigned int request_count
= 0;
1871 struct blk_plug
*plug
;
1872 struct request
*same_queue_rq
= NULL
;
1874 unsigned int wb_acct
;
1876 blk_queue_bounce(q
, &bio
);
1878 blk_queue_split(q
, &bio
);
1880 if (!bio_integrity_prep(bio
))
1881 return BLK_QC_T_NONE
;
1883 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1884 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1885 return BLK_QC_T_NONE
;
1887 if (blk_mq_sched_bio_merge(q
, bio
))
1888 return BLK_QC_T_NONE
;
1890 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1892 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1894 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1895 if (unlikely(!rq
)) {
1896 __wbt_done(q
->rq_wb
, wb_acct
);
1897 if (bio
->bi_opf
& REQ_NOWAIT
)
1898 bio_wouldblock_error(bio
);
1899 return BLK_QC_T_NONE
;
1902 wbt_track(&rq
->issue_stat
, wb_acct
);
1904 cookie
= request_to_qc_t(data
.hctx
, rq
);
1906 plug
= current
->plug
;
1907 if (unlikely(is_flush_fua
)) {
1908 blk_mq_put_ctx(data
.ctx
);
1909 blk_mq_bio_to_request(rq
, bio
);
1911 /* bypass scheduler for flush rq */
1912 blk_insert_flush(rq
);
1913 blk_mq_run_hw_queue(data
.hctx
, true);
1914 } else if (plug
&& q
->nr_hw_queues
== 1) {
1915 struct request
*last
= NULL
;
1917 blk_mq_put_ctx(data
.ctx
);
1918 blk_mq_bio_to_request(rq
, bio
);
1921 * @request_count may become stale because of schedule
1922 * out, so check the list again.
1924 if (list_empty(&plug
->mq_list
))
1926 else if (blk_queue_nomerges(q
))
1927 request_count
= blk_plug_queued_count(q
);
1930 trace_block_plug(q
);
1932 last
= list_entry_rq(plug
->mq_list
.prev
);
1934 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1935 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1936 blk_flush_plug_list(plug
, false);
1937 trace_block_plug(q
);
1940 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1941 } else if (plug
&& !blk_queue_nomerges(q
)) {
1942 blk_mq_bio_to_request(rq
, bio
);
1945 * We do limited plugging. If the bio can be merged, do that.
1946 * Otherwise the existing request in the plug list will be
1947 * issued. So the plug list will have one request at most
1948 * The plug list might get flushed before this. If that happens,
1949 * the plug list is empty, and same_queue_rq is invalid.
1951 if (list_empty(&plug
->mq_list
))
1952 same_queue_rq
= NULL
;
1954 list_del_init(&same_queue_rq
->queuelist
);
1955 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1957 blk_mq_put_ctx(data
.ctx
);
1959 if (same_queue_rq
) {
1960 data
.hctx
= blk_mq_map_queue(q
,
1961 same_queue_rq
->mq_ctx
->cpu
);
1962 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1965 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1966 blk_mq_put_ctx(data
.ctx
);
1967 blk_mq_bio_to_request(rq
, bio
);
1968 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1969 } else if (q
->elevator
) {
1970 blk_mq_put_ctx(data
.ctx
);
1971 blk_mq_bio_to_request(rq
, bio
);
1972 blk_mq_sched_insert_request(rq
, false, true, true);
1974 blk_mq_put_ctx(data
.ctx
);
1975 blk_mq_bio_to_request(rq
, bio
);
1976 blk_mq_queue_io(data
.hctx
, data
.ctx
, rq
);
1977 blk_mq_run_hw_queue(data
.hctx
, true);
1983 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1984 unsigned int hctx_idx
)
1988 if (tags
->rqs
&& set
->ops
->exit_request
) {
1991 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1992 struct request
*rq
= tags
->static_rqs
[i
];
1996 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1997 tags
->static_rqs
[i
] = NULL
;
2001 while (!list_empty(&tags
->page_list
)) {
2002 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
2003 list_del_init(&page
->lru
);
2005 * Remove kmemleak object previously allocated in
2006 * blk_mq_init_rq_map().
2008 kmemleak_free(page_address(page
));
2009 __free_pages(page
, page
->private);
2013 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
2017 kfree(tags
->static_rqs
);
2018 tags
->static_rqs
= NULL
;
2020 blk_mq_free_tags(tags
);
2023 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
2024 unsigned int hctx_idx
,
2025 unsigned int nr_tags
,
2026 unsigned int reserved_tags
)
2028 struct blk_mq_tags
*tags
;
2031 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
2032 if (node
== NUMA_NO_NODE
)
2033 node
= set
->numa_node
;
2035 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
2036 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
2040 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
2041 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2044 blk_mq_free_tags(tags
);
2048 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
2049 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2051 if (!tags
->static_rqs
) {
2053 blk_mq_free_tags(tags
);
2060 static size_t order_to_size(unsigned int order
)
2062 return (size_t)PAGE_SIZE
<< order
;
2065 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2066 unsigned int hctx_idx
, int node
)
2070 if (set
->ops
->init_request
) {
2071 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2076 seqcount_init(&rq
->gstate_seq
);
2077 u64_stats_init(&rq
->aborted_gstate_sync
);
2081 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2082 unsigned int hctx_idx
, unsigned int depth
)
2084 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2085 size_t rq_size
, left
;
2088 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
2089 if (node
== NUMA_NO_NODE
)
2090 node
= set
->numa_node
;
2092 INIT_LIST_HEAD(&tags
->page_list
);
2095 * rq_size is the size of the request plus driver payload, rounded
2096 * to the cacheline size
2098 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2100 left
= rq_size
* depth
;
2102 for (i
= 0; i
< depth
; ) {
2103 int this_order
= max_order
;
2108 while (this_order
&& left
< order_to_size(this_order
- 1))
2112 page
= alloc_pages_node(node
,
2113 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2119 if (order_to_size(this_order
) < rq_size
)
2126 page
->private = this_order
;
2127 list_add_tail(&page
->lru
, &tags
->page_list
);
2129 p
= page_address(page
);
2131 * Allow kmemleak to scan these pages as they contain pointers
2132 * to additional allocations like via ops->init_request().
2134 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2135 entries_per_page
= order_to_size(this_order
) / rq_size
;
2136 to_do
= min(entries_per_page
, depth
- i
);
2137 left
-= to_do
* rq_size
;
2138 for (j
= 0; j
< to_do
; j
++) {
2139 struct request
*rq
= p
;
2141 tags
->static_rqs
[i
] = rq
;
2142 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2143 tags
->static_rqs
[i
] = NULL
;
2154 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2159 * 'cpu' is going away. splice any existing rq_list entries from this
2160 * software queue to the hw queue dispatch list, and ensure that it
2163 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2165 struct blk_mq_hw_ctx
*hctx
;
2166 struct blk_mq_ctx
*ctx
;
2169 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2170 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2172 spin_lock(&ctx
->lock
);
2173 if (!list_empty(&ctx
->rq_list
)) {
2174 list_splice_init(&ctx
->rq_list
, &tmp
);
2175 blk_mq_hctx_clear_pending(hctx
, ctx
);
2177 spin_unlock(&ctx
->lock
);
2179 if (list_empty(&tmp
))
2182 spin_lock(&hctx
->lock
);
2183 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2184 spin_unlock(&hctx
->lock
);
2186 blk_mq_run_hw_queue(hctx
, true);
2190 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2192 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2196 /* hctx->ctxs will be freed in queue's release handler */
2197 static void blk_mq_exit_hctx(struct request_queue
*q
,
2198 struct blk_mq_tag_set
*set
,
2199 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2201 blk_mq_debugfs_unregister_hctx(hctx
);
2203 if (blk_mq_hw_queue_mapped(hctx
))
2204 blk_mq_tag_idle(hctx
);
2206 if (set
->ops
->exit_request
)
2207 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2209 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2211 if (set
->ops
->exit_hctx
)
2212 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2214 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2215 cleanup_srcu_struct(hctx
->srcu
);
2217 blk_mq_remove_cpuhp(hctx
);
2218 blk_free_flush_queue(hctx
->fq
);
2219 sbitmap_free(&hctx
->ctx_map
);
2222 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2223 struct blk_mq_tag_set
*set
, int nr_queue
)
2225 struct blk_mq_hw_ctx
*hctx
;
2228 queue_for_each_hw_ctx(q
, hctx
, i
) {
2231 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2235 static int blk_mq_init_hctx(struct request_queue
*q
,
2236 struct blk_mq_tag_set
*set
,
2237 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2241 node
= hctx
->numa_node
;
2242 if (node
== NUMA_NO_NODE
)
2243 node
= hctx
->numa_node
= set
->numa_node
;
2245 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2246 spin_lock_init(&hctx
->lock
);
2247 INIT_LIST_HEAD(&hctx
->dispatch
);
2249 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2251 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2253 hctx
->tags
= set
->tags
[hctx_idx
];
2256 * Allocate space for all possible cpus to avoid allocation at
2259 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2262 goto unregister_cpu_notifier
;
2264 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2270 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2271 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2273 if (set
->ops
->init_hctx
&&
2274 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2277 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
2280 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2282 goto sched_exit_hctx
;
2284 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
, node
))
2287 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2288 init_srcu_struct(hctx
->srcu
);
2290 blk_mq_debugfs_register_hctx(q
, hctx
);
2297 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2299 if (set
->ops
->exit_hctx
)
2300 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2302 sbitmap_free(&hctx
->ctx_map
);
2305 unregister_cpu_notifier
:
2306 blk_mq_remove_cpuhp(hctx
);
2310 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2311 unsigned int nr_hw_queues
)
2315 for_each_possible_cpu(i
) {
2316 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2317 struct blk_mq_hw_ctx
*hctx
;
2320 spin_lock_init(&__ctx
->lock
);
2321 INIT_LIST_HEAD(&__ctx
->rq_list
);
2325 * Set local node, IFF we have more than one hw queue. If
2326 * not, we remain on the home node of the device
2328 hctx
= blk_mq_map_queue(q
, i
);
2329 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2330 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2334 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2338 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2339 set
->queue_depth
, set
->reserved_tags
);
2340 if (!set
->tags
[hctx_idx
])
2343 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2348 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2349 set
->tags
[hctx_idx
] = NULL
;
2353 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2354 unsigned int hctx_idx
)
2356 if (set
->tags
[hctx_idx
]) {
2357 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2358 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2359 set
->tags
[hctx_idx
] = NULL
;
2363 static void blk_mq_map_swqueue(struct request_queue
*q
)
2365 unsigned int i
, hctx_idx
;
2366 struct blk_mq_hw_ctx
*hctx
;
2367 struct blk_mq_ctx
*ctx
;
2368 struct blk_mq_tag_set
*set
= q
->tag_set
;
2371 * Avoid others reading imcomplete hctx->cpumask through sysfs
2373 mutex_lock(&q
->sysfs_lock
);
2375 queue_for_each_hw_ctx(q
, hctx
, i
) {
2376 cpumask_clear(hctx
->cpumask
);
2381 * Map software to hardware queues.
2383 * If the cpu isn't present, the cpu is mapped to first hctx.
2385 for_each_possible_cpu(i
) {
2386 hctx_idx
= q
->mq_map
[i
];
2387 /* unmapped hw queue can be remapped after CPU topo changed */
2388 if (!set
->tags
[hctx_idx
] &&
2389 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2391 * If tags initialization fail for some hctx,
2392 * that hctx won't be brought online. In this
2393 * case, remap the current ctx to hctx[0] which
2394 * is guaranteed to always have tags allocated
2399 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2400 hctx
= blk_mq_map_queue(q
, i
);
2402 cpumask_set_cpu(i
, hctx
->cpumask
);
2403 ctx
->index_hw
= hctx
->nr_ctx
;
2404 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2407 mutex_unlock(&q
->sysfs_lock
);
2409 queue_for_each_hw_ctx(q
, hctx
, i
) {
2411 * If no software queues are mapped to this hardware queue,
2412 * disable it and free the request entries.
2414 if (!hctx
->nr_ctx
) {
2415 /* Never unmap queue 0. We need it as a
2416 * fallback in case of a new remap fails
2419 if (i
&& set
->tags
[i
])
2420 blk_mq_free_map_and_requests(set
, i
);
2426 hctx
->tags
= set
->tags
[i
];
2427 WARN_ON(!hctx
->tags
);
2430 * Set the map size to the number of mapped software queues.
2431 * This is more accurate and more efficient than looping
2432 * over all possibly mapped software queues.
2434 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2437 * Initialize batch roundrobin counts
2439 hctx
->next_cpu
= cpumask_first_and(hctx
->cpumask
,
2441 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2446 * Caller needs to ensure that we're either frozen/quiesced, or that
2447 * the queue isn't live yet.
2449 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2451 struct blk_mq_hw_ctx
*hctx
;
2454 queue_for_each_hw_ctx(q
, hctx
, i
) {
2456 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2457 atomic_inc(&q
->shared_hctx_restart
);
2458 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2460 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2461 atomic_dec(&q
->shared_hctx_restart
);
2462 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2467 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2470 struct request_queue
*q
;
2472 lockdep_assert_held(&set
->tag_list_lock
);
2474 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2475 blk_mq_freeze_queue(q
);
2476 queue_set_hctx_shared(q
, shared
);
2477 blk_mq_unfreeze_queue(q
);
2481 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2483 struct blk_mq_tag_set
*set
= q
->tag_set
;
2485 mutex_lock(&set
->tag_list_lock
);
2486 list_del_rcu(&q
->tag_set_list
);
2487 INIT_LIST_HEAD(&q
->tag_set_list
);
2488 if (list_is_singular(&set
->tag_list
)) {
2489 /* just transitioned to unshared */
2490 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2491 /* update existing queue */
2492 blk_mq_update_tag_set_depth(set
, false);
2494 mutex_unlock(&set
->tag_list_lock
);
2499 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2500 struct request_queue
*q
)
2504 mutex_lock(&set
->tag_list_lock
);
2507 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2509 if (!list_empty(&set
->tag_list
) &&
2510 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2511 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2512 /* update existing queue */
2513 blk_mq_update_tag_set_depth(set
, true);
2515 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2516 queue_set_hctx_shared(q
, true);
2517 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2519 mutex_unlock(&set
->tag_list_lock
);
2523 * It is the actual release handler for mq, but we do it from
2524 * request queue's release handler for avoiding use-after-free
2525 * and headache because q->mq_kobj shouldn't have been introduced,
2526 * but we can't group ctx/kctx kobj without it.
2528 void blk_mq_release(struct request_queue
*q
)
2530 struct blk_mq_hw_ctx
*hctx
;
2533 /* hctx kobj stays in hctx */
2534 queue_for_each_hw_ctx(q
, hctx
, i
) {
2537 kobject_put(&hctx
->kobj
);
2542 kfree(q
->queue_hw_ctx
);
2545 * release .mq_kobj and sw queue's kobject now because
2546 * both share lifetime with request queue.
2548 blk_mq_sysfs_deinit(q
);
2550 free_percpu(q
->queue_ctx
);
2553 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2555 struct request_queue
*uninit_q
, *q
;
2557 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2559 return ERR_PTR(-ENOMEM
);
2561 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2563 blk_cleanup_queue(uninit_q
);
2567 EXPORT_SYMBOL(blk_mq_init_queue
);
2569 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2571 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2573 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2574 __alignof__(struct blk_mq_hw_ctx
)) !=
2575 sizeof(struct blk_mq_hw_ctx
));
2577 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2578 hw_ctx_size
+= sizeof(struct srcu_struct
);
2583 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2584 struct request_queue
*q
)
2587 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2589 blk_mq_sysfs_unregister(q
);
2591 /* protect against switching io scheduler */
2592 mutex_lock(&q
->sysfs_lock
);
2593 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2599 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2600 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2605 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2612 atomic_set(&hctxs
[i
]->nr_active
, 0);
2613 hctxs
[i
]->numa_node
= node
;
2614 hctxs
[i
]->queue_num
= i
;
2616 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2617 free_cpumask_var(hctxs
[i
]->cpumask
);
2622 blk_mq_hctx_kobj_init(hctxs
[i
]);
2624 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2625 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2629 blk_mq_free_map_and_requests(set
, j
);
2630 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2631 kobject_put(&hctx
->kobj
);
2636 q
->nr_hw_queues
= i
;
2637 mutex_unlock(&q
->sysfs_lock
);
2638 blk_mq_sysfs_register(q
);
2641 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2642 struct request_queue
*q
)
2644 /* mark the queue as mq asap */
2645 q
->mq_ops
= set
->ops
;
2647 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2648 blk_mq_poll_stats_bkt
,
2649 BLK_MQ_POLL_STATS_BKTS
, q
);
2653 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2657 /* init q->mq_kobj and sw queues' kobjects */
2658 blk_mq_sysfs_init(q
);
2660 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2661 GFP_KERNEL
, set
->numa_node
);
2662 if (!q
->queue_hw_ctx
)
2665 q
->mq_map
= set
->mq_map
;
2667 blk_mq_realloc_hw_ctxs(set
, q
);
2668 if (!q
->nr_hw_queues
)
2671 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2672 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2674 q
->nr_queues
= nr_cpu_ids
;
2676 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2678 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2679 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2681 q
->sg_reserved_size
= INT_MAX
;
2683 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2684 INIT_LIST_HEAD(&q
->requeue_list
);
2685 spin_lock_init(&q
->requeue_lock
);
2687 blk_queue_make_request(q
, blk_mq_make_request
);
2688 if (q
->mq_ops
->poll
)
2689 q
->poll_fn
= blk_mq_poll
;
2692 * Do this after blk_queue_make_request() overrides it...
2694 q
->nr_requests
= set
->queue_depth
;
2697 * Default to classic polling
2701 if (set
->ops
->complete
)
2702 blk_queue_softirq_done(q
, set
->ops
->complete
);
2704 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2705 blk_mq_add_queue_tag_set(set
, q
);
2706 blk_mq_map_swqueue(q
);
2708 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2711 ret
= blk_mq_sched_init(q
);
2713 return ERR_PTR(ret
);
2719 kfree(q
->queue_hw_ctx
);
2721 free_percpu(q
->queue_ctx
);
2724 return ERR_PTR(-ENOMEM
);
2726 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2728 void blk_mq_free_queue(struct request_queue
*q
)
2730 struct blk_mq_tag_set
*set
= q
->tag_set
;
2732 blk_mq_del_queue_tag_set(q
);
2733 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2736 /* Basically redo blk_mq_init_queue with queue frozen */
2737 static void blk_mq_queue_reinit(struct request_queue
*q
)
2739 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2741 blk_mq_debugfs_unregister_hctxs(q
);
2742 blk_mq_sysfs_unregister(q
);
2745 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2746 * we should change hctx numa_node according to the new topology (this
2747 * involves freeing and re-allocating memory, worth doing?)
2749 blk_mq_map_swqueue(q
);
2751 blk_mq_sysfs_register(q
);
2752 blk_mq_debugfs_register_hctxs(q
);
2755 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2759 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2760 if (!__blk_mq_alloc_rq_map(set
, i
))
2767 blk_mq_free_rq_map(set
->tags
[i
]);
2773 * Allocate the request maps associated with this tag_set. Note that this
2774 * may reduce the depth asked for, if memory is tight. set->queue_depth
2775 * will be updated to reflect the allocated depth.
2777 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2782 depth
= set
->queue_depth
;
2784 err
= __blk_mq_alloc_rq_maps(set
);
2788 set
->queue_depth
>>= 1;
2789 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2793 } while (set
->queue_depth
);
2795 if (!set
->queue_depth
|| err
) {
2796 pr_err("blk-mq: failed to allocate request map\n");
2800 if (depth
!= set
->queue_depth
)
2801 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2802 depth
, set
->queue_depth
);
2807 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2809 if (set
->ops
->map_queues
) {
2812 * transport .map_queues is usually done in the following
2815 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2816 * mask = get_cpu_mask(queue)
2817 * for_each_cpu(cpu, mask)
2818 * set->mq_map[cpu] = queue;
2821 * When we need to remap, the table has to be cleared for
2822 * killing stale mapping since one CPU may not be mapped
2825 for_each_possible_cpu(cpu
)
2826 set
->mq_map
[cpu
] = 0;
2828 return set
->ops
->map_queues(set
);
2830 return blk_mq_map_queues(set
);
2834 * Alloc a tag set to be associated with one or more request queues.
2835 * May fail with EINVAL for various error conditions. May adjust the
2836 * requested depth down, if if it too large. In that case, the set
2837 * value will be stored in set->queue_depth.
2839 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2843 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2845 if (!set
->nr_hw_queues
)
2847 if (!set
->queue_depth
)
2849 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2852 if (!set
->ops
->queue_rq
)
2855 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2858 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2859 pr_info("blk-mq: reduced tag depth to %u\n",
2861 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2865 * If a crashdump is active, then we are potentially in a very
2866 * memory constrained environment. Limit us to 1 queue and
2867 * 64 tags to prevent using too much memory.
2869 if (is_kdump_kernel()) {
2870 set
->nr_hw_queues
= 1;
2871 set
->queue_depth
= min(64U, set
->queue_depth
);
2874 * There is no use for more h/w queues than cpus.
2876 if (set
->nr_hw_queues
> nr_cpu_ids
)
2877 set
->nr_hw_queues
= nr_cpu_ids
;
2879 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2880 GFP_KERNEL
, set
->numa_node
);
2885 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2886 GFP_KERNEL
, set
->numa_node
);
2890 ret
= blk_mq_update_queue_map(set
);
2892 goto out_free_mq_map
;
2894 ret
= blk_mq_alloc_rq_maps(set
);
2896 goto out_free_mq_map
;
2898 mutex_init(&set
->tag_list_lock
);
2899 INIT_LIST_HEAD(&set
->tag_list
);
2911 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2913 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2917 for (i
= 0; i
< nr_cpu_ids
; i
++)
2918 blk_mq_free_map_and_requests(set
, i
);
2926 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2928 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2930 struct blk_mq_tag_set
*set
= q
->tag_set
;
2931 struct blk_mq_hw_ctx
*hctx
;
2937 blk_mq_freeze_queue(q
);
2938 blk_mq_quiesce_queue(q
);
2941 queue_for_each_hw_ctx(q
, hctx
, i
) {
2945 * If we're using an MQ scheduler, just update the scheduler
2946 * queue depth. This is similar to what the old code would do.
2948 if (!hctx
->sched_tags
) {
2949 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2952 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2960 q
->nr_requests
= nr
;
2962 blk_mq_unquiesce_queue(q
);
2963 blk_mq_unfreeze_queue(q
);
2968 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2971 struct request_queue
*q
;
2973 lockdep_assert_held(&set
->tag_list_lock
);
2975 if (nr_hw_queues
> nr_cpu_ids
)
2976 nr_hw_queues
= nr_cpu_ids
;
2977 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2980 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2981 blk_mq_freeze_queue(q
);
2983 set
->nr_hw_queues
= nr_hw_queues
;
2984 blk_mq_update_queue_map(set
);
2985 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2986 blk_mq_realloc_hw_ctxs(set
, q
);
2987 blk_mq_queue_reinit(q
);
2990 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2991 blk_mq_unfreeze_queue(q
);
2994 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2996 mutex_lock(&set
->tag_list_lock
);
2997 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2998 mutex_unlock(&set
->tag_list_lock
);
3000 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3002 /* Enable polling stats and return whether they were already enabled. */
3003 static bool blk_poll_stats_enable(struct request_queue
*q
)
3005 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3006 test_and_set_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
))
3008 blk_stat_add_callback(q
, q
->poll_cb
);
3012 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3015 * We don't arm the callback if polling stats are not enabled or the
3016 * callback is already active.
3018 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3019 blk_stat_is_active(q
->poll_cb
))
3022 blk_stat_activate_msecs(q
->poll_cb
, 100);
3025 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3027 struct request_queue
*q
= cb
->data
;
3030 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3031 if (cb
->stat
[bucket
].nr_samples
)
3032 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3036 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3037 struct blk_mq_hw_ctx
*hctx
,
3040 unsigned long ret
= 0;
3044 * If stats collection isn't on, don't sleep but turn it on for
3047 if (!blk_poll_stats_enable(q
))
3051 * As an optimistic guess, use half of the mean service time
3052 * for this type of request. We can (and should) make this smarter.
3053 * For instance, if the completion latencies are tight, we can
3054 * get closer than just half the mean. This is especially
3055 * important on devices where the completion latencies are longer
3056 * than ~10 usec. We do use the stats for the relevant IO size
3057 * if available which does lead to better estimates.
3059 bucket
= blk_mq_poll_stats_bkt(rq
);
3063 if (q
->poll_stat
[bucket
].nr_samples
)
3064 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3069 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3070 struct blk_mq_hw_ctx
*hctx
,
3073 struct hrtimer_sleeper hs
;
3074 enum hrtimer_mode mode
;
3078 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3084 * -1: don't ever hybrid sleep
3085 * 0: use half of prev avg
3086 * >0: use this specific value
3088 if (q
->poll_nsec
== -1)
3090 else if (q
->poll_nsec
> 0)
3091 nsecs
= q
->poll_nsec
;
3093 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3098 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3101 * This will be replaced with the stats tracking code, using
3102 * 'avg_completion_time / 2' as the pre-sleep target.
3106 mode
= HRTIMER_MODE_REL
;
3107 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
3108 hrtimer_set_expires(&hs
.timer
, kt
);
3110 hrtimer_init_sleeper(&hs
, current
);
3112 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3114 set_current_state(TASK_UNINTERRUPTIBLE
);
3115 hrtimer_start_expires(&hs
.timer
, mode
);
3118 hrtimer_cancel(&hs
.timer
);
3119 mode
= HRTIMER_MODE_ABS
;
3120 } while (hs
.task
&& !signal_pending(current
));
3122 __set_current_state(TASK_RUNNING
);
3123 destroy_hrtimer_on_stack(&hs
.timer
);
3127 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
3129 struct request_queue
*q
= hctx
->queue
;
3133 * If we sleep, have the caller restart the poll loop to reset
3134 * the state. Like for the other success return cases, the
3135 * caller is responsible for checking if the IO completed. If
3136 * the IO isn't complete, we'll get called again and will go
3137 * straight to the busy poll loop.
3139 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
3142 hctx
->poll_considered
++;
3144 state
= current
->state
;
3145 while (!need_resched()) {
3148 hctx
->poll_invoked
++;
3150 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
3152 hctx
->poll_success
++;
3153 set_current_state(TASK_RUNNING
);
3157 if (signal_pending_state(state
, current
))
3158 set_current_state(TASK_RUNNING
);
3160 if (current
->state
== TASK_RUNNING
)
3167 __set_current_state(TASK_RUNNING
);
3171 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
3173 struct blk_mq_hw_ctx
*hctx
;
3176 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3179 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3180 if (!blk_qc_t_is_internal(cookie
))
3181 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3183 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3185 * With scheduling, if the request has completed, we'll
3186 * get a NULL return here, as we clear the sched tag when
3187 * that happens. The request still remains valid, like always,
3188 * so we should be safe with just the NULL check.
3194 return __blk_mq_poll(hctx
, rq
);
3197 static int __init
blk_mq_init(void)
3199 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3200 blk_mq_hctx_notify_dead
);
3203 subsys_initcall(blk_mq_init
);