2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
26 #include "transaction.h"
27 #include "delayed-ref.h"
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
33 struct extent_inode_elem
{
36 struct extent_inode_elem
*next
;
39 static int check_extent_in_eb(const struct btrfs_key
*key
,
40 const struct extent_buffer
*eb
,
41 const struct btrfs_file_extent_item
*fi
,
43 struct extent_inode_elem
**eie
,
47 struct extent_inode_elem
*e
;
50 !btrfs_file_extent_compression(eb
, fi
) &&
51 !btrfs_file_extent_encryption(eb
, fi
) &&
52 !btrfs_file_extent_other_encoding(eb
, fi
)) {
56 data_offset
= btrfs_file_extent_offset(eb
, fi
);
57 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
59 if (extent_item_pos
< data_offset
||
60 extent_item_pos
>= data_offset
+ data_len
)
62 offset
= extent_item_pos
- data_offset
;
65 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
70 e
->inum
= key
->objectid
;
71 e
->offset
= key
->offset
+ offset
;
77 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
79 struct extent_inode_elem
*eie_next
;
81 for (; eie
; eie
= eie_next
) {
87 static int find_extent_in_eb(const struct extent_buffer
*eb
,
88 u64 wanted_disk_byte
, u64 extent_item_pos
,
89 struct extent_inode_elem
**eie
,
94 struct btrfs_file_extent_item
*fi
;
101 * from the shared data ref, we only have the leaf but we need
102 * the key. thus, we must look into all items and see that we
103 * find one (some) with a reference to our extent item.
105 nritems
= btrfs_header_nritems(eb
);
106 for (slot
= 0; slot
< nritems
; ++slot
) {
107 btrfs_item_key_to_cpu(eb
, &key
, slot
);
108 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
110 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
111 extent_type
= btrfs_file_extent_type(eb
, fi
);
112 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
116 if (disk_byte
!= wanted_disk_byte
)
119 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
, ignore_offset
);
132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
135 struct preftree direct
; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 struct preftree indirect
; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 struct preftree indirect_missing_keys
;
141 * Checks for a shared extent during backref search.
143 * The share_count tracks prelim_refs (direct and indirect) having a
145 * - incremented when a ref->count transitions to >0
146 * - decremented when a ref->count transitions to <1
154 static inline int extent_is_shared(struct share_check
*sc
)
156 return (sc
&& sc
->share_count
> 1) ? BACKREF_FOUND_SHARED
: 0;
159 static struct kmem_cache
*btrfs_prelim_ref_cache
;
161 int __init
btrfs_prelim_ref_init(void)
163 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
164 sizeof(struct prelim_ref
),
168 if (!btrfs_prelim_ref_cache
)
173 void btrfs_prelim_ref_exit(void)
175 kmem_cache_destroy(btrfs_prelim_ref_cache
);
178 static void free_pref(struct prelim_ref
*ref
)
180 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
184 * Return 0 when both refs are for the same block (and can be merged).
185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186 * indicates a 'higher' block.
188 static int prelim_ref_compare(struct prelim_ref
*ref1
,
189 struct prelim_ref
*ref2
)
191 if (ref1
->level
< ref2
->level
)
193 if (ref1
->level
> ref2
->level
)
195 if (ref1
->root_id
< ref2
->root_id
)
197 if (ref1
->root_id
> ref2
->root_id
)
199 if (ref1
->key_for_search
.type
< ref2
->key_for_search
.type
)
201 if (ref1
->key_for_search
.type
> ref2
->key_for_search
.type
)
203 if (ref1
->key_for_search
.objectid
< ref2
->key_for_search
.objectid
)
205 if (ref1
->key_for_search
.objectid
> ref2
->key_for_search
.objectid
)
207 if (ref1
->key_for_search
.offset
< ref2
->key_for_search
.offset
)
209 if (ref1
->key_for_search
.offset
> ref2
->key_for_search
.offset
)
211 if (ref1
->parent
< ref2
->parent
)
213 if (ref1
->parent
> ref2
->parent
)
219 static void update_share_count(struct share_check
*sc
, int oldcount
,
222 if ((!sc
) || (oldcount
== 0 && newcount
< 1))
225 if (oldcount
> 0 && newcount
< 1)
227 else if (oldcount
< 1 && newcount
> 0)
232 * Add @newref to the @root rbtree, merging identical refs.
234 * Callers should assume that newref has been freed after calling.
236 static void prelim_ref_insert(const struct btrfs_fs_info
*fs_info
,
237 struct preftree
*preftree
,
238 struct prelim_ref
*newref
,
239 struct share_check
*sc
)
241 struct rb_root
*root
;
243 struct rb_node
*parent
= NULL
;
244 struct prelim_ref
*ref
;
247 root
= &preftree
->root
;
252 ref
= rb_entry(parent
, struct prelim_ref
, rbnode
);
253 result
= prelim_ref_compare(ref
, newref
);
256 } else if (result
> 0) {
259 /* Identical refs, merge them and free @newref */
260 struct extent_inode_elem
*eie
= ref
->inode_list
;
262 while (eie
&& eie
->next
)
266 ref
->inode_list
= newref
->inode_list
;
268 eie
->next
= newref
->inode_list
;
269 trace_btrfs_prelim_ref_merge(fs_info
, ref
, newref
,
272 * A delayed ref can have newref->count < 0.
273 * The ref->count is updated to follow any
274 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
276 update_share_count(sc
, ref
->count
,
277 ref
->count
+ newref
->count
);
278 ref
->count
+= newref
->count
;
284 update_share_count(sc
, 0, newref
->count
);
286 trace_btrfs_prelim_ref_insert(fs_info
, newref
, NULL
, preftree
->count
);
287 rb_link_node(&newref
->rbnode
, parent
, p
);
288 rb_insert_color(&newref
->rbnode
, root
);
292 * Release the entire tree. We don't care about internal consistency so
293 * just free everything and then reset the tree root.
295 static void prelim_release(struct preftree
*preftree
)
297 struct prelim_ref
*ref
, *next_ref
;
299 rbtree_postorder_for_each_entry_safe(ref
, next_ref
, &preftree
->root
,
303 preftree
->root
= RB_ROOT
;
308 * the rules for all callers of this function are:
309 * - obtaining the parent is the goal
310 * - if you add a key, you must know that it is a correct key
311 * - if you cannot add the parent or a correct key, then we will look into the
312 * block later to set a correct key
316 * backref type | shared | indirect | shared | indirect
317 * information | tree | tree | data | data
318 * --------------------+--------+----------+--------+----------
319 * parent logical | y | - | - | -
320 * key to resolve | - | y | y | y
321 * tree block logical | - | - | - | -
322 * root for resolving | y | y | y | y
324 * - column 1: we've the parent -> done
325 * - column 2, 3, 4: we use the key to find the parent
327 * on disk refs (inline or keyed)
328 * ==============================
329 * backref type | shared | indirect | shared | indirect
330 * information | tree | tree | data | data
331 * --------------------+--------+----------+--------+----------
332 * parent logical | y | - | y | -
333 * key to resolve | - | - | - | y
334 * tree block logical | y | y | y | y
335 * root for resolving | - | y | y | y
337 * - column 1, 3: we've the parent -> done
338 * - column 2: we take the first key from the block to find the parent
339 * (see add_missing_keys)
340 * - column 4: we use the key to find the parent
342 * additional information that's available but not required to find the parent
343 * block might help in merging entries to gain some speed.
345 static int add_prelim_ref(const struct btrfs_fs_info
*fs_info
,
346 struct preftree
*preftree
, u64 root_id
,
347 const struct btrfs_key
*key
, int level
, u64 parent
,
348 u64 wanted_disk_byte
, int count
,
349 struct share_check
*sc
, gfp_t gfp_mask
)
351 struct prelim_ref
*ref
;
353 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
356 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
360 ref
->root_id
= root_id
;
362 ref
->key_for_search
= *key
;
364 * We can often find data backrefs with an offset that is too
365 * large (>= LLONG_MAX, maximum allowed file offset) due to
366 * underflows when subtracting a file's offset with the data
367 * offset of its corresponding extent data item. This can
368 * happen for example in the clone ioctl.
369 * So if we detect such case we set the search key's offset to
370 * zero to make sure we will find the matching file extent item
371 * at add_all_parents(), otherwise we will miss it because the
372 * offset taken form the backref is much larger then the offset
373 * of the file extent item. This can make us scan a very large
374 * number of file extent items, but at least it will not make
376 * This is an ugly workaround for a behaviour that should have
377 * never existed, but it does and a fix for the clone ioctl
378 * would touch a lot of places, cause backwards incompatibility
379 * and would not fix the problem for extents cloned with older
382 if (ref
->key_for_search
.type
== BTRFS_EXTENT_DATA_KEY
&&
383 ref
->key_for_search
.offset
>= LLONG_MAX
)
384 ref
->key_for_search
.offset
= 0;
386 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
389 ref
->inode_list
= NULL
;
392 ref
->parent
= parent
;
393 ref
->wanted_disk_byte
= wanted_disk_byte
;
394 prelim_ref_insert(fs_info
, preftree
, ref
, sc
);
395 return extent_is_shared(sc
);
398 /* direct refs use root == 0, key == NULL */
399 static int add_direct_ref(const struct btrfs_fs_info
*fs_info
,
400 struct preftrees
*preftrees
, int level
, u64 parent
,
401 u64 wanted_disk_byte
, int count
,
402 struct share_check
*sc
, gfp_t gfp_mask
)
404 return add_prelim_ref(fs_info
, &preftrees
->direct
, 0, NULL
, level
,
405 parent
, wanted_disk_byte
, count
, sc
, gfp_mask
);
408 /* indirect refs use parent == 0 */
409 static int add_indirect_ref(const struct btrfs_fs_info
*fs_info
,
410 struct preftrees
*preftrees
, u64 root_id
,
411 const struct btrfs_key
*key
, int level
,
412 u64 wanted_disk_byte
, int count
,
413 struct share_check
*sc
, gfp_t gfp_mask
)
415 struct preftree
*tree
= &preftrees
->indirect
;
418 tree
= &preftrees
->indirect_missing_keys
;
419 return add_prelim_ref(fs_info
, tree
, root_id
, key
, level
, 0,
420 wanted_disk_byte
, count
, sc
, gfp_mask
);
423 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
424 struct ulist
*parents
, struct prelim_ref
*ref
,
425 int level
, u64 time_seq
, const u64
*extent_item_pos
,
426 u64 total_refs
, bool ignore_offset
)
430 struct extent_buffer
*eb
;
431 struct btrfs_key key
;
432 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
433 struct btrfs_file_extent_item
*fi
;
434 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
436 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
440 eb
= path
->nodes
[level
];
441 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
448 * We normally enter this function with the path already pointing to
449 * the first item to check. But sometimes, we may enter it with
450 * slot==nritems. In that case, go to the next leaf before we continue.
452 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
453 if (time_seq
== SEQ_LAST
)
454 ret
= btrfs_next_leaf(root
, path
);
456 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
459 while (!ret
&& count
< total_refs
) {
461 slot
= path
->slots
[0];
463 btrfs_item_key_to_cpu(eb
, &key
, slot
);
465 if (key
.objectid
!= key_for_search
->objectid
||
466 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
469 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
470 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
472 if (disk_byte
== wanted_disk_byte
) {
476 if (extent_item_pos
) {
477 ret
= check_extent_in_eb(&key
, eb
, fi
,
479 &eie
, ignore_offset
);
485 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
486 eie
, (void **)&old
, GFP_NOFS
);
489 if (!ret
&& extent_item_pos
) {
497 if (time_seq
== SEQ_LAST
)
498 ret
= btrfs_next_item(root
, path
);
500 ret
= btrfs_next_old_item(root
, path
, time_seq
);
506 free_inode_elem_list(eie
);
511 * resolve an indirect backref in the form (root_id, key, level)
512 * to a logical address
514 static int resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
515 struct btrfs_path
*path
, u64 time_seq
,
516 struct prelim_ref
*ref
, struct ulist
*parents
,
517 const u64
*extent_item_pos
, u64 total_refs
,
520 struct btrfs_root
*root
;
521 struct btrfs_key root_key
;
522 struct extent_buffer
*eb
;
525 int level
= ref
->level
;
528 root_key
.objectid
= ref
->root_id
;
529 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
530 root_key
.offset
= (u64
)-1;
532 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
534 root
= btrfs_get_fs_root(fs_info
, &root_key
, false);
536 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
541 if (btrfs_is_testing(fs_info
)) {
542 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
547 if (path
->search_commit_root
)
548 root_level
= btrfs_header_level(root
->commit_root
);
549 else if (time_seq
== SEQ_LAST
)
550 root_level
= btrfs_header_level(root
->node
);
552 root_level
= btrfs_old_root_level(root
, time_seq
);
554 if (root_level
+ 1 == level
) {
555 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
559 path
->lowest_level
= level
;
560 if (time_seq
== SEQ_LAST
)
561 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
,
564 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
,
567 /* root node has been locked, we can release @subvol_srcu safely here */
568 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
571 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
572 ref
->root_id
, level
, ref
->count
, ret
,
573 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
574 ref
->key_for_search
.offset
);
578 eb
= path
->nodes
[level
];
580 if (WARN_ON(!level
)) {
585 eb
= path
->nodes
[level
];
588 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
589 extent_item_pos
, total_refs
, ignore_offset
);
591 path
->lowest_level
= 0;
592 btrfs_release_path(path
);
596 static struct extent_inode_elem
*
597 unode_aux_to_inode_list(struct ulist_node
*node
)
601 return (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
605 * We maintain three seperate rbtrees: one for direct refs, one for
606 * indirect refs which have a key, and one for indirect refs which do not
607 * have a key. Each tree does merge on insertion.
609 * Once all of the references are located, we iterate over the tree of
610 * indirect refs with missing keys. An appropriate key is located and
611 * the ref is moved onto the tree for indirect refs. After all missing
612 * keys are thus located, we iterate over the indirect ref tree, resolve
613 * each reference, and then insert the resolved reference onto the
614 * direct tree (merging there too).
616 * New backrefs (i.e., for parent nodes) are added to the appropriate
617 * rbtree as they are encountered. The new backrefs are subsequently
620 static int resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
621 struct btrfs_path
*path
, u64 time_seq
,
622 struct preftrees
*preftrees
,
623 const u64
*extent_item_pos
, u64 total_refs
,
624 struct share_check
*sc
, bool ignore_offset
)
628 struct ulist
*parents
;
629 struct ulist_node
*node
;
630 struct ulist_iterator uiter
;
631 struct rb_node
*rnode
;
633 parents
= ulist_alloc(GFP_NOFS
);
638 * We could trade memory usage for performance here by iterating
639 * the tree, allocating new refs for each insertion, and then
640 * freeing the entire indirect tree when we're done. In some test
641 * cases, the tree can grow quite large (~200k objects).
643 while ((rnode
= rb_first(&preftrees
->indirect
.root
))) {
644 struct prelim_ref
*ref
;
646 ref
= rb_entry(rnode
, struct prelim_ref
, rbnode
);
647 if (WARN(ref
->parent
,
648 "BUG: direct ref found in indirect tree")) {
653 rb_erase(&ref
->rbnode
, &preftrees
->indirect
.root
);
654 preftrees
->indirect
.count
--;
656 if (ref
->count
== 0) {
661 if (sc
&& sc
->root_objectid
&&
662 ref
->root_id
!= sc
->root_objectid
) {
664 ret
= BACKREF_FOUND_SHARED
;
667 err
= resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
668 parents
, extent_item_pos
,
669 total_refs
, ignore_offset
);
671 * we can only tolerate ENOENT,otherwise,we should catch error
672 * and return directly.
674 if (err
== -ENOENT
) {
675 prelim_ref_insert(fs_info
, &preftrees
->direct
, ref
,
684 /* we put the first parent into the ref at hand */
685 ULIST_ITER_INIT(&uiter
);
686 node
= ulist_next(parents
, &uiter
);
687 ref
->parent
= node
? node
->val
: 0;
688 ref
->inode_list
= unode_aux_to_inode_list(node
);
690 /* Add a prelim_ref(s) for any other parent(s). */
691 while ((node
= ulist_next(parents
, &uiter
))) {
692 struct prelim_ref
*new_ref
;
694 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
701 memcpy(new_ref
, ref
, sizeof(*ref
));
702 new_ref
->parent
= node
->val
;
703 new_ref
->inode_list
= unode_aux_to_inode_list(node
);
704 prelim_ref_insert(fs_info
, &preftrees
->direct
,
709 * Now it's a direct ref, put it in the the direct tree. We must
710 * do this last because the ref could be merged/freed here.
712 prelim_ref_insert(fs_info
, &preftrees
->direct
, ref
, NULL
);
714 ulist_reinit(parents
);
723 * read tree blocks and add keys where required.
725 static int add_missing_keys(struct btrfs_fs_info
*fs_info
,
726 struct preftrees
*preftrees
)
728 struct prelim_ref
*ref
;
729 struct extent_buffer
*eb
;
730 struct preftree
*tree
= &preftrees
->indirect_missing_keys
;
731 struct rb_node
*node
;
733 while ((node
= rb_first(&tree
->root
))) {
734 ref
= rb_entry(node
, struct prelim_ref
, rbnode
);
735 rb_erase(node
, &tree
->root
);
737 BUG_ON(ref
->parent
); /* should not be a direct ref */
738 BUG_ON(ref
->key_for_search
.type
);
739 BUG_ON(!ref
->wanted_disk_byte
);
741 eb
= read_tree_block(fs_info
, ref
->wanted_disk_byte
, 0);
745 } else if (!extent_buffer_uptodate(eb
)) {
747 free_extent_buffer(eb
);
750 btrfs_tree_read_lock(eb
);
751 if (btrfs_header_level(eb
) == 0)
752 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
754 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
755 btrfs_tree_read_unlock(eb
);
756 free_extent_buffer(eb
);
757 prelim_ref_insert(fs_info
, &preftrees
->indirect
, ref
, NULL
);
764 * add all currently queued delayed refs from this head whose seq nr is
765 * smaller or equal that seq to the list
767 static int add_delayed_refs(const struct btrfs_fs_info
*fs_info
,
768 struct btrfs_delayed_ref_head
*head
, u64 seq
,
769 struct preftrees
*preftrees
, u64
*total_refs
,
770 struct share_check
*sc
)
772 struct btrfs_delayed_ref_node
*node
;
773 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
774 struct btrfs_key key
;
775 struct btrfs_key tmp_op_key
;
776 struct btrfs_key
*op_key
= NULL
;
781 if (extent_op
&& extent_op
->update_key
) {
782 btrfs_disk_key_to_cpu(&tmp_op_key
, &extent_op
->key
);
783 op_key
= &tmp_op_key
;
786 spin_lock(&head
->lock
);
787 for (n
= rb_first(&head
->ref_tree
); n
; n
= rb_next(n
)) {
788 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
793 switch (node
->action
) {
794 case BTRFS_ADD_DELAYED_EXTENT
:
795 case BTRFS_UPDATE_DELAYED_HEAD
:
798 case BTRFS_ADD_DELAYED_REF
:
799 count
= node
->ref_mod
;
801 case BTRFS_DROP_DELAYED_REF
:
802 count
= node
->ref_mod
* -1;
807 *total_refs
+= count
;
808 switch (node
->type
) {
809 case BTRFS_TREE_BLOCK_REF_KEY
: {
810 /* NORMAL INDIRECT METADATA backref */
811 struct btrfs_delayed_tree_ref
*ref
;
813 ref
= btrfs_delayed_node_to_tree_ref(node
);
814 ret
= add_indirect_ref(fs_info
, preftrees
, ref
->root
,
815 &tmp_op_key
, ref
->level
+ 1,
816 node
->bytenr
, count
, sc
,
820 case BTRFS_SHARED_BLOCK_REF_KEY
: {
821 /* SHARED DIRECT METADATA backref */
822 struct btrfs_delayed_tree_ref
*ref
;
824 ref
= btrfs_delayed_node_to_tree_ref(node
);
826 ret
= add_direct_ref(fs_info
, preftrees
, ref
->level
+ 1,
827 ref
->parent
, node
->bytenr
, count
,
831 case BTRFS_EXTENT_DATA_REF_KEY
: {
832 /* NORMAL INDIRECT DATA backref */
833 struct btrfs_delayed_data_ref
*ref
;
834 ref
= btrfs_delayed_node_to_data_ref(node
);
836 key
.objectid
= ref
->objectid
;
837 key
.type
= BTRFS_EXTENT_DATA_KEY
;
838 key
.offset
= ref
->offset
;
841 * Found a inum that doesn't match our known inum, we
844 if (sc
&& sc
->inum
&& ref
->objectid
!= sc
->inum
) {
845 ret
= BACKREF_FOUND_SHARED
;
849 ret
= add_indirect_ref(fs_info
, preftrees
, ref
->root
,
850 &key
, 0, node
->bytenr
, count
, sc
,
854 case BTRFS_SHARED_DATA_REF_KEY
: {
855 /* SHARED DIRECT FULL backref */
856 struct btrfs_delayed_data_ref
*ref
;
858 ref
= btrfs_delayed_node_to_data_ref(node
);
860 ret
= add_direct_ref(fs_info
, preftrees
, 0, ref
->parent
,
861 node
->bytenr
, count
, sc
,
869 * We must ignore BACKREF_FOUND_SHARED until all delayed
870 * refs have been checked.
872 if (ret
&& (ret
!= BACKREF_FOUND_SHARED
))
876 ret
= extent_is_shared(sc
);
878 spin_unlock(&head
->lock
);
883 * add all inline backrefs for bytenr to the list
885 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
887 static int add_inline_refs(const struct btrfs_fs_info
*fs_info
,
888 struct btrfs_path
*path
, u64 bytenr
,
889 int *info_level
, struct preftrees
*preftrees
,
890 u64
*total_refs
, struct share_check
*sc
)
894 struct extent_buffer
*leaf
;
895 struct btrfs_key key
;
896 struct btrfs_key found_key
;
899 struct btrfs_extent_item
*ei
;
904 * enumerate all inline refs
906 leaf
= path
->nodes
[0];
907 slot
= path
->slots
[0];
909 item_size
= btrfs_item_size_nr(leaf
, slot
);
910 BUG_ON(item_size
< sizeof(*ei
));
912 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
913 flags
= btrfs_extent_flags(leaf
, ei
);
914 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
915 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
917 ptr
= (unsigned long)(ei
+ 1);
918 end
= (unsigned long)ei
+ item_size
;
920 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
921 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
922 struct btrfs_tree_block_info
*info
;
924 info
= (struct btrfs_tree_block_info
*)ptr
;
925 *info_level
= btrfs_tree_block_level(leaf
, info
);
926 ptr
+= sizeof(struct btrfs_tree_block_info
);
928 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
929 *info_level
= found_key
.offset
;
931 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
935 struct btrfs_extent_inline_ref
*iref
;
939 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
940 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
,
942 if (type
== BTRFS_REF_TYPE_INVALID
)
945 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
948 case BTRFS_SHARED_BLOCK_REF_KEY
:
949 ret
= add_direct_ref(fs_info
, preftrees
,
950 *info_level
+ 1, offset
,
951 bytenr
, 1, NULL
, GFP_NOFS
);
953 case BTRFS_SHARED_DATA_REF_KEY
: {
954 struct btrfs_shared_data_ref
*sdref
;
957 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
958 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
960 ret
= add_direct_ref(fs_info
, preftrees
, 0, offset
,
961 bytenr
, count
, sc
, GFP_NOFS
);
964 case BTRFS_TREE_BLOCK_REF_KEY
:
965 ret
= add_indirect_ref(fs_info
, preftrees
, offset
,
966 NULL
, *info_level
+ 1,
967 bytenr
, 1, NULL
, GFP_NOFS
);
969 case BTRFS_EXTENT_DATA_REF_KEY
: {
970 struct btrfs_extent_data_ref
*dref
;
974 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
975 count
= btrfs_extent_data_ref_count(leaf
, dref
);
976 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
978 key
.type
= BTRFS_EXTENT_DATA_KEY
;
979 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
981 if (sc
&& sc
->inum
&& key
.objectid
!= sc
->inum
) {
982 ret
= BACKREF_FOUND_SHARED
;
986 root
= btrfs_extent_data_ref_root(leaf
, dref
);
988 ret
= add_indirect_ref(fs_info
, preftrees
, root
,
989 &key
, 0, bytenr
, count
,
998 ptr
+= btrfs_extent_inline_ref_size(type
);
1005 * add all non-inline backrefs for bytenr to the list
1007 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1009 static int add_keyed_refs(struct btrfs_fs_info
*fs_info
,
1010 struct btrfs_path
*path
, u64 bytenr
,
1011 int info_level
, struct preftrees
*preftrees
,
1012 struct share_check
*sc
)
1014 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
1017 struct extent_buffer
*leaf
;
1018 struct btrfs_key key
;
1021 ret
= btrfs_next_item(extent_root
, path
);
1029 slot
= path
->slots
[0];
1030 leaf
= path
->nodes
[0];
1031 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1033 if (key
.objectid
!= bytenr
)
1035 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
1037 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
1041 case BTRFS_SHARED_BLOCK_REF_KEY
:
1042 /* SHARED DIRECT METADATA backref */
1043 ret
= add_direct_ref(fs_info
, preftrees
,
1044 info_level
+ 1, key
.offset
,
1045 bytenr
, 1, NULL
, GFP_NOFS
);
1047 case BTRFS_SHARED_DATA_REF_KEY
: {
1048 /* SHARED DIRECT FULL backref */
1049 struct btrfs_shared_data_ref
*sdref
;
1052 sdref
= btrfs_item_ptr(leaf
, slot
,
1053 struct btrfs_shared_data_ref
);
1054 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
1055 ret
= add_direct_ref(fs_info
, preftrees
, 0,
1056 key
.offset
, bytenr
, count
,
1060 case BTRFS_TREE_BLOCK_REF_KEY
:
1061 /* NORMAL INDIRECT METADATA backref */
1062 ret
= add_indirect_ref(fs_info
, preftrees
, key
.offset
,
1063 NULL
, info_level
+ 1, bytenr
,
1066 case BTRFS_EXTENT_DATA_REF_KEY
: {
1067 /* NORMAL INDIRECT DATA backref */
1068 struct btrfs_extent_data_ref
*dref
;
1072 dref
= btrfs_item_ptr(leaf
, slot
,
1073 struct btrfs_extent_data_ref
);
1074 count
= btrfs_extent_data_ref_count(leaf
, dref
);
1075 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
1077 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1078 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
1080 if (sc
&& sc
->inum
&& key
.objectid
!= sc
->inum
) {
1081 ret
= BACKREF_FOUND_SHARED
;
1085 root
= btrfs_extent_data_ref_root(leaf
, dref
);
1086 ret
= add_indirect_ref(fs_info
, preftrees
, root
,
1087 &key
, 0, bytenr
, count
,
1103 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1104 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1105 * indirect refs to their parent bytenr.
1106 * When roots are found, they're added to the roots list
1108 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1109 * much like trans == NULL case, the difference only lies in it will not
1111 * The special case is for qgroup to search roots in commit_transaction().
1113 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1114 * shared extent is detected.
1116 * Otherwise this returns 0 for success and <0 for an error.
1118 * If ignore_offset is set to false, only extent refs whose offsets match
1119 * extent_item_pos are returned. If true, every extent ref is returned
1120 * and extent_item_pos is ignored.
1122 * FIXME some caching might speed things up
1124 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
1125 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1126 u64 time_seq
, struct ulist
*refs
,
1127 struct ulist
*roots
, const u64
*extent_item_pos
,
1128 struct share_check
*sc
, bool ignore_offset
)
1130 struct btrfs_key key
;
1131 struct btrfs_path
*path
;
1132 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
1133 struct btrfs_delayed_ref_head
*head
;
1136 struct prelim_ref
*ref
;
1137 struct rb_node
*node
;
1138 struct extent_inode_elem
*eie
= NULL
;
1139 /* total of both direct AND indirect refs! */
1141 struct preftrees preftrees
= {
1142 .direct
= PREFTREE_INIT
,
1143 .indirect
= PREFTREE_INIT
,
1144 .indirect_missing_keys
= PREFTREE_INIT
1147 key
.objectid
= bytenr
;
1148 key
.offset
= (u64
)-1;
1149 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1150 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1152 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1154 path
= btrfs_alloc_path();
1158 path
->search_commit_root
= 1;
1159 path
->skip_locking
= 1;
1162 if (time_seq
== SEQ_LAST
)
1163 path
->skip_locking
= 1;
1166 * grab both a lock on the path and a lock on the delayed ref head.
1167 * We need both to get a consistent picture of how the refs look
1168 * at a specified point in time
1173 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
1178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1179 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
) &&
1180 time_seq
!= SEQ_LAST
) {
1182 if (trans
&& time_seq
!= SEQ_LAST
) {
1185 * look if there are updates for this ref queued and lock the
1188 delayed_refs
= &trans
->transaction
->delayed_refs
;
1189 spin_lock(&delayed_refs
->lock
);
1190 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
1192 if (!mutex_trylock(&head
->mutex
)) {
1193 refcount_inc(&head
->refs
);
1194 spin_unlock(&delayed_refs
->lock
);
1196 btrfs_release_path(path
);
1199 * Mutex was contended, block until it's
1200 * released and try again
1202 mutex_lock(&head
->mutex
);
1203 mutex_unlock(&head
->mutex
);
1204 btrfs_put_delayed_ref_head(head
);
1207 spin_unlock(&delayed_refs
->lock
);
1208 ret
= add_delayed_refs(fs_info
, head
, time_seq
,
1209 &preftrees
, &total_refs
, sc
);
1210 mutex_unlock(&head
->mutex
);
1214 spin_unlock(&delayed_refs
->lock
);
1218 if (path
->slots
[0]) {
1219 struct extent_buffer
*leaf
;
1223 leaf
= path
->nodes
[0];
1224 slot
= path
->slots
[0];
1225 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1226 if (key
.objectid
== bytenr
&&
1227 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
1228 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
1229 ret
= add_inline_refs(fs_info
, path
, bytenr
,
1230 &info_level
, &preftrees
,
1234 ret
= add_keyed_refs(fs_info
, path
, bytenr
, info_level
,
1241 btrfs_release_path(path
);
1243 ret
= add_missing_keys(fs_info
, &preftrees
);
1247 WARN_ON(!RB_EMPTY_ROOT(&preftrees
.indirect_missing_keys
.root
));
1249 ret
= resolve_indirect_refs(fs_info
, path
, time_seq
, &preftrees
,
1250 extent_item_pos
, total_refs
, sc
, ignore_offset
);
1254 WARN_ON(!RB_EMPTY_ROOT(&preftrees
.indirect
.root
));
1257 * This walks the tree of merged and resolved refs. Tree blocks are
1258 * read in as needed. Unique entries are added to the ulist, and
1259 * the list of found roots is updated.
1261 * We release the entire tree in one go before returning.
1263 node
= rb_first(&preftrees
.direct
.root
);
1265 ref
= rb_entry(node
, struct prelim_ref
, rbnode
);
1266 node
= rb_next(&ref
->rbnode
);
1268 * ref->count < 0 can happen here if there are delayed
1269 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1270 * prelim_ref_insert() relies on this when merging
1271 * identical refs to keep the overall count correct.
1272 * prelim_ref_insert() will merge only those refs
1273 * which compare identically. Any refs having
1274 * e.g. different offsets would not be merged,
1275 * and would retain their original ref->count < 0.
1277 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1278 if (sc
&& sc
->root_objectid
&&
1279 ref
->root_id
!= sc
->root_objectid
) {
1280 ret
= BACKREF_FOUND_SHARED
;
1284 /* no parent == root of tree */
1285 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1289 if (ref
->count
&& ref
->parent
) {
1290 if (extent_item_pos
&& !ref
->inode_list
&&
1292 struct extent_buffer
*eb
;
1294 eb
= read_tree_block(fs_info
, ref
->parent
, 0);
1298 } else if (!extent_buffer_uptodate(eb
)) {
1299 free_extent_buffer(eb
);
1303 btrfs_tree_read_lock(eb
);
1304 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1305 ret
= find_extent_in_eb(eb
, bytenr
,
1306 *extent_item_pos
, &eie
, ignore_offset
);
1307 btrfs_tree_read_unlock_blocking(eb
);
1308 free_extent_buffer(eb
);
1311 ref
->inode_list
= eie
;
1313 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1315 (void **)&eie
, GFP_NOFS
);
1318 if (!ret
&& extent_item_pos
) {
1320 * we've recorded that parent, so we must extend
1321 * its inode list here
1326 eie
->next
= ref
->inode_list
;
1334 btrfs_free_path(path
);
1336 prelim_release(&preftrees
.direct
);
1337 prelim_release(&preftrees
.indirect
);
1338 prelim_release(&preftrees
.indirect_missing_keys
);
1341 free_inode_elem_list(eie
);
1345 static void free_leaf_list(struct ulist
*blocks
)
1347 struct ulist_node
*node
= NULL
;
1348 struct extent_inode_elem
*eie
;
1349 struct ulist_iterator uiter
;
1351 ULIST_ITER_INIT(&uiter
);
1352 while ((node
= ulist_next(blocks
, &uiter
))) {
1355 eie
= unode_aux_to_inode_list(node
);
1356 free_inode_elem_list(eie
);
1364 * Finds all leafs with a reference to the specified combination of bytenr and
1365 * offset. key_list_head will point to a list of corresponding keys (caller must
1366 * free each list element). The leafs will be stored in the leafs ulist, which
1367 * must be freed with ulist_free.
1369 * returns 0 on success, <0 on error
1371 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1372 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1373 u64 time_seq
, struct ulist
**leafs
,
1374 const u64
*extent_item_pos
, bool ignore_offset
)
1378 *leafs
= ulist_alloc(GFP_NOFS
);
1382 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, time_seq
,
1383 *leafs
, NULL
, extent_item_pos
, NULL
, ignore_offset
);
1384 if (ret
< 0 && ret
!= -ENOENT
) {
1385 free_leaf_list(*leafs
);
1393 * walk all backrefs for a given extent to find all roots that reference this
1394 * extent. Walking a backref means finding all extents that reference this
1395 * extent and in turn walk the backrefs of those, too. Naturally this is a
1396 * recursive process, but here it is implemented in an iterative fashion: We
1397 * find all referencing extents for the extent in question and put them on a
1398 * list. In turn, we find all referencing extents for those, further appending
1399 * to the list. The way we iterate the list allows adding more elements after
1400 * the current while iterating. The process stops when we reach the end of the
1401 * list. Found roots are added to the roots list.
1403 * returns 0 on success, < 0 on error.
1405 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle
*trans
,
1406 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1407 u64 time_seq
, struct ulist
**roots
,
1411 struct ulist_node
*node
= NULL
;
1412 struct ulist_iterator uiter
;
1415 tmp
= ulist_alloc(GFP_NOFS
);
1418 *roots
= ulist_alloc(GFP_NOFS
);
1424 ULIST_ITER_INIT(&uiter
);
1426 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, time_seq
,
1427 tmp
, *roots
, NULL
, NULL
, ignore_offset
);
1428 if (ret
< 0 && ret
!= -ENOENT
) {
1433 node
= ulist_next(tmp
, &uiter
);
1444 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1445 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1446 u64 time_seq
, struct ulist
**roots
,
1452 down_read(&fs_info
->commit_root_sem
);
1453 ret
= btrfs_find_all_roots_safe(trans
, fs_info
, bytenr
,
1454 time_seq
, roots
, ignore_offset
);
1456 up_read(&fs_info
->commit_root_sem
);
1461 * btrfs_check_shared - tell us whether an extent is shared
1463 * btrfs_check_shared uses the backref walking code but will short
1464 * circuit as soon as it finds a root or inode that doesn't match the
1465 * one passed in. This provides a significant performance benefit for
1466 * callers (such as fiemap) which want to know whether the extent is
1467 * shared but do not need a ref count.
1469 * This attempts to allocate a transaction in order to account for
1470 * delayed refs, but continues on even when the alloc fails.
1472 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1474 int btrfs_check_shared(struct btrfs_root
*root
, u64 inum
, u64 bytenr
)
1476 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1477 struct btrfs_trans_handle
*trans
;
1478 struct ulist
*tmp
= NULL
;
1479 struct ulist
*roots
= NULL
;
1480 struct ulist_iterator uiter
;
1481 struct ulist_node
*node
;
1482 struct seq_list elem
= SEQ_LIST_INIT(elem
);
1484 struct share_check shared
= {
1485 .root_objectid
= root
->objectid
,
1490 tmp
= ulist_alloc(GFP_NOFS
);
1491 roots
= ulist_alloc(GFP_NOFS
);
1492 if (!tmp
|| !roots
) {
1498 trans
= btrfs_join_transaction(root
);
1499 if (IS_ERR(trans
)) {
1501 down_read(&fs_info
->commit_root_sem
);
1503 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1506 ULIST_ITER_INIT(&uiter
);
1508 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1509 roots
, NULL
, &shared
, false);
1510 if (ret
== BACKREF_FOUND_SHARED
) {
1511 /* this is the only condition under which we return 1 */
1515 if (ret
< 0 && ret
!= -ENOENT
)
1518 node
= ulist_next(tmp
, &uiter
);
1526 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1527 btrfs_end_transaction(trans
);
1529 up_read(&fs_info
->commit_root_sem
);
1536 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1537 u64 start_off
, struct btrfs_path
*path
,
1538 struct btrfs_inode_extref
**ret_extref
,
1542 struct btrfs_key key
;
1543 struct btrfs_key found_key
;
1544 struct btrfs_inode_extref
*extref
;
1545 const struct extent_buffer
*leaf
;
1548 key
.objectid
= inode_objectid
;
1549 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1550 key
.offset
= start_off
;
1552 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1557 leaf
= path
->nodes
[0];
1558 slot
= path
->slots
[0];
1559 if (slot
>= btrfs_header_nritems(leaf
)) {
1561 * If the item at offset is not found,
1562 * btrfs_search_slot will point us to the slot
1563 * where it should be inserted. In our case
1564 * that will be the slot directly before the
1565 * next INODE_REF_KEY_V2 item. In the case
1566 * that we're pointing to the last slot in a
1567 * leaf, we must move one leaf over.
1569 ret
= btrfs_next_leaf(root
, path
);
1578 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1581 * Check that we're still looking at an extended ref key for
1582 * this particular objectid. If we have different
1583 * objectid or type then there are no more to be found
1584 * in the tree and we can exit.
1587 if (found_key
.objectid
!= inode_objectid
)
1589 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1593 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1594 extref
= (struct btrfs_inode_extref
*)ptr
;
1595 *ret_extref
= extref
;
1597 *found_off
= found_key
.offset
;
1605 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1606 * Elements of the path are separated by '/' and the path is guaranteed to be
1607 * 0-terminated. the path is only given within the current file system.
1608 * Therefore, it never starts with a '/'. the caller is responsible to provide
1609 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1610 * the start point of the resulting string is returned. this pointer is within
1612 * in case the path buffer would overflow, the pointer is decremented further
1613 * as if output was written to the buffer, though no more output is actually
1614 * generated. that way, the caller can determine how much space would be
1615 * required for the path to fit into the buffer. in that case, the returned
1616 * value will be smaller than dest. callers must check this!
1618 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1619 u32 name_len
, unsigned long name_off
,
1620 struct extent_buffer
*eb_in
, u64 parent
,
1621 char *dest
, u32 size
)
1626 s64 bytes_left
= ((s64
)size
) - 1;
1627 struct extent_buffer
*eb
= eb_in
;
1628 struct btrfs_key found_key
;
1629 int leave_spinning
= path
->leave_spinning
;
1630 struct btrfs_inode_ref
*iref
;
1632 if (bytes_left
>= 0)
1633 dest
[bytes_left
] = '\0';
1635 path
->leave_spinning
= 1;
1637 bytes_left
-= name_len
;
1638 if (bytes_left
>= 0)
1639 read_extent_buffer(eb
, dest
+ bytes_left
,
1640 name_off
, name_len
);
1642 if (!path
->skip_locking
)
1643 btrfs_tree_read_unlock_blocking(eb
);
1644 free_extent_buffer(eb
);
1646 ret
= btrfs_find_item(fs_root
, path
, parent
, 0,
1647 BTRFS_INODE_REF_KEY
, &found_key
);
1653 next_inum
= found_key
.offset
;
1655 /* regular exit ahead */
1656 if (parent
== next_inum
)
1659 slot
= path
->slots
[0];
1660 eb
= path
->nodes
[0];
1661 /* make sure we can use eb after releasing the path */
1663 if (!path
->skip_locking
)
1664 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1665 path
->nodes
[0] = NULL
;
1668 btrfs_release_path(path
);
1669 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1671 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1672 name_off
= (unsigned long)(iref
+ 1);
1676 if (bytes_left
>= 0)
1677 dest
[bytes_left
] = '/';
1680 btrfs_release_path(path
);
1681 path
->leave_spinning
= leave_spinning
;
1684 return ERR_PTR(ret
);
1686 return dest
+ bytes_left
;
1690 * this makes the path point to (logical EXTENT_ITEM *)
1691 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1692 * tree blocks and <0 on error.
1694 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1695 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1702 const struct extent_buffer
*eb
;
1703 struct btrfs_extent_item
*ei
;
1704 struct btrfs_key key
;
1706 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1707 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1709 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1710 key
.objectid
= logical
;
1711 key
.offset
= (u64
)-1;
1713 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1717 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1723 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1724 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1725 size
= fs_info
->nodesize
;
1726 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1727 size
= found_key
->offset
;
1729 if (found_key
->objectid
> logical
||
1730 found_key
->objectid
+ size
<= logical
) {
1731 btrfs_debug(fs_info
,
1732 "logical %llu is not within any extent", logical
);
1736 eb
= path
->nodes
[0];
1737 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1738 BUG_ON(item_size
< sizeof(*ei
));
1740 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1741 flags
= btrfs_extent_flags(eb
, ei
);
1743 btrfs_debug(fs_info
,
1744 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1745 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1746 found_key
->offset
, flags
, item_size
);
1748 WARN_ON(!flags_ret
);
1750 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1751 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1752 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1753 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1763 * helper function to iterate extent inline refs. ptr must point to a 0 value
1764 * for the first call and may be modified. it is used to track state.
1765 * if more refs exist, 0 is returned and the next call to
1766 * get_extent_inline_ref must pass the modified ptr parameter to get the
1767 * next ref. after the last ref was processed, 1 is returned.
1768 * returns <0 on error
1770 static int get_extent_inline_ref(unsigned long *ptr
,
1771 const struct extent_buffer
*eb
,
1772 const struct btrfs_key
*key
,
1773 const struct btrfs_extent_item
*ei
,
1775 struct btrfs_extent_inline_ref
**out_eiref
,
1780 struct btrfs_tree_block_info
*info
;
1784 flags
= btrfs_extent_flags(eb
, ei
);
1785 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1786 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1787 /* a skinny metadata extent */
1789 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1791 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1792 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1794 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1797 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1799 *ptr
= (unsigned long)*out_eiref
;
1800 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1804 end
= (unsigned long)ei
+ item_size
;
1805 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1806 *out_type
= btrfs_get_extent_inline_ref_type(eb
, *out_eiref
,
1807 BTRFS_REF_TYPE_ANY
);
1808 if (*out_type
== BTRFS_REF_TYPE_INVALID
)
1811 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1812 WARN_ON(*ptr
> end
);
1814 return 1; /* last */
1820 * reads the tree block backref for an extent. tree level and root are returned
1821 * through out_level and out_root. ptr must point to a 0 value for the first
1822 * call and may be modified (see get_extent_inline_ref comment).
1823 * returns 0 if data was provided, 1 if there was no more data to provide or
1826 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1827 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1828 u32 item_size
, u64
*out_root
, u8
*out_level
)
1832 struct btrfs_extent_inline_ref
*eiref
;
1834 if (*ptr
== (unsigned long)-1)
1838 ret
= get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1843 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1844 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1851 /* we can treat both ref types equally here */
1852 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1854 if (key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
1855 struct btrfs_tree_block_info
*info
;
1857 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1858 *out_level
= btrfs_tree_block_level(eb
, info
);
1860 ASSERT(key
->type
== BTRFS_METADATA_ITEM_KEY
);
1861 *out_level
= (u8
)key
->offset
;
1865 *ptr
= (unsigned long)-1;
1870 static int iterate_leaf_refs(struct btrfs_fs_info
*fs_info
,
1871 struct extent_inode_elem
*inode_list
,
1872 u64 root
, u64 extent_item_objectid
,
1873 iterate_extent_inodes_t
*iterate
, void *ctx
)
1875 struct extent_inode_elem
*eie
;
1878 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1879 btrfs_debug(fs_info
,
1880 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1881 extent_item_objectid
, eie
->inum
,
1883 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1885 btrfs_debug(fs_info
,
1886 "stopping iteration for %llu due to ret=%d",
1887 extent_item_objectid
, ret
);
1896 * calls iterate() for every inode that references the extent identified by
1897 * the given parameters.
1898 * when the iterator function returns a non-zero value, iteration stops.
1900 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1901 u64 extent_item_objectid
, u64 extent_item_pos
,
1902 int search_commit_root
,
1903 iterate_extent_inodes_t
*iterate
, void *ctx
,
1907 struct btrfs_trans_handle
*trans
= NULL
;
1908 struct ulist
*refs
= NULL
;
1909 struct ulist
*roots
= NULL
;
1910 struct ulist_node
*ref_node
= NULL
;
1911 struct ulist_node
*root_node
= NULL
;
1912 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
1913 struct ulist_iterator ref_uiter
;
1914 struct ulist_iterator root_uiter
;
1916 btrfs_debug(fs_info
, "resolving all inodes for extent %llu",
1917 extent_item_objectid
);
1919 if (!search_commit_root
) {
1920 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1922 return PTR_ERR(trans
);
1923 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1925 down_read(&fs_info
->commit_root_sem
);
1928 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1929 tree_mod_seq_elem
.seq
, &refs
,
1930 &extent_item_pos
, ignore_offset
);
1934 ULIST_ITER_INIT(&ref_uiter
);
1935 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1936 ret
= btrfs_find_all_roots_safe(trans
, fs_info
, ref_node
->val
,
1937 tree_mod_seq_elem
.seq
, &roots
,
1941 ULIST_ITER_INIT(&root_uiter
);
1942 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1943 btrfs_debug(fs_info
,
1944 "root %llu references leaf %llu, data list %#llx",
1945 root_node
->val
, ref_node
->val
,
1947 ret
= iterate_leaf_refs(fs_info
,
1948 (struct extent_inode_elem
*)
1949 (uintptr_t)ref_node
->aux
,
1951 extent_item_objectid
,
1957 free_leaf_list(refs
);
1959 if (!search_commit_root
) {
1960 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1961 btrfs_end_transaction(trans
);
1963 up_read(&fs_info
->commit_root_sem
);
1969 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1970 struct btrfs_path
*path
,
1971 iterate_extent_inodes_t
*iterate
, void *ctx
,
1975 u64 extent_item_pos
;
1977 struct btrfs_key found_key
;
1978 int search_commit_root
= path
->search_commit_root
;
1980 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1981 btrfs_release_path(path
);
1984 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1987 extent_item_pos
= logical
- found_key
.objectid
;
1988 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1989 extent_item_pos
, search_commit_root
,
1990 iterate
, ctx
, ignore_offset
);
1995 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1996 struct extent_buffer
*eb
, void *ctx
);
1998 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1999 struct btrfs_path
*path
,
2000 iterate_irefs_t
*iterate
, void *ctx
)
2009 struct extent_buffer
*eb
;
2010 struct btrfs_item
*item
;
2011 struct btrfs_inode_ref
*iref
;
2012 struct btrfs_key found_key
;
2015 ret
= btrfs_find_item(fs_root
, path
, inum
,
2016 parent
? parent
+ 1 : 0, BTRFS_INODE_REF_KEY
,
2022 ret
= found
? 0 : -ENOENT
;
2027 parent
= found_key
.offset
;
2028 slot
= path
->slots
[0];
2029 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
2034 extent_buffer_get(eb
);
2035 btrfs_tree_read_lock(eb
);
2036 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
2037 btrfs_release_path(path
);
2039 item
= btrfs_item_nr(slot
);
2040 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
2042 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
2043 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
2044 /* path must be released before calling iterate()! */
2045 btrfs_debug(fs_root
->fs_info
,
2046 "following ref at offset %u for inode %llu in tree %llu",
2047 cur
, found_key
.objectid
, fs_root
->objectid
);
2048 ret
= iterate(parent
, name_len
,
2049 (unsigned long)(iref
+ 1), eb
, ctx
);
2052 len
= sizeof(*iref
) + name_len
;
2053 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
2055 btrfs_tree_read_unlock_blocking(eb
);
2056 free_extent_buffer(eb
);
2059 btrfs_release_path(path
);
2064 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
2065 struct btrfs_path
*path
,
2066 iterate_irefs_t
*iterate
, void *ctx
)
2073 struct extent_buffer
*eb
;
2074 struct btrfs_inode_extref
*extref
;
2080 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
2085 ret
= found
? 0 : -ENOENT
;
2090 slot
= path
->slots
[0];
2091 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
2096 extent_buffer_get(eb
);
2098 btrfs_tree_read_lock(eb
);
2099 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
2100 btrfs_release_path(path
);
2102 item_size
= btrfs_item_size_nr(eb
, slot
);
2103 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2106 while (cur_offset
< item_size
) {
2109 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
2110 parent
= btrfs_inode_extref_parent(eb
, extref
);
2111 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
2112 ret
= iterate(parent
, name_len
,
2113 (unsigned long)&extref
->name
, eb
, ctx
);
2117 cur_offset
+= btrfs_inode_extref_name_len(eb
, extref
);
2118 cur_offset
+= sizeof(*extref
);
2120 btrfs_tree_read_unlock_blocking(eb
);
2121 free_extent_buffer(eb
);
2126 btrfs_release_path(path
);
2131 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
2132 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
2138 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
2141 else if (ret
!= -ENOENT
)
2144 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
2145 if (ret
== -ENOENT
&& found_refs
)
2152 * returns 0 if the path could be dumped (probably truncated)
2153 * returns <0 in case of an error
2155 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
2156 struct extent_buffer
*eb
, void *ctx
)
2158 struct inode_fs_paths
*ipath
= ctx
;
2161 int i
= ipath
->fspath
->elem_cnt
;
2162 const int s_ptr
= sizeof(char *);
2165 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
2166 ipath
->fspath
->bytes_left
- s_ptr
: 0;
2168 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
2169 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
2170 name_off
, eb
, inum
, fspath_min
, bytes_left
);
2172 return PTR_ERR(fspath
);
2174 if (fspath
> fspath_min
) {
2175 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
2176 ++ipath
->fspath
->elem_cnt
;
2177 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
2179 ++ipath
->fspath
->elem_missed
;
2180 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
2181 ipath
->fspath
->bytes_left
= 0;
2188 * this dumps all file system paths to the inode into the ipath struct, provided
2189 * is has been created large enough. each path is zero-terminated and accessed
2190 * from ipath->fspath->val[i].
2191 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2192 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2193 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2194 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2195 * have been needed to return all paths.
2197 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
2199 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
2200 inode_to_path
, ipath
);
2203 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
2205 struct btrfs_data_container
*data
;
2208 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
2209 data
= kvmalloc(alloc_bytes
, GFP_KERNEL
);
2211 return ERR_PTR(-ENOMEM
);
2213 if (total_bytes
>= sizeof(*data
)) {
2214 data
->bytes_left
= total_bytes
- sizeof(*data
);
2215 data
->bytes_missing
= 0;
2217 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
2218 data
->bytes_left
= 0;
2222 data
->elem_missed
= 0;
2228 * allocates space to return multiple file system paths for an inode.
2229 * total_bytes to allocate are passed, note that space usable for actual path
2230 * information will be total_bytes - sizeof(struct inode_fs_paths).
2231 * the returned pointer must be freed with free_ipath() in the end.
2233 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
2234 struct btrfs_path
*path
)
2236 struct inode_fs_paths
*ifp
;
2237 struct btrfs_data_container
*fspath
;
2239 fspath
= init_data_container(total_bytes
);
2241 return (void *)fspath
;
2243 ifp
= kmalloc(sizeof(*ifp
), GFP_KERNEL
);
2246 return ERR_PTR(-ENOMEM
);
2249 ifp
->btrfs_path
= path
;
2250 ifp
->fspath
= fspath
;
2251 ifp
->fs_root
= fs_root
;
2256 void free_ipath(struct inode_fs_paths
*ipath
)
2260 kvfree(ipath
->fspath
);