2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
33 #include "print-tree.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
42 #include "ref-verify.h"
44 #undef SCRAMBLE_DELAYED_REFS
47 * control flags for do_chunk_alloc's force field
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
61 CHUNK_ALLOC_NO_FORCE
= 0,
62 CHUNK_ALLOC_LIMITED
= 1,
63 CHUNK_ALLOC_FORCE
= 2,
66 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
67 struct btrfs_fs_info
*fs_info
,
68 struct btrfs_delayed_ref_node
*node
, u64 parent
,
69 u64 root_objectid
, u64 owner_objectid
,
70 u64 owner_offset
, int refs_to_drop
,
71 struct btrfs_delayed_extent_op
*extra_op
);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
73 struct extent_buffer
*leaf
,
74 struct btrfs_extent_item
*ei
);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_fs_info
*fs_info
,
77 u64 parent
, u64 root_objectid
,
78 u64 flags
, u64 owner
, u64 offset
,
79 struct btrfs_key
*ins
, int ref_mod
);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
81 struct btrfs_fs_info
*fs_info
,
82 u64 parent
, u64 root_objectid
,
83 u64 flags
, struct btrfs_disk_key
*key
,
84 int level
, struct btrfs_key
*ins
);
85 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
86 struct btrfs_fs_info
*fs_info
, u64 flags
,
88 static int find_next_key(struct btrfs_path
*path
, int level
,
89 struct btrfs_key
*key
);
90 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
91 struct btrfs_space_info
*info
, u64 bytes
,
92 int dump_block_groups
);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
95 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
96 struct btrfs_space_info
*space_info
,
98 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
99 struct btrfs_space_info
*space_info
,
103 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
106 return cache
->cached
== BTRFS_CACHE_FINISHED
||
107 cache
->cached
== BTRFS_CACHE_ERROR
;
110 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
112 return (cache
->flags
& bits
) == bits
;
115 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
117 atomic_inc(&cache
->count
);
120 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
122 if (atomic_dec_and_test(&cache
->count
)) {
123 WARN_ON(cache
->pinned
> 0);
124 WARN_ON(cache
->reserved
> 0);
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
132 * No better way to resolve, but only to warn.
134 WARN_ON(!RB_EMPTY_ROOT(&cache
->full_stripe_locks_root
.root
));
135 kfree(cache
->free_space_ctl
);
141 * this adds the block group to the fs_info rb tree for the block group
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
145 struct btrfs_block_group_cache
*block_group
)
148 struct rb_node
*parent
= NULL
;
149 struct btrfs_block_group_cache
*cache
;
151 spin_lock(&info
->block_group_cache_lock
);
152 p
= &info
->block_group_cache_tree
.rb_node
;
156 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
158 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
160 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
163 spin_unlock(&info
->block_group_cache_lock
);
168 rb_link_node(&block_group
->cache_node
, parent
, p
);
169 rb_insert_color(&block_group
->cache_node
,
170 &info
->block_group_cache_tree
);
172 if (info
->first_logical_byte
> block_group
->key
.objectid
)
173 info
->first_logical_byte
= block_group
->key
.objectid
;
175 spin_unlock(&info
->block_group_cache_lock
);
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache
*
185 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
188 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
192 spin_lock(&info
->block_group_cache_lock
);
193 n
= info
->block_group_cache_tree
.rb_node
;
196 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
198 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
199 start
= cache
->key
.objectid
;
201 if (bytenr
< start
) {
202 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
205 } else if (bytenr
> start
) {
206 if (contains
&& bytenr
<= end
) {
217 btrfs_get_block_group(ret
);
218 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
219 info
->first_logical_byte
= ret
->key
.objectid
;
221 spin_unlock(&info
->block_group_cache_lock
);
226 static int add_excluded_extent(struct btrfs_fs_info
*fs_info
,
227 u64 start
, u64 num_bytes
)
229 u64 end
= start
+ num_bytes
- 1;
230 set_extent_bits(&fs_info
->freed_extents
[0],
231 start
, end
, EXTENT_UPTODATE
);
232 set_extent_bits(&fs_info
->freed_extents
[1],
233 start
, end
, EXTENT_UPTODATE
);
237 static void free_excluded_extents(struct btrfs_fs_info
*fs_info
,
238 struct btrfs_block_group_cache
*cache
)
242 start
= cache
->key
.objectid
;
243 end
= start
+ cache
->key
.offset
- 1;
245 clear_extent_bits(&fs_info
->freed_extents
[0],
246 start
, end
, EXTENT_UPTODATE
);
247 clear_extent_bits(&fs_info
->freed_extents
[1],
248 start
, end
, EXTENT_UPTODATE
);
251 static int exclude_super_stripes(struct btrfs_fs_info
*fs_info
,
252 struct btrfs_block_group_cache
*cache
)
259 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
260 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
261 cache
->bytes_super
+= stripe_len
;
262 ret
= add_excluded_extent(fs_info
, cache
->key
.objectid
,
268 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
269 bytenr
= btrfs_sb_offset(i
);
270 ret
= btrfs_rmap_block(fs_info
, cache
->key
.objectid
,
271 bytenr
, 0, &logical
, &nr
, &stripe_len
);
278 if (logical
[nr
] > cache
->key
.objectid
+
282 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
286 if (start
< cache
->key
.objectid
) {
287 start
= cache
->key
.objectid
;
288 len
= (logical
[nr
] + stripe_len
) - start
;
290 len
= min_t(u64
, stripe_len
,
291 cache
->key
.objectid
+
292 cache
->key
.offset
- start
);
295 cache
->bytes_super
+= len
;
296 ret
= add_excluded_extent(fs_info
, start
, len
);
308 static struct btrfs_caching_control
*
309 get_caching_control(struct btrfs_block_group_cache
*cache
)
311 struct btrfs_caching_control
*ctl
;
313 spin_lock(&cache
->lock
);
314 if (!cache
->caching_ctl
) {
315 spin_unlock(&cache
->lock
);
319 ctl
= cache
->caching_ctl
;
320 refcount_inc(&ctl
->count
);
321 spin_unlock(&cache
->lock
);
325 static void put_caching_control(struct btrfs_caching_control
*ctl
)
327 if (refcount_dec_and_test(&ctl
->count
))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache
*block_group
)
334 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
335 u64 start
= block_group
->key
.objectid
;
336 u64 len
= block_group
->key
.offset
;
337 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
338 fs_info
->nodesize
: fs_info
->sectorsize
;
339 u64 step
= chunk
<< 1;
341 while (len
> chunk
) {
342 btrfs_remove_free_space(block_group
, start
, chunk
);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
358 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
360 u64 extent_start
, extent_end
, size
, total_added
= 0;
363 while (start
< end
) {
364 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
365 &extent_start
, &extent_end
,
366 EXTENT_DIRTY
| EXTENT_UPTODATE
,
371 if (extent_start
<= start
) {
372 start
= extent_end
+ 1;
373 } else if (extent_start
> start
&& extent_start
< end
) {
374 size
= extent_start
- start
;
376 ret
= btrfs_add_free_space(block_group
, start
,
378 BUG_ON(ret
); /* -ENOMEM or logic error */
379 start
= extent_end
+ 1;
388 ret
= btrfs_add_free_space(block_group
, start
, size
);
389 BUG_ON(ret
); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
397 struct btrfs_block_group_cache
*block_group
= caching_ctl
->block_group
;
398 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
399 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
400 struct btrfs_path
*path
;
401 struct extent_buffer
*leaf
;
402 struct btrfs_key key
;
409 path
= btrfs_alloc_path();
413 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
415 #ifdef CONFIG_BTRFS_DEBUG
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
421 if (btrfs_should_fragment_free_space(block_group
))
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
430 path
->skip_locking
= 1;
431 path
->search_commit_root
= 1;
432 path
->reada
= READA_FORWARD
;
436 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
439 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
443 leaf
= path
->nodes
[0];
444 nritems
= btrfs_header_nritems(leaf
);
447 if (btrfs_fs_closing(fs_info
) > 1) {
452 if (path
->slots
[0] < nritems
) {
453 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
455 ret
= find_next_key(path
, 0, &key
);
459 if (need_resched() ||
460 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
462 caching_ctl
->progress
= last
;
463 btrfs_release_path(path
);
464 up_read(&fs_info
->commit_root_sem
);
465 mutex_unlock(&caching_ctl
->mutex
);
467 mutex_lock(&caching_ctl
->mutex
);
468 down_read(&fs_info
->commit_root_sem
);
472 ret
= btrfs_next_leaf(extent_root
, path
);
477 leaf
= path
->nodes
[0];
478 nritems
= btrfs_header_nritems(leaf
);
482 if (key
.objectid
< last
) {
485 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
488 caching_ctl
->progress
= last
;
489 btrfs_release_path(path
);
493 if (key
.objectid
< block_group
->key
.objectid
) {
498 if (key
.objectid
>= block_group
->key
.objectid
+
499 block_group
->key
.offset
)
502 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
503 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
504 total_found
+= add_new_free_space(block_group
,
507 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
508 last
= key
.objectid
+
511 last
= key
.objectid
+ key
.offset
;
513 if (total_found
> CACHING_CTL_WAKE_UP
) {
516 wake_up(&caching_ctl
->wait
);
523 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
524 block_group
->key
.objectid
+
525 block_group
->key
.offset
);
526 caching_ctl
->progress
= (u64
)-1;
529 btrfs_free_path(path
);
533 static noinline
void caching_thread(struct btrfs_work
*work
)
535 struct btrfs_block_group_cache
*block_group
;
536 struct btrfs_fs_info
*fs_info
;
537 struct btrfs_caching_control
*caching_ctl
;
538 struct btrfs_root
*extent_root
;
541 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
542 block_group
= caching_ctl
->block_group
;
543 fs_info
= block_group
->fs_info
;
544 extent_root
= fs_info
->extent_root
;
546 mutex_lock(&caching_ctl
->mutex
);
547 down_read(&fs_info
->commit_root_sem
);
549 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
550 ret
= load_free_space_tree(caching_ctl
);
552 ret
= load_extent_tree_free(caching_ctl
);
554 spin_lock(&block_group
->lock
);
555 block_group
->caching_ctl
= NULL
;
556 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
557 spin_unlock(&block_group
->lock
);
559 #ifdef CONFIG_BTRFS_DEBUG
560 if (btrfs_should_fragment_free_space(block_group
)) {
563 spin_lock(&block_group
->space_info
->lock
);
564 spin_lock(&block_group
->lock
);
565 bytes_used
= block_group
->key
.offset
-
566 btrfs_block_group_used(&block_group
->item
);
567 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
568 spin_unlock(&block_group
->lock
);
569 spin_unlock(&block_group
->space_info
->lock
);
570 fragment_free_space(block_group
);
574 caching_ctl
->progress
= (u64
)-1;
576 up_read(&fs_info
->commit_root_sem
);
577 free_excluded_extents(fs_info
, block_group
);
578 mutex_unlock(&caching_ctl
->mutex
);
580 wake_up(&caching_ctl
->wait
);
582 put_caching_control(caching_ctl
);
583 btrfs_put_block_group(block_group
);
586 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
590 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
591 struct btrfs_caching_control
*caching_ctl
;
594 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
598 INIT_LIST_HEAD(&caching_ctl
->list
);
599 mutex_init(&caching_ctl
->mutex
);
600 init_waitqueue_head(&caching_ctl
->wait
);
601 caching_ctl
->block_group
= cache
;
602 caching_ctl
->progress
= cache
->key
.objectid
;
603 refcount_set(&caching_ctl
->count
, 1);
604 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
605 caching_thread
, NULL
, NULL
);
607 spin_lock(&cache
->lock
);
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
620 while (cache
->cached
== BTRFS_CACHE_FAST
) {
621 struct btrfs_caching_control
*ctl
;
623 ctl
= cache
->caching_ctl
;
624 refcount_inc(&ctl
->count
);
625 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
626 spin_unlock(&cache
->lock
);
630 finish_wait(&ctl
->wait
, &wait
);
631 put_caching_control(ctl
);
632 spin_lock(&cache
->lock
);
635 if (cache
->cached
!= BTRFS_CACHE_NO
) {
636 spin_unlock(&cache
->lock
);
640 WARN_ON(cache
->caching_ctl
);
641 cache
->caching_ctl
= caching_ctl
;
642 cache
->cached
= BTRFS_CACHE_FAST
;
643 spin_unlock(&cache
->lock
);
645 if (btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
646 mutex_lock(&caching_ctl
->mutex
);
647 ret
= load_free_space_cache(fs_info
, cache
);
649 spin_lock(&cache
->lock
);
651 cache
->caching_ctl
= NULL
;
652 cache
->cached
= BTRFS_CACHE_FINISHED
;
653 cache
->last_byte_to_unpin
= (u64
)-1;
654 caching_ctl
->progress
= (u64
)-1;
656 if (load_cache_only
) {
657 cache
->caching_ctl
= NULL
;
658 cache
->cached
= BTRFS_CACHE_NO
;
660 cache
->cached
= BTRFS_CACHE_STARTED
;
661 cache
->has_caching_ctl
= 1;
664 spin_unlock(&cache
->lock
);
665 #ifdef CONFIG_BTRFS_DEBUG
667 btrfs_should_fragment_free_space(cache
)) {
670 spin_lock(&cache
->space_info
->lock
);
671 spin_lock(&cache
->lock
);
672 bytes_used
= cache
->key
.offset
-
673 btrfs_block_group_used(&cache
->item
);
674 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
675 spin_unlock(&cache
->lock
);
676 spin_unlock(&cache
->space_info
->lock
);
677 fragment_free_space(cache
);
680 mutex_unlock(&caching_ctl
->mutex
);
682 wake_up(&caching_ctl
->wait
);
684 put_caching_control(caching_ctl
);
685 free_excluded_extents(fs_info
, cache
);
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
693 spin_lock(&cache
->lock
);
694 if (load_cache_only
) {
695 cache
->caching_ctl
= NULL
;
696 cache
->cached
= BTRFS_CACHE_NO
;
698 cache
->cached
= BTRFS_CACHE_STARTED
;
699 cache
->has_caching_ctl
= 1;
701 spin_unlock(&cache
->lock
);
702 wake_up(&caching_ctl
->wait
);
705 if (load_cache_only
) {
706 put_caching_control(caching_ctl
);
710 down_write(&fs_info
->commit_root_sem
);
711 refcount_inc(&caching_ctl
->count
);
712 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
713 up_write(&fs_info
->commit_root_sem
);
715 btrfs_get_block_group(cache
);
717 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
723 * return the block group that starts at or after bytenr
725 static struct btrfs_block_group_cache
*
726 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
728 return block_group_cache_tree_search(info
, bytenr
, 0);
732 * return the block group that contains the given bytenr
734 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
735 struct btrfs_fs_info
*info
,
738 return block_group_cache_tree_search(info
, bytenr
, 1);
741 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
744 struct list_head
*head
= &info
->space_info
;
745 struct btrfs_space_info
*found
;
747 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
750 list_for_each_entry_rcu(found
, head
, list
) {
751 if (found
->flags
& flags
) {
760 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, s64 num_bytes
,
761 u64 owner
, u64 root_objectid
)
763 struct btrfs_space_info
*space_info
;
766 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
767 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
768 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
770 flags
= BTRFS_BLOCK_GROUP_METADATA
;
772 flags
= BTRFS_BLOCK_GROUP_DATA
;
775 space_info
= __find_space_info(fs_info
, flags
);
777 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
784 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
786 struct list_head
*head
= &info
->space_info
;
787 struct btrfs_space_info
*found
;
790 list_for_each_entry_rcu(found
, head
, list
)
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
799 struct btrfs_key key
;
800 struct btrfs_path
*path
;
802 path
= btrfs_alloc_path();
806 key
.objectid
= start
;
808 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
809 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
810 btrfs_free_path(path
);
815 * helper function to lookup reference count and flags of a tree block.
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
824 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
825 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
827 struct btrfs_delayed_ref_head
*head
;
828 struct btrfs_delayed_ref_root
*delayed_refs
;
829 struct btrfs_path
*path
;
830 struct btrfs_extent_item
*ei
;
831 struct extent_buffer
*leaf
;
832 struct btrfs_key key
;
839 * If we don't have skinny metadata, don't bother doing anything
842 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
843 offset
= fs_info
->nodesize
;
847 path
= btrfs_alloc_path();
852 path
->skip_locking
= 1;
853 path
->search_commit_root
= 1;
857 key
.objectid
= bytenr
;
860 key
.type
= BTRFS_METADATA_ITEM_KEY
;
862 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
864 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
868 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
869 if (path
->slots
[0]) {
871 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
873 if (key
.objectid
== bytenr
&&
874 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
875 key
.offset
== fs_info
->nodesize
)
881 leaf
= path
->nodes
[0];
882 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
883 if (item_size
>= sizeof(*ei
)) {
884 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
885 struct btrfs_extent_item
);
886 num_refs
= btrfs_extent_refs(leaf
, ei
);
887 extent_flags
= btrfs_extent_flags(leaf
, ei
);
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0
*ei0
;
891 BUG_ON(item_size
!= sizeof(*ei0
));
892 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
893 struct btrfs_extent_item_v0
);
894 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
895 /* FIXME: this isn't correct for data */
896 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
901 BUG_ON(num_refs
== 0);
911 delayed_refs
= &trans
->transaction
->delayed_refs
;
912 spin_lock(&delayed_refs
->lock
);
913 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
915 if (!mutex_trylock(&head
->mutex
)) {
916 refcount_inc(&head
->refs
);
917 spin_unlock(&delayed_refs
->lock
);
919 btrfs_release_path(path
);
922 * Mutex was contended, block until it's released and try
925 mutex_lock(&head
->mutex
);
926 mutex_unlock(&head
->mutex
);
927 btrfs_put_delayed_ref_head(head
);
930 spin_lock(&head
->lock
);
931 if (head
->extent_op
&& head
->extent_op
->update_flags
)
932 extent_flags
|= head
->extent_op
->flags_to_set
;
934 BUG_ON(num_refs
== 0);
936 num_refs
+= head
->ref_mod
;
937 spin_unlock(&head
->lock
);
938 mutex_unlock(&head
->mutex
);
940 spin_unlock(&delayed_refs
->lock
);
942 WARN_ON(num_refs
== 0);
946 *flags
= extent_flags
;
948 btrfs_free_path(path
);
953 * Back reference rules. Back refs have three main goals:
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
984 * When a tree block is COWed through a tree, there are four cases:
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1004 * Back Reference Key composing:
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1011 * File extents can be referenced by:
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1017 * The extent ref structure for the implicit back refs has fields for:
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1024 * The key offset for the implicit back refs is hash of the first
1027 * The extent ref structure for the full back refs has field for:
1029 * - number of pointers in the tree leaf
1031 * The key offset for the implicit back refs is the first byte of
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1037 * (root_key.objectid, inode objectid, offset in file, 1)
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1044 * Btree extents can be referenced by:
1046 * - Different subvolumes
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1060 struct btrfs_fs_info
*fs_info
,
1061 struct btrfs_path
*path
,
1062 u64 owner
, u32 extra_size
)
1064 struct btrfs_root
*root
= fs_info
->extent_root
;
1065 struct btrfs_extent_item
*item
;
1066 struct btrfs_extent_item_v0
*ei0
;
1067 struct btrfs_extent_ref_v0
*ref0
;
1068 struct btrfs_tree_block_info
*bi
;
1069 struct extent_buffer
*leaf
;
1070 struct btrfs_key key
;
1071 struct btrfs_key found_key
;
1072 u32 new_size
= sizeof(*item
);
1076 leaf
= path
->nodes
[0];
1077 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1079 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1080 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1081 struct btrfs_extent_item_v0
);
1082 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1084 if (owner
== (u64
)-1) {
1086 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1087 ret
= btrfs_next_leaf(root
, path
);
1090 BUG_ON(ret
> 0); /* Corruption */
1091 leaf
= path
->nodes
[0];
1093 btrfs_item_key_to_cpu(leaf
, &found_key
,
1095 BUG_ON(key
.objectid
!= found_key
.objectid
);
1096 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1100 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1101 struct btrfs_extent_ref_v0
);
1102 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1106 btrfs_release_path(path
);
1108 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1109 new_size
+= sizeof(*bi
);
1111 new_size
-= sizeof(*ei0
);
1112 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1113 new_size
+ extra_size
, 1);
1116 BUG_ON(ret
); /* Corruption */
1118 btrfs_extend_item(fs_info
, path
, new_size
);
1120 leaf
= path
->nodes
[0];
1121 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1122 btrfs_set_extent_refs(leaf
, item
, refs
);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf
, item
, 0);
1125 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1126 btrfs_set_extent_flags(leaf
, item
,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1129 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1130 /* FIXME: get first key of the block */
1131 memzero_extent_buffer(leaf
, (unsigned long)bi
, sizeof(*bi
));
1132 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1134 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1136 btrfs_mark_buffer_dirty(leaf
);
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer
*eb
,
1147 struct btrfs_extent_inline_ref
*iref
,
1148 enum btrfs_inline_ref_type is_data
)
1150 int type
= btrfs_extent_inline_ref_type(eb
, iref
);
1151 u64 offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
1153 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1154 type
== BTRFS_SHARED_BLOCK_REF_KEY
||
1155 type
== BTRFS_SHARED_DATA_REF_KEY
||
1156 type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1157 if (is_data
== BTRFS_REF_TYPE_BLOCK
) {
1158 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
1160 if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1161 ASSERT(eb
->fs_info
);
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1168 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
1171 } else if (is_data
== BTRFS_REF_TYPE_DATA
) {
1172 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1174 if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1175 ASSERT(eb
->fs_info
);
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1182 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
1186 ASSERT(is_data
== BTRFS_REF_TYPE_ANY
);
1191 btrfs_print_leaf((struct extent_buffer
*)eb
);
1192 btrfs_err(eb
->fs_info
, "eb %llu invalid extent inline ref type %d",
1196 return BTRFS_REF_TYPE_INVALID
;
1199 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1201 u32 high_crc
= ~(u32
)0;
1202 u32 low_crc
= ~(u32
)0;
1205 lenum
= cpu_to_le64(root_objectid
);
1206 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1207 lenum
= cpu_to_le64(owner
);
1208 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1209 lenum
= cpu_to_le64(offset
);
1210 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1212 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1215 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1216 struct btrfs_extent_data_ref
*ref
)
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1219 btrfs_extent_data_ref_objectid(leaf
, ref
),
1220 btrfs_extent_data_ref_offset(leaf
, ref
));
1223 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1224 struct btrfs_extent_data_ref
*ref
,
1225 u64 root_objectid
, u64 owner
, u64 offset
)
1227 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1228 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1229 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1234 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1235 struct btrfs_fs_info
*fs_info
,
1236 struct btrfs_path
*path
,
1237 u64 bytenr
, u64 parent
,
1239 u64 owner
, u64 offset
)
1241 struct btrfs_root
*root
= fs_info
->extent_root
;
1242 struct btrfs_key key
;
1243 struct btrfs_extent_data_ref
*ref
;
1244 struct extent_buffer
*leaf
;
1250 key
.objectid
= bytenr
;
1252 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1253 key
.offset
= parent
;
1255 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1256 key
.offset
= hash_extent_data_ref(root_objectid
,
1261 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1272 btrfs_release_path(path
);
1273 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1284 leaf
= path
->nodes
[0];
1285 nritems
= btrfs_header_nritems(leaf
);
1287 if (path
->slots
[0] >= nritems
) {
1288 ret
= btrfs_next_leaf(root
, path
);
1294 leaf
= path
->nodes
[0];
1295 nritems
= btrfs_header_nritems(leaf
);
1299 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1300 if (key
.objectid
!= bytenr
||
1301 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1304 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1305 struct btrfs_extent_data_ref
);
1307 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1310 btrfs_release_path(path
);
1322 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1323 struct btrfs_fs_info
*fs_info
,
1324 struct btrfs_path
*path
,
1325 u64 bytenr
, u64 parent
,
1326 u64 root_objectid
, u64 owner
,
1327 u64 offset
, int refs_to_add
)
1329 struct btrfs_root
*root
= fs_info
->extent_root
;
1330 struct btrfs_key key
;
1331 struct extent_buffer
*leaf
;
1336 key
.objectid
= bytenr
;
1338 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1339 key
.offset
= parent
;
1340 size
= sizeof(struct btrfs_shared_data_ref
);
1342 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1343 key
.offset
= hash_extent_data_ref(root_objectid
,
1345 size
= sizeof(struct btrfs_extent_data_ref
);
1348 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1349 if (ret
&& ret
!= -EEXIST
)
1352 leaf
= path
->nodes
[0];
1354 struct btrfs_shared_data_ref
*ref
;
1355 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1356 struct btrfs_shared_data_ref
);
1358 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1360 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1361 num_refs
+= refs_to_add
;
1362 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1365 struct btrfs_extent_data_ref
*ref
;
1366 while (ret
== -EEXIST
) {
1367 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1368 struct btrfs_extent_data_ref
);
1369 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1372 btrfs_release_path(path
);
1374 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1376 if (ret
&& ret
!= -EEXIST
)
1379 leaf
= path
->nodes
[0];
1381 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1382 struct btrfs_extent_data_ref
);
1384 btrfs_set_extent_data_ref_root(leaf
, ref
,
1386 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1387 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1388 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1390 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1391 num_refs
+= refs_to_add
;
1392 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1395 btrfs_mark_buffer_dirty(leaf
);
1398 btrfs_release_path(path
);
1402 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1403 struct btrfs_fs_info
*fs_info
,
1404 struct btrfs_path
*path
,
1405 int refs_to_drop
, int *last_ref
)
1407 struct btrfs_key key
;
1408 struct btrfs_extent_data_ref
*ref1
= NULL
;
1409 struct btrfs_shared_data_ref
*ref2
= NULL
;
1410 struct extent_buffer
*leaf
;
1414 leaf
= path
->nodes
[0];
1415 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1417 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1418 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1419 struct btrfs_extent_data_ref
);
1420 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1421 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1422 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1423 struct btrfs_shared_data_ref
);
1424 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1427 struct btrfs_extent_ref_v0
*ref0
;
1428 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1429 struct btrfs_extent_ref_v0
);
1430 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1436 BUG_ON(num_refs
< refs_to_drop
);
1437 num_refs
-= refs_to_drop
;
1439 if (num_refs
== 0) {
1440 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
1443 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1444 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1445 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1446 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 struct btrfs_extent_ref_v0
*ref0
;
1450 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1451 struct btrfs_extent_ref_v0
);
1452 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1455 btrfs_mark_buffer_dirty(leaf
);
1460 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1461 struct btrfs_extent_inline_ref
*iref
)
1463 struct btrfs_key key
;
1464 struct extent_buffer
*leaf
;
1465 struct btrfs_extent_data_ref
*ref1
;
1466 struct btrfs_shared_data_ref
*ref2
;
1470 leaf
= path
->nodes
[0];
1471 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1474 * If type is invalid, we should have bailed out earlier than
1477 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
1478 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1479 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1480 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1481 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1483 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1484 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1486 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1487 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1488 struct btrfs_extent_data_ref
);
1489 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1490 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1491 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1492 struct btrfs_shared_data_ref
);
1493 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1496 struct btrfs_extent_ref_v0
*ref0
;
1497 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1498 struct btrfs_extent_ref_v0
);
1499 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1507 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1508 struct btrfs_fs_info
*fs_info
,
1509 struct btrfs_path
*path
,
1510 u64 bytenr
, u64 parent
,
1513 struct btrfs_root
*root
= fs_info
->extent_root
;
1514 struct btrfs_key key
;
1517 key
.objectid
= bytenr
;
1519 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1520 key
.offset
= parent
;
1522 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1523 key
.offset
= root_objectid
;
1526 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret
== -ENOENT
&& parent
) {
1531 btrfs_release_path(path
);
1532 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1533 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1541 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1542 struct btrfs_fs_info
*fs_info
,
1543 struct btrfs_path
*path
,
1544 u64 bytenr
, u64 parent
,
1547 struct btrfs_key key
;
1550 key
.objectid
= bytenr
;
1552 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1553 key
.offset
= parent
;
1555 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1556 key
.offset
= root_objectid
;
1559 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
,
1561 btrfs_release_path(path
);
1565 static inline int extent_ref_type(u64 parent
, u64 owner
)
1568 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1570 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1572 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1575 type
= BTRFS_SHARED_DATA_REF_KEY
;
1577 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1582 static int find_next_key(struct btrfs_path
*path
, int level
,
1583 struct btrfs_key
*key
)
1586 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1587 if (!path
->nodes
[level
])
1589 if (path
->slots
[level
] + 1 >=
1590 btrfs_header_nritems(path
->nodes
[level
]))
1593 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1594 path
->slots
[level
] + 1);
1596 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1597 path
->slots
[level
] + 1);
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1618 struct btrfs_fs_info
*fs_info
,
1619 struct btrfs_path
*path
,
1620 struct btrfs_extent_inline_ref
**ref_ret
,
1621 u64 bytenr
, u64 num_bytes
,
1622 u64 parent
, u64 root_objectid
,
1623 u64 owner
, u64 offset
, int insert
)
1625 struct btrfs_root
*root
= fs_info
->extent_root
;
1626 struct btrfs_key key
;
1627 struct extent_buffer
*leaf
;
1628 struct btrfs_extent_item
*ei
;
1629 struct btrfs_extent_inline_ref
*iref
;
1639 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
1642 key
.objectid
= bytenr
;
1643 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1644 key
.offset
= num_bytes
;
1646 want
= extent_ref_type(parent
, owner
);
1648 extra_size
= btrfs_extent_inline_ref_size(want
);
1649 path
->keep_locks
= 1;
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1657 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1658 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1663 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1673 if (ret
> 0 && skinny_metadata
) {
1674 skinny_metadata
= false;
1675 if (path
->slots
[0]) {
1677 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1679 if (key
.objectid
== bytenr
&&
1680 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1681 key
.offset
== num_bytes
)
1685 key
.objectid
= bytenr
;
1686 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1687 key
.offset
= num_bytes
;
1688 btrfs_release_path(path
);
1693 if (ret
&& !insert
) {
1696 } else if (WARN_ON(ret
)) {
1701 leaf
= path
->nodes
[0];
1702 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size
< sizeof(*ei
)) {
1709 ret
= convert_extent_item_v0(trans
, fs_info
, path
, owner
,
1715 leaf
= path
->nodes
[0];
1716 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1719 BUG_ON(item_size
< sizeof(*ei
));
1721 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1722 flags
= btrfs_extent_flags(leaf
, ei
);
1724 ptr
= (unsigned long)(ei
+ 1);
1725 end
= (unsigned long)ei
+ item_size
;
1727 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1728 ptr
+= sizeof(struct btrfs_tree_block_info
);
1732 if (owner
>= BTRFS_FIRST_FREE_OBJECTID
)
1733 needed
= BTRFS_REF_TYPE_DATA
;
1735 needed
= BTRFS_REF_TYPE_BLOCK
;
1743 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1744 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, needed
);
1745 if (type
== BTRFS_REF_TYPE_INVALID
) {
1753 ptr
+= btrfs_extent_inline_ref_size(type
);
1757 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1758 struct btrfs_extent_data_ref
*dref
;
1759 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1760 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1765 if (hash_extent_data_ref_item(leaf
, dref
) <
1766 hash_extent_data_ref(root_objectid
, owner
, offset
))
1770 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1772 if (parent
== ref_offset
) {
1776 if (ref_offset
< parent
)
1779 if (root_objectid
== ref_offset
) {
1783 if (ref_offset
< root_objectid
)
1787 ptr
+= btrfs_extent_inline_ref_size(type
);
1789 if (err
== -ENOENT
&& insert
) {
1790 if (item_size
+ extra_size
>=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1801 if (find_next_key(path
, 0, &key
) == 0 &&
1802 key
.objectid
== bytenr
&&
1803 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1808 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1811 path
->keep_locks
= 0;
1812 btrfs_unlock_up_safe(path
, 1);
1818 * helper to add new inline back ref
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1822 struct btrfs_path
*path
,
1823 struct btrfs_extent_inline_ref
*iref
,
1824 u64 parent
, u64 root_objectid
,
1825 u64 owner
, u64 offset
, int refs_to_add
,
1826 struct btrfs_delayed_extent_op
*extent_op
)
1828 struct extent_buffer
*leaf
;
1829 struct btrfs_extent_item
*ei
;
1832 unsigned long item_offset
;
1837 leaf
= path
->nodes
[0];
1838 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1839 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1841 type
= extent_ref_type(parent
, owner
);
1842 size
= btrfs_extent_inline_ref_size(type
);
1844 btrfs_extend_item(fs_info
, path
, size
);
1846 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1847 refs
= btrfs_extent_refs(leaf
, ei
);
1848 refs
+= refs_to_add
;
1849 btrfs_set_extent_refs(leaf
, ei
, refs
);
1851 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1853 ptr
= (unsigned long)ei
+ item_offset
;
1854 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1855 if (ptr
< end
- size
)
1856 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1859 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1860 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1861 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1862 struct btrfs_extent_data_ref
*dref
;
1863 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1864 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1865 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1866 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1867 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1868 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1869 struct btrfs_shared_data_ref
*sref
;
1870 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1871 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1872 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1873 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1874 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1876 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1878 btrfs_mark_buffer_dirty(leaf
);
1881 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1882 struct btrfs_fs_info
*fs_info
,
1883 struct btrfs_path
*path
,
1884 struct btrfs_extent_inline_ref
**ref_ret
,
1885 u64 bytenr
, u64 num_bytes
, u64 parent
,
1886 u64 root_objectid
, u64 owner
, u64 offset
)
1890 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, ref_ret
,
1891 bytenr
, num_bytes
, parent
,
1892 root_objectid
, owner
, offset
, 0);
1896 btrfs_release_path(path
);
1899 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1900 ret
= lookup_tree_block_ref(trans
, fs_info
, path
, bytenr
,
1901 parent
, root_objectid
);
1903 ret
= lookup_extent_data_ref(trans
, fs_info
, path
, bytenr
,
1904 parent
, root_objectid
, owner
,
1911 * helper to update/remove inline back ref
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1915 struct btrfs_path
*path
,
1916 struct btrfs_extent_inline_ref
*iref
,
1918 struct btrfs_delayed_extent_op
*extent_op
,
1921 struct extent_buffer
*leaf
;
1922 struct btrfs_extent_item
*ei
;
1923 struct btrfs_extent_data_ref
*dref
= NULL
;
1924 struct btrfs_shared_data_ref
*sref
= NULL
;
1932 leaf
= path
->nodes
[0];
1933 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1934 refs
= btrfs_extent_refs(leaf
, ei
);
1935 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1936 refs
+= refs_to_mod
;
1937 btrfs_set_extent_refs(leaf
, ei
, refs
);
1939 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1945 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_ANY
);
1946 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1948 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1949 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1950 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1951 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1952 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1953 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1956 BUG_ON(refs_to_mod
!= -1);
1959 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1960 refs
+= refs_to_mod
;
1963 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1964 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1966 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1969 size
= btrfs_extent_inline_ref_size(type
);
1970 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1971 ptr
= (unsigned long)iref
;
1972 end
= (unsigned long)ei
+ item_size
;
1973 if (ptr
+ size
< end
)
1974 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1977 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
1979 btrfs_mark_buffer_dirty(leaf
);
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1984 struct btrfs_fs_info
*fs_info
,
1985 struct btrfs_path
*path
,
1986 u64 bytenr
, u64 num_bytes
, u64 parent
,
1987 u64 root_objectid
, u64 owner
,
1988 u64 offset
, int refs_to_add
,
1989 struct btrfs_delayed_extent_op
*extent_op
)
1991 struct btrfs_extent_inline_ref
*iref
;
1994 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, &iref
,
1995 bytenr
, num_bytes
, parent
,
1996 root_objectid
, owner
, offset
, 1);
1998 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1999 update_inline_extent_backref(fs_info
, path
, iref
,
2000 refs_to_add
, extent_op
, NULL
);
2001 } else if (ret
== -ENOENT
) {
2002 setup_inline_extent_backref(fs_info
, path
, iref
, parent
,
2003 root_objectid
, owner
, offset
,
2004 refs_to_add
, extent_op
);
2010 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
2011 struct btrfs_fs_info
*fs_info
,
2012 struct btrfs_path
*path
,
2013 u64 bytenr
, u64 parent
, u64 root_objectid
,
2014 u64 owner
, u64 offset
, int refs_to_add
)
2017 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2018 BUG_ON(refs_to_add
!= 1);
2019 ret
= insert_tree_block_ref(trans
, fs_info
, path
, bytenr
,
2020 parent
, root_objectid
);
2022 ret
= insert_extent_data_ref(trans
, fs_info
, path
, bytenr
,
2023 parent
, root_objectid
,
2024 owner
, offset
, refs_to_add
);
2029 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
2030 struct btrfs_fs_info
*fs_info
,
2031 struct btrfs_path
*path
,
2032 struct btrfs_extent_inline_ref
*iref
,
2033 int refs_to_drop
, int is_data
, int *last_ref
)
2037 BUG_ON(!is_data
&& refs_to_drop
!= 1);
2039 update_inline_extent_backref(fs_info
, path
, iref
,
2040 -refs_to_drop
, NULL
, last_ref
);
2041 } else if (is_data
) {
2042 ret
= remove_extent_data_ref(trans
, fs_info
, path
, refs_to_drop
,
2046 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
2053 u64
*discarded_bytes
)
2056 u64 bytes_left
, end
;
2057 u64 aligned_start
= ALIGN(start
, 1 << 9);
2059 if (WARN_ON(start
!= aligned_start
)) {
2060 len
-= aligned_start
- start
;
2061 len
= round_down(len
, 1 << 9);
2062 start
= aligned_start
;
2065 *discarded_bytes
= 0;
2073 /* Skip any superblocks on this device. */
2074 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
2075 u64 sb_start
= btrfs_sb_offset(j
);
2076 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
2077 u64 size
= sb_start
- start
;
2079 if (!in_range(sb_start
, start
, bytes_left
) &&
2080 !in_range(sb_end
, start
, bytes_left
) &&
2081 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
2085 * Superblock spans beginning of range. Adjust start and
2088 if (sb_start
<= start
) {
2089 start
+= sb_end
- start
;
2094 bytes_left
= end
- start
;
2099 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2102 *discarded_bytes
+= size
;
2103 else if (ret
!= -EOPNOTSUPP
)
2112 bytes_left
= end
- start
;
2116 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2119 *discarded_bytes
+= bytes_left
;
2124 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
2125 u64 num_bytes
, u64
*actual_bytes
)
2128 u64 discarded_bytes
= 0;
2129 struct btrfs_bio
*bbio
= NULL
;
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2136 btrfs_bio_counter_inc_blocked(fs_info
);
2137 /* Tell the block device(s) that the sectors can be discarded */
2138 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, bytenr
, &num_bytes
,
2140 /* Error condition is -ENOMEM */
2142 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2146 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2148 struct request_queue
*req_q
;
2150 if (!stripe
->dev
->bdev
) {
2151 ASSERT(btrfs_test_opt(fs_info
, DEGRADED
));
2154 req_q
= bdev_get_queue(stripe
->dev
->bdev
);
2155 if (!blk_queue_discard(req_q
))
2158 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2163 discarded_bytes
+= bytes
;
2164 else if (ret
!= -EOPNOTSUPP
)
2165 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2168 * Just in case we get back EOPNOTSUPP for some reason,
2169 * just ignore the return value so we don't screw up
2170 * people calling discard_extent.
2174 btrfs_put_bbio(bbio
);
2176 btrfs_bio_counter_dec(fs_info
);
2179 *actual_bytes
= discarded_bytes
;
2182 if (ret
== -EOPNOTSUPP
)
2187 /* Can return -ENOMEM */
2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2189 struct btrfs_root
*root
,
2190 u64 bytenr
, u64 num_bytes
, u64 parent
,
2191 u64 root_objectid
, u64 owner
, u64 offset
)
2193 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2194 int old_ref_mod
, new_ref_mod
;
2197 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2198 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2200 btrfs_ref_tree_mod(root
, bytenr
, num_bytes
, parent
, root_objectid
,
2201 owner
, offset
, BTRFS_ADD_DELAYED_REF
);
2203 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2204 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2206 root_objectid
, (int)owner
,
2207 BTRFS_ADD_DELAYED_REF
, NULL
,
2208 &old_ref_mod
, &new_ref_mod
);
2210 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2212 root_objectid
, owner
, offset
,
2213 0, BTRFS_ADD_DELAYED_REF
,
2214 &old_ref_mod
, &new_ref_mod
);
2217 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
2218 add_pinned_bytes(fs_info
, -num_bytes
, owner
, root_objectid
);
2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2224 struct btrfs_fs_info
*fs_info
,
2225 struct btrfs_delayed_ref_node
*node
,
2226 u64 parent
, u64 root_objectid
,
2227 u64 owner
, u64 offset
, int refs_to_add
,
2228 struct btrfs_delayed_extent_op
*extent_op
)
2230 struct btrfs_path
*path
;
2231 struct extent_buffer
*leaf
;
2232 struct btrfs_extent_item
*item
;
2233 struct btrfs_key key
;
2234 u64 bytenr
= node
->bytenr
;
2235 u64 num_bytes
= node
->num_bytes
;
2239 path
= btrfs_alloc_path();
2243 path
->reada
= READA_FORWARD
;
2244 path
->leave_spinning
= 1;
2245 /* this will setup the path even if it fails to insert the back ref */
2246 ret
= insert_inline_extent_backref(trans
, fs_info
, path
, bytenr
,
2247 num_bytes
, parent
, root_objectid
,
2249 refs_to_add
, extent_op
);
2250 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2254 * Ok we had -EAGAIN which means we didn't have space to insert and
2255 * inline extent ref, so just update the reference count and add a
2258 leaf
= path
->nodes
[0];
2259 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2260 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2261 refs
= btrfs_extent_refs(leaf
, item
);
2262 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2264 __run_delayed_extent_op(extent_op
, leaf
, item
);
2266 btrfs_mark_buffer_dirty(leaf
);
2267 btrfs_release_path(path
);
2269 path
->reada
= READA_FORWARD
;
2270 path
->leave_spinning
= 1;
2271 /* now insert the actual backref */
2272 ret
= insert_extent_backref(trans
, fs_info
, path
, bytenr
, parent
,
2273 root_objectid
, owner
, offset
, refs_to_add
);
2275 btrfs_abort_transaction(trans
, ret
);
2277 btrfs_free_path(path
);
2281 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2282 struct btrfs_fs_info
*fs_info
,
2283 struct btrfs_delayed_ref_node
*node
,
2284 struct btrfs_delayed_extent_op
*extent_op
,
2285 int insert_reserved
)
2288 struct btrfs_delayed_data_ref
*ref
;
2289 struct btrfs_key ins
;
2294 ins
.objectid
= node
->bytenr
;
2295 ins
.offset
= node
->num_bytes
;
2296 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2298 ref
= btrfs_delayed_node_to_data_ref(node
);
2299 trace_run_delayed_data_ref(fs_info
, node
, ref
, node
->action
);
2301 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2302 parent
= ref
->parent
;
2303 ref_root
= ref
->root
;
2305 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2307 flags
|= extent_op
->flags_to_set
;
2308 ret
= alloc_reserved_file_extent(trans
, fs_info
,
2309 parent
, ref_root
, flags
,
2310 ref
->objectid
, ref
->offset
,
2311 &ins
, node
->ref_mod
);
2312 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2313 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
, parent
,
2314 ref_root
, ref
->objectid
,
2315 ref
->offset
, node
->ref_mod
,
2317 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2318 ret
= __btrfs_free_extent(trans
, fs_info
, node
, parent
,
2319 ref_root
, ref
->objectid
,
2320 ref
->offset
, node
->ref_mod
,
2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2329 struct extent_buffer
*leaf
,
2330 struct btrfs_extent_item
*ei
)
2332 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2333 if (extent_op
->update_flags
) {
2334 flags
|= extent_op
->flags_to_set
;
2335 btrfs_set_extent_flags(leaf
, ei
, flags
);
2338 if (extent_op
->update_key
) {
2339 struct btrfs_tree_block_info
*bi
;
2340 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2341 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2342 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2346 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2347 struct btrfs_fs_info
*fs_info
,
2348 struct btrfs_delayed_ref_head
*head
,
2349 struct btrfs_delayed_extent_op
*extent_op
)
2351 struct btrfs_key key
;
2352 struct btrfs_path
*path
;
2353 struct btrfs_extent_item
*ei
;
2354 struct extent_buffer
*leaf
;
2358 int metadata
= !extent_op
->is_data
;
2363 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2366 path
= btrfs_alloc_path();
2370 key
.objectid
= head
->bytenr
;
2373 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2374 key
.offset
= extent_op
->level
;
2376 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2377 key
.offset
= head
->num_bytes
;
2381 path
->reada
= READA_FORWARD
;
2382 path
->leave_spinning
= 1;
2383 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
2390 if (path
->slots
[0] > 0) {
2392 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2394 if (key
.objectid
== head
->bytenr
&&
2395 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2396 key
.offset
== head
->num_bytes
)
2400 btrfs_release_path(path
);
2403 key
.objectid
= head
->bytenr
;
2404 key
.offset
= head
->num_bytes
;
2405 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2414 leaf
= path
->nodes
[0];
2415 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417 if (item_size
< sizeof(*ei
)) {
2418 ret
= convert_extent_item_v0(trans
, fs_info
, path
, (u64
)-1, 0);
2423 leaf
= path
->nodes
[0];
2424 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2427 BUG_ON(item_size
< sizeof(*ei
));
2428 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2429 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2431 btrfs_mark_buffer_dirty(leaf
);
2433 btrfs_free_path(path
);
2437 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2438 struct btrfs_fs_info
*fs_info
,
2439 struct btrfs_delayed_ref_node
*node
,
2440 struct btrfs_delayed_extent_op
*extent_op
,
2441 int insert_reserved
)
2444 struct btrfs_delayed_tree_ref
*ref
;
2445 struct btrfs_key ins
;
2448 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2450 ref
= btrfs_delayed_node_to_tree_ref(node
);
2451 trace_run_delayed_tree_ref(fs_info
, node
, ref
, node
->action
);
2453 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2454 parent
= ref
->parent
;
2455 ref_root
= ref
->root
;
2457 ins
.objectid
= node
->bytenr
;
2458 if (skinny_metadata
) {
2459 ins
.offset
= ref
->level
;
2460 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2462 ins
.offset
= node
->num_bytes
;
2463 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2466 if (node
->ref_mod
!= 1) {
2468 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2473 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2474 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2475 ret
= alloc_reserved_tree_block(trans
, fs_info
,
2477 extent_op
->flags_to_set
,
2480 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2481 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
,
2485 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2486 ret
= __btrfs_free_extent(trans
, fs_info
, node
,
2488 ref
->level
, 0, 1, extent_op
);
2495 /* helper function to actually process a single delayed ref entry */
2496 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2497 struct btrfs_fs_info
*fs_info
,
2498 struct btrfs_delayed_ref_node
*node
,
2499 struct btrfs_delayed_extent_op
*extent_op
,
2500 int insert_reserved
)
2504 if (trans
->aborted
) {
2505 if (insert_reserved
)
2506 btrfs_pin_extent(fs_info
, node
->bytenr
,
2507 node
->num_bytes
, 1);
2511 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2512 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2513 ret
= run_delayed_tree_ref(trans
, fs_info
, node
, extent_op
,
2515 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2516 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2517 ret
= run_delayed_data_ref(trans
, fs_info
, node
, extent_op
,
2524 static inline struct btrfs_delayed_ref_node
*
2525 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2527 struct btrfs_delayed_ref_node
*ref
;
2529 if (RB_EMPTY_ROOT(&head
->ref_tree
))
2533 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534 * This is to prevent a ref count from going down to zero, which deletes
2535 * the extent item from the extent tree, when there still are references
2536 * to add, which would fail because they would not find the extent item.
2538 if (!list_empty(&head
->ref_add_list
))
2539 return list_first_entry(&head
->ref_add_list
,
2540 struct btrfs_delayed_ref_node
, add_list
);
2542 ref
= rb_entry(rb_first(&head
->ref_tree
),
2543 struct btrfs_delayed_ref_node
, ref_node
);
2544 ASSERT(list_empty(&ref
->add_list
));
2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root
*delayed_refs
,
2549 struct btrfs_delayed_ref_head
*head
)
2551 spin_lock(&delayed_refs
->lock
);
2552 head
->processing
= 0;
2553 delayed_refs
->num_heads_ready
++;
2554 spin_unlock(&delayed_refs
->lock
);
2555 btrfs_delayed_ref_unlock(head
);
2558 static int cleanup_extent_op(struct btrfs_trans_handle
*trans
,
2559 struct btrfs_fs_info
*fs_info
,
2560 struct btrfs_delayed_ref_head
*head
)
2562 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
2567 head
->extent_op
= NULL
;
2568 if (head
->must_insert_reserved
) {
2569 btrfs_free_delayed_extent_op(extent_op
);
2572 spin_unlock(&head
->lock
);
2573 ret
= run_delayed_extent_op(trans
, fs_info
, head
, extent_op
);
2574 btrfs_free_delayed_extent_op(extent_op
);
2575 return ret
? ret
: 1;
2578 static int cleanup_ref_head(struct btrfs_trans_handle
*trans
,
2579 struct btrfs_fs_info
*fs_info
,
2580 struct btrfs_delayed_ref_head
*head
)
2582 struct btrfs_delayed_ref_root
*delayed_refs
;
2585 delayed_refs
= &trans
->transaction
->delayed_refs
;
2587 ret
= cleanup_extent_op(trans
, fs_info
, head
);
2589 unselect_delayed_ref_head(delayed_refs
, head
);
2590 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2597 * Need to drop our head ref lock and re-acquire the delayed ref lock
2598 * and then re-check to make sure nobody got added.
2600 spin_unlock(&head
->lock
);
2601 spin_lock(&delayed_refs
->lock
);
2602 spin_lock(&head
->lock
);
2603 if (!RB_EMPTY_ROOT(&head
->ref_tree
) || head
->extent_op
) {
2604 spin_unlock(&head
->lock
);
2605 spin_unlock(&delayed_refs
->lock
);
2608 delayed_refs
->num_heads
--;
2609 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
2610 RB_CLEAR_NODE(&head
->href_node
);
2611 spin_unlock(&delayed_refs
->lock
);
2612 spin_unlock(&head
->lock
);
2613 atomic_dec(&delayed_refs
->num_entries
);
2615 trace_run_delayed_ref_head(fs_info
, head
, 0);
2617 if (head
->total_ref_mod
< 0) {
2618 struct btrfs_block_group_cache
*cache
;
2620 cache
= btrfs_lookup_block_group(fs_info
, head
->bytenr
);
2622 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
2624 btrfs_put_block_group(cache
);
2626 if (head
->is_data
) {
2627 spin_lock(&delayed_refs
->lock
);
2628 delayed_refs
->pending_csums
-= head
->num_bytes
;
2629 spin_unlock(&delayed_refs
->lock
);
2633 if (head
->must_insert_reserved
) {
2634 btrfs_pin_extent(fs_info
, head
->bytenr
,
2635 head
->num_bytes
, 1);
2636 if (head
->is_data
) {
2637 ret
= btrfs_del_csums(trans
, fs_info
, head
->bytenr
,
2642 /* Also free its reserved qgroup space */
2643 btrfs_qgroup_free_delayed_ref(fs_info
, head
->qgroup_ref_root
,
2644 head
->qgroup_reserved
);
2645 btrfs_delayed_ref_unlock(head
);
2646 btrfs_put_delayed_ref_head(head
);
2651 * Returns 0 on success or if called with an already aborted transaction.
2652 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2654 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2655 struct btrfs_fs_info
*fs_info
,
2658 struct btrfs_delayed_ref_root
*delayed_refs
;
2659 struct btrfs_delayed_ref_node
*ref
;
2660 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2661 struct btrfs_delayed_extent_op
*extent_op
;
2662 ktime_t start
= ktime_get();
2664 unsigned long count
= 0;
2665 unsigned long actual_count
= 0;
2666 int must_insert_reserved
= 0;
2668 delayed_refs
= &trans
->transaction
->delayed_refs
;
2674 spin_lock(&delayed_refs
->lock
);
2675 locked_ref
= btrfs_select_ref_head(trans
);
2677 spin_unlock(&delayed_refs
->lock
);
2681 /* grab the lock that says we are going to process
2682 * all the refs for this head */
2683 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2684 spin_unlock(&delayed_refs
->lock
);
2686 * we may have dropped the spin lock to get the head
2687 * mutex lock, and that might have given someone else
2688 * time to free the head. If that's true, it has been
2689 * removed from our list and we can move on.
2691 if (ret
== -EAGAIN
) {
2699 * We need to try and merge add/drops of the same ref since we
2700 * can run into issues with relocate dropping the implicit ref
2701 * and then it being added back again before the drop can
2702 * finish. If we merged anything we need to re-loop so we can
2704 * Or we can get node references of the same type that weren't
2705 * merged when created due to bumps in the tree mod seq, and
2706 * we need to merge them to prevent adding an inline extent
2707 * backref before dropping it (triggering a BUG_ON at
2708 * insert_inline_extent_backref()).
2710 spin_lock(&locked_ref
->lock
);
2711 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2715 * locked_ref is the head node, so we have to go one
2716 * node back for any delayed ref updates
2718 ref
= select_delayed_ref(locked_ref
);
2720 if (ref
&& ref
->seq
&&
2721 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2722 spin_unlock(&locked_ref
->lock
);
2723 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
2731 * We're done processing refs in this ref_head, clean everything
2732 * up and move on to the next ref_head.
2735 ret
= cleanup_ref_head(trans
, fs_info
, locked_ref
);
2737 /* We dropped our lock, we need to loop. */
2750 rb_erase(&ref
->ref_node
, &locked_ref
->ref_tree
);
2751 RB_CLEAR_NODE(&ref
->ref_node
);
2752 if (!list_empty(&ref
->add_list
))
2753 list_del(&ref
->add_list
);
2755 * When we play the delayed ref, also correct the ref_mod on
2758 switch (ref
->action
) {
2759 case BTRFS_ADD_DELAYED_REF
:
2760 case BTRFS_ADD_DELAYED_EXTENT
:
2761 locked_ref
->ref_mod
-= ref
->ref_mod
;
2763 case BTRFS_DROP_DELAYED_REF
:
2764 locked_ref
->ref_mod
+= ref
->ref_mod
;
2769 atomic_dec(&delayed_refs
->num_entries
);
2772 * Record the must-insert_reserved flag before we drop the spin
2775 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2776 locked_ref
->must_insert_reserved
= 0;
2778 extent_op
= locked_ref
->extent_op
;
2779 locked_ref
->extent_op
= NULL
;
2780 spin_unlock(&locked_ref
->lock
);
2782 ret
= run_one_delayed_ref(trans
, fs_info
, ref
, extent_op
,
2783 must_insert_reserved
);
2785 btrfs_free_delayed_extent_op(extent_op
);
2787 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
2788 btrfs_put_delayed_ref(ref
);
2789 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2794 btrfs_put_delayed_ref(ref
);
2800 * We don't want to include ref heads since we can have empty ref heads
2801 * and those will drastically skew our runtime down since we just do
2802 * accounting, no actual extent tree updates.
2804 if (actual_count
> 0) {
2805 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2809 * We weigh the current average higher than our current runtime
2810 * to avoid large swings in the average.
2812 spin_lock(&delayed_refs
->lock
);
2813 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2814 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2815 spin_unlock(&delayed_refs
->lock
);
2820 #ifdef SCRAMBLE_DELAYED_REFS
2822 * Normally delayed refs get processed in ascending bytenr order. This
2823 * correlates in most cases to the order added. To expose dependencies on this
2824 * order, we start to process the tree in the middle instead of the beginning
2826 static u64
find_middle(struct rb_root
*root
)
2828 struct rb_node
*n
= root
->rb_node
;
2829 struct btrfs_delayed_ref_node
*entry
;
2832 u64 first
= 0, last
= 0;
2836 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2837 first
= entry
->bytenr
;
2841 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2842 last
= entry
->bytenr
;
2847 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2848 WARN_ON(!entry
->in_tree
);
2850 middle
= entry
->bytenr
;
2863 static inline u64
heads_to_leaves(struct btrfs_fs_info
*fs_info
, u64 heads
)
2867 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2868 sizeof(struct btrfs_extent_inline_ref
));
2869 if (!btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2870 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2873 * We don't ever fill up leaves all the way so multiply by 2 just to be
2874 * closer to what we're really going to want to use.
2876 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(fs_info
));
2880 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881 * would require to store the csums for that many bytes.
2883 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2886 u64 num_csums_per_leaf
;
2889 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2890 num_csums_per_leaf
= div64_u64(csum_size
,
2891 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2892 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2893 num_csums
+= num_csums_per_leaf
- 1;
2894 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2899 struct btrfs_fs_info
*fs_info
)
2901 struct btrfs_block_rsv
*global_rsv
;
2902 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2903 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2904 unsigned int num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2905 u64 num_bytes
, num_dirty_bgs_bytes
;
2908 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2909 num_heads
= heads_to_leaves(fs_info
, num_heads
);
2911 num_bytes
+= (num_heads
- 1) * fs_info
->nodesize
;
2913 num_bytes
+= btrfs_csum_bytes_to_leaves(fs_info
, csum_bytes
) *
2915 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(fs_info
,
2917 global_rsv
= &fs_info
->global_block_rsv
;
2920 * If we can't allocate any more chunks lets make sure we have _lots_ of
2921 * wiggle room since running delayed refs can create more delayed refs.
2923 if (global_rsv
->space_info
->full
) {
2924 num_dirty_bgs_bytes
<<= 1;
2928 spin_lock(&global_rsv
->lock
);
2929 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2931 spin_unlock(&global_rsv
->lock
);
2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2936 struct btrfs_fs_info
*fs_info
)
2939 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2944 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2945 val
= num_entries
* avg_runtime
;
2946 if (val
>= NSEC_PER_SEC
)
2948 if (val
>= NSEC_PER_SEC
/ 2)
2951 return btrfs_check_space_for_delayed_refs(trans
, fs_info
);
2954 struct async_delayed_refs
{
2955 struct btrfs_root
*root
;
2960 struct completion wait
;
2961 struct btrfs_work work
;
2964 static inline struct async_delayed_refs
*
2965 to_async_delayed_refs(struct btrfs_work
*work
)
2967 return container_of(work
, struct async_delayed_refs
, work
);
2970 static void delayed_ref_async_start(struct btrfs_work
*work
)
2972 struct async_delayed_refs
*async
= to_async_delayed_refs(work
);
2973 struct btrfs_trans_handle
*trans
;
2974 struct btrfs_fs_info
*fs_info
= async
->root
->fs_info
;
2977 /* if the commit is already started, we don't need to wait here */
2978 if (btrfs_transaction_blocked(fs_info
))
2981 trans
= btrfs_join_transaction(async
->root
);
2982 if (IS_ERR(trans
)) {
2983 async
->error
= PTR_ERR(trans
);
2988 * trans->sync means that when we call end_transaction, we won't
2989 * wait on delayed refs
2993 /* Don't bother flushing if we got into a different transaction */
2994 if (trans
->transid
> async
->transid
)
2997 ret
= btrfs_run_delayed_refs(trans
, fs_info
, async
->count
);
3001 ret
= btrfs_end_transaction(trans
);
3002 if (ret
&& !async
->error
)
3006 complete(&async
->wait
);
3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info
*fs_info
,
3012 unsigned long count
, u64 transid
, int wait
)
3014 struct async_delayed_refs
*async
;
3017 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
3021 async
->root
= fs_info
->tree_root
;
3022 async
->count
= count
;
3024 async
->transid
= transid
;
3029 init_completion(&async
->wait
);
3031 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
3032 delayed_ref_async_start
, NULL
, NULL
);
3034 btrfs_queue_work(fs_info
->extent_workers
, &async
->work
);
3037 wait_for_completion(&async
->wait
);
3046 * this starts processing the delayed reference count updates and
3047 * extent insertions we have queued up so far. count can be
3048 * 0, which means to process everything in the tree at the start
3049 * of the run (but not newly added entries), or it can be some target
3050 * number you'd like to process.
3052 * Returns 0 on success or if called with an aborted transaction
3053 * Returns <0 on error and aborts the transaction
3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
3056 struct btrfs_fs_info
*fs_info
, unsigned long count
)
3058 struct rb_node
*node
;
3059 struct btrfs_delayed_ref_root
*delayed_refs
;
3060 struct btrfs_delayed_ref_head
*head
;
3062 int run_all
= count
== (unsigned long)-1;
3063 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
3065 /* We'll clean this up in btrfs_cleanup_transaction */
3069 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
3072 delayed_refs
= &trans
->transaction
->delayed_refs
;
3074 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
3077 #ifdef SCRAMBLE_DELAYED_REFS
3078 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
3080 trans
->can_flush_pending_bgs
= false;
3081 ret
= __btrfs_run_delayed_refs(trans
, fs_info
, count
);
3083 btrfs_abort_transaction(trans
, ret
);
3088 if (!list_empty(&trans
->new_bgs
))
3089 btrfs_create_pending_block_groups(trans
, fs_info
);
3091 spin_lock(&delayed_refs
->lock
);
3092 node
= rb_first(&delayed_refs
->href_root
);
3094 spin_unlock(&delayed_refs
->lock
);
3097 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
3099 refcount_inc(&head
->refs
);
3100 spin_unlock(&delayed_refs
->lock
);
3102 /* Mutex was contended, block until it's released and retry. */
3103 mutex_lock(&head
->mutex
);
3104 mutex_unlock(&head
->mutex
);
3106 btrfs_put_delayed_ref_head(head
);
3111 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3116 struct btrfs_fs_info
*fs_info
,
3117 u64 bytenr
, u64 num_bytes
, u64 flags
,
3118 int level
, int is_data
)
3120 struct btrfs_delayed_extent_op
*extent_op
;
3123 extent_op
= btrfs_alloc_delayed_extent_op();
3127 extent_op
->flags_to_set
= flags
;
3128 extent_op
->update_flags
= true;
3129 extent_op
->update_key
= false;
3130 extent_op
->is_data
= is_data
? true : false;
3131 extent_op
->level
= level
;
3133 ret
= btrfs_add_delayed_extent_op(fs_info
, trans
, bytenr
,
3134 num_bytes
, extent_op
);
3136 btrfs_free_delayed_extent_op(extent_op
);
3140 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
3141 struct btrfs_path
*path
,
3142 u64 objectid
, u64 offset
, u64 bytenr
)
3144 struct btrfs_delayed_ref_head
*head
;
3145 struct btrfs_delayed_ref_node
*ref
;
3146 struct btrfs_delayed_data_ref
*data_ref
;
3147 struct btrfs_delayed_ref_root
*delayed_refs
;
3148 struct btrfs_transaction
*cur_trans
;
3149 struct rb_node
*node
;
3152 cur_trans
= root
->fs_info
->running_transaction
;
3156 delayed_refs
= &cur_trans
->delayed_refs
;
3157 spin_lock(&delayed_refs
->lock
);
3158 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3160 spin_unlock(&delayed_refs
->lock
);
3164 if (!mutex_trylock(&head
->mutex
)) {
3165 refcount_inc(&head
->refs
);
3166 spin_unlock(&delayed_refs
->lock
);
3168 btrfs_release_path(path
);
3171 * Mutex was contended, block until it's released and let
3174 mutex_lock(&head
->mutex
);
3175 mutex_unlock(&head
->mutex
);
3176 btrfs_put_delayed_ref_head(head
);
3179 spin_unlock(&delayed_refs
->lock
);
3181 spin_lock(&head
->lock
);
3183 * XXX: We should replace this with a proper search function in the
3186 for (node
= rb_first(&head
->ref_tree
); node
; node
= rb_next(node
)) {
3187 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, ref_node
);
3188 /* If it's a shared ref we know a cross reference exists */
3189 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3194 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3197 * If our ref doesn't match the one we're currently looking at
3198 * then we have a cross reference.
3200 if (data_ref
->root
!= root
->root_key
.objectid
||
3201 data_ref
->objectid
!= objectid
||
3202 data_ref
->offset
!= offset
) {
3207 spin_unlock(&head
->lock
);
3208 mutex_unlock(&head
->mutex
);
3212 static noinline
int check_committed_ref(struct btrfs_root
*root
,
3213 struct btrfs_path
*path
,
3214 u64 objectid
, u64 offset
, u64 bytenr
)
3216 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3217 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3218 struct extent_buffer
*leaf
;
3219 struct btrfs_extent_data_ref
*ref
;
3220 struct btrfs_extent_inline_ref
*iref
;
3221 struct btrfs_extent_item
*ei
;
3222 struct btrfs_key key
;
3227 key
.objectid
= bytenr
;
3228 key
.offset
= (u64
)-1;
3229 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3231 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3234 BUG_ON(ret
== 0); /* Corruption */
3237 if (path
->slots
[0] == 0)
3241 leaf
= path
->nodes
[0];
3242 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3244 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3248 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 if (item_size
< sizeof(*ei
)) {
3251 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3255 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3257 if (item_size
!= sizeof(*ei
) +
3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3261 if (btrfs_extent_generation(leaf
, ei
) <=
3262 btrfs_root_last_snapshot(&root
->root_item
))
3265 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3267 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
3268 if (type
!= BTRFS_EXTENT_DATA_REF_KEY
)
3271 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3272 if (btrfs_extent_refs(leaf
, ei
) !=
3273 btrfs_extent_data_ref_count(leaf
, ref
) ||
3274 btrfs_extent_data_ref_root(leaf
, ref
) !=
3275 root
->root_key
.objectid
||
3276 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3277 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3285 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
3288 struct btrfs_path
*path
;
3292 path
= btrfs_alloc_path();
3297 ret
= check_committed_ref(root
, path
, objectid
,
3299 if (ret
&& ret
!= -ENOENT
)
3302 ret2
= check_delayed_ref(root
, path
, objectid
,
3304 } while (ret2
== -EAGAIN
);
3306 if (ret2
&& ret2
!= -ENOENT
) {
3311 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3314 btrfs_free_path(path
);
3315 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3321 struct btrfs_root
*root
,
3322 struct extent_buffer
*buf
,
3323 int full_backref
, int inc
)
3325 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3331 struct btrfs_key key
;
3332 struct btrfs_file_extent_item
*fi
;
3336 int (*process_func
)(struct btrfs_trans_handle
*,
3337 struct btrfs_root
*,
3338 u64
, u64
, u64
, u64
, u64
, u64
);
3341 if (btrfs_is_testing(fs_info
))
3344 ref_root
= btrfs_header_owner(buf
);
3345 nritems
= btrfs_header_nritems(buf
);
3346 level
= btrfs_header_level(buf
);
3348 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3352 process_func
= btrfs_inc_extent_ref
;
3354 process_func
= btrfs_free_extent
;
3357 parent
= buf
->start
;
3361 for (i
= 0; i
< nritems
; i
++) {
3363 btrfs_item_key_to_cpu(buf
, &key
, i
);
3364 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3366 fi
= btrfs_item_ptr(buf
, i
,
3367 struct btrfs_file_extent_item
);
3368 if (btrfs_file_extent_type(buf
, fi
) ==
3369 BTRFS_FILE_EXTENT_INLINE
)
3371 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3375 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3376 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3377 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3378 parent
, ref_root
, key
.objectid
,
3383 bytenr
= btrfs_node_blockptr(buf
, i
);
3384 num_bytes
= fs_info
->nodesize
;
3385 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3386 parent
, ref_root
, level
- 1, 0);
3396 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3397 struct extent_buffer
*buf
, int full_backref
)
3399 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3402 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3403 struct extent_buffer
*buf
, int full_backref
)
3405 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3408 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3409 struct btrfs_fs_info
*fs_info
,
3410 struct btrfs_path
*path
,
3411 struct btrfs_block_group_cache
*cache
)
3414 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3416 struct extent_buffer
*leaf
;
3418 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3425 leaf
= path
->nodes
[0];
3426 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3427 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3428 btrfs_mark_buffer_dirty(leaf
);
3430 btrfs_release_path(path
);
3435 static struct btrfs_block_group_cache
*
3436 next_block_group(struct btrfs_fs_info
*fs_info
,
3437 struct btrfs_block_group_cache
*cache
)
3439 struct rb_node
*node
;
3441 spin_lock(&fs_info
->block_group_cache_lock
);
3443 /* If our block group was removed, we need a full search. */
3444 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3445 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3447 spin_unlock(&fs_info
->block_group_cache_lock
);
3448 btrfs_put_block_group(cache
);
3449 cache
= btrfs_lookup_first_block_group(fs_info
, next_bytenr
); return cache
;
3451 node
= rb_next(&cache
->cache_node
);
3452 btrfs_put_block_group(cache
);
3454 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3456 btrfs_get_block_group(cache
);
3459 spin_unlock(&fs_info
->block_group_cache_lock
);
3463 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3464 struct btrfs_trans_handle
*trans
,
3465 struct btrfs_path
*path
)
3467 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3468 struct btrfs_root
*root
= fs_info
->tree_root
;
3469 struct inode
*inode
= NULL
;
3470 struct extent_changeset
*data_reserved
= NULL
;
3472 int dcs
= BTRFS_DC_ERROR
;
3478 * If this block group is smaller than 100 megs don't bother caching the
3481 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3482 spin_lock(&block_group
->lock
);
3483 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3484 spin_unlock(&block_group
->lock
);
3491 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
3492 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3493 ret
= PTR_ERR(inode
);
3494 btrfs_release_path(path
);
3498 if (IS_ERR(inode
)) {
3502 if (block_group
->ro
)
3505 ret
= create_free_space_inode(fs_info
, trans
, block_group
,
3513 * We want to set the generation to 0, that way if anything goes wrong
3514 * from here on out we know not to trust this cache when we load up next
3517 BTRFS_I(inode
)->generation
= 0;
3518 ret
= btrfs_update_inode(trans
, root
, inode
);
3521 * So theoretically we could recover from this, simply set the
3522 * super cache generation to 0 so we know to invalidate the
3523 * cache, but then we'd have to keep track of the block groups
3524 * that fail this way so we know we _have_ to reset this cache
3525 * before the next commit or risk reading stale cache. So to
3526 * limit our exposure to horrible edge cases lets just abort the
3527 * transaction, this only happens in really bad situations
3530 btrfs_abort_transaction(trans
, ret
);
3535 /* We've already setup this transaction, go ahead and exit */
3536 if (block_group
->cache_generation
== trans
->transid
&&
3537 i_size_read(inode
)) {
3538 dcs
= BTRFS_DC_SETUP
;
3542 if (i_size_read(inode
) > 0) {
3543 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3544 &fs_info
->global_block_rsv
);
3548 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
3553 spin_lock(&block_group
->lock
);
3554 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3555 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3557 * don't bother trying to write stuff out _if_
3558 * a) we're not cached,
3559 * b) we're with nospace_cache mount option,
3560 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3562 dcs
= BTRFS_DC_WRITTEN
;
3563 spin_unlock(&block_group
->lock
);
3566 spin_unlock(&block_group
->lock
);
3569 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 * skip doing the setup, we've already cleared the cache so we're safe.
3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3578 * Try to preallocate enough space based on how big the block group is.
3579 * Keep in mind this has to include any pinned space which could end up
3580 * taking up quite a bit since it's not folded into the other space
3583 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3588 num_pages
*= PAGE_SIZE
;
3590 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, 0, num_pages
);
3594 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3595 num_pages
, num_pages
,
3598 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 * of metadata or split extents when writing the cache out, which means
3600 * we can enospc if we are heavily fragmented in addition to just normal
3601 * out of space conditions. So if we hit this just skip setting up any
3602 * other block groups for this transaction, maybe we'll unpin enough
3603 * space the next time around.
3606 dcs
= BTRFS_DC_SETUP
;
3607 else if (ret
== -ENOSPC
)
3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3613 btrfs_release_path(path
);
3615 spin_lock(&block_group
->lock
);
3616 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3617 block_group
->cache_generation
= trans
->transid
;
3618 block_group
->disk_cache_state
= dcs
;
3619 spin_unlock(&block_group
->lock
);
3621 extent_changeset_free(data_reserved
);
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3626 struct btrfs_fs_info
*fs_info
)
3628 struct btrfs_block_group_cache
*cache
, *tmp
;
3629 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3630 struct btrfs_path
*path
;
3632 if (list_empty(&cur_trans
->dirty_bgs
) ||
3633 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
3636 path
= btrfs_alloc_path();
3640 /* Could add new block groups, use _safe just in case */
3641 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3643 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3644 cache_save_setup(cache
, trans
, path
);
3647 btrfs_free_path(path
);
3652 * transaction commit does final block group cache writeback during a
3653 * critical section where nothing is allowed to change the FS. This is
3654 * required in order for the cache to actually match the block group,
3655 * but can introduce a lot of latency into the commit.
3657 * So, btrfs_start_dirty_block_groups is here to kick off block group
3658 * cache IO. There's a chance we'll have to redo some of it if the
3659 * block group changes again during the commit, but it greatly reduces
3660 * the commit latency by getting rid of the easy block groups while
3661 * we're still allowing others to join the commit.
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3664 struct btrfs_fs_info
*fs_info
)
3666 struct btrfs_block_group_cache
*cache
;
3667 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3670 struct btrfs_path
*path
= NULL
;
3672 struct list_head
*io
= &cur_trans
->io_bgs
;
3673 int num_started
= 0;
3676 spin_lock(&cur_trans
->dirty_bgs_lock
);
3677 if (list_empty(&cur_trans
->dirty_bgs
)) {
3678 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3681 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3682 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3686 * make sure all the block groups on our dirty list actually
3689 btrfs_create_pending_block_groups(trans
, fs_info
);
3692 path
= btrfs_alloc_path();
3698 * cache_write_mutex is here only to save us from balance or automatic
3699 * removal of empty block groups deleting this block group while we are
3700 * writing out the cache
3702 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3703 while (!list_empty(&dirty
)) {
3704 cache
= list_first_entry(&dirty
,
3705 struct btrfs_block_group_cache
,
3708 * this can happen if something re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3712 if (!list_empty(&cache
->io_list
)) {
3713 list_del_init(&cache
->io_list
);
3714 btrfs_wait_cache_io(trans
, cache
, path
);
3715 btrfs_put_block_group(cache
);
3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 * if it should update the cache_state. Don't delete
3722 * until after we wait.
3724 * Since we're not running in the commit critical section
3725 * we need the dirty_bgs_lock to protect from update_block_group
3727 spin_lock(&cur_trans
->dirty_bgs_lock
);
3728 list_del_init(&cache
->dirty_list
);
3729 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3733 cache_save_setup(cache
, trans
, path
);
3735 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3736 cache
->io_ctl
.inode
= NULL
;
3737 ret
= btrfs_write_out_cache(fs_info
, trans
,
3739 if (ret
== 0 && cache
->io_ctl
.inode
) {
3744 * the cache_write_mutex is protecting
3747 list_add_tail(&cache
->io_list
, io
);
3750 * if we failed to write the cache, the
3751 * generation will be bad and life goes on
3757 ret
= write_one_cache_group(trans
, fs_info
,
3760 * Our block group might still be attached to the list
3761 * of new block groups in the transaction handle of some
3762 * other task (struct btrfs_trans_handle->new_bgs). This
3763 * means its block group item isn't yet in the extent
3764 * tree. If this happens ignore the error, as we will
3765 * try again later in the critical section of the
3766 * transaction commit.
3768 if (ret
== -ENOENT
) {
3770 spin_lock(&cur_trans
->dirty_bgs_lock
);
3771 if (list_empty(&cache
->dirty_list
)) {
3772 list_add_tail(&cache
->dirty_list
,
3773 &cur_trans
->dirty_bgs
);
3774 btrfs_get_block_group(cache
);
3776 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3778 btrfs_abort_transaction(trans
, ret
);
3782 /* if its not on the io list, we need to put the block group */
3784 btrfs_put_block_group(cache
);
3790 * Avoid blocking other tasks for too long. It might even save
3791 * us from writing caches for block groups that are going to be
3794 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3795 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3797 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3800 * go through delayed refs for all the stuff we've just kicked off
3801 * and then loop back (just once)
3803 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
3804 if (!ret
&& loops
== 0) {
3806 spin_lock(&cur_trans
->dirty_bgs_lock
);
3807 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3809 * dirty_bgs_lock protects us from concurrent block group
3810 * deletes too (not just cache_write_mutex).
3812 if (!list_empty(&dirty
)) {
3813 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3816 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3817 } else if (ret
< 0) {
3818 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
3821 btrfs_free_path(path
);
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3826 struct btrfs_fs_info
*fs_info
)
3828 struct btrfs_block_group_cache
*cache
;
3829 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3832 struct btrfs_path
*path
;
3833 struct list_head
*io
= &cur_trans
->io_bgs
;
3834 int num_started
= 0;
3836 path
= btrfs_alloc_path();
3841 * Even though we are in the critical section of the transaction commit,
3842 * we can still have concurrent tasks adding elements to this
3843 * transaction's list of dirty block groups. These tasks correspond to
3844 * endio free space workers started when writeback finishes for a
3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 * allocate new block groups as a result of COWing nodes of the root
3847 * tree when updating the free space inode. The writeback for the space
3848 * caches is triggered by an earlier call to
3849 * btrfs_start_dirty_block_groups() and iterations of the following
3851 * Also we want to do the cache_save_setup first and then run the
3852 * delayed refs to make sure we have the best chance at doing this all
3855 spin_lock(&cur_trans
->dirty_bgs_lock
);
3856 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3857 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3858 struct btrfs_block_group_cache
,
3862 * this can happen if cache_save_setup re-dirties a block
3863 * group that is already under IO. Just wait for it to
3864 * finish and then do it all again
3866 if (!list_empty(&cache
->io_list
)) {
3867 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3868 list_del_init(&cache
->io_list
);
3869 btrfs_wait_cache_io(trans
, cache
, path
);
3870 btrfs_put_block_group(cache
);
3871 spin_lock(&cur_trans
->dirty_bgs_lock
);
3875 * don't remove from the dirty list until after we've waited
3878 list_del_init(&cache
->dirty_list
);
3879 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3882 cache_save_setup(cache
, trans
, path
);
3885 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
3886 (unsigned long) -1);
3888 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3889 cache
->io_ctl
.inode
= NULL
;
3890 ret
= btrfs_write_out_cache(fs_info
, trans
,
3892 if (ret
== 0 && cache
->io_ctl
.inode
) {
3895 list_add_tail(&cache
->io_list
, io
);
3898 * if we failed to write the cache, the
3899 * generation will be bad and life goes on
3905 ret
= write_one_cache_group(trans
, fs_info
,
3908 * One of the free space endio workers might have
3909 * created a new block group while updating a free space
3910 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 * and hasn't released its transaction handle yet, in
3912 * which case the new block group is still attached to
3913 * its transaction handle and its creation has not
3914 * finished yet (no block group item in the extent tree
3915 * yet, etc). If this is the case, wait for all free
3916 * space endio workers to finish and retry. This is a
3917 * a very rare case so no need for a more efficient and
3920 if (ret
== -ENOENT
) {
3921 wait_event(cur_trans
->writer_wait
,
3922 atomic_read(&cur_trans
->num_writers
) == 1);
3923 ret
= write_one_cache_group(trans
, fs_info
,
3927 btrfs_abort_transaction(trans
, ret
);
3930 /* if its not on the io list, we need to put the block group */
3932 btrfs_put_block_group(cache
);
3933 spin_lock(&cur_trans
->dirty_bgs_lock
);
3935 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3937 while (!list_empty(io
)) {
3938 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3940 list_del_init(&cache
->io_list
);
3941 btrfs_wait_cache_io(trans
, cache
, path
);
3942 btrfs_put_block_group(cache
);
3945 btrfs_free_path(path
);
3949 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3951 struct btrfs_block_group_cache
*block_group
;
3954 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
3955 if (!block_group
|| block_group
->ro
)
3958 btrfs_put_block_group(block_group
);
3962 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3964 struct btrfs_block_group_cache
*bg
;
3967 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3971 spin_lock(&bg
->lock
);
3975 atomic_inc(&bg
->nocow_writers
);
3976 spin_unlock(&bg
->lock
);
3978 /* no put on block group, done by btrfs_dec_nocow_writers */
3980 btrfs_put_block_group(bg
);
3986 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3988 struct btrfs_block_group_cache
*bg
;
3990 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3992 if (atomic_dec_and_test(&bg
->nocow_writers
))
3993 wake_up_atomic_t(&bg
->nocow_writers
);
3995 * Once for our lookup and once for the lookup done by a previous call
3996 * to btrfs_inc_nocow_writers()
3998 btrfs_put_block_group(bg
);
3999 btrfs_put_block_group(bg
);
4002 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
4004 wait_on_atomic_t(&bg
->nocow_writers
, atomic_t_wait
,
4005 TASK_UNINTERRUPTIBLE
);
4008 static const char *alloc_name(u64 flags
)
4011 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
4013 case BTRFS_BLOCK_GROUP_METADATA
:
4015 case BTRFS_BLOCK_GROUP_DATA
:
4017 case BTRFS_BLOCK_GROUP_SYSTEM
:
4021 return "invalid-combination";
4025 static int create_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4026 struct btrfs_space_info
**new)
4029 struct btrfs_space_info
*space_info
;
4033 space_info
= kzalloc(sizeof(*space_info
), GFP_NOFS
);
4037 ret
= percpu_counter_init(&space_info
->total_bytes_pinned
, 0,
4044 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
4045 INIT_LIST_HEAD(&space_info
->block_groups
[i
]);
4046 init_rwsem(&space_info
->groups_sem
);
4047 spin_lock_init(&space_info
->lock
);
4048 space_info
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
4049 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4050 init_waitqueue_head(&space_info
->wait
);
4051 INIT_LIST_HEAD(&space_info
->ro_bgs
);
4052 INIT_LIST_HEAD(&space_info
->tickets
);
4053 INIT_LIST_HEAD(&space_info
->priority_tickets
);
4055 ret
= kobject_init_and_add(&space_info
->kobj
, &space_info_ktype
,
4056 info
->space_info_kobj
, "%s",
4057 alloc_name(space_info
->flags
));
4059 percpu_counter_destroy(&space_info
->total_bytes_pinned
);
4065 list_add_rcu(&space_info
->list
, &info
->space_info
);
4066 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4067 info
->data_sinfo
= space_info
;
4072 static void update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4073 u64 total_bytes
, u64 bytes_used
,
4075 struct btrfs_space_info
**space_info
)
4077 struct btrfs_space_info
*found
;
4080 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
4081 BTRFS_BLOCK_GROUP_RAID10
))
4086 found
= __find_space_info(info
, flags
);
4088 spin_lock(&found
->lock
);
4089 found
->total_bytes
+= total_bytes
;
4090 found
->disk_total
+= total_bytes
* factor
;
4091 found
->bytes_used
+= bytes_used
;
4092 found
->disk_used
+= bytes_used
* factor
;
4093 found
->bytes_readonly
+= bytes_readonly
;
4094 if (total_bytes
> 0)
4096 space_info_add_new_bytes(info
, found
, total_bytes
-
4097 bytes_used
- bytes_readonly
);
4098 spin_unlock(&found
->lock
);
4099 *space_info
= found
;
4102 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
4104 u64 extra_flags
= chunk_to_extended(flags
) &
4105 BTRFS_EXTENDED_PROFILE_MASK
;
4107 write_seqlock(&fs_info
->profiles_lock
);
4108 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4109 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4110 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4111 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4112 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4113 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4114 write_sequnlock(&fs_info
->profiles_lock
);
4118 * returns target flags in extended format or 0 if restripe for this
4119 * chunk_type is not in progress
4121 * should be called with either volume_mutex or balance_lock held
4123 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4125 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4131 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4132 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4133 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4134 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4135 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4136 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4137 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4138 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4139 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4146 * @flags: available profiles in extended format (see ctree.h)
4148 * Returns reduced profile in chunk format. If profile changing is in
4149 * progress (either running or paused) picks the target profile (if it's
4150 * already available), otherwise falls back to plain reducing.
4152 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
4154 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
4160 * see if restripe for this chunk_type is in progress, if so
4161 * try to reduce to the target profile
4163 spin_lock(&fs_info
->balance_lock
);
4164 target
= get_restripe_target(fs_info
, flags
);
4166 /* pick target profile only if it's already available */
4167 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4168 spin_unlock(&fs_info
->balance_lock
);
4169 return extended_to_chunk(target
);
4172 spin_unlock(&fs_info
->balance_lock
);
4174 /* First, mask out the RAID levels which aren't possible */
4175 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4176 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4177 allowed
|= btrfs_raid_group
[raid_type
];
4181 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4182 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4183 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4184 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4185 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4186 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4187 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4188 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4189 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4190 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4192 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4194 return extended_to_chunk(flags
| allowed
);
4197 static u64
get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
4204 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4206 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4207 flags
|= fs_info
->avail_data_alloc_bits
;
4208 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4209 flags
|= fs_info
->avail_system_alloc_bits
;
4210 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4211 flags
|= fs_info
->avail_metadata_alloc_bits
;
4212 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4214 return btrfs_reduce_alloc_profile(fs_info
, flags
);
4217 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
4219 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4224 flags
= BTRFS_BLOCK_GROUP_DATA
;
4225 else if (root
== fs_info
->chunk_root
)
4226 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4228 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4230 ret
= get_alloc_profile(fs_info
, flags
);
4234 u64
btrfs_data_alloc_profile(struct btrfs_fs_info
*fs_info
)
4236 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4239 u64
btrfs_metadata_alloc_profile(struct btrfs_fs_info
*fs_info
)
4241 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4244 u64
btrfs_system_alloc_profile(struct btrfs_fs_info
*fs_info
)
4246 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4249 static u64
btrfs_space_info_used(struct btrfs_space_info
*s_info
,
4250 bool may_use_included
)
4253 return s_info
->bytes_used
+ s_info
->bytes_reserved
+
4254 s_info
->bytes_pinned
+ s_info
->bytes_readonly
+
4255 (may_use_included
? s_info
->bytes_may_use
: 0);
4258 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode
*inode
, u64 bytes
)
4260 struct btrfs_root
*root
= inode
->root
;
4261 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4262 struct btrfs_space_info
*data_sinfo
= fs_info
->data_sinfo
;
4265 int need_commit
= 2;
4266 int have_pinned_space
;
4268 /* make sure bytes are sectorsize aligned */
4269 bytes
= ALIGN(bytes
, fs_info
->sectorsize
);
4271 if (btrfs_is_free_space_inode(inode
)) {
4273 ASSERT(current
->journal_info
);
4277 /* make sure we have enough space to handle the data first */
4278 spin_lock(&data_sinfo
->lock
);
4279 used
= btrfs_space_info_used(data_sinfo
, true);
4281 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4282 struct btrfs_trans_handle
*trans
;
4285 * if we don't have enough free bytes in this space then we need
4286 * to alloc a new chunk.
4288 if (!data_sinfo
->full
) {
4291 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4292 spin_unlock(&data_sinfo
->lock
);
4294 alloc_target
= btrfs_data_alloc_profile(fs_info
);
4296 * It is ugly that we don't call nolock join
4297 * transaction for the free space inode case here.
4298 * But it is safe because we only do the data space
4299 * reservation for the free space cache in the
4300 * transaction context, the common join transaction
4301 * just increase the counter of the current transaction
4302 * handler, doesn't try to acquire the trans_lock of
4305 trans
= btrfs_join_transaction(root
);
4307 return PTR_ERR(trans
);
4309 ret
= do_chunk_alloc(trans
, fs_info
, alloc_target
,
4310 CHUNK_ALLOC_NO_FORCE
);
4311 btrfs_end_transaction(trans
);
4316 have_pinned_space
= 1;
4325 * If we don't have enough pinned space to deal with this
4326 * allocation, and no removed chunk in current transaction,
4327 * don't bother committing the transaction.
4329 have_pinned_space
= percpu_counter_compare(
4330 &data_sinfo
->total_bytes_pinned
,
4331 used
+ bytes
- data_sinfo
->total_bytes
);
4332 spin_unlock(&data_sinfo
->lock
);
4334 /* commit the current transaction and try again */
4337 !atomic_read(&fs_info
->open_ioctl_trans
)) {
4340 if (need_commit
> 0) {
4341 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4342 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0,
4346 trans
= btrfs_join_transaction(root
);
4348 return PTR_ERR(trans
);
4349 if (have_pinned_space
>= 0 ||
4350 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4351 &trans
->transaction
->flags
) ||
4353 ret
= btrfs_commit_transaction(trans
);
4357 * The cleaner kthread might still be doing iput
4358 * operations. Wait for it to finish so that
4359 * more space is released.
4361 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
4362 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
4365 btrfs_end_transaction(trans
);
4369 trace_btrfs_space_reservation(fs_info
,
4370 "space_info:enospc",
4371 data_sinfo
->flags
, bytes
, 1);
4374 data_sinfo
->bytes_may_use
+= bytes
;
4375 trace_btrfs_space_reservation(fs_info
, "space_info",
4376 data_sinfo
->flags
, bytes
, 1);
4377 spin_unlock(&data_sinfo
->lock
);
4382 int btrfs_check_data_free_space(struct inode
*inode
,
4383 struct extent_changeset
**reserved
, u64 start
, u64 len
)
4385 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4388 /* align the range */
4389 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4390 round_down(start
, fs_info
->sectorsize
);
4391 start
= round_down(start
, fs_info
->sectorsize
);
4393 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
), len
);
4397 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4398 ret
= btrfs_qgroup_reserve_data(inode
, reserved
, start
, len
);
4400 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4407 * Called if we need to clear a data reservation for this inode
4408 * Normally in a error case.
4410 * This one will *NOT* use accurate qgroup reserved space API, just for case
4411 * which we can't sleep and is sure it won't affect qgroup reserved space.
4412 * Like clear_bit_hook().
4414 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4417 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4418 struct btrfs_space_info
*data_sinfo
;
4420 /* Make sure the range is aligned to sectorsize */
4421 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4422 round_down(start
, fs_info
->sectorsize
);
4423 start
= round_down(start
, fs_info
->sectorsize
);
4425 data_sinfo
= fs_info
->data_sinfo
;
4426 spin_lock(&data_sinfo
->lock
);
4427 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4428 data_sinfo
->bytes_may_use
= 0;
4430 data_sinfo
->bytes_may_use
-= len
;
4431 trace_btrfs_space_reservation(fs_info
, "space_info",
4432 data_sinfo
->flags
, len
, 0);
4433 spin_unlock(&data_sinfo
->lock
);
4437 * Called if we need to clear a data reservation for this inode
4438 * Normally in a error case.
4440 * This one will handle the per-inode data rsv map for accurate reserved
4443 void btrfs_free_reserved_data_space(struct inode
*inode
,
4444 struct extent_changeset
*reserved
, u64 start
, u64 len
)
4446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4448 /* Make sure the range is aligned to sectorsize */
4449 len
= round_up(start
+ len
, root
->fs_info
->sectorsize
) -
4450 round_down(start
, root
->fs_info
->sectorsize
);
4451 start
= round_down(start
, root
->fs_info
->sectorsize
);
4453 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4454 btrfs_qgroup_free_data(inode
, reserved
, start
, len
);
4457 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4459 struct list_head
*head
= &info
->space_info
;
4460 struct btrfs_space_info
*found
;
4463 list_for_each_entry_rcu(found
, head
, list
) {
4464 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4465 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4470 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4472 return (global
->size
<< 1);
4475 static int should_alloc_chunk(struct btrfs_fs_info
*fs_info
,
4476 struct btrfs_space_info
*sinfo
, int force
)
4478 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4479 u64 bytes_used
= btrfs_space_info_used(sinfo
, false);
4482 if (force
== CHUNK_ALLOC_FORCE
)
4486 * We need to take into account the global rsv because for all intents
4487 * and purposes it's used space. Don't worry about locking the
4488 * global_rsv, it doesn't change except when the transaction commits.
4490 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4491 bytes_used
+= calc_global_rsv_need_space(global_rsv
);
4494 * in limited mode, we want to have some free space up to
4495 * about 1% of the FS size.
4497 if (force
== CHUNK_ALLOC_LIMITED
) {
4498 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
4499 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4501 if (sinfo
->total_bytes
- bytes_used
< thresh
)
4505 if (bytes_used
+ SZ_2M
< div_factor(sinfo
->total_bytes
, 8))
4510 static u64
get_profile_num_devs(struct btrfs_fs_info
*fs_info
, u64 type
)
4514 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4515 BTRFS_BLOCK_GROUP_RAID0
|
4516 BTRFS_BLOCK_GROUP_RAID5
|
4517 BTRFS_BLOCK_GROUP_RAID6
))
4518 num_dev
= fs_info
->fs_devices
->rw_devices
;
4519 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4522 num_dev
= 1; /* DUP or single */
4528 * If @is_allocation is true, reserve space in the system space info necessary
4529 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4532 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4533 struct btrfs_fs_info
*fs_info
, u64 type
)
4535 struct btrfs_space_info
*info
;
4542 * Needed because we can end up allocating a system chunk and for an
4543 * atomic and race free space reservation in the chunk block reserve.
4545 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
4547 info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4548 spin_lock(&info
->lock
);
4549 left
= info
->total_bytes
- btrfs_space_info_used(info
, true);
4550 spin_unlock(&info
->lock
);
4552 num_devs
= get_profile_num_devs(fs_info
, type
);
4554 /* num_devs device items to update and 1 chunk item to add or remove */
4555 thresh
= btrfs_calc_trunc_metadata_size(fs_info
, num_devs
) +
4556 btrfs_calc_trans_metadata_size(fs_info
, 1);
4558 if (left
< thresh
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4559 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
4560 left
, thresh
, type
);
4561 dump_space_info(fs_info
, info
, 0, 0);
4564 if (left
< thresh
) {
4565 u64 flags
= btrfs_system_alloc_profile(fs_info
);
4568 * Ignore failure to create system chunk. We might end up not
4569 * needing it, as we might not need to COW all nodes/leafs from
4570 * the paths we visit in the chunk tree (they were already COWed
4571 * or created in the current transaction for example).
4573 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4577 ret
= btrfs_block_rsv_add(fs_info
->chunk_root
,
4578 &fs_info
->chunk_block_rsv
,
4579 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4581 trans
->chunk_bytes_reserved
+= thresh
;
4586 * If force is CHUNK_ALLOC_FORCE:
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4589 * If force is NOT CHUNK_ALLOC_FORCE:
4590 * - return 0 if it doesn't need to allocate a new chunk,
4591 * - return 1 if it successfully allocates a chunk,
4592 * - return errors including -ENOSPC otherwise.
4594 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4595 struct btrfs_fs_info
*fs_info
, u64 flags
, int force
)
4597 struct btrfs_space_info
*space_info
;
4598 int wait_for_alloc
= 0;
4601 /* Don't re-enter if we're already allocating a chunk */
4602 if (trans
->allocating_chunk
)
4605 space_info
= __find_space_info(fs_info
, flags
);
4607 ret
= create_space_info(fs_info
, flags
, &space_info
);
4613 spin_lock(&space_info
->lock
);
4614 if (force
< space_info
->force_alloc
)
4615 force
= space_info
->force_alloc
;
4616 if (space_info
->full
) {
4617 if (should_alloc_chunk(fs_info
, space_info
, force
))
4621 spin_unlock(&space_info
->lock
);
4625 if (!should_alloc_chunk(fs_info
, space_info
, force
)) {
4626 spin_unlock(&space_info
->lock
);
4628 } else if (space_info
->chunk_alloc
) {
4631 space_info
->chunk_alloc
= 1;
4634 spin_unlock(&space_info
->lock
);
4636 mutex_lock(&fs_info
->chunk_mutex
);
4639 * The chunk_mutex is held throughout the entirety of a chunk
4640 * allocation, so once we've acquired the chunk_mutex we know that the
4641 * other guy is done and we need to recheck and see if we should
4644 if (wait_for_alloc
) {
4645 mutex_unlock(&fs_info
->chunk_mutex
);
4650 trans
->allocating_chunk
= true;
4653 * If we have mixed data/metadata chunks we want to make sure we keep
4654 * allocating mixed chunks instead of individual chunks.
4656 if (btrfs_mixed_space_info(space_info
))
4657 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4660 * if we're doing a data chunk, go ahead and make sure that
4661 * we keep a reasonable number of metadata chunks allocated in the
4664 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4665 fs_info
->data_chunk_allocations
++;
4666 if (!(fs_info
->data_chunk_allocations
%
4667 fs_info
->metadata_ratio
))
4668 force_metadata_allocation(fs_info
);
4672 * Check if we have enough space in SYSTEM chunk because we may need
4673 * to update devices.
4675 check_system_chunk(trans
, fs_info
, flags
);
4677 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4678 trans
->allocating_chunk
= false;
4680 spin_lock(&space_info
->lock
);
4681 if (ret
< 0 && ret
!= -ENOSPC
)
4684 space_info
->full
= 1;
4688 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4690 space_info
->chunk_alloc
= 0;
4691 spin_unlock(&space_info
->lock
);
4692 mutex_unlock(&fs_info
->chunk_mutex
);
4694 * When we allocate a new chunk we reserve space in the chunk block
4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 * add new nodes/leafs to it if we end up needing to do it when
4697 * inserting the chunk item and updating device items as part of the
4698 * second phase of chunk allocation, performed by
4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 * large number of new block groups to create in our transaction
4701 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 * in extreme cases - like having a single transaction create many new
4703 * block groups when starting to write out the free space caches of all
4704 * the block groups that were made dirty during the lifetime of the
4707 if (trans
->can_flush_pending_bgs
&&
4708 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4709 btrfs_create_pending_block_groups(trans
, fs_info
);
4710 btrfs_trans_release_chunk_metadata(trans
);
4715 static int can_overcommit(struct btrfs_fs_info
*fs_info
,
4716 struct btrfs_space_info
*space_info
, u64 bytes
,
4717 enum btrfs_reserve_flush_enum flush
,
4720 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4726 /* Don't overcommit when in mixed mode. */
4727 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4731 profile
= btrfs_system_alloc_profile(fs_info
);
4733 profile
= btrfs_metadata_alloc_profile(fs_info
);
4735 used
= btrfs_space_info_used(space_info
, false);
4738 * We only want to allow over committing if we have lots of actual space
4739 * free, but if we don't have enough space to handle the global reserve
4740 * space then we could end up having a real enospc problem when trying
4741 * to allocate a chunk or some other such important allocation.
4743 spin_lock(&global_rsv
->lock
);
4744 space_size
= calc_global_rsv_need_space(global_rsv
);
4745 spin_unlock(&global_rsv
->lock
);
4746 if (used
+ space_size
>= space_info
->total_bytes
)
4749 used
+= space_info
->bytes_may_use
;
4751 avail
= atomic64_read(&fs_info
->free_chunk_space
);
4754 * If we have dup, raid1 or raid10 then only half of the free
4755 * space is actually useable. For raid56, the space info used
4756 * doesn't include the parity drive, so we don't have to
4759 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4760 BTRFS_BLOCK_GROUP_RAID1
|
4761 BTRFS_BLOCK_GROUP_RAID10
))
4765 * If we aren't flushing all things, let us overcommit up to
4766 * 1/2th of the space. If we can flush, don't let us overcommit
4767 * too much, let it overcommit up to 1/8 of the space.
4769 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4774 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info
*fs_info
,
4780 unsigned long nr_pages
, int nr_items
)
4782 struct super_block
*sb
= fs_info
->sb
;
4784 if (down_read_trylock(&sb
->s_umount
)) {
4785 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4786 up_read(&sb
->s_umount
);
4789 * We needn't worry the filesystem going from r/w to r/o though
4790 * we don't acquire ->s_umount mutex, because the filesystem
4791 * should guarantee the delalloc inodes list be empty after
4792 * the filesystem is readonly(all dirty pages are written to
4795 btrfs_start_delalloc_roots(fs_info
, 0, nr_items
);
4796 if (!current
->journal_info
)
4797 btrfs_wait_ordered_roots(fs_info
, nr_items
, 0, (u64
)-1);
4801 static inline u64
calc_reclaim_items_nr(struct btrfs_fs_info
*fs_info
,
4807 bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
4808 nr
= div64_u64(to_reclaim
, bytes
);
4814 #define EXTENT_SIZE_PER_ITEM SZ_256K
4817 * shrink metadata reservation for delalloc
4819 static void shrink_delalloc(struct btrfs_fs_info
*fs_info
, u64 to_reclaim
,
4820 u64 orig
, bool wait_ordered
)
4822 struct btrfs_space_info
*space_info
;
4823 struct btrfs_trans_handle
*trans
;
4828 unsigned long nr_pages
;
4830 enum btrfs_reserve_flush_enum flush
;
4832 /* Calc the number of the pages we need flush for space reservation */
4833 items
= calc_reclaim_items_nr(fs_info
, to_reclaim
);
4834 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4836 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4837 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4839 delalloc_bytes
= percpu_counter_sum_positive(
4840 &fs_info
->delalloc_bytes
);
4841 if (delalloc_bytes
== 0) {
4845 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4850 while (delalloc_bytes
&& loops
< 3) {
4851 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4852 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4853 btrfs_writeback_inodes_sb_nr(fs_info
, nr_pages
, items
);
4855 * We need to wait for the async pages to actually start before
4858 max_reclaim
= atomic_read(&fs_info
->async_delalloc_pages
);
4862 if (max_reclaim
<= nr_pages
)
4865 max_reclaim
-= nr_pages
;
4867 wait_event(fs_info
->async_submit_wait
,
4868 atomic_read(&fs_info
->async_delalloc_pages
) <=
4872 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4874 flush
= BTRFS_RESERVE_NO_FLUSH
;
4875 spin_lock(&space_info
->lock
);
4876 if (list_empty(&space_info
->tickets
) &&
4877 list_empty(&space_info
->priority_tickets
)) {
4878 spin_unlock(&space_info
->lock
);
4881 spin_unlock(&space_info
->lock
);
4884 if (wait_ordered
&& !trans
) {
4885 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4887 time_left
= schedule_timeout_killable(1);
4891 delalloc_bytes
= percpu_counter_sum_positive(
4892 &fs_info
->delalloc_bytes
);
4896 struct reserve_ticket
{
4899 struct list_head list
;
4900 wait_queue_head_t wait
;
4904 * maybe_commit_transaction - possibly commit the transaction if its ok to
4905 * @root - the root we're allocating for
4906 * @bytes - the number of bytes we want to reserve
4907 * @force - force the commit
4909 * This will check to make sure that committing the transaction will actually
4910 * get us somewhere and then commit the transaction if it does. Otherwise it
4911 * will return -ENOSPC.
4913 static int may_commit_transaction(struct btrfs_fs_info
*fs_info
,
4914 struct btrfs_space_info
*space_info
)
4916 struct reserve_ticket
*ticket
= NULL
;
4917 struct btrfs_block_rsv
*delayed_rsv
= &fs_info
->delayed_block_rsv
;
4918 struct btrfs_trans_handle
*trans
;
4921 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4925 spin_lock(&space_info
->lock
);
4926 if (!list_empty(&space_info
->priority_tickets
))
4927 ticket
= list_first_entry(&space_info
->priority_tickets
,
4928 struct reserve_ticket
, list
);
4929 else if (!list_empty(&space_info
->tickets
))
4930 ticket
= list_first_entry(&space_info
->tickets
,
4931 struct reserve_ticket
, list
);
4932 bytes
= (ticket
) ? ticket
->bytes
: 0;
4933 spin_unlock(&space_info
->lock
);
4938 /* See if there is enough pinned space to make this reservation */
4939 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4944 * See if there is some space in the delayed insertion reservation for
4947 if (space_info
!= delayed_rsv
->space_info
)
4950 spin_lock(&delayed_rsv
->lock
);
4951 if (delayed_rsv
->size
> bytes
)
4954 bytes
-= delayed_rsv
->size
;
4955 spin_unlock(&delayed_rsv
->lock
);
4957 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4963 trans
= btrfs_join_transaction(fs_info
->extent_root
);
4967 return btrfs_commit_transaction(trans
);
4971 * Try to flush some data based on policy set by @state. This is only advisory
4972 * and may fail for various reasons. The caller is supposed to examine the
4973 * state of @space_info to detect the outcome.
4975 static void flush_space(struct btrfs_fs_info
*fs_info
,
4976 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4979 struct btrfs_root
*root
= fs_info
->extent_root
;
4980 struct btrfs_trans_handle
*trans
;
4985 case FLUSH_DELAYED_ITEMS_NR
:
4986 case FLUSH_DELAYED_ITEMS
:
4987 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4988 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
) * 2;
4992 trans
= btrfs_join_transaction(root
);
4993 if (IS_ERR(trans
)) {
4994 ret
= PTR_ERR(trans
);
4997 ret
= btrfs_run_delayed_items_nr(trans
, fs_info
, nr
);
4998 btrfs_end_transaction(trans
);
5000 case FLUSH_DELALLOC
:
5001 case FLUSH_DELALLOC_WAIT
:
5002 shrink_delalloc(fs_info
, num_bytes
* 2, num_bytes
,
5003 state
== FLUSH_DELALLOC_WAIT
);
5006 trans
= btrfs_join_transaction(root
);
5007 if (IS_ERR(trans
)) {
5008 ret
= PTR_ERR(trans
);
5011 ret
= do_chunk_alloc(trans
, fs_info
,
5012 btrfs_metadata_alloc_profile(fs_info
),
5013 CHUNK_ALLOC_NO_FORCE
);
5014 btrfs_end_transaction(trans
);
5015 if (ret
> 0 || ret
== -ENOSPC
)
5019 ret
= may_commit_transaction(fs_info
, space_info
);
5026 trace_btrfs_flush_space(fs_info
, space_info
->flags
, num_bytes
, state
,
5032 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info
*fs_info
,
5033 struct btrfs_space_info
*space_info
,
5036 struct reserve_ticket
*ticket
;
5041 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
5042 to_reclaim
+= ticket
->bytes
;
5043 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
5044 to_reclaim
+= ticket
->bytes
;
5048 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
5049 if (can_overcommit(fs_info
, space_info
, to_reclaim
,
5050 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
5053 used
= btrfs_space_info_used(space_info
, true);
5055 if (can_overcommit(fs_info
, space_info
, SZ_1M
,
5056 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
5057 expected
= div_factor_fine(space_info
->total_bytes
, 95);
5059 expected
= div_factor_fine(space_info
->total_bytes
, 90);
5061 if (used
> expected
)
5062 to_reclaim
= used
- expected
;
5065 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
5066 space_info
->bytes_reserved
);
5070 static inline int need_do_async_reclaim(struct btrfs_fs_info
*fs_info
,
5071 struct btrfs_space_info
*space_info
,
5072 u64 used
, bool system_chunk
)
5074 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
5076 /* If we're just plain full then async reclaim just slows us down. */
5077 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
5080 if (!btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5084 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
5085 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
5088 static void wake_all_tickets(struct list_head
*head
)
5090 struct reserve_ticket
*ticket
;
5092 while (!list_empty(head
)) {
5093 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
5094 list_del_init(&ticket
->list
);
5095 ticket
->error
= -ENOSPC
;
5096 wake_up(&ticket
->wait
);
5101 * This is for normal flushers, we can wait all goddamned day if we want to. We
5102 * will loop and continuously try to flush as long as we are making progress.
5103 * We count progress as clearing off tickets each time we have to loop.
5105 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
5107 struct btrfs_fs_info
*fs_info
;
5108 struct btrfs_space_info
*space_info
;
5111 int commit_cycles
= 0;
5112 u64 last_tickets_id
;
5114 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
5115 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5117 spin_lock(&space_info
->lock
);
5118 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5121 space_info
->flush
= 0;
5122 spin_unlock(&space_info
->lock
);
5125 last_tickets_id
= space_info
->tickets_id
;
5126 spin_unlock(&space_info
->lock
);
5128 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5130 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
5131 spin_lock(&space_info
->lock
);
5132 if (list_empty(&space_info
->tickets
)) {
5133 space_info
->flush
= 0;
5134 spin_unlock(&space_info
->lock
);
5137 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
,
5140 if (last_tickets_id
== space_info
->tickets_id
) {
5143 last_tickets_id
= space_info
->tickets_id
;
5144 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5149 if (flush_state
> COMMIT_TRANS
) {
5151 if (commit_cycles
> 2) {
5152 wake_all_tickets(&space_info
->tickets
);
5153 space_info
->flush
= 0;
5155 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5158 spin_unlock(&space_info
->lock
);
5159 } while (flush_state
<= COMMIT_TRANS
);
5162 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5164 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5167 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5168 struct btrfs_space_info
*space_info
,
5169 struct reserve_ticket
*ticket
)
5172 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5174 spin_lock(&space_info
->lock
);
5175 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5178 spin_unlock(&space_info
->lock
);
5181 spin_unlock(&space_info
->lock
);
5184 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
5186 spin_lock(&space_info
->lock
);
5187 if (ticket
->bytes
== 0) {
5188 spin_unlock(&space_info
->lock
);
5191 spin_unlock(&space_info
->lock
);
5194 * Priority flushers can't wait on delalloc without
5197 if (flush_state
== FLUSH_DELALLOC
||
5198 flush_state
== FLUSH_DELALLOC_WAIT
)
5199 flush_state
= ALLOC_CHUNK
;
5200 } while (flush_state
< COMMIT_TRANS
);
5203 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5204 struct btrfs_space_info
*space_info
,
5205 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5211 spin_lock(&space_info
->lock
);
5212 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5213 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5218 spin_unlock(&space_info
->lock
);
5222 finish_wait(&ticket
->wait
, &wait
);
5223 spin_lock(&space_info
->lock
);
5226 ret
= ticket
->error
;
5227 if (!list_empty(&ticket
->list
))
5228 list_del_init(&ticket
->list
);
5229 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5230 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5231 space_info
->bytes_may_use
-= num_bytes
;
5232 trace_btrfs_space_reservation(fs_info
, "space_info",
5233 space_info
->flags
, num_bytes
, 0);
5235 spin_unlock(&space_info
->lock
);
5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242 * @root - the root we're allocating for
5243 * @space_info - the space info we want to allocate from
5244 * @orig_bytes - the number of bytes we want
5245 * @flush - whether or not we can flush to make our reservation
5247 * This will reserve orig_bytes number of bytes from the space info associated
5248 * with the block_rsv. If there is not enough space it will make an attempt to
5249 * flush out space to make room. It will do this by flushing delalloc if
5250 * possible or committing the transaction. If flush is 0 then no attempts to
5251 * regain reservations will be made and this will fail if there is not enough
5254 static int __reserve_metadata_bytes(struct btrfs_fs_info
*fs_info
,
5255 struct btrfs_space_info
*space_info
,
5257 enum btrfs_reserve_flush_enum flush
,
5260 struct reserve_ticket ticket
;
5265 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5267 spin_lock(&space_info
->lock
);
5269 used
= btrfs_space_info_used(space_info
, true);
5272 * If we have enough space then hooray, make our reservation and carry
5273 * on. If not see if we can overcommit, and if we can, hooray carry on.
5274 * If not things get more complicated.
5276 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5277 space_info
->bytes_may_use
+= orig_bytes
;
5278 trace_btrfs_space_reservation(fs_info
, "space_info",
5279 space_info
->flags
, orig_bytes
, 1);
5281 } else if (can_overcommit(fs_info
, space_info
, orig_bytes
, flush
,
5283 space_info
->bytes_may_use
+= orig_bytes
;
5284 trace_btrfs_space_reservation(fs_info
, "space_info",
5285 space_info
->flags
, orig_bytes
, 1);
5290 * If we couldn't make a reservation then setup our reservation ticket
5291 * and kick the async worker if it's not already running.
5293 * If we are a priority flusher then we just need to add our ticket to
5294 * the list and we will do our own flushing further down.
5296 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5297 ticket
.bytes
= orig_bytes
;
5299 init_waitqueue_head(&ticket
.wait
);
5300 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5301 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5302 if (!space_info
->flush
) {
5303 space_info
->flush
= 1;
5304 trace_btrfs_trigger_flush(fs_info
,
5308 queue_work(system_unbound_wq
,
5309 &fs_info
->async_reclaim_work
);
5312 list_add_tail(&ticket
.list
,
5313 &space_info
->priority_tickets
);
5315 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5318 * We will do the space reservation dance during log replay,
5319 * which means we won't have fs_info->fs_root set, so don't do
5320 * the async reclaim as we will panic.
5322 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
) &&
5323 need_do_async_reclaim(fs_info
, space_info
,
5324 used
, system_chunk
) &&
5325 !work_busy(&fs_info
->async_reclaim_work
)) {
5326 trace_btrfs_trigger_flush(fs_info
, space_info
->flags
,
5327 orig_bytes
, flush
, "preempt");
5328 queue_work(system_unbound_wq
,
5329 &fs_info
->async_reclaim_work
);
5332 spin_unlock(&space_info
->lock
);
5333 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5336 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5337 return wait_reserve_ticket(fs_info
, space_info
, &ticket
,
5341 priority_reclaim_metadata_space(fs_info
, space_info
, &ticket
);
5342 spin_lock(&space_info
->lock
);
5344 if (ticket
.bytes
< orig_bytes
) {
5345 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5346 space_info
->bytes_may_use
-= num_bytes
;
5347 trace_btrfs_space_reservation(fs_info
, "space_info",
5352 list_del_init(&ticket
.list
);
5355 spin_unlock(&space_info
->lock
);
5356 ASSERT(list_empty(&ticket
.list
));
5361 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362 * @root - the root we're allocating for
5363 * @block_rsv - the block_rsv we're allocating for
5364 * @orig_bytes - the number of bytes we want
5365 * @flush - whether or not we can flush to make our reservation
5367 * This will reserve orgi_bytes number of bytes from the space info associated
5368 * with the block_rsv. If there is not enough space it will make an attempt to
5369 * flush out space to make room. It will do this by flushing delalloc if
5370 * possible or committing the transaction. If flush is 0 then no attempts to
5371 * regain reservations will be made and this will fail if there is not enough
5374 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5375 struct btrfs_block_rsv
*block_rsv
,
5377 enum btrfs_reserve_flush_enum flush
)
5379 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5380 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5382 bool system_chunk
= (root
== fs_info
->chunk_root
);
5384 ret
= __reserve_metadata_bytes(fs_info
, block_rsv
->space_info
,
5385 orig_bytes
, flush
, system_chunk
);
5386 if (ret
== -ENOSPC
&&
5387 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5388 if (block_rsv
!= global_rsv
&&
5389 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5393 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
5394 block_rsv
->space_info
->flags
,
5399 static struct btrfs_block_rsv
*get_block_rsv(
5400 const struct btrfs_trans_handle
*trans
,
5401 const struct btrfs_root
*root
)
5403 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5404 struct btrfs_block_rsv
*block_rsv
= NULL
;
5406 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5407 (root
== fs_info
->csum_root
&& trans
->adding_csums
) ||
5408 (root
== fs_info
->uuid_root
))
5409 block_rsv
= trans
->block_rsv
;
5412 block_rsv
= root
->block_rsv
;
5415 block_rsv
= &fs_info
->empty_block_rsv
;
5420 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5424 spin_lock(&block_rsv
->lock
);
5425 if (block_rsv
->reserved
>= num_bytes
) {
5426 block_rsv
->reserved
-= num_bytes
;
5427 if (block_rsv
->reserved
< block_rsv
->size
)
5428 block_rsv
->full
= 0;
5431 spin_unlock(&block_rsv
->lock
);
5435 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5436 u64 num_bytes
, int update_size
)
5438 spin_lock(&block_rsv
->lock
);
5439 block_rsv
->reserved
+= num_bytes
;
5441 block_rsv
->size
+= num_bytes
;
5442 else if (block_rsv
->reserved
>= block_rsv
->size
)
5443 block_rsv
->full
= 1;
5444 spin_unlock(&block_rsv
->lock
);
5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5448 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5451 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5454 if (global_rsv
->space_info
!= dest
->space_info
)
5457 spin_lock(&global_rsv
->lock
);
5458 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5459 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5460 spin_unlock(&global_rsv
->lock
);
5463 global_rsv
->reserved
-= num_bytes
;
5464 if (global_rsv
->reserved
< global_rsv
->size
)
5465 global_rsv
->full
= 0;
5466 spin_unlock(&global_rsv
->lock
);
5468 block_rsv_add_bytes(dest
, num_bytes
, 1);
5473 * This is for space we already have accounted in space_info->bytes_may_use, so
5474 * basically when we're returning space from block_rsv's.
5476 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5477 struct btrfs_space_info
*space_info
,
5480 struct reserve_ticket
*ticket
;
5481 struct list_head
*head
;
5483 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5484 bool check_overcommit
= false;
5486 spin_lock(&space_info
->lock
);
5487 head
= &space_info
->priority_tickets
;
5490 * If we are over our limit then we need to check and see if we can
5491 * overcommit, and if we can't then we just need to free up our space
5492 * and not satisfy any requests.
5494 used
= btrfs_space_info_used(space_info
, true);
5495 if (used
- num_bytes
>= space_info
->total_bytes
)
5496 check_overcommit
= true;
5498 while (!list_empty(head
) && num_bytes
) {
5499 ticket
= list_first_entry(head
, struct reserve_ticket
,
5502 * We use 0 bytes because this space is already reserved, so
5503 * adding the ticket space would be a double count.
5505 if (check_overcommit
&&
5506 !can_overcommit(fs_info
, space_info
, 0, flush
, false))
5508 if (num_bytes
>= ticket
->bytes
) {
5509 list_del_init(&ticket
->list
);
5510 num_bytes
-= ticket
->bytes
;
5512 space_info
->tickets_id
++;
5513 wake_up(&ticket
->wait
);
5515 ticket
->bytes
-= num_bytes
;
5520 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5521 head
= &space_info
->tickets
;
5522 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5525 space_info
->bytes_may_use
-= num_bytes
;
5526 trace_btrfs_space_reservation(fs_info
, "space_info",
5527 space_info
->flags
, num_bytes
, 0);
5528 spin_unlock(&space_info
->lock
);
5532 * This is for newly allocated space that isn't accounted in
5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5534 * we use this helper.
5536 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5537 struct btrfs_space_info
*space_info
,
5540 struct reserve_ticket
*ticket
;
5541 struct list_head
*head
= &space_info
->priority_tickets
;
5544 while (!list_empty(head
) && num_bytes
) {
5545 ticket
= list_first_entry(head
, struct reserve_ticket
,
5547 if (num_bytes
>= ticket
->bytes
) {
5548 trace_btrfs_space_reservation(fs_info
, "space_info",
5551 list_del_init(&ticket
->list
);
5552 num_bytes
-= ticket
->bytes
;
5553 space_info
->bytes_may_use
+= ticket
->bytes
;
5555 space_info
->tickets_id
++;
5556 wake_up(&ticket
->wait
);
5558 trace_btrfs_space_reservation(fs_info
, "space_info",
5561 space_info
->bytes_may_use
+= num_bytes
;
5562 ticket
->bytes
-= num_bytes
;
5567 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5568 head
= &space_info
->tickets
;
5573 static u64
block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5574 struct btrfs_block_rsv
*block_rsv
,
5575 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5577 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5580 spin_lock(&block_rsv
->lock
);
5581 if (num_bytes
== (u64
)-1)
5582 num_bytes
= block_rsv
->size
;
5583 block_rsv
->size
-= num_bytes
;
5584 if (block_rsv
->reserved
>= block_rsv
->size
) {
5585 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5586 block_rsv
->reserved
= block_rsv
->size
;
5587 block_rsv
->full
= 1;
5591 spin_unlock(&block_rsv
->lock
);
5594 if (num_bytes
> 0) {
5596 spin_lock(&dest
->lock
);
5600 bytes_to_add
= dest
->size
- dest
->reserved
;
5601 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5602 dest
->reserved
+= bytes_to_add
;
5603 if (dest
->reserved
>= dest
->size
)
5605 num_bytes
-= bytes_to_add
;
5607 spin_unlock(&dest
->lock
);
5610 space_info_add_old_bytes(fs_info
, space_info
,
5616 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5617 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5622 ret
= block_rsv_use_bytes(src
, num_bytes
);
5626 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5630 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5632 memset(rsv
, 0, sizeof(*rsv
));
5633 spin_lock_init(&rsv
->lock
);
5637 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info
*fs_info
,
5638 struct btrfs_block_rsv
*rsv
,
5639 unsigned short type
)
5641 btrfs_init_block_rsv(rsv
, type
);
5642 rsv
->space_info
= __find_space_info(fs_info
,
5643 BTRFS_BLOCK_GROUP_METADATA
);
5646 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_fs_info
*fs_info
,
5647 unsigned short type
)
5649 struct btrfs_block_rsv
*block_rsv
;
5651 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5655 btrfs_init_metadata_block_rsv(fs_info
, block_rsv
, type
);
5659 void btrfs_free_block_rsv(struct btrfs_fs_info
*fs_info
,
5660 struct btrfs_block_rsv
*rsv
)
5664 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5668 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5673 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5674 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5675 enum btrfs_reserve_flush_enum flush
)
5682 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5684 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5691 int btrfs_block_rsv_check(struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5699 spin_lock(&block_rsv
->lock
);
5700 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5701 if (block_rsv
->reserved
>= num_bytes
)
5703 spin_unlock(&block_rsv
->lock
);
5708 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5709 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5710 enum btrfs_reserve_flush_enum flush
)
5718 spin_lock(&block_rsv
->lock
);
5719 num_bytes
= min_reserved
;
5720 if (block_rsv
->reserved
>= num_bytes
)
5723 num_bytes
-= block_rsv
->reserved
;
5724 spin_unlock(&block_rsv
->lock
);
5729 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5731 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5739 * btrfs_inode_rsv_refill - refill the inode block rsv.
5740 * @inode - the inode we are refilling.
5741 * @flush - the flusing restriction.
5743 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5744 * block_rsv->size as the minimum size. We'll either refill the missing amount
5745 * or return if we already have enough space. This will also handle the resreve
5746 * tracepoint for the reserved amount.
5748 static int btrfs_inode_rsv_refill(struct btrfs_inode
*inode
,
5749 enum btrfs_reserve_flush_enum flush
)
5751 struct btrfs_root
*root
= inode
->root
;
5752 struct btrfs_block_rsv
*block_rsv
= &inode
->block_rsv
;
5756 spin_lock(&block_rsv
->lock
);
5757 if (block_rsv
->reserved
< block_rsv
->size
)
5758 num_bytes
= block_rsv
->size
- block_rsv
->reserved
;
5759 spin_unlock(&block_rsv
->lock
);
5764 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5766 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5767 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5768 btrfs_ino(inode
), num_bytes
, 1);
5774 * btrfs_inode_rsv_release - release any excessive reservation.
5775 * @inode - the inode we need to release from.
5777 * This is the same as btrfs_block_rsv_release, except that it handles the
5778 * tracepoint for the reservation.
5780 static void btrfs_inode_rsv_release(struct btrfs_inode
*inode
)
5782 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5783 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5784 struct btrfs_block_rsv
*block_rsv
= &inode
->block_rsv
;
5788 * Since we statically set the block_rsv->size we just want to say we
5789 * are releasing 0 bytes, and then we'll just get the reservation over
5792 released
= block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, 0);
5794 trace_btrfs_space_reservation(fs_info
, "delalloc",
5795 btrfs_ino(inode
), released
, 0);
5798 void btrfs_block_rsv_release(struct btrfs_fs_info
*fs_info
,
5799 struct btrfs_block_rsv
*block_rsv
,
5802 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5804 if (global_rsv
== block_rsv
||
5805 block_rsv
->space_info
!= global_rsv
->space_info
)
5807 block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, num_bytes
);
5810 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5812 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5813 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5817 * The global block rsv is based on the size of the extent tree, the
5818 * checksum tree and the root tree. If the fs is empty we want to set
5819 * it to a minimal amount for safety.
5821 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5822 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5823 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5824 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5826 spin_lock(&sinfo
->lock
);
5827 spin_lock(&block_rsv
->lock
);
5829 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5831 if (block_rsv
->reserved
< block_rsv
->size
) {
5832 num_bytes
= btrfs_space_info_used(sinfo
, true);
5833 if (sinfo
->total_bytes
> num_bytes
) {
5834 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5835 num_bytes
= min(num_bytes
,
5836 block_rsv
->size
- block_rsv
->reserved
);
5837 block_rsv
->reserved
+= num_bytes
;
5838 sinfo
->bytes_may_use
+= num_bytes
;
5839 trace_btrfs_space_reservation(fs_info
, "space_info",
5840 sinfo
->flags
, num_bytes
,
5843 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5844 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5845 sinfo
->bytes_may_use
-= num_bytes
;
5846 trace_btrfs_space_reservation(fs_info
, "space_info",
5847 sinfo
->flags
, num_bytes
, 0);
5848 block_rsv
->reserved
= block_rsv
->size
;
5851 if (block_rsv
->reserved
== block_rsv
->size
)
5852 block_rsv
->full
= 1;
5854 block_rsv
->full
= 0;
5856 spin_unlock(&block_rsv
->lock
);
5857 spin_unlock(&sinfo
->lock
);
5860 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5862 struct btrfs_space_info
*space_info
;
5864 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5865 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5867 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5868 fs_info
->global_block_rsv
.space_info
= space_info
;
5869 fs_info
->trans_block_rsv
.space_info
= space_info
;
5870 fs_info
->empty_block_rsv
.space_info
= space_info
;
5871 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5873 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5874 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5875 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5876 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5877 if (fs_info
->quota_root
)
5878 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5879 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5881 update_global_block_rsv(fs_info
);
5884 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5886 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5888 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5889 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5890 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5891 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5892 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5893 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5896 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5897 struct btrfs_fs_info
*fs_info
)
5899 if (!trans
->block_rsv
) {
5900 ASSERT(!trans
->bytes_reserved
);
5904 if (!trans
->bytes_reserved
)
5907 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
5908 trace_btrfs_space_reservation(fs_info
, "transaction",
5909 trans
->transid
, trans
->bytes_reserved
, 0);
5910 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
5911 trans
->bytes_reserved
);
5912 trans
->bytes_reserved
= 0;
5916 * To be called after all the new block groups attached to the transaction
5917 * handle have been created (btrfs_create_pending_block_groups()).
5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5921 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5923 if (!trans
->chunk_bytes_reserved
)
5926 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5928 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5929 trans
->chunk_bytes_reserved
);
5930 trans
->chunk_bytes_reserved
= 0;
5933 /* Can only return 0 or -ENOSPC */
5934 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5935 struct btrfs_inode
*inode
)
5937 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5938 struct btrfs_root
*root
= inode
->root
;
5940 * We always use trans->block_rsv here as we will have reserved space
5941 * for our orphan when starting the transaction, using get_block_rsv()
5942 * here will sometimes make us choose the wrong block rsv as we could be
5943 * doing a reloc inode for a non refcounted root.
5945 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5946 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5949 * We need to hold space in order to delete our orphan item once we've
5950 * added it, so this takes the reservation so we can release it later
5951 * when we are truly done with the orphan item.
5953 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5955 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5957 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5960 void btrfs_orphan_release_metadata(struct btrfs_inode
*inode
)
5962 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5963 struct btrfs_root
*root
= inode
->root
;
5964 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5966 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5968 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
, num_bytes
);
5972 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5973 * root: the root of the parent directory
5974 * rsv: block reservation
5975 * items: the number of items that we need do reservation
5976 * qgroup_reserved: used to return the reserved size in qgroup
5978 * This function is used to reserve the space for snapshot/subvolume
5979 * creation and deletion. Those operations are different with the
5980 * common file/directory operations, they change two fs/file trees
5981 * and root tree, the number of items that the qgroup reserves is
5982 * different with the free space reservation. So we can not use
5983 * the space reservation mechanism in start_transaction().
5985 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5986 struct btrfs_block_rsv
*rsv
,
5988 u64
*qgroup_reserved
,
5989 bool use_global_rsv
)
5993 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5994 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5996 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
5997 /* One for parent inode, two for dir entries */
5998 num_bytes
= 3 * fs_info
->nodesize
;
5999 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
, true);
6006 *qgroup_reserved
= num_bytes
;
6008 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, items
);
6009 rsv
->space_info
= __find_space_info(fs_info
,
6010 BTRFS_BLOCK_GROUP_METADATA
);
6011 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
6012 BTRFS_RESERVE_FLUSH_ALL
);
6014 if (ret
== -ENOSPC
&& use_global_rsv
)
6015 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
6017 if (ret
&& *qgroup_reserved
)
6018 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
6023 void btrfs_subvolume_release_metadata(struct btrfs_fs_info
*fs_info
,
6024 struct btrfs_block_rsv
*rsv
)
6026 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
6029 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info
*fs_info
,
6030 struct btrfs_inode
*inode
)
6032 struct btrfs_block_rsv
*block_rsv
= &inode
->block_rsv
;
6033 u64 reserve_size
= 0;
6035 unsigned outstanding_extents
;
6037 lockdep_assert_held(&inode
->lock
);
6038 outstanding_extents
= inode
->outstanding_extents
;
6039 if (outstanding_extents
)
6040 reserve_size
= btrfs_calc_trans_metadata_size(fs_info
,
6041 outstanding_extents
+ 1);
6042 csum_leaves
= btrfs_csum_bytes_to_leaves(fs_info
,
6044 reserve_size
+= btrfs_calc_trans_metadata_size(fs_info
,
6047 spin_lock(&block_rsv
->lock
);
6048 block_rsv
->size
= reserve_size
;
6049 spin_unlock(&block_rsv
->lock
);
6052 int btrfs_delalloc_reserve_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6054 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6055 struct btrfs_root
*root
= inode
->root
;
6056 unsigned nr_extents
;
6057 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
6059 bool delalloc_lock
= true;
6061 /* If we are a free space inode we need to not flush since we will be in
6062 * the middle of a transaction commit. We also don't need the delalloc
6063 * mutex since we won't race with anybody. We need this mostly to make
6064 * lockdep shut its filthy mouth.
6066 * If we have a transaction open (can happen if we call truncate_block
6067 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6069 if (btrfs_is_free_space_inode(inode
)) {
6070 flush
= BTRFS_RESERVE_NO_FLUSH
;
6071 delalloc_lock
= false;
6072 } else if (current
->journal_info
) {
6073 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
6076 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
6077 btrfs_transaction_in_commit(fs_info
))
6078 schedule_timeout(1);
6081 mutex_lock(&inode
->delalloc_mutex
);
6083 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6085 /* Add our new extents and calculate the new rsv size. */
6086 spin_lock(&inode
->lock
);
6087 nr_extents
= count_max_extents(num_bytes
);
6088 btrfs_mod_outstanding_extents(inode
, nr_extents
);
6089 inode
->csum_bytes
+= num_bytes
;
6090 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6091 spin_unlock(&inode
->lock
);
6093 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
6094 ret
= btrfs_qgroup_reserve_meta(root
,
6095 nr_extents
* fs_info
->nodesize
, true);
6100 ret
= btrfs_inode_rsv_refill(inode
, flush
);
6101 if (unlikely(ret
)) {
6102 btrfs_qgroup_free_meta(root
,
6103 nr_extents
* fs_info
->nodesize
);
6108 mutex_unlock(&inode
->delalloc_mutex
);
6112 spin_lock(&inode
->lock
);
6113 nr_extents
= count_max_extents(num_bytes
);
6114 btrfs_mod_outstanding_extents(inode
, -nr_extents
);
6115 inode
->csum_bytes
-= num_bytes
;
6116 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6117 spin_unlock(&inode
->lock
);
6119 btrfs_inode_rsv_release(inode
);
6121 mutex_unlock(&inode
->delalloc_mutex
);
6126 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6127 * @inode: the inode to release the reservation for.
6128 * @num_bytes: the number of bytes we are releasing.
6130 * This will release the metadata reservation for an inode. This can be called
6131 * once we complete IO for a given set of bytes to release their metadata
6132 * reservations, or on error for the same reason.
6134 void btrfs_delalloc_release_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6136 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6138 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6139 spin_lock(&inode
->lock
);
6140 inode
->csum_bytes
-= num_bytes
;
6141 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6142 spin_unlock(&inode
->lock
);
6144 if (btrfs_is_testing(fs_info
))
6147 btrfs_inode_rsv_release(inode
);
6151 * btrfs_delalloc_release_extents - release our outstanding_extents
6152 * @inode: the inode to balance the reservation for.
6153 * @num_bytes: the number of bytes we originally reserved with
6155 * When we reserve space we increase outstanding_extents for the extents we may
6156 * add. Once we've set the range as delalloc or created our ordered extents we
6157 * have outstanding_extents to track the real usage, so we use this to free our
6158 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6159 * with btrfs_delalloc_reserve_metadata.
6161 void btrfs_delalloc_release_extents(struct btrfs_inode
*inode
, u64 num_bytes
)
6163 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6164 unsigned num_extents
;
6166 spin_lock(&inode
->lock
);
6167 num_extents
= count_max_extents(num_bytes
);
6168 btrfs_mod_outstanding_extents(inode
, -num_extents
);
6169 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6170 spin_unlock(&inode
->lock
);
6172 if (btrfs_is_testing(fs_info
))
6175 btrfs_inode_rsv_release(inode
);
6179 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6181 * @inode: inode we're writing to
6182 * @start: start range we are writing to
6183 * @len: how long the range we are writing to
6184 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6185 * current reservation.
6187 * This will do the following things
6189 * o reserve space in data space info for num bytes
6190 * and reserve precious corresponding qgroup space
6191 * (Done in check_data_free_space)
6193 * o reserve space for metadata space, based on the number of outstanding
6194 * extents and how much csums will be needed
6195 * also reserve metadata space in a per root over-reserve method.
6196 * o add to the inodes->delalloc_bytes
6197 * o add it to the fs_info's delalloc inodes list.
6198 * (Above 3 all done in delalloc_reserve_metadata)
6200 * Return 0 for success
6201 * Return <0 for error(-ENOSPC or -EQUOT)
6203 int btrfs_delalloc_reserve_space(struct inode
*inode
,
6204 struct extent_changeset
**reserved
, u64 start
, u64 len
)
6208 ret
= btrfs_check_data_free_space(inode
, reserved
, start
, len
);
6211 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
), len
);
6213 btrfs_free_reserved_data_space(inode
, *reserved
, start
, len
);
6218 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6219 * @inode: inode we're releasing space for
6220 * @start: start position of the space already reserved
6221 * @len: the len of the space already reserved
6222 * @release_bytes: the len of the space we consumed or didn't use
6224 * This function will release the metadata space that was not used and will
6225 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6226 * list if there are no delalloc bytes left.
6227 * Also it will handle the qgroup reserved space.
6229 void btrfs_delalloc_release_space(struct inode
*inode
,
6230 struct extent_changeset
*reserved
,
6233 btrfs_delalloc_release_metadata(BTRFS_I(inode
), len
);
6234 btrfs_free_reserved_data_space(inode
, reserved
, start
, len
);
6237 static int update_block_group(struct btrfs_trans_handle
*trans
,
6238 struct btrfs_fs_info
*info
, u64 bytenr
,
6239 u64 num_bytes
, int alloc
)
6241 struct btrfs_block_group_cache
*cache
= NULL
;
6242 u64 total
= num_bytes
;
6247 /* block accounting for super block */
6248 spin_lock(&info
->delalloc_root_lock
);
6249 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6251 old_val
+= num_bytes
;
6253 old_val
-= num_bytes
;
6254 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6255 spin_unlock(&info
->delalloc_root_lock
);
6258 cache
= btrfs_lookup_block_group(info
, bytenr
);
6261 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6262 BTRFS_BLOCK_GROUP_RAID1
|
6263 BTRFS_BLOCK_GROUP_RAID10
))
6268 * If this block group has free space cache written out, we
6269 * need to make sure to load it if we are removing space. This
6270 * is because we need the unpinning stage to actually add the
6271 * space back to the block group, otherwise we will leak space.
6273 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6274 cache_block_group(cache
, 1);
6276 byte_in_group
= bytenr
- cache
->key
.objectid
;
6277 WARN_ON(byte_in_group
> cache
->key
.offset
);
6279 spin_lock(&cache
->space_info
->lock
);
6280 spin_lock(&cache
->lock
);
6282 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
6283 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6284 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6286 old_val
= btrfs_block_group_used(&cache
->item
);
6287 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6289 old_val
+= num_bytes
;
6290 btrfs_set_block_group_used(&cache
->item
, old_val
);
6291 cache
->reserved
-= num_bytes
;
6292 cache
->space_info
->bytes_reserved
-= num_bytes
;
6293 cache
->space_info
->bytes_used
+= num_bytes
;
6294 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6295 spin_unlock(&cache
->lock
);
6296 spin_unlock(&cache
->space_info
->lock
);
6298 old_val
-= num_bytes
;
6299 btrfs_set_block_group_used(&cache
->item
, old_val
);
6300 cache
->pinned
+= num_bytes
;
6301 cache
->space_info
->bytes_pinned
+= num_bytes
;
6302 cache
->space_info
->bytes_used
-= num_bytes
;
6303 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6304 spin_unlock(&cache
->lock
);
6305 spin_unlock(&cache
->space_info
->lock
);
6307 trace_btrfs_space_reservation(info
, "pinned",
6308 cache
->space_info
->flags
,
6310 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
6312 set_extent_dirty(info
->pinned_extents
,
6313 bytenr
, bytenr
+ num_bytes
- 1,
6314 GFP_NOFS
| __GFP_NOFAIL
);
6317 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6318 if (list_empty(&cache
->dirty_list
)) {
6319 list_add_tail(&cache
->dirty_list
,
6320 &trans
->transaction
->dirty_bgs
);
6321 trans
->transaction
->num_dirty_bgs
++;
6322 btrfs_get_block_group(cache
);
6324 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6327 * No longer have used bytes in this block group, queue it for
6328 * deletion. We do this after adding the block group to the
6329 * dirty list to avoid races between cleaner kthread and space
6332 if (!alloc
&& old_val
== 0) {
6333 spin_lock(&info
->unused_bgs_lock
);
6334 if (list_empty(&cache
->bg_list
)) {
6335 btrfs_get_block_group(cache
);
6336 list_add_tail(&cache
->bg_list
,
6339 spin_unlock(&info
->unused_bgs_lock
);
6342 btrfs_put_block_group(cache
);
6344 bytenr
+= num_bytes
;
6349 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
6351 struct btrfs_block_group_cache
*cache
;
6354 spin_lock(&fs_info
->block_group_cache_lock
);
6355 bytenr
= fs_info
->first_logical_byte
;
6356 spin_unlock(&fs_info
->block_group_cache_lock
);
6358 if (bytenr
< (u64
)-1)
6361 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
6365 bytenr
= cache
->key
.objectid
;
6366 btrfs_put_block_group(cache
);
6371 static int pin_down_extent(struct btrfs_fs_info
*fs_info
,
6372 struct btrfs_block_group_cache
*cache
,
6373 u64 bytenr
, u64 num_bytes
, int reserved
)
6375 spin_lock(&cache
->space_info
->lock
);
6376 spin_lock(&cache
->lock
);
6377 cache
->pinned
+= num_bytes
;
6378 cache
->space_info
->bytes_pinned
+= num_bytes
;
6380 cache
->reserved
-= num_bytes
;
6381 cache
->space_info
->bytes_reserved
-= num_bytes
;
6383 spin_unlock(&cache
->lock
);
6384 spin_unlock(&cache
->space_info
->lock
);
6386 trace_btrfs_space_reservation(fs_info
, "pinned",
6387 cache
->space_info
->flags
, num_bytes
, 1);
6388 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
, num_bytes
);
6389 set_extent_dirty(fs_info
->pinned_extents
, bytenr
,
6390 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6395 * this function must be called within transaction
6397 int btrfs_pin_extent(struct btrfs_fs_info
*fs_info
,
6398 u64 bytenr
, u64 num_bytes
, int reserved
)
6400 struct btrfs_block_group_cache
*cache
;
6402 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6403 BUG_ON(!cache
); /* Logic error */
6405 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, reserved
);
6407 btrfs_put_block_group(cache
);
6412 * this function must be called within transaction
6414 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info
*fs_info
,
6415 u64 bytenr
, u64 num_bytes
)
6417 struct btrfs_block_group_cache
*cache
;
6420 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6425 * pull in the free space cache (if any) so that our pin
6426 * removes the free space from the cache. We have load_only set
6427 * to one because the slow code to read in the free extents does check
6428 * the pinned extents.
6430 cache_block_group(cache
, 1);
6432 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, 0);
6434 /* remove us from the free space cache (if we're there at all) */
6435 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6436 btrfs_put_block_group(cache
);
6440 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
6441 u64 start
, u64 num_bytes
)
6444 struct btrfs_block_group_cache
*block_group
;
6445 struct btrfs_caching_control
*caching_ctl
;
6447 block_group
= btrfs_lookup_block_group(fs_info
, start
);
6451 cache_block_group(block_group
, 0);
6452 caching_ctl
= get_caching_control(block_group
);
6456 BUG_ON(!block_group_cache_done(block_group
));
6457 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6459 mutex_lock(&caching_ctl
->mutex
);
6461 if (start
>= caching_ctl
->progress
) {
6462 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6463 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6464 ret
= btrfs_remove_free_space(block_group
,
6467 num_bytes
= caching_ctl
->progress
- start
;
6468 ret
= btrfs_remove_free_space(block_group
,
6473 num_bytes
= (start
+ num_bytes
) -
6474 caching_ctl
->progress
;
6475 start
= caching_ctl
->progress
;
6476 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6479 mutex_unlock(&caching_ctl
->mutex
);
6480 put_caching_control(caching_ctl
);
6482 btrfs_put_block_group(block_group
);
6486 int btrfs_exclude_logged_extents(struct btrfs_fs_info
*fs_info
,
6487 struct extent_buffer
*eb
)
6489 struct btrfs_file_extent_item
*item
;
6490 struct btrfs_key key
;
6494 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
6497 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6498 btrfs_item_key_to_cpu(eb
, &key
, i
);
6499 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6501 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6502 found_type
= btrfs_file_extent_type(eb
, item
);
6503 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6505 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6507 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6508 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6509 __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
6516 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6518 atomic_inc(&bg
->reservations
);
6521 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6524 struct btrfs_block_group_cache
*bg
;
6526 bg
= btrfs_lookup_block_group(fs_info
, start
);
6528 if (atomic_dec_and_test(&bg
->reservations
))
6529 wake_up_atomic_t(&bg
->reservations
);
6530 btrfs_put_block_group(bg
);
6533 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6535 struct btrfs_space_info
*space_info
= bg
->space_info
;
6539 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6543 * Our block group is read only but before we set it to read only,
6544 * some task might have had allocated an extent from it already, but it
6545 * has not yet created a respective ordered extent (and added it to a
6546 * root's list of ordered extents).
6547 * Therefore wait for any task currently allocating extents, since the
6548 * block group's reservations counter is incremented while a read lock
6549 * on the groups' semaphore is held and decremented after releasing
6550 * the read access on that semaphore and creating the ordered extent.
6552 down_write(&space_info
->groups_sem
);
6553 up_write(&space_info
->groups_sem
);
6555 wait_on_atomic_t(&bg
->reservations
, atomic_t_wait
,
6556 TASK_UNINTERRUPTIBLE
);
6560 * btrfs_add_reserved_bytes - update the block_group and space info counters
6561 * @cache: The cache we are manipulating
6562 * @ram_bytes: The number of bytes of file content, and will be same to
6563 * @num_bytes except for the compress path.
6564 * @num_bytes: The number of bytes in question
6565 * @delalloc: The blocks are allocated for the delalloc write
6567 * This is called by the allocator when it reserves space. If this is a
6568 * reservation and the block group has become read only we cannot make the
6569 * reservation and return -EAGAIN, otherwise this function always succeeds.
6571 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6572 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6574 struct btrfs_space_info
*space_info
= cache
->space_info
;
6577 spin_lock(&space_info
->lock
);
6578 spin_lock(&cache
->lock
);
6582 cache
->reserved
+= num_bytes
;
6583 space_info
->bytes_reserved
+= num_bytes
;
6585 trace_btrfs_space_reservation(cache
->fs_info
,
6586 "space_info", space_info
->flags
,
6588 space_info
->bytes_may_use
-= ram_bytes
;
6590 cache
->delalloc_bytes
+= num_bytes
;
6592 spin_unlock(&cache
->lock
);
6593 spin_unlock(&space_info
->lock
);
6598 * btrfs_free_reserved_bytes - update the block_group and space info counters
6599 * @cache: The cache we are manipulating
6600 * @num_bytes: The number of bytes in question
6601 * @delalloc: The blocks are allocated for the delalloc write
6603 * This is called by somebody who is freeing space that was never actually used
6604 * on disk. For example if you reserve some space for a new leaf in transaction
6605 * A and before transaction A commits you free that leaf, you call this with
6606 * reserve set to 0 in order to clear the reservation.
6609 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6610 u64 num_bytes
, int delalloc
)
6612 struct btrfs_space_info
*space_info
= cache
->space_info
;
6615 spin_lock(&space_info
->lock
);
6616 spin_lock(&cache
->lock
);
6618 space_info
->bytes_readonly
+= num_bytes
;
6619 cache
->reserved
-= num_bytes
;
6620 space_info
->bytes_reserved
-= num_bytes
;
6623 cache
->delalloc_bytes
-= num_bytes
;
6624 spin_unlock(&cache
->lock
);
6625 spin_unlock(&space_info
->lock
);
6628 void btrfs_prepare_extent_commit(struct btrfs_fs_info
*fs_info
)
6630 struct btrfs_caching_control
*next
;
6631 struct btrfs_caching_control
*caching_ctl
;
6632 struct btrfs_block_group_cache
*cache
;
6634 down_write(&fs_info
->commit_root_sem
);
6636 list_for_each_entry_safe(caching_ctl
, next
,
6637 &fs_info
->caching_block_groups
, list
) {
6638 cache
= caching_ctl
->block_group
;
6639 if (block_group_cache_done(cache
)) {
6640 cache
->last_byte_to_unpin
= (u64
)-1;
6641 list_del_init(&caching_ctl
->list
);
6642 put_caching_control(caching_ctl
);
6644 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6648 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6649 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6651 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6653 up_write(&fs_info
->commit_root_sem
);
6655 update_global_block_rsv(fs_info
);
6659 * Returns the free cluster for the given space info and sets empty_cluster to
6660 * what it should be based on the mount options.
6662 static struct btrfs_free_cluster
*
6663 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
6664 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
6666 struct btrfs_free_cluster
*ret
= NULL
;
6669 if (btrfs_mixed_space_info(space_info
))
6672 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6673 ret
= &fs_info
->meta_alloc_cluster
;
6674 if (btrfs_test_opt(fs_info
, SSD
))
6675 *empty_cluster
= SZ_2M
;
6677 *empty_cluster
= SZ_64K
;
6678 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) &&
6679 btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
6680 *empty_cluster
= SZ_2M
;
6681 ret
= &fs_info
->data_alloc_cluster
;
6687 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
6689 const bool return_free_space
)
6691 struct btrfs_block_group_cache
*cache
= NULL
;
6692 struct btrfs_space_info
*space_info
;
6693 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6694 struct btrfs_free_cluster
*cluster
= NULL
;
6696 u64 total_unpinned
= 0;
6697 u64 empty_cluster
= 0;
6700 while (start
<= end
) {
6703 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6705 btrfs_put_block_group(cache
);
6707 cache
= btrfs_lookup_block_group(fs_info
, start
);
6708 BUG_ON(!cache
); /* Logic error */
6710 cluster
= fetch_cluster_info(fs_info
,
6713 empty_cluster
<<= 1;
6716 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6717 len
= min(len
, end
+ 1 - start
);
6719 if (start
< cache
->last_byte_to_unpin
) {
6720 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6721 if (return_free_space
)
6722 btrfs_add_free_space(cache
, start
, len
);
6726 total_unpinned
+= len
;
6727 space_info
= cache
->space_info
;
6730 * If this space cluster has been marked as fragmented and we've
6731 * unpinned enough in this block group to potentially allow a
6732 * cluster to be created inside of it go ahead and clear the
6735 if (cluster
&& cluster
->fragmented
&&
6736 total_unpinned
> empty_cluster
) {
6737 spin_lock(&cluster
->lock
);
6738 cluster
->fragmented
= 0;
6739 spin_unlock(&cluster
->lock
);
6742 spin_lock(&space_info
->lock
);
6743 spin_lock(&cache
->lock
);
6744 cache
->pinned
-= len
;
6745 space_info
->bytes_pinned
-= len
;
6747 trace_btrfs_space_reservation(fs_info
, "pinned",
6748 space_info
->flags
, len
, 0);
6749 space_info
->max_extent_size
= 0;
6750 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6752 space_info
->bytes_readonly
+= len
;
6755 spin_unlock(&cache
->lock
);
6756 if (!readonly
&& return_free_space
&&
6757 global_rsv
->space_info
== space_info
) {
6760 spin_lock(&global_rsv
->lock
);
6761 if (!global_rsv
->full
) {
6762 to_add
= min(len
, global_rsv
->size
-
6763 global_rsv
->reserved
);
6764 global_rsv
->reserved
+= to_add
;
6765 space_info
->bytes_may_use
+= to_add
;
6766 if (global_rsv
->reserved
>= global_rsv
->size
)
6767 global_rsv
->full
= 1;
6768 trace_btrfs_space_reservation(fs_info
,
6774 spin_unlock(&global_rsv
->lock
);
6775 /* Add to any tickets we may have */
6777 space_info_add_new_bytes(fs_info
, space_info
,
6780 spin_unlock(&space_info
->lock
);
6784 btrfs_put_block_group(cache
);
6788 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6789 struct btrfs_fs_info
*fs_info
)
6791 struct btrfs_block_group_cache
*block_group
, *tmp
;
6792 struct list_head
*deleted_bgs
;
6793 struct extent_io_tree
*unpin
;
6798 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6799 unpin
= &fs_info
->freed_extents
[1];
6801 unpin
= &fs_info
->freed_extents
[0];
6803 while (!trans
->aborted
) {
6804 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6805 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6806 EXTENT_DIRTY
, NULL
);
6808 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6812 if (btrfs_test_opt(fs_info
, DISCARD
))
6813 ret
= btrfs_discard_extent(fs_info
, start
,
6814 end
+ 1 - start
, NULL
);
6816 clear_extent_dirty(unpin
, start
, end
);
6817 unpin_extent_range(fs_info
, start
, end
, true);
6818 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6823 * Transaction is finished. We don't need the lock anymore. We
6824 * do need to clean up the block groups in case of a transaction
6827 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6828 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6832 if (!trans
->aborted
)
6833 ret
= btrfs_discard_extent(fs_info
,
6834 block_group
->key
.objectid
,
6835 block_group
->key
.offset
,
6838 list_del_init(&block_group
->bg_list
);
6839 btrfs_put_block_group_trimming(block_group
);
6840 btrfs_put_block_group(block_group
);
6843 const char *errstr
= btrfs_decode_error(ret
);
6845 "discard failed while removing blockgroup: errno=%d %s",
6853 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6854 struct btrfs_fs_info
*info
,
6855 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6856 u64 root_objectid
, u64 owner_objectid
,
6857 u64 owner_offset
, int refs_to_drop
,
6858 struct btrfs_delayed_extent_op
*extent_op
)
6860 struct btrfs_key key
;
6861 struct btrfs_path
*path
;
6862 struct btrfs_root
*extent_root
= info
->extent_root
;
6863 struct extent_buffer
*leaf
;
6864 struct btrfs_extent_item
*ei
;
6865 struct btrfs_extent_inline_ref
*iref
;
6868 int extent_slot
= 0;
6869 int found_extent
= 0;
6873 u64 bytenr
= node
->bytenr
;
6874 u64 num_bytes
= node
->num_bytes
;
6876 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
6878 path
= btrfs_alloc_path();
6882 path
->reada
= READA_FORWARD
;
6883 path
->leave_spinning
= 1;
6885 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6886 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6889 skinny_metadata
= false;
6891 ret
= lookup_extent_backref(trans
, info
, path
, &iref
,
6892 bytenr
, num_bytes
, parent
,
6893 root_objectid
, owner_objectid
,
6896 extent_slot
= path
->slots
[0];
6897 while (extent_slot
>= 0) {
6898 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6900 if (key
.objectid
!= bytenr
)
6902 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6903 key
.offset
== num_bytes
) {
6907 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6908 key
.offset
== owner_objectid
) {
6912 if (path
->slots
[0] - extent_slot
> 5)
6916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6917 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6918 if (found_extent
&& item_size
< sizeof(*ei
))
6921 if (!found_extent
) {
6923 ret
= remove_extent_backref(trans
, info
, path
, NULL
,
6925 is_data
, &last_ref
);
6927 btrfs_abort_transaction(trans
, ret
);
6930 btrfs_release_path(path
);
6931 path
->leave_spinning
= 1;
6933 key
.objectid
= bytenr
;
6934 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6935 key
.offset
= num_bytes
;
6937 if (!is_data
&& skinny_metadata
) {
6938 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6939 key
.offset
= owner_objectid
;
6942 ret
= btrfs_search_slot(trans
, extent_root
,
6944 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6946 * Couldn't find our skinny metadata item,
6947 * see if we have ye olde extent item.
6950 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6952 if (key
.objectid
== bytenr
&&
6953 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6954 key
.offset
== num_bytes
)
6958 if (ret
> 0 && skinny_metadata
) {
6959 skinny_metadata
= false;
6960 key
.objectid
= bytenr
;
6961 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6962 key
.offset
= num_bytes
;
6963 btrfs_release_path(path
);
6964 ret
= btrfs_search_slot(trans
, extent_root
,
6970 "umm, got %d back from search, was looking for %llu",
6973 btrfs_print_leaf(path
->nodes
[0]);
6976 btrfs_abort_transaction(trans
, ret
);
6979 extent_slot
= path
->slots
[0];
6981 } else if (WARN_ON(ret
== -ENOENT
)) {
6982 btrfs_print_leaf(path
->nodes
[0]);
6984 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6985 bytenr
, parent
, root_objectid
, owner_objectid
,
6987 btrfs_abort_transaction(trans
, ret
);
6990 btrfs_abort_transaction(trans
, ret
);
6994 leaf
= path
->nodes
[0];
6995 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6997 if (item_size
< sizeof(*ei
)) {
6998 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6999 ret
= convert_extent_item_v0(trans
, info
, path
, owner_objectid
,
7002 btrfs_abort_transaction(trans
, ret
);
7006 btrfs_release_path(path
);
7007 path
->leave_spinning
= 1;
7009 key
.objectid
= bytenr
;
7010 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7011 key
.offset
= num_bytes
;
7013 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
7017 "umm, got %d back from search, was looking for %llu",
7019 btrfs_print_leaf(path
->nodes
[0]);
7022 btrfs_abort_transaction(trans
, ret
);
7026 extent_slot
= path
->slots
[0];
7027 leaf
= path
->nodes
[0];
7028 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
7031 BUG_ON(item_size
< sizeof(*ei
));
7032 ei
= btrfs_item_ptr(leaf
, extent_slot
,
7033 struct btrfs_extent_item
);
7034 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7035 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7036 struct btrfs_tree_block_info
*bi
;
7037 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7038 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7039 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7042 refs
= btrfs_extent_refs(leaf
, ei
);
7043 if (refs
< refs_to_drop
) {
7045 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7046 refs_to_drop
, refs
, bytenr
);
7048 btrfs_abort_transaction(trans
, ret
);
7051 refs
-= refs_to_drop
;
7055 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7057 * In the case of inline back ref, reference count will
7058 * be updated by remove_extent_backref
7061 BUG_ON(!found_extent
);
7063 btrfs_set_extent_refs(leaf
, ei
, refs
);
7064 btrfs_mark_buffer_dirty(leaf
);
7067 ret
= remove_extent_backref(trans
, info
, path
,
7069 is_data
, &last_ref
);
7071 btrfs_abort_transaction(trans
, ret
);
7077 BUG_ON(is_data
&& refs_to_drop
!=
7078 extent_data_ref_count(path
, iref
));
7080 BUG_ON(path
->slots
[0] != extent_slot
);
7082 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7083 path
->slots
[0] = extent_slot
;
7089 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7092 btrfs_abort_transaction(trans
, ret
);
7095 btrfs_release_path(path
);
7098 ret
= btrfs_del_csums(trans
, info
, bytenr
, num_bytes
);
7100 btrfs_abort_transaction(trans
, ret
);
7105 ret
= add_to_free_space_tree(trans
, info
, bytenr
, num_bytes
);
7107 btrfs_abort_transaction(trans
, ret
);
7111 ret
= update_block_group(trans
, info
, bytenr
, num_bytes
, 0);
7113 btrfs_abort_transaction(trans
, ret
);
7117 btrfs_release_path(path
);
7120 btrfs_free_path(path
);
7125 * when we free an block, it is possible (and likely) that we free the last
7126 * delayed ref for that extent as well. This searches the delayed ref tree for
7127 * a given extent, and if there are no other delayed refs to be processed, it
7128 * removes it from the tree.
7130 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7133 struct btrfs_delayed_ref_head
*head
;
7134 struct btrfs_delayed_ref_root
*delayed_refs
;
7137 delayed_refs
= &trans
->transaction
->delayed_refs
;
7138 spin_lock(&delayed_refs
->lock
);
7139 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
7141 goto out_delayed_unlock
;
7143 spin_lock(&head
->lock
);
7144 if (!RB_EMPTY_ROOT(&head
->ref_tree
))
7147 if (head
->extent_op
) {
7148 if (!head
->must_insert_reserved
)
7150 btrfs_free_delayed_extent_op(head
->extent_op
);
7151 head
->extent_op
= NULL
;
7155 * waiting for the lock here would deadlock. If someone else has it
7156 * locked they are already in the process of dropping it anyway
7158 if (!mutex_trylock(&head
->mutex
))
7162 * at this point we have a head with no other entries. Go
7163 * ahead and process it.
7165 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7166 RB_CLEAR_NODE(&head
->href_node
);
7167 atomic_dec(&delayed_refs
->num_entries
);
7170 * we don't take a ref on the node because we're removing it from the
7171 * tree, so we just steal the ref the tree was holding.
7173 delayed_refs
->num_heads
--;
7174 if (head
->processing
== 0)
7175 delayed_refs
->num_heads_ready
--;
7176 head
->processing
= 0;
7177 spin_unlock(&head
->lock
);
7178 spin_unlock(&delayed_refs
->lock
);
7180 BUG_ON(head
->extent_op
);
7181 if (head
->must_insert_reserved
)
7184 mutex_unlock(&head
->mutex
);
7185 btrfs_put_delayed_ref_head(head
);
7188 spin_unlock(&head
->lock
);
7191 spin_unlock(&delayed_refs
->lock
);
7195 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7196 struct btrfs_root
*root
,
7197 struct extent_buffer
*buf
,
7198 u64 parent
, int last_ref
)
7200 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7204 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7205 int old_ref_mod
, new_ref_mod
;
7207 btrfs_ref_tree_mod(root
, buf
->start
, buf
->len
, parent
,
7208 root
->root_key
.objectid
,
7209 btrfs_header_level(buf
), 0,
7210 BTRFS_DROP_DELAYED_REF
);
7211 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, buf
->start
,
7213 root
->root_key
.objectid
,
7214 btrfs_header_level(buf
),
7215 BTRFS_DROP_DELAYED_REF
, NULL
,
7216 &old_ref_mod
, &new_ref_mod
);
7217 BUG_ON(ret
); /* -ENOMEM */
7218 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
7221 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
7222 struct btrfs_block_group_cache
*cache
;
7224 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7225 ret
= check_ref_cleanup(trans
, buf
->start
);
7231 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
7233 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7234 pin_down_extent(fs_info
, cache
, buf
->start
,
7236 btrfs_put_block_group(cache
);
7240 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7242 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7243 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7244 btrfs_put_block_group(cache
);
7245 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
7249 add_pinned_bytes(fs_info
, buf
->len
, btrfs_header_level(buf
),
7250 root
->root_key
.objectid
);
7254 * Deleting the buffer, clear the corrupt flag since it doesn't
7257 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
7263 struct btrfs_root
*root
,
7264 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7265 u64 owner
, u64 offset
)
7267 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7268 int old_ref_mod
, new_ref_mod
;
7271 if (btrfs_is_testing(fs_info
))
7274 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
)
7275 btrfs_ref_tree_mod(root
, bytenr
, num_bytes
, parent
,
7276 root_objectid
, owner
, offset
,
7277 BTRFS_DROP_DELAYED_REF
);
7280 * tree log blocks never actually go into the extent allocation
7281 * tree, just update pinning info and exit early.
7283 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7284 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7285 /* unlocks the pinned mutex */
7286 btrfs_pin_extent(fs_info
, bytenr
, num_bytes
, 1);
7287 old_ref_mod
= new_ref_mod
= 0;
7289 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7290 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7292 root_objectid
, (int)owner
,
7293 BTRFS_DROP_DELAYED_REF
, NULL
,
7294 &old_ref_mod
, &new_ref_mod
);
7296 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7298 root_objectid
, owner
, offset
,
7299 0, BTRFS_DROP_DELAYED_REF
,
7300 &old_ref_mod
, &new_ref_mod
);
7303 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
7304 add_pinned_bytes(fs_info
, num_bytes
, owner
, root_objectid
);
7310 * when we wait for progress in the block group caching, its because
7311 * our allocation attempt failed at least once. So, we must sleep
7312 * and let some progress happen before we try again.
7314 * This function will sleep at least once waiting for new free space to
7315 * show up, and then it will check the block group free space numbers
7316 * for our min num_bytes. Another option is to have it go ahead
7317 * and look in the rbtree for a free extent of a given size, but this
7320 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7321 * any of the information in this block group.
7323 static noinline
void
7324 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7327 struct btrfs_caching_control
*caching_ctl
;
7329 caching_ctl
= get_caching_control(cache
);
7333 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7334 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7336 put_caching_control(caching_ctl
);
7340 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7342 struct btrfs_caching_control
*caching_ctl
;
7345 caching_ctl
= get_caching_control(cache
);
7347 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7349 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7350 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7352 put_caching_control(caching_ctl
);
7356 int __get_raid_index(u64 flags
)
7358 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7359 return BTRFS_RAID_RAID10
;
7360 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7361 return BTRFS_RAID_RAID1
;
7362 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7363 return BTRFS_RAID_DUP
;
7364 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7365 return BTRFS_RAID_RAID0
;
7366 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7367 return BTRFS_RAID_RAID5
;
7368 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7369 return BTRFS_RAID_RAID6
;
7371 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7374 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7376 return __get_raid_index(cache
->flags
);
7379 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7380 [BTRFS_RAID_RAID10
] = "raid10",
7381 [BTRFS_RAID_RAID1
] = "raid1",
7382 [BTRFS_RAID_DUP
] = "dup",
7383 [BTRFS_RAID_RAID0
] = "raid0",
7384 [BTRFS_RAID_SINGLE
] = "single",
7385 [BTRFS_RAID_RAID5
] = "raid5",
7386 [BTRFS_RAID_RAID6
] = "raid6",
7389 static const char *get_raid_name(enum btrfs_raid_types type
)
7391 if (type
>= BTRFS_NR_RAID_TYPES
)
7394 return btrfs_raid_type_names
[type
];
7397 enum btrfs_loop_type
{
7398 LOOP_CACHING_NOWAIT
= 0,
7399 LOOP_CACHING_WAIT
= 1,
7400 LOOP_ALLOC_CHUNK
= 2,
7401 LOOP_NO_EMPTY_SIZE
= 3,
7405 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7409 down_read(&cache
->data_rwsem
);
7413 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7416 btrfs_get_block_group(cache
);
7418 down_read(&cache
->data_rwsem
);
7421 static struct btrfs_block_group_cache
*
7422 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7423 struct btrfs_free_cluster
*cluster
,
7426 struct btrfs_block_group_cache
*used_bg
= NULL
;
7428 spin_lock(&cluster
->refill_lock
);
7430 used_bg
= cluster
->block_group
;
7434 if (used_bg
== block_group
)
7437 btrfs_get_block_group(used_bg
);
7442 if (down_read_trylock(&used_bg
->data_rwsem
))
7445 spin_unlock(&cluster
->refill_lock
);
7447 /* We should only have one-level nested. */
7448 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
7450 spin_lock(&cluster
->refill_lock
);
7451 if (used_bg
== cluster
->block_group
)
7454 up_read(&used_bg
->data_rwsem
);
7455 btrfs_put_block_group(used_bg
);
7460 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7464 up_read(&cache
->data_rwsem
);
7465 btrfs_put_block_group(cache
);
7469 * walks the btree of allocated extents and find a hole of a given size.
7470 * The key ins is changed to record the hole:
7471 * ins->objectid == start position
7472 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7473 * ins->offset == the size of the hole.
7474 * Any available blocks before search_start are skipped.
7476 * If there is no suitable free space, we will record the max size of
7477 * the free space extent currently.
7479 static noinline
int find_free_extent(struct btrfs_fs_info
*fs_info
,
7480 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7481 u64 hint_byte
, struct btrfs_key
*ins
,
7482 u64 flags
, int delalloc
)
7485 struct btrfs_root
*root
= fs_info
->extent_root
;
7486 struct btrfs_free_cluster
*last_ptr
= NULL
;
7487 struct btrfs_block_group_cache
*block_group
= NULL
;
7488 u64 search_start
= 0;
7489 u64 max_extent_size
= 0;
7490 u64 empty_cluster
= 0;
7491 struct btrfs_space_info
*space_info
;
7493 int index
= __get_raid_index(flags
);
7494 bool failed_cluster_refill
= false;
7495 bool failed_alloc
= false;
7496 bool use_cluster
= true;
7497 bool have_caching_bg
= false;
7498 bool orig_have_caching_bg
= false;
7499 bool full_search
= false;
7501 WARN_ON(num_bytes
< fs_info
->sectorsize
);
7502 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7506 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
7508 space_info
= __find_space_info(fs_info
, flags
);
7510 btrfs_err(fs_info
, "No space info for %llu", flags
);
7515 * If our free space is heavily fragmented we may not be able to make
7516 * big contiguous allocations, so instead of doing the expensive search
7517 * for free space, simply return ENOSPC with our max_extent_size so we
7518 * can go ahead and search for a more manageable chunk.
7520 * If our max_extent_size is large enough for our allocation simply
7521 * disable clustering since we will likely not be able to find enough
7522 * space to create a cluster and induce latency trying.
7524 if (unlikely(space_info
->max_extent_size
)) {
7525 spin_lock(&space_info
->lock
);
7526 if (space_info
->max_extent_size
&&
7527 num_bytes
> space_info
->max_extent_size
) {
7528 ins
->offset
= space_info
->max_extent_size
;
7529 spin_unlock(&space_info
->lock
);
7531 } else if (space_info
->max_extent_size
) {
7532 use_cluster
= false;
7534 spin_unlock(&space_info
->lock
);
7537 last_ptr
= fetch_cluster_info(fs_info
, space_info
, &empty_cluster
);
7539 spin_lock(&last_ptr
->lock
);
7540 if (last_ptr
->block_group
)
7541 hint_byte
= last_ptr
->window_start
;
7542 if (last_ptr
->fragmented
) {
7544 * We still set window_start so we can keep track of the
7545 * last place we found an allocation to try and save
7548 hint_byte
= last_ptr
->window_start
;
7549 use_cluster
= false;
7551 spin_unlock(&last_ptr
->lock
);
7554 search_start
= max(search_start
, first_logical_byte(fs_info
, 0));
7555 search_start
= max(search_start
, hint_byte
);
7556 if (search_start
== hint_byte
) {
7557 block_group
= btrfs_lookup_block_group(fs_info
, search_start
);
7559 * we don't want to use the block group if it doesn't match our
7560 * allocation bits, or if its not cached.
7562 * However if we are re-searching with an ideal block group
7563 * picked out then we don't care that the block group is cached.
7565 if (block_group
&& block_group_bits(block_group
, flags
) &&
7566 block_group
->cached
!= BTRFS_CACHE_NO
) {
7567 down_read(&space_info
->groups_sem
);
7568 if (list_empty(&block_group
->list
) ||
7571 * someone is removing this block group,
7572 * we can't jump into the have_block_group
7573 * target because our list pointers are not
7576 btrfs_put_block_group(block_group
);
7577 up_read(&space_info
->groups_sem
);
7579 index
= get_block_group_index(block_group
);
7580 btrfs_lock_block_group(block_group
, delalloc
);
7581 goto have_block_group
;
7583 } else if (block_group
) {
7584 btrfs_put_block_group(block_group
);
7588 have_caching_bg
= false;
7589 if (index
== 0 || index
== __get_raid_index(flags
))
7591 down_read(&space_info
->groups_sem
);
7592 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7597 /* If the block group is read-only, we can skip it entirely. */
7598 if (unlikely(block_group
->ro
))
7601 btrfs_grab_block_group(block_group
, delalloc
);
7602 search_start
= block_group
->key
.objectid
;
7605 * this can happen if we end up cycling through all the
7606 * raid types, but we want to make sure we only allocate
7607 * for the proper type.
7609 if (!block_group_bits(block_group
, flags
)) {
7610 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7611 BTRFS_BLOCK_GROUP_RAID1
|
7612 BTRFS_BLOCK_GROUP_RAID5
|
7613 BTRFS_BLOCK_GROUP_RAID6
|
7614 BTRFS_BLOCK_GROUP_RAID10
;
7617 * if they asked for extra copies and this block group
7618 * doesn't provide them, bail. This does allow us to
7619 * fill raid0 from raid1.
7621 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7626 cached
= block_group_cache_done(block_group
);
7627 if (unlikely(!cached
)) {
7628 have_caching_bg
= true;
7629 ret
= cache_block_group(block_group
, 0);
7634 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7638 * Ok we want to try and use the cluster allocator, so
7641 if (last_ptr
&& use_cluster
) {
7642 struct btrfs_block_group_cache
*used_block_group
;
7643 unsigned long aligned_cluster
;
7645 * the refill lock keeps out other
7646 * people trying to start a new cluster
7648 used_block_group
= btrfs_lock_cluster(block_group
,
7651 if (!used_block_group
)
7652 goto refill_cluster
;
7654 if (used_block_group
!= block_group
&&
7655 (used_block_group
->ro
||
7656 !block_group_bits(used_block_group
, flags
)))
7657 goto release_cluster
;
7659 offset
= btrfs_alloc_from_cluster(used_block_group
,
7662 used_block_group
->key
.objectid
,
7665 /* we have a block, we're done */
7666 spin_unlock(&last_ptr
->refill_lock
);
7667 trace_btrfs_reserve_extent_cluster(fs_info
,
7669 search_start
, num_bytes
);
7670 if (used_block_group
!= block_group
) {
7671 btrfs_release_block_group(block_group
,
7673 block_group
= used_block_group
;
7678 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7680 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7681 * set up a new clusters, so lets just skip it
7682 * and let the allocator find whatever block
7683 * it can find. If we reach this point, we
7684 * will have tried the cluster allocator
7685 * plenty of times and not have found
7686 * anything, so we are likely way too
7687 * fragmented for the clustering stuff to find
7690 * However, if the cluster is taken from the
7691 * current block group, release the cluster
7692 * first, so that we stand a better chance of
7693 * succeeding in the unclustered
7695 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7696 used_block_group
!= block_group
) {
7697 spin_unlock(&last_ptr
->refill_lock
);
7698 btrfs_release_block_group(used_block_group
,
7700 goto unclustered_alloc
;
7704 * this cluster didn't work out, free it and
7707 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7709 if (used_block_group
!= block_group
)
7710 btrfs_release_block_group(used_block_group
,
7713 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7714 spin_unlock(&last_ptr
->refill_lock
);
7715 goto unclustered_alloc
;
7718 aligned_cluster
= max_t(unsigned long,
7719 empty_cluster
+ empty_size
,
7720 block_group
->full_stripe_len
);
7722 /* allocate a cluster in this block group */
7723 ret
= btrfs_find_space_cluster(fs_info
, block_group
,
7724 last_ptr
, search_start
,
7729 * now pull our allocation out of this
7732 offset
= btrfs_alloc_from_cluster(block_group
,
7738 /* we found one, proceed */
7739 spin_unlock(&last_ptr
->refill_lock
);
7740 trace_btrfs_reserve_extent_cluster(fs_info
,
7741 block_group
, search_start
,
7745 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7746 && !failed_cluster_refill
) {
7747 spin_unlock(&last_ptr
->refill_lock
);
7749 failed_cluster_refill
= true;
7750 wait_block_group_cache_progress(block_group
,
7751 num_bytes
+ empty_cluster
+ empty_size
);
7752 goto have_block_group
;
7756 * at this point we either didn't find a cluster
7757 * or we weren't able to allocate a block from our
7758 * cluster. Free the cluster we've been trying
7759 * to use, and go to the next block group
7761 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7762 spin_unlock(&last_ptr
->refill_lock
);
7768 * We are doing an unclustered alloc, set the fragmented flag so
7769 * we don't bother trying to setup a cluster again until we get
7772 if (unlikely(last_ptr
)) {
7773 spin_lock(&last_ptr
->lock
);
7774 last_ptr
->fragmented
= 1;
7775 spin_unlock(&last_ptr
->lock
);
7778 struct btrfs_free_space_ctl
*ctl
=
7779 block_group
->free_space_ctl
;
7781 spin_lock(&ctl
->tree_lock
);
7782 if (ctl
->free_space
<
7783 num_bytes
+ empty_cluster
+ empty_size
) {
7784 if (ctl
->free_space
> max_extent_size
)
7785 max_extent_size
= ctl
->free_space
;
7786 spin_unlock(&ctl
->tree_lock
);
7789 spin_unlock(&ctl
->tree_lock
);
7792 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7793 num_bytes
, empty_size
,
7796 * If we didn't find a chunk, and we haven't failed on this
7797 * block group before, and this block group is in the middle of
7798 * caching and we are ok with waiting, then go ahead and wait
7799 * for progress to be made, and set failed_alloc to true.
7801 * If failed_alloc is true then we've already waited on this
7802 * block group once and should move on to the next block group.
7804 if (!offset
&& !failed_alloc
&& !cached
&&
7805 loop
> LOOP_CACHING_NOWAIT
) {
7806 wait_block_group_cache_progress(block_group
,
7807 num_bytes
+ empty_size
);
7808 failed_alloc
= true;
7809 goto have_block_group
;
7810 } else if (!offset
) {
7814 search_start
= ALIGN(offset
, fs_info
->stripesize
);
7816 /* move on to the next group */
7817 if (search_start
+ num_bytes
>
7818 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7819 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7823 if (offset
< search_start
)
7824 btrfs_add_free_space(block_group
, offset
,
7825 search_start
- offset
);
7826 BUG_ON(offset
> search_start
);
7828 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7829 num_bytes
, delalloc
);
7830 if (ret
== -EAGAIN
) {
7831 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7834 btrfs_inc_block_group_reservations(block_group
);
7836 /* we are all good, lets return */
7837 ins
->objectid
= search_start
;
7838 ins
->offset
= num_bytes
;
7840 trace_btrfs_reserve_extent(fs_info
, block_group
,
7841 search_start
, num_bytes
);
7842 btrfs_release_block_group(block_group
, delalloc
);
7845 failed_cluster_refill
= false;
7846 failed_alloc
= false;
7847 BUG_ON(index
!= get_block_group_index(block_group
));
7848 btrfs_release_block_group(block_group
, delalloc
);
7851 up_read(&space_info
->groups_sem
);
7853 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7854 && !orig_have_caching_bg
)
7855 orig_have_caching_bg
= true;
7857 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7860 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7864 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7865 * caching kthreads as we move along
7866 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7867 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7868 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7871 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7873 if (loop
== LOOP_CACHING_NOWAIT
) {
7875 * We want to skip the LOOP_CACHING_WAIT step if we
7876 * don't have any uncached bgs and we've already done a
7877 * full search through.
7879 if (orig_have_caching_bg
|| !full_search
)
7880 loop
= LOOP_CACHING_WAIT
;
7882 loop
= LOOP_ALLOC_CHUNK
;
7887 if (loop
== LOOP_ALLOC_CHUNK
) {
7888 struct btrfs_trans_handle
*trans
;
7891 trans
= current
->journal_info
;
7895 trans
= btrfs_join_transaction(root
);
7897 if (IS_ERR(trans
)) {
7898 ret
= PTR_ERR(trans
);
7902 ret
= do_chunk_alloc(trans
, fs_info
, flags
,
7906 * If we can't allocate a new chunk we've already looped
7907 * through at least once, move on to the NO_EMPTY_SIZE
7911 loop
= LOOP_NO_EMPTY_SIZE
;
7914 * Do not bail out on ENOSPC since we
7915 * can do more things.
7917 if (ret
< 0 && ret
!= -ENOSPC
)
7918 btrfs_abort_transaction(trans
, ret
);
7922 btrfs_end_transaction(trans
);
7927 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7929 * Don't loop again if we already have no empty_size and
7932 if (empty_size
== 0 &&
7933 empty_cluster
== 0) {
7942 } else if (!ins
->objectid
) {
7944 } else if (ins
->objectid
) {
7945 if (!use_cluster
&& last_ptr
) {
7946 spin_lock(&last_ptr
->lock
);
7947 last_ptr
->window_start
= ins
->objectid
;
7948 spin_unlock(&last_ptr
->lock
);
7953 if (ret
== -ENOSPC
) {
7954 spin_lock(&space_info
->lock
);
7955 space_info
->max_extent_size
= max_extent_size
;
7956 spin_unlock(&space_info
->lock
);
7957 ins
->offset
= max_extent_size
;
7962 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
7963 struct btrfs_space_info
*info
, u64 bytes
,
7964 int dump_block_groups
)
7966 struct btrfs_block_group_cache
*cache
;
7969 spin_lock(&info
->lock
);
7970 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
7972 info
->total_bytes
- btrfs_space_info_used(info
, true),
7973 info
->full
? "" : "not ");
7975 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7976 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7977 info
->bytes_reserved
, info
->bytes_may_use
,
7978 info
->bytes_readonly
);
7979 spin_unlock(&info
->lock
);
7981 if (!dump_block_groups
)
7984 down_read(&info
->groups_sem
);
7986 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7987 spin_lock(&cache
->lock
);
7989 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7990 cache
->key
.objectid
, cache
->key
.offset
,
7991 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7992 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7993 btrfs_dump_free_space(cache
, bytes
);
7994 spin_unlock(&cache
->lock
);
7996 if (++index
< BTRFS_NR_RAID_TYPES
)
7998 up_read(&info
->groups_sem
);
8001 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
8002 u64 num_bytes
, u64 min_alloc_size
,
8003 u64 empty_size
, u64 hint_byte
,
8004 struct btrfs_key
*ins
, int is_data
, int delalloc
)
8006 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8007 bool final_tried
= num_bytes
== min_alloc_size
;
8011 flags
= get_alloc_profile_by_root(root
, is_data
);
8013 WARN_ON(num_bytes
< fs_info
->sectorsize
);
8014 ret
= find_free_extent(fs_info
, ram_bytes
, num_bytes
, empty_size
,
8015 hint_byte
, ins
, flags
, delalloc
);
8016 if (!ret
&& !is_data
) {
8017 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
8018 } else if (ret
== -ENOSPC
) {
8019 if (!final_tried
&& ins
->offset
) {
8020 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
8021 num_bytes
= round_down(num_bytes
,
8022 fs_info
->sectorsize
);
8023 num_bytes
= max(num_bytes
, min_alloc_size
);
8024 ram_bytes
= num_bytes
;
8025 if (num_bytes
== min_alloc_size
)
8028 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8029 struct btrfs_space_info
*sinfo
;
8031 sinfo
= __find_space_info(fs_info
, flags
);
8033 "allocation failed flags %llu, wanted %llu",
8036 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
8043 static int __btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8045 int pin
, int delalloc
)
8047 struct btrfs_block_group_cache
*cache
;
8050 cache
= btrfs_lookup_block_group(fs_info
, start
);
8052 btrfs_err(fs_info
, "Unable to find block group for %llu",
8058 pin_down_extent(fs_info
, cache
, start
, len
, 1);
8060 if (btrfs_test_opt(fs_info
, DISCARD
))
8061 ret
= btrfs_discard_extent(fs_info
, start
, len
, NULL
);
8062 btrfs_add_free_space(cache
, start
, len
);
8063 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8064 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
8067 btrfs_put_block_group(cache
);
8071 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8072 u64 start
, u64 len
, int delalloc
)
8074 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 0, delalloc
);
8077 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info
*fs_info
,
8080 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 1, 0);
8083 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8084 struct btrfs_fs_info
*fs_info
,
8085 u64 parent
, u64 root_objectid
,
8086 u64 flags
, u64 owner
, u64 offset
,
8087 struct btrfs_key
*ins
, int ref_mod
)
8090 struct btrfs_extent_item
*extent_item
;
8091 struct btrfs_extent_inline_ref
*iref
;
8092 struct btrfs_path
*path
;
8093 struct extent_buffer
*leaf
;
8098 type
= BTRFS_SHARED_DATA_REF_KEY
;
8100 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8102 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8104 path
= btrfs_alloc_path();
8108 path
->leave_spinning
= 1;
8109 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8112 btrfs_free_path(path
);
8116 leaf
= path
->nodes
[0];
8117 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8118 struct btrfs_extent_item
);
8119 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8120 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8121 btrfs_set_extent_flags(leaf
, extent_item
,
8122 flags
| BTRFS_EXTENT_FLAG_DATA
);
8124 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8125 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8127 struct btrfs_shared_data_ref
*ref
;
8128 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8129 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8130 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8132 struct btrfs_extent_data_ref
*ref
;
8133 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8134 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8135 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8136 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8137 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8140 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8141 btrfs_free_path(path
);
8143 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8148 ret
= update_block_group(trans
, fs_info
, ins
->objectid
, ins
->offset
, 1);
8149 if (ret
) { /* -ENOENT, logic error */
8150 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8151 ins
->objectid
, ins
->offset
);
8154 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
8158 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8159 struct btrfs_fs_info
*fs_info
,
8160 u64 parent
, u64 root_objectid
,
8161 u64 flags
, struct btrfs_disk_key
*key
,
8162 int level
, struct btrfs_key
*ins
)
8165 struct btrfs_extent_item
*extent_item
;
8166 struct btrfs_tree_block_info
*block_info
;
8167 struct btrfs_extent_inline_ref
*iref
;
8168 struct btrfs_path
*path
;
8169 struct extent_buffer
*leaf
;
8170 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8171 u64 num_bytes
= ins
->offset
;
8172 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8174 if (!skinny_metadata
)
8175 size
+= sizeof(*block_info
);
8177 path
= btrfs_alloc_path();
8179 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8184 path
->leave_spinning
= 1;
8185 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8188 btrfs_free_path(path
);
8189 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8194 leaf
= path
->nodes
[0];
8195 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8196 struct btrfs_extent_item
);
8197 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8198 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8199 btrfs_set_extent_flags(leaf
, extent_item
,
8200 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8202 if (skinny_metadata
) {
8203 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8204 num_bytes
= fs_info
->nodesize
;
8206 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8207 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8208 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8209 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8213 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8214 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8215 BTRFS_SHARED_BLOCK_REF_KEY
);
8216 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8218 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8219 BTRFS_TREE_BLOCK_REF_KEY
);
8220 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8223 btrfs_mark_buffer_dirty(leaf
);
8224 btrfs_free_path(path
);
8226 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8231 ret
= update_block_group(trans
, fs_info
, ins
->objectid
,
8232 fs_info
->nodesize
, 1);
8233 if (ret
) { /* -ENOENT, logic error */
8234 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8235 ins
->objectid
, ins
->offset
);
8239 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
,
8244 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8245 struct btrfs_root
*root
, u64 owner
,
8246 u64 offset
, u64 ram_bytes
,
8247 struct btrfs_key
*ins
)
8249 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8252 BUG_ON(root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
8254 btrfs_ref_tree_mod(root
, ins
->objectid
, ins
->offset
, 0,
8255 root
->root_key
.objectid
, owner
, offset
,
8256 BTRFS_ADD_DELAYED_EXTENT
);
8258 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, ins
->objectid
,
8260 root
->root_key
.objectid
, owner
,
8262 BTRFS_ADD_DELAYED_EXTENT
, NULL
, NULL
);
8267 * this is used by the tree logging recovery code. It records that
8268 * an extent has been allocated and makes sure to clear the free
8269 * space cache bits as well
8271 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8272 struct btrfs_fs_info
*fs_info
,
8273 u64 root_objectid
, u64 owner
, u64 offset
,
8274 struct btrfs_key
*ins
)
8277 struct btrfs_block_group_cache
*block_group
;
8278 struct btrfs_space_info
*space_info
;
8281 * Mixed block groups will exclude before processing the log so we only
8282 * need to do the exclude dance if this fs isn't mixed.
8284 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
8285 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
8291 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
8295 space_info
= block_group
->space_info
;
8296 spin_lock(&space_info
->lock
);
8297 spin_lock(&block_group
->lock
);
8298 space_info
->bytes_reserved
+= ins
->offset
;
8299 block_group
->reserved
+= ins
->offset
;
8300 spin_unlock(&block_group
->lock
);
8301 spin_unlock(&space_info
->lock
);
8303 ret
= alloc_reserved_file_extent(trans
, fs_info
, 0, root_objectid
,
8304 0, owner
, offset
, ins
, 1);
8305 btrfs_put_block_group(block_group
);
8309 static struct extent_buffer
*
8310 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8311 u64 bytenr
, int level
)
8313 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8314 struct extent_buffer
*buf
;
8316 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8320 btrfs_set_header_generation(buf
, trans
->transid
);
8321 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8322 btrfs_tree_lock(buf
);
8323 clean_tree_block(fs_info
, buf
);
8324 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8326 btrfs_set_lock_blocking(buf
);
8327 set_extent_buffer_uptodate(buf
);
8329 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8330 buf
->log_index
= root
->log_transid
% 2;
8332 * we allow two log transactions at a time, use different
8333 * EXENT bit to differentiate dirty pages.
8335 if (buf
->log_index
== 0)
8336 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8337 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8339 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8340 buf
->start
+ buf
->len
- 1);
8342 buf
->log_index
= -1;
8343 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8344 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8346 trans
->dirty
= true;
8347 /* this returns a buffer locked for blocking */
8351 static struct btrfs_block_rsv
*
8352 use_block_rsv(struct btrfs_trans_handle
*trans
,
8353 struct btrfs_root
*root
, u32 blocksize
)
8355 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8356 struct btrfs_block_rsv
*block_rsv
;
8357 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
8359 bool global_updated
= false;
8361 block_rsv
= get_block_rsv(trans
, root
);
8363 if (unlikely(block_rsv
->size
== 0))
8366 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8370 if (block_rsv
->failfast
)
8371 return ERR_PTR(ret
);
8373 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8374 global_updated
= true;
8375 update_global_block_rsv(fs_info
);
8379 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8380 static DEFINE_RATELIMIT_STATE(_rs
,
8381 DEFAULT_RATELIMIT_INTERVAL
* 10,
8382 /*DEFAULT_RATELIMIT_BURST*/ 1);
8383 if (__ratelimit(&_rs
))
8385 "BTRFS: block rsv returned %d\n", ret
);
8388 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8389 BTRFS_RESERVE_NO_FLUSH
);
8393 * If we couldn't reserve metadata bytes try and use some from
8394 * the global reserve if its space type is the same as the global
8397 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8398 block_rsv
->space_info
== global_rsv
->space_info
) {
8399 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8403 return ERR_PTR(ret
);
8406 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8407 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8409 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8410 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8414 * finds a free extent and does all the dirty work required for allocation
8415 * returns the tree buffer or an ERR_PTR on error.
8417 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8418 struct btrfs_root
*root
,
8419 u64 parent
, u64 root_objectid
,
8420 const struct btrfs_disk_key
*key
,
8421 int level
, u64 hint
,
8424 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8425 struct btrfs_key ins
;
8426 struct btrfs_block_rsv
*block_rsv
;
8427 struct extent_buffer
*buf
;
8428 struct btrfs_delayed_extent_op
*extent_op
;
8431 u32 blocksize
= fs_info
->nodesize
;
8432 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8434 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8435 if (btrfs_is_testing(fs_info
)) {
8436 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8439 root
->alloc_bytenr
+= blocksize
;
8444 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8445 if (IS_ERR(block_rsv
))
8446 return ERR_CAST(block_rsv
);
8448 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8449 empty_size
, hint
, &ins
, 0, 0);
8453 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8456 goto out_free_reserved
;
8459 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8461 parent
= ins
.objectid
;
8462 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8466 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8467 extent_op
= btrfs_alloc_delayed_extent_op();
8473 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8475 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8476 extent_op
->flags_to_set
= flags
;
8477 extent_op
->update_key
= skinny_metadata
? false : true;
8478 extent_op
->update_flags
= true;
8479 extent_op
->is_data
= false;
8480 extent_op
->level
= level
;
8482 btrfs_ref_tree_mod(root
, ins
.objectid
, ins
.offset
, parent
,
8483 root_objectid
, level
, 0,
8484 BTRFS_ADD_DELAYED_EXTENT
);
8485 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, ins
.objectid
,
8487 root_objectid
, level
,
8488 BTRFS_ADD_DELAYED_EXTENT
,
8489 extent_op
, NULL
, NULL
);
8491 goto out_free_delayed
;
8496 btrfs_free_delayed_extent_op(extent_op
);
8498 free_extent_buffer(buf
);
8500 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
8502 unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
8503 return ERR_PTR(ret
);
8506 struct walk_control
{
8507 u64 refs
[BTRFS_MAX_LEVEL
];
8508 u64 flags
[BTRFS_MAX_LEVEL
];
8509 struct btrfs_key update_progress
;
8520 #define DROP_REFERENCE 1
8521 #define UPDATE_BACKREF 2
8523 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8524 struct btrfs_root
*root
,
8525 struct walk_control
*wc
,
8526 struct btrfs_path
*path
)
8528 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8534 struct btrfs_key key
;
8535 struct extent_buffer
*eb
;
8540 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8541 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8542 wc
->reada_count
= max(wc
->reada_count
, 2);
8544 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8545 wc
->reada_count
= min_t(int, wc
->reada_count
,
8546 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
8549 eb
= path
->nodes
[wc
->level
];
8550 nritems
= btrfs_header_nritems(eb
);
8552 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8553 if (nread
>= wc
->reada_count
)
8557 bytenr
= btrfs_node_blockptr(eb
, slot
);
8558 generation
= btrfs_node_ptr_generation(eb
, slot
);
8560 if (slot
== path
->slots
[wc
->level
])
8563 if (wc
->stage
== UPDATE_BACKREF
&&
8564 generation
<= root
->root_key
.offset
)
8567 /* We don't lock the tree block, it's OK to be racy here */
8568 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
8569 wc
->level
- 1, 1, &refs
,
8571 /* We don't care about errors in readahead. */
8576 if (wc
->stage
== DROP_REFERENCE
) {
8580 if (wc
->level
== 1 &&
8581 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8583 if (!wc
->update_ref
||
8584 generation
<= root
->root_key
.offset
)
8586 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8587 ret
= btrfs_comp_cpu_keys(&key
,
8588 &wc
->update_progress
);
8592 if (wc
->level
== 1 &&
8593 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8597 readahead_tree_block(fs_info
, bytenr
);
8600 wc
->reada_slot
= slot
;
8604 * helper to process tree block while walking down the tree.
8606 * when wc->stage == UPDATE_BACKREF, this function updates
8607 * back refs for pointers in the block.
8609 * NOTE: return value 1 means we should stop walking down.
8611 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8612 struct btrfs_root
*root
,
8613 struct btrfs_path
*path
,
8614 struct walk_control
*wc
, int lookup_info
)
8616 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8617 int level
= wc
->level
;
8618 struct extent_buffer
*eb
= path
->nodes
[level
];
8619 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8622 if (wc
->stage
== UPDATE_BACKREF
&&
8623 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8627 * when reference count of tree block is 1, it won't increase
8628 * again. once full backref flag is set, we never clear it.
8631 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8632 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8633 BUG_ON(!path
->locks
[level
]);
8634 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8635 eb
->start
, level
, 1,
8638 BUG_ON(ret
== -ENOMEM
);
8641 BUG_ON(wc
->refs
[level
] == 0);
8644 if (wc
->stage
== DROP_REFERENCE
) {
8645 if (wc
->refs
[level
] > 1)
8648 if (path
->locks
[level
] && !wc
->keep_locks
) {
8649 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8650 path
->locks
[level
] = 0;
8655 /* wc->stage == UPDATE_BACKREF */
8656 if (!(wc
->flags
[level
] & flag
)) {
8657 BUG_ON(!path
->locks
[level
]);
8658 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8659 BUG_ON(ret
); /* -ENOMEM */
8660 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8661 BUG_ON(ret
); /* -ENOMEM */
8662 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
, eb
->start
,
8664 btrfs_header_level(eb
), 0);
8665 BUG_ON(ret
); /* -ENOMEM */
8666 wc
->flags
[level
] |= flag
;
8670 * the block is shared by multiple trees, so it's not good to
8671 * keep the tree lock
8673 if (path
->locks
[level
] && level
> 0) {
8674 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8675 path
->locks
[level
] = 0;
8681 * helper to process tree block pointer.
8683 * when wc->stage == DROP_REFERENCE, this function checks
8684 * reference count of the block pointed to. if the block
8685 * is shared and we need update back refs for the subtree
8686 * rooted at the block, this function changes wc->stage to
8687 * UPDATE_BACKREF. if the block is shared and there is no
8688 * need to update back, this function drops the reference
8691 * NOTE: return value 1 means we should stop walking down.
8693 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8694 struct btrfs_root
*root
,
8695 struct btrfs_path
*path
,
8696 struct walk_control
*wc
, int *lookup_info
)
8698 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8703 struct btrfs_key key
;
8704 struct extent_buffer
*next
;
8705 int level
= wc
->level
;
8708 bool need_account
= false;
8710 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8711 path
->slots
[level
]);
8713 * if the lower level block was created before the snapshot
8714 * was created, we know there is no need to update back refs
8717 if (wc
->stage
== UPDATE_BACKREF
&&
8718 generation
<= root
->root_key
.offset
) {
8723 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8724 blocksize
= fs_info
->nodesize
;
8726 next
= find_extent_buffer(fs_info
, bytenr
);
8728 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8730 return PTR_ERR(next
);
8732 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8736 btrfs_tree_lock(next
);
8737 btrfs_set_lock_blocking(next
);
8739 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
8740 &wc
->refs
[level
- 1],
8741 &wc
->flags
[level
- 1]);
8745 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8746 btrfs_err(fs_info
, "Missing references.");
8752 if (wc
->stage
== DROP_REFERENCE
) {
8753 if (wc
->refs
[level
- 1] > 1) {
8754 need_account
= true;
8756 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8759 if (!wc
->update_ref
||
8760 generation
<= root
->root_key
.offset
)
8763 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8764 path
->slots
[level
]);
8765 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8769 wc
->stage
= UPDATE_BACKREF
;
8770 wc
->shared_level
= level
- 1;
8774 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8778 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8779 btrfs_tree_unlock(next
);
8780 free_extent_buffer(next
);
8786 if (reada
&& level
== 1)
8787 reada_walk_down(trans
, root
, wc
, path
);
8788 next
= read_tree_block(fs_info
, bytenr
, generation
);
8790 return PTR_ERR(next
);
8791 } else if (!extent_buffer_uptodate(next
)) {
8792 free_extent_buffer(next
);
8795 btrfs_tree_lock(next
);
8796 btrfs_set_lock_blocking(next
);
8800 ASSERT(level
== btrfs_header_level(next
));
8801 if (level
!= btrfs_header_level(next
)) {
8802 btrfs_err(root
->fs_info
, "mismatched level");
8806 path
->nodes
[level
] = next
;
8807 path
->slots
[level
] = 0;
8808 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8814 wc
->refs
[level
- 1] = 0;
8815 wc
->flags
[level
- 1] = 0;
8816 if (wc
->stage
== DROP_REFERENCE
) {
8817 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8818 parent
= path
->nodes
[level
]->start
;
8820 ASSERT(root
->root_key
.objectid
==
8821 btrfs_header_owner(path
->nodes
[level
]));
8822 if (root
->root_key
.objectid
!=
8823 btrfs_header_owner(path
->nodes
[level
])) {
8824 btrfs_err(root
->fs_info
,
8825 "mismatched block owner");
8833 ret
= btrfs_qgroup_trace_subtree(trans
, root
, next
,
8834 generation
, level
- 1);
8836 btrfs_err_rl(fs_info
,
8837 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8841 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
,
8842 parent
, root
->root_key
.objectid
,
8852 btrfs_tree_unlock(next
);
8853 free_extent_buffer(next
);
8859 * helper to process tree block while walking up the tree.
8861 * when wc->stage == DROP_REFERENCE, this function drops
8862 * reference count on the block.
8864 * when wc->stage == UPDATE_BACKREF, this function changes
8865 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8866 * to UPDATE_BACKREF previously while processing the block.
8868 * NOTE: return value 1 means we should stop walking up.
8870 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8871 struct btrfs_root
*root
,
8872 struct btrfs_path
*path
,
8873 struct walk_control
*wc
)
8875 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8877 int level
= wc
->level
;
8878 struct extent_buffer
*eb
= path
->nodes
[level
];
8881 if (wc
->stage
== UPDATE_BACKREF
) {
8882 BUG_ON(wc
->shared_level
< level
);
8883 if (level
< wc
->shared_level
)
8886 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8890 wc
->stage
= DROP_REFERENCE
;
8891 wc
->shared_level
= -1;
8892 path
->slots
[level
] = 0;
8895 * check reference count again if the block isn't locked.
8896 * we should start walking down the tree again if reference
8899 if (!path
->locks
[level
]) {
8901 btrfs_tree_lock(eb
);
8902 btrfs_set_lock_blocking(eb
);
8903 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8905 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8906 eb
->start
, level
, 1,
8910 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8911 path
->locks
[level
] = 0;
8914 BUG_ON(wc
->refs
[level
] == 0);
8915 if (wc
->refs
[level
] == 1) {
8916 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8917 path
->locks
[level
] = 0;
8923 /* wc->stage == DROP_REFERENCE */
8924 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8926 if (wc
->refs
[level
] == 1) {
8928 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8929 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8931 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8932 BUG_ON(ret
); /* -ENOMEM */
8933 ret
= btrfs_qgroup_trace_leaf_items(trans
, fs_info
, eb
);
8935 btrfs_err_rl(fs_info
,
8936 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8940 /* make block locked assertion in clean_tree_block happy */
8941 if (!path
->locks
[level
] &&
8942 btrfs_header_generation(eb
) == trans
->transid
) {
8943 btrfs_tree_lock(eb
);
8944 btrfs_set_lock_blocking(eb
);
8945 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8947 clean_tree_block(fs_info
, eb
);
8950 if (eb
== root
->node
) {
8951 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8954 BUG_ON(root
->root_key
.objectid
!=
8955 btrfs_header_owner(eb
));
8957 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8958 parent
= path
->nodes
[level
+ 1]->start
;
8960 BUG_ON(root
->root_key
.objectid
!=
8961 btrfs_header_owner(path
->nodes
[level
+ 1]));
8964 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8966 wc
->refs
[level
] = 0;
8967 wc
->flags
[level
] = 0;
8971 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8972 struct btrfs_root
*root
,
8973 struct btrfs_path
*path
,
8974 struct walk_control
*wc
)
8976 int level
= wc
->level
;
8977 int lookup_info
= 1;
8980 while (level
>= 0) {
8981 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8988 if (path
->slots
[level
] >=
8989 btrfs_header_nritems(path
->nodes
[level
]))
8992 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8994 path
->slots
[level
]++;
9003 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9004 struct btrfs_root
*root
,
9005 struct btrfs_path
*path
,
9006 struct walk_control
*wc
, int max_level
)
9008 int level
= wc
->level
;
9011 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9012 while (level
< max_level
&& path
->nodes
[level
]) {
9014 if (path
->slots
[level
] + 1 <
9015 btrfs_header_nritems(path
->nodes
[level
])) {
9016 path
->slots
[level
]++;
9019 ret
= walk_up_proc(trans
, root
, path
, wc
);
9023 if (path
->locks
[level
]) {
9024 btrfs_tree_unlock_rw(path
->nodes
[level
],
9025 path
->locks
[level
]);
9026 path
->locks
[level
] = 0;
9028 free_extent_buffer(path
->nodes
[level
]);
9029 path
->nodes
[level
] = NULL
;
9037 * drop a subvolume tree.
9039 * this function traverses the tree freeing any blocks that only
9040 * referenced by the tree.
9042 * when a shared tree block is found. this function decreases its
9043 * reference count by one. if update_ref is true, this function
9044 * also make sure backrefs for the shared block and all lower level
9045 * blocks are properly updated.
9047 * If called with for_reloc == 0, may exit early with -EAGAIN
9049 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9050 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9053 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9054 struct btrfs_path
*path
;
9055 struct btrfs_trans_handle
*trans
;
9056 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
9057 struct btrfs_root_item
*root_item
= &root
->root_item
;
9058 struct walk_control
*wc
;
9059 struct btrfs_key key
;
9063 bool root_dropped
= false;
9065 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
9067 path
= btrfs_alloc_path();
9073 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9075 btrfs_free_path(path
);
9080 trans
= btrfs_start_transaction(tree_root
, 0);
9081 if (IS_ERR(trans
)) {
9082 err
= PTR_ERR(trans
);
9087 trans
->block_rsv
= block_rsv
;
9089 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9090 level
= btrfs_header_level(root
->node
);
9091 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9092 btrfs_set_lock_blocking(path
->nodes
[level
]);
9093 path
->slots
[level
] = 0;
9094 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9095 memset(&wc
->update_progress
, 0,
9096 sizeof(wc
->update_progress
));
9098 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9099 memcpy(&wc
->update_progress
, &key
,
9100 sizeof(wc
->update_progress
));
9102 level
= root_item
->drop_level
;
9104 path
->lowest_level
= level
;
9105 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9106 path
->lowest_level
= 0;
9114 * unlock our path, this is safe because only this
9115 * function is allowed to delete this snapshot
9117 btrfs_unlock_up_safe(path
, 0);
9119 level
= btrfs_header_level(root
->node
);
9121 btrfs_tree_lock(path
->nodes
[level
]);
9122 btrfs_set_lock_blocking(path
->nodes
[level
]);
9123 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9125 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
9126 path
->nodes
[level
]->start
,
9127 level
, 1, &wc
->refs
[level
],
9133 BUG_ON(wc
->refs
[level
] == 0);
9135 if (level
== root_item
->drop_level
)
9138 btrfs_tree_unlock(path
->nodes
[level
]);
9139 path
->locks
[level
] = 0;
9140 WARN_ON(wc
->refs
[level
] != 1);
9146 wc
->shared_level
= -1;
9147 wc
->stage
= DROP_REFERENCE
;
9148 wc
->update_ref
= update_ref
;
9150 wc
->for_reloc
= for_reloc
;
9151 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9155 ret
= walk_down_tree(trans
, root
, path
, wc
);
9161 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9168 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9172 if (wc
->stage
== DROP_REFERENCE
) {
9174 btrfs_node_key(path
->nodes
[level
],
9175 &root_item
->drop_progress
,
9176 path
->slots
[level
]);
9177 root_item
->drop_level
= level
;
9180 BUG_ON(wc
->level
== 0);
9181 if (btrfs_should_end_transaction(trans
) ||
9182 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
9183 ret
= btrfs_update_root(trans
, tree_root
,
9187 btrfs_abort_transaction(trans
, ret
);
9192 btrfs_end_transaction_throttle(trans
);
9193 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
9194 btrfs_debug(fs_info
,
9195 "drop snapshot early exit");
9200 trans
= btrfs_start_transaction(tree_root
, 0);
9201 if (IS_ERR(trans
)) {
9202 err
= PTR_ERR(trans
);
9206 trans
->block_rsv
= block_rsv
;
9209 btrfs_release_path(path
);
9213 ret
= btrfs_del_root(trans
, fs_info
, &root
->root_key
);
9215 btrfs_abort_transaction(trans
, ret
);
9220 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9221 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9224 btrfs_abort_transaction(trans
, ret
);
9227 } else if (ret
> 0) {
9228 /* if we fail to delete the orphan item this time
9229 * around, it'll get picked up the next time.
9231 * The most common failure here is just -ENOENT.
9233 btrfs_del_orphan_item(trans
, tree_root
,
9234 root
->root_key
.objectid
);
9238 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9239 btrfs_add_dropped_root(trans
, root
);
9241 free_extent_buffer(root
->node
);
9242 free_extent_buffer(root
->commit_root
);
9243 btrfs_put_fs_root(root
);
9245 root_dropped
= true;
9247 btrfs_end_transaction_throttle(trans
);
9250 btrfs_free_path(path
);
9253 * So if we need to stop dropping the snapshot for whatever reason we
9254 * need to make sure to add it back to the dead root list so that we
9255 * keep trying to do the work later. This also cleans up roots if we
9256 * don't have it in the radix (like when we recover after a power fail
9257 * or unmount) so we don't leak memory.
9259 if (!for_reloc
&& !root_dropped
)
9260 btrfs_add_dead_root(root
);
9261 if (err
&& err
!= -EAGAIN
)
9262 btrfs_handle_fs_error(fs_info
, err
, NULL
);
9267 * drop subtree rooted at tree block 'node'.
9269 * NOTE: this function will unlock and release tree block 'node'
9270 * only used by relocation code
9272 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9273 struct btrfs_root
*root
,
9274 struct extent_buffer
*node
,
9275 struct extent_buffer
*parent
)
9277 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9278 struct btrfs_path
*path
;
9279 struct walk_control
*wc
;
9285 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9287 path
= btrfs_alloc_path();
9291 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9293 btrfs_free_path(path
);
9297 btrfs_assert_tree_locked(parent
);
9298 parent_level
= btrfs_header_level(parent
);
9299 extent_buffer_get(parent
);
9300 path
->nodes
[parent_level
] = parent
;
9301 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9303 btrfs_assert_tree_locked(node
);
9304 level
= btrfs_header_level(node
);
9305 path
->nodes
[level
] = node
;
9306 path
->slots
[level
] = 0;
9307 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9309 wc
->refs
[parent_level
] = 1;
9310 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9312 wc
->shared_level
= -1;
9313 wc
->stage
= DROP_REFERENCE
;
9317 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9320 wret
= walk_down_tree(trans
, root
, path
, wc
);
9326 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9334 btrfs_free_path(path
);
9338 static u64
update_block_group_flags(struct btrfs_fs_info
*fs_info
, u64 flags
)
9344 * if restripe for this chunk_type is on pick target profile and
9345 * return, otherwise do the usual balance
9347 stripped
= get_restripe_target(fs_info
, flags
);
9349 return extended_to_chunk(stripped
);
9351 num_devices
= fs_info
->fs_devices
->rw_devices
;
9353 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9354 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9355 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9357 if (num_devices
== 1) {
9358 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9359 stripped
= flags
& ~stripped
;
9361 /* turn raid0 into single device chunks */
9362 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9365 /* turn mirroring into duplication */
9366 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9367 BTRFS_BLOCK_GROUP_RAID10
))
9368 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9370 /* they already had raid on here, just return */
9371 if (flags
& stripped
)
9374 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9375 stripped
= flags
& ~stripped
;
9377 /* switch duplicated blocks with raid1 */
9378 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9379 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9381 /* this is drive concat, leave it alone */
9387 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9389 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9391 u64 min_allocable_bytes
;
9395 * We need some metadata space and system metadata space for
9396 * allocating chunks in some corner cases until we force to set
9397 * it to be readonly.
9400 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9402 min_allocable_bytes
= SZ_1M
;
9404 min_allocable_bytes
= 0;
9406 spin_lock(&sinfo
->lock
);
9407 spin_lock(&cache
->lock
);
9415 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9416 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9418 if (btrfs_space_info_used(sinfo
, true) + num_bytes
+
9419 min_allocable_bytes
<= sinfo
->total_bytes
) {
9420 sinfo
->bytes_readonly
+= num_bytes
;
9422 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9426 spin_unlock(&cache
->lock
);
9427 spin_unlock(&sinfo
->lock
);
9431 int btrfs_inc_block_group_ro(struct btrfs_fs_info
*fs_info
,
9432 struct btrfs_block_group_cache
*cache
)
9435 struct btrfs_trans_handle
*trans
;
9440 trans
= btrfs_join_transaction(fs_info
->extent_root
);
9442 return PTR_ERR(trans
);
9445 * we're not allowed to set block groups readonly after the dirty
9446 * block groups cache has started writing. If it already started,
9447 * back off and let this transaction commit
9449 mutex_lock(&fs_info
->ro_block_group_mutex
);
9450 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9451 u64 transid
= trans
->transid
;
9453 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9454 btrfs_end_transaction(trans
);
9456 ret
= btrfs_wait_for_commit(fs_info
, transid
);
9463 * if we are changing raid levels, try to allocate a corresponding
9464 * block group with the new raid level.
9466 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9467 if (alloc_flags
!= cache
->flags
) {
9468 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9471 * ENOSPC is allowed here, we may have enough space
9472 * already allocated at the new raid level to
9481 ret
= inc_block_group_ro(cache
, 0);
9484 alloc_flags
= get_alloc_profile(fs_info
, cache
->space_info
->flags
);
9485 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9489 ret
= inc_block_group_ro(cache
, 0);
9491 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9492 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9493 mutex_lock(&fs_info
->chunk_mutex
);
9494 check_system_chunk(trans
, fs_info
, alloc_flags
);
9495 mutex_unlock(&fs_info
->chunk_mutex
);
9497 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9499 btrfs_end_transaction(trans
);
9503 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9504 struct btrfs_fs_info
*fs_info
, u64 type
)
9506 u64 alloc_flags
= get_alloc_profile(fs_info
, type
);
9508 return do_chunk_alloc(trans
, fs_info
, alloc_flags
, CHUNK_ALLOC_FORCE
);
9512 * helper to account the unused space of all the readonly block group in the
9513 * space_info. takes mirrors into account.
9515 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9517 struct btrfs_block_group_cache
*block_group
;
9521 /* It's df, we don't care if it's racy */
9522 if (list_empty(&sinfo
->ro_bgs
))
9525 spin_lock(&sinfo
->lock
);
9526 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9527 spin_lock(&block_group
->lock
);
9529 if (!block_group
->ro
) {
9530 spin_unlock(&block_group
->lock
);
9534 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9535 BTRFS_BLOCK_GROUP_RAID10
|
9536 BTRFS_BLOCK_GROUP_DUP
))
9541 free_bytes
+= (block_group
->key
.offset
-
9542 btrfs_block_group_used(&block_group
->item
)) *
9545 spin_unlock(&block_group
->lock
);
9547 spin_unlock(&sinfo
->lock
);
9552 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache
*cache
)
9554 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9559 spin_lock(&sinfo
->lock
);
9560 spin_lock(&cache
->lock
);
9562 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9563 cache
->pinned
- cache
->bytes_super
-
9564 btrfs_block_group_used(&cache
->item
);
9565 sinfo
->bytes_readonly
-= num_bytes
;
9566 list_del_init(&cache
->ro_list
);
9568 spin_unlock(&cache
->lock
);
9569 spin_unlock(&sinfo
->lock
);
9573 * checks to see if its even possible to relocate this block group.
9575 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9576 * ok to go ahead and try.
9578 int btrfs_can_relocate(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
9580 struct btrfs_root
*root
= fs_info
->extent_root
;
9581 struct btrfs_block_group_cache
*block_group
;
9582 struct btrfs_space_info
*space_info
;
9583 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
9584 struct btrfs_device
*device
;
9585 struct btrfs_trans_handle
*trans
;
9595 debug
= btrfs_test_opt(fs_info
, ENOSPC_DEBUG
);
9597 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
9599 /* odd, couldn't find the block group, leave it alone */
9603 "can't find block group for bytenr %llu",
9608 min_free
= btrfs_block_group_used(&block_group
->item
);
9610 /* no bytes used, we're good */
9614 space_info
= block_group
->space_info
;
9615 spin_lock(&space_info
->lock
);
9617 full
= space_info
->full
;
9620 * if this is the last block group we have in this space, we can't
9621 * relocate it unless we're able to allocate a new chunk below.
9623 * Otherwise, we need to make sure we have room in the space to handle
9624 * all of the extents from this block group. If we can, we're good
9626 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9627 (btrfs_space_info_used(space_info
, false) + min_free
<
9628 space_info
->total_bytes
)) {
9629 spin_unlock(&space_info
->lock
);
9632 spin_unlock(&space_info
->lock
);
9635 * ok we don't have enough space, but maybe we have free space on our
9636 * devices to allocate new chunks for relocation, so loop through our
9637 * alloc devices and guess if we have enough space. if this block
9638 * group is going to be restriped, run checks against the target
9639 * profile instead of the current one.
9651 target
= get_restripe_target(fs_info
, block_group
->flags
);
9653 index
= __get_raid_index(extended_to_chunk(target
));
9656 * this is just a balance, so if we were marked as full
9657 * we know there is no space for a new chunk
9662 "no space to alloc new chunk for block group %llu",
9663 block_group
->key
.objectid
);
9667 index
= get_block_group_index(block_group
);
9670 if (index
== BTRFS_RAID_RAID10
) {
9674 } else if (index
== BTRFS_RAID_RAID1
) {
9676 } else if (index
== BTRFS_RAID_DUP
) {
9679 } else if (index
== BTRFS_RAID_RAID0
) {
9680 dev_min
= fs_devices
->rw_devices
;
9681 min_free
= div64_u64(min_free
, dev_min
);
9684 /* We need to do this so that we can look at pending chunks */
9685 trans
= btrfs_join_transaction(root
);
9686 if (IS_ERR(trans
)) {
9687 ret
= PTR_ERR(trans
);
9691 mutex_lock(&fs_info
->chunk_mutex
);
9692 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9696 * check to make sure we can actually find a chunk with enough
9697 * space to fit our block group in.
9699 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9700 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
9701 ret
= find_free_dev_extent(trans
, device
, min_free
,
9706 if (dev_nr
>= dev_min
)
9712 if (debug
&& ret
== -1)
9714 "no space to allocate a new chunk for block group %llu",
9715 block_group
->key
.objectid
);
9716 mutex_unlock(&fs_info
->chunk_mutex
);
9717 btrfs_end_transaction(trans
);
9719 btrfs_put_block_group(block_group
);
9723 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
9724 struct btrfs_path
*path
,
9725 struct btrfs_key
*key
)
9727 struct btrfs_root
*root
= fs_info
->extent_root
;
9729 struct btrfs_key found_key
;
9730 struct extent_buffer
*leaf
;
9733 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9738 slot
= path
->slots
[0];
9739 leaf
= path
->nodes
[0];
9740 if (slot
>= btrfs_header_nritems(leaf
)) {
9741 ret
= btrfs_next_leaf(root
, path
);
9748 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9750 if (found_key
.objectid
>= key
->objectid
&&
9751 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9752 struct extent_map_tree
*em_tree
;
9753 struct extent_map
*em
;
9755 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9756 read_lock(&em_tree
->lock
);
9757 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9759 read_unlock(&em_tree
->lock
);
9762 "logical %llu len %llu found bg but no related chunk",
9763 found_key
.objectid
, found_key
.offset
);
9768 free_extent_map(em
);
9777 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9779 struct btrfs_block_group_cache
*block_group
;
9783 struct inode
*inode
;
9785 block_group
= btrfs_lookup_first_block_group(info
, last
);
9786 while (block_group
) {
9787 spin_lock(&block_group
->lock
);
9788 if (block_group
->iref
)
9790 spin_unlock(&block_group
->lock
);
9791 block_group
= next_block_group(info
, block_group
);
9800 inode
= block_group
->inode
;
9801 block_group
->iref
= 0;
9802 block_group
->inode
= NULL
;
9803 spin_unlock(&block_group
->lock
);
9804 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9806 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9807 btrfs_put_block_group(block_group
);
9812 * Must be called only after stopping all workers, since we could have block
9813 * group caching kthreads running, and therefore they could race with us if we
9814 * freed the block groups before stopping them.
9816 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9818 struct btrfs_block_group_cache
*block_group
;
9819 struct btrfs_space_info
*space_info
;
9820 struct btrfs_caching_control
*caching_ctl
;
9823 down_write(&info
->commit_root_sem
);
9824 while (!list_empty(&info
->caching_block_groups
)) {
9825 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9826 struct btrfs_caching_control
, list
);
9827 list_del(&caching_ctl
->list
);
9828 put_caching_control(caching_ctl
);
9830 up_write(&info
->commit_root_sem
);
9832 spin_lock(&info
->unused_bgs_lock
);
9833 while (!list_empty(&info
->unused_bgs
)) {
9834 block_group
= list_first_entry(&info
->unused_bgs
,
9835 struct btrfs_block_group_cache
,
9837 list_del_init(&block_group
->bg_list
);
9838 btrfs_put_block_group(block_group
);
9840 spin_unlock(&info
->unused_bgs_lock
);
9842 spin_lock(&info
->block_group_cache_lock
);
9843 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9844 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9846 rb_erase(&block_group
->cache_node
,
9847 &info
->block_group_cache_tree
);
9848 RB_CLEAR_NODE(&block_group
->cache_node
);
9849 spin_unlock(&info
->block_group_cache_lock
);
9851 down_write(&block_group
->space_info
->groups_sem
);
9852 list_del(&block_group
->list
);
9853 up_write(&block_group
->space_info
->groups_sem
);
9856 * We haven't cached this block group, which means we could
9857 * possibly have excluded extents on this block group.
9859 if (block_group
->cached
== BTRFS_CACHE_NO
||
9860 block_group
->cached
== BTRFS_CACHE_ERROR
)
9861 free_excluded_extents(info
, block_group
);
9863 btrfs_remove_free_space_cache(block_group
);
9864 ASSERT(block_group
->cached
!= BTRFS_CACHE_STARTED
);
9865 ASSERT(list_empty(&block_group
->dirty_list
));
9866 ASSERT(list_empty(&block_group
->io_list
));
9867 ASSERT(list_empty(&block_group
->bg_list
));
9868 ASSERT(atomic_read(&block_group
->count
) == 1);
9869 btrfs_put_block_group(block_group
);
9871 spin_lock(&info
->block_group_cache_lock
);
9873 spin_unlock(&info
->block_group_cache_lock
);
9875 /* now that all the block groups are freed, go through and
9876 * free all the space_info structs. This is only called during
9877 * the final stages of unmount, and so we know nobody is
9878 * using them. We call synchronize_rcu() once before we start,
9879 * just to be on the safe side.
9883 release_global_block_rsv(info
);
9885 while (!list_empty(&info
->space_info
)) {
9888 space_info
= list_entry(info
->space_info
.next
,
9889 struct btrfs_space_info
,
9893 * Do not hide this behind enospc_debug, this is actually
9894 * important and indicates a real bug if this happens.
9896 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9897 space_info
->bytes_reserved
> 0 ||
9898 space_info
->bytes_may_use
> 0))
9899 dump_space_info(info
, space_info
, 0, 0);
9900 list_del(&space_info
->list
);
9901 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9902 struct kobject
*kobj
;
9903 kobj
= space_info
->block_group_kobjs
[i
];
9904 space_info
->block_group_kobjs
[i
] = NULL
;
9910 kobject_del(&space_info
->kobj
);
9911 kobject_put(&space_info
->kobj
);
9916 static void link_block_group(struct btrfs_block_group_cache
*cache
)
9918 struct btrfs_space_info
*space_info
= cache
->space_info
;
9919 int index
= get_block_group_index(cache
);
9922 down_write(&space_info
->groups_sem
);
9923 if (list_empty(&space_info
->block_groups
[index
]))
9925 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9926 up_write(&space_info
->groups_sem
);
9929 struct raid_kobject
*rkobj
;
9932 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9935 rkobj
->raid_type
= index
;
9936 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9937 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9938 "%s", get_raid_name(index
));
9940 kobject_put(&rkobj
->kobj
);
9943 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9948 btrfs_warn(cache
->fs_info
,
9949 "failed to add kobject for block cache, ignoring");
9952 static struct btrfs_block_group_cache
*
9953 btrfs_create_block_group_cache(struct btrfs_fs_info
*fs_info
,
9954 u64 start
, u64 size
)
9956 struct btrfs_block_group_cache
*cache
;
9958 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9962 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9964 if (!cache
->free_space_ctl
) {
9969 cache
->key
.objectid
= start
;
9970 cache
->key
.offset
= size
;
9971 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9973 cache
->fs_info
= fs_info
;
9974 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
, start
);
9975 set_free_space_tree_thresholds(cache
);
9977 atomic_set(&cache
->count
, 1);
9978 spin_lock_init(&cache
->lock
);
9979 init_rwsem(&cache
->data_rwsem
);
9980 INIT_LIST_HEAD(&cache
->list
);
9981 INIT_LIST_HEAD(&cache
->cluster_list
);
9982 INIT_LIST_HEAD(&cache
->bg_list
);
9983 INIT_LIST_HEAD(&cache
->ro_list
);
9984 INIT_LIST_HEAD(&cache
->dirty_list
);
9985 INIT_LIST_HEAD(&cache
->io_list
);
9986 btrfs_init_free_space_ctl(cache
);
9987 atomic_set(&cache
->trimming
, 0);
9988 mutex_init(&cache
->free_space_lock
);
9989 btrfs_init_full_stripe_locks_tree(&cache
->full_stripe_locks_root
);
9994 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
9996 struct btrfs_path
*path
;
9998 struct btrfs_block_group_cache
*cache
;
9999 struct btrfs_space_info
*space_info
;
10000 struct btrfs_key key
;
10001 struct btrfs_key found_key
;
10002 struct extent_buffer
*leaf
;
10003 int need_clear
= 0;
10008 feature
= btrfs_super_incompat_flags(info
->super_copy
);
10009 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
10013 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10014 path
= btrfs_alloc_path();
10017 path
->reada
= READA_FORWARD
;
10019 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
10020 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
10021 btrfs_super_generation(info
->super_copy
) != cache_gen
)
10023 if (btrfs_test_opt(info
, CLEAR_CACHE
))
10027 ret
= find_first_block_group(info
, path
, &key
);
10033 leaf
= path
->nodes
[0];
10034 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10036 cache
= btrfs_create_block_group_cache(info
, found_key
.objectid
,
10045 * When we mount with old space cache, we need to
10046 * set BTRFS_DC_CLEAR and set dirty flag.
10048 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10049 * truncate the old free space cache inode and
10051 * b) Setting 'dirty flag' makes sure that we flush
10052 * the new space cache info onto disk.
10054 if (btrfs_test_opt(info
, SPACE_CACHE
))
10055 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10058 read_extent_buffer(leaf
, &cache
->item
,
10059 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10060 sizeof(cache
->item
));
10061 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10063 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
10064 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
10066 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10067 cache
->key
.objectid
);
10072 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10073 btrfs_release_path(path
);
10076 * We need to exclude the super stripes now so that the space
10077 * info has super bytes accounted for, otherwise we'll think
10078 * we have more space than we actually do.
10080 ret
= exclude_super_stripes(info
, cache
);
10083 * We may have excluded something, so call this just in
10086 free_excluded_extents(info
, cache
);
10087 btrfs_put_block_group(cache
);
10092 * check for two cases, either we are full, and therefore
10093 * don't need to bother with the caching work since we won't
10094 * find any space, or we are empty, and we can just add all
10095 * the space in and be done with it. This saves us _alot_ of
10096 * time, particularly in the full case.
10098 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10099 cache
->last_byte_to_unpin
= (u64
)-1;
10100 cache
->cached
= BTRFS_CACHE_FINISHED
;
10101 free_excluded_extents(info
, cache
);
10102 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10103 cache
->last_byte_to_unpin
= (u64
)-1;
10104 cache
->cached
= BTRFS_CACHE_FINISHED
;
10105 add_new_free_space(cache
, info
,
10106 found_key
.objectid
,
10107 found_key
.objectid
+
10109 free_excluded_extents(info
, cache
);
10112 ret
= btrfs_add_block_group_cache(info
, cache
);
10114 btrfs_remove_free_space_cache(cache
);
10115 btrfs_put_block_group(cache
);
10119 trace_btrfs_add_block_group(info
, cache
, 0);
10120 update_space_info(info
, cache
->flags
, found_key
.offset
,
10121 btrfs_block_group_used(&cache
->item
),
10122 cache
->bytes_super
, &space_info
);
10124 cache
->space_info
= space_info
;
10126 link_block_group(cache
);
10128 set_avail_alloc_bits(info
, cache
->flags
);
10129 if (btrfs_chunk_readonly(info
, cache
->key
.objectid
)) {
10130 inc_block_group_ro(cache
, 1);
10131 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10132 spin_lock(&info
->unused_bgs_lock
);
10133 /* Should always be true but just in case. */
10134 if (list_empty(&cache
->bg_list
)) {
10135 btrfs_get_block_group(cache
);
10136 list_add_tail(&cache
->bg_list
,
10137 &info
->unused_bgs
);
10139 spin_unlock(&info
->unused_bgs_lock
);
10143 list_for_each_entry_rcu(space_info
, &info
->space_info
, list
) {
10144 if (!(get_alloc_profile(info
, space_info
->flags
) &
10145 (BTRFS_BLOCK_GROUP_RAID10
|
10146 BTRFS_BLOCK_GROUP_RAID1
|
10147 BTRFS_BLOCK_GROUP_RAID5
|
10148 BTRFS_BLOCK_GROUP_RAID6
|
10149 BTRFS_BLOCK_GROUP_DUP
)))
10152 * avoid allocating from un-mirrored block group if there are
10153 * mirrored block groups.
10155 list_for_each_entry(cache
,
10156 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10158 inc_block_group_ro(cache
, 1);
10159 list_for_each_entry(cache
,
10160 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10162 inc_block_group_ro(cache
, 1);
10165 init_global_block_rsv(info
);
10168 btrfs_free_path(path
);
10172 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10173 struct btrfs_fs_info
*fs_info
)
10175 struct btrfs_block_group_cache
*block_group
, *tmp
;
10176 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
10177 struct btrfs_block_group_item item
;
10178 struct btrfs_key key
;
10180 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10182 trans
->can_flush_pending_bgs
= false;
10183 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10187 spin_lock(&block_group
->lock
);
10188 memcpy(&item
, &block_group
->item
, sizeof(item
));
10189 memcpy(&key
, &block_group
->key
, sizeof(key
));
10190 spin_unlock(&block_group
->lock
);
10192 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10195 btrfs_abort_transaction(trans
, ret
);
10196 ret
= btrfs_finish_chunk_alloc(trans
, fs_info
, key
.objectid
,
10199 btrfs_abort_transaction(trans
, ret
);
10200 add_block_group_free_space(trans
, fs_info
, block_group
);
10201 /* already aborted the transaction if it failed. */
10203 list_del_init(&block_group
->bg_list
);
10205 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10208 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10209 struct btrfs_fs_info
*fs_info
, u64 bytes_used
,
10210 u64 type
, u64 chunk_offset
, u64 size
)
10212 struct btrfs_block_group_cache
*cache
;
10215 btrfs_set_log_full_commit(fs_info
, trans
);
10217 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
, size
);
10221 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10222 btrfs_set_block_group_chunk_objectid(&cache
->item
,
10223 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
10224 btrfs_set_block_group_flags(&cache
->item
, type
);
10226 cache
->flags
= type
;
10227 cache
->last_byte_to_unpin
= (u64
)-1;
10228 cache
->cached
= BTRFS_CACHE_FINISHED
;
10229 cache
->needs_free_space
= 1;
10230 ret
= exclude_super_stripes(fs_info
, cache
);
10233 * We may have excluded something, so call this just in
10236 free_excluded_extents(fs_info
, cache
);
10237 btrfs_put_block_group(cache
);
10241 add_new_free_space(cache
, fs_info
, chunk_offset
, chunk_offset
+ size
);
10243 free_excluded_extents(fs_info
, cache
);
10245 #ifdef CONFIG_BTRFS_DEBUG
10246 if (btrfs_should_fragment_free_space(cache
)) {
10247 u64 new_bytes_used
= size
- bytes_used
;
10249 bytes_used
+= new_bytes_used
>> 1;
10250 fragment_free_space(cache
);
10254 * Ensure the corresponding space_info object is created and
10255 * assigned to our block group. We want our bg to be added to the rbtree
10256 * with its ->space_info set.
10258 cache
->space_info
= __find_space_info(fs_info
, cache
->flags
);
10259 if (!cache
->space_info
) {
10260 ret
= create_space_info(fs_info
, cache
->flags
,
10261 &cache
->space_info
);
10263 btrfs_remove_free_space_cache(cache
);
10264 btrfs_put_block_group(cache
);
10269 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
10271 btrfs_remove_free_space_cache(cache
);
10272 btrfs_put_block_group(cache
);
10277 * Now that our block group has its ->space_info set and is inserted in
10278 * the rbtree, update the space info's counters.
10280 trace_btrfs_add_block_group(fs_info
, cache
, 1);
10281 update_space_info(fs_info
, cache
->flags
, size
, bytes_used
,
10282 cache
->bytes_super
, &cache
->space_info
);
10283 update_global_block_rsv(fs_info
);
10285 link_block_group(cache
);
10287 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10289 set_avail_alloc_bits(fs_info
, type
);
10293 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10295 u64 extra_flags
= chunk_to_extended(flags
) &
10296 BTRFS_EXTENDED_PROFILE_MASK
;
10298 write_seqlock(&fs_info
->profiles_lock
);
10299 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10300 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10301 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10302 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10303 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10304 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10305 write_sequnlock(&fs_info
->profiles_lock
);
10308 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10309 struct btrfs_fs_info
*fs_info
, u64 group_start
,
10310 struct extent_map
*em
)
10312 struct btrfs_root
*root
= fs_info
->extent_root
;
10313 struct btrfs_path
*path
;
10314 struct btrfs_block_group_cache
*block_group
;
10315 struct btrfs_free_cluster
*cluster
;
10316 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
10317 struct btrfs_key key
;
10318 struct inode
*inode
;
10319 struct kobject
*kobj
= NULL
;
10323 struct btrfs_caching_control
*caching_ctl
= NULL
;
10326 block_group
= btrfs_lookup_block_group(fs_info
, group_start
);
10327 BUG_ON(!block_group
);
10328 BUG_ON(!block_group
->ro
);
10331 * Free the reserved super bytes from this block group before
10334 free_excluded_extents(fs_info
, block_group
);
10335 btrfs_free_ref_tree_range(fs_info
, block_group
->key
.objectid
,
10336 block_group
->key
.offset
);
10338 memcpy(&key
, &block_group
->key
, sizeof(key
));
10339 index
= get_block_group_index(block_group
);
10340 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10341 BTRFS_BLOCK_GROUP_RAID1
|
10342 BTRFS_BLOCK_GROUP_RAID10
))
10347 /* make sure this block group isn't part of an allocation cluster */
10348 cluster
= &fs_info
->data_alloc_cluster
;
10349 spin_lock(&cluster
->refill_lock
);
10350 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10351 spin_unlock(&cluster
->refill_lock
);
10354 * make sure this block group isn't part of a metadata
10355 * allocation cluster
10357 cluster
= &fs_info
->meta_alloc_cluster
;
10358 spin_lock(&cluster
->refill_lock
);
10359 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10360 spin_unlock(&cluster
->refill_lock
);
10362 path
= btrfs_alloc_path();
10369 * get the inode first so any iput calls done for the io_list
10370 * aren't the final iput (no unlinks allowed now)
10372 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
10374 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10376 * make sure our free spache cache IO is done before remove the
10379 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10380 if (!list_empty(&block_group
->io_list
)) {
10381 list_del_init(&block_group
->io_list
);
10383 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10385 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10386 btrfs_wait_cache_io(trans
, block_group
, path
);
10387 btrfs_put_block_group(block_group
);
10388 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10391 if (!list_empty(&block_group
->dirty_list
)) {
10392 list_del_init(&block_group
->dirty_list
);
10393 btrfs_put_block_group(block_group
);
10395 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10396 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10398 if (!IS_ERR(inode
)) {
10399 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10401 btrfs_add_delayed_iput(inode
);
10404 clear_nlink(inode
);
10405 /* One for the block groups ref */
10406 spin_lock(&block_group
->lock
);
10407 if (block_group
->iref
) {
10408 block_group
->iref
= 0;
10409 block_group
->inode
= NULL
;
10410 spin_unlock(&block_group
->lock
);
10413 spin_unlock(&block_group
->lock
);
10415 /* One for our lookup ref */
10416 btrfs_add_delayed_iput(inode
);
10419 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10420 key
.offset
= block_group
->key
.objectid
;
10423 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10427 btrfs_release_path(path
);
10429 ret
= btrfs_del_item(trans
, tree_root
, path
);
10432 btrfs_release_path(path
);
10435 spin_lock(&fs_info
->block_group_cache_lock
);
10436 rb_erase(&block_group
->cache_node
,
10437 &fs_info
->block_group_cache_tree
);
10438 RB_CLEAR_NODE(&block_group
->cache_node
);
10440 if (fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10441 fs_info
->first_logical_byte
= (u64
)-1;
10442 spin_unlock(&fs_info
->block_group_cache_lock
);
10444 down_write(&block_group
->space_info
->groups_sem
);
10446 * we must use list_del_init so people can check to see if they
10447 * are still on the list after taking the semaphore
10449 list_del_init(&block_group
->list
);
10450 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10451 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10452 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10453 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
10455 up_write(&block_group
->space_info
->groups_sem
);
10461 if (block_group
->has_caching_ctl
)
10462 caching_ctl
= get_caching_control(block_group
);
10463 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10464 wait_block_group_cache_done(block_group
);
10465 if (block_group
->has_caching_ctl
) {
10466 down_write(&fs_info
->commit_root_sem
);
10467 if (!caching_ctl
) {
10468 struct btrfs_caching_control
*ctl
;
10470 list_for_each_entry(ctl
,
10471 &fs_info
->caching_block_groups
, list
)
10472 if (ctl
->block_group
== block_group
) {
10474 refcount_inc(&caching_ctl
->count
);
10479 list_del_init(&caching_ctl
->list
);
10480 up_write(&fs_info
->commit_root_sem
);
10482 /* Once for the caching bgs list and once for us. */
10483 put_caching_control(caching_ctl
);
10484 put_caching_control(caching_ctl
);
10488 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10489 if (!list_empty(&block_group
->dirty_list
)) {
10492 if (!list_empty(&block_group
->io_list
)) {
10495 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10496 btrfs_remove_free_space_cache(block_group
);
10498 spin_lock(&block_group
->space_info
->lock
);
10499 list_del_init(&block_group
->ro_list
);
10501 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
10502 WARN_ON(block_group
->space_info
->total_bytes
10503 < block_group
->key
.offset
);
10504 WARN_ON(block_group
->space_info
->bytes_readonly
10505 < block_group
->key
.offset
);
10506 WARN_ON(block_group
->space_info
->disk_total
10507 < block_group
->key
.offset
* factor
);
10509 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10510 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10511 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10513 spin_unlock(&block_group
->space_info
->lock
);
10515 memcpy(&key
, &block_group
->key
, sizeof(key
));
10517 mutex_lock(&fs_info
->chunk_mutex
);
10518 if (!list_empty(&em
->list
)) {
10519 /* We're in the transaction->pending_chunks list. */
10520 free_extent_map(em
);
10522 spin_lock(&block_group
->lock
);
10523 block_group
->removed
= 1;
10525 * At this point trimming can't start on this block group, because we
10526 * removed the block group from the tree fs_info->block_group_cache_tree
10527 * so no one can't find it anymore and even if someone already got this
10528 * block group before we removed it from the rbtree, they have already
10529 * incremented block_group->trimming - if they didn't, they won't find
10530 * any free space entries because we already removed them all when we
10531 * called btrfs_remove_free_space_cache().
10533 * And we must not remove the extent map from the fs_info->mapping_tree
10534 * to prevent the same logical address range and physical device space
10535 * ranges from being reused for a new block group. This is because our
10536 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10537 * completely transactionless, so while it is trimming a range the
10538 * currently running transaction might finish and a new one start,
10539 * allowing for new block groups to be created that can reuse the same
10540 * physical device locations unless we take this special care.
10542 * There may also be an implicit trim operation if the file system
10543 * is mounted with -odiscard. The same protections must remain
10544 * in place until the extents have been discarded completely when
10545 * the transaction commit has completed.
10547 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10549 * Make sure a trimmer task always sees the em in the pinned_chunks list
10550 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10551 * before checking block_group->removed).
10555 * Our em might be in trans->transaction->pending_chunks which
10556 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10557 * and so is the fs_info->pinned_chunks list.
10559 * So at this point we must be holding the chunk_mutex to avoid
10560 * any races with chunk allocation (more specifically at
10561 * volumes.c:contains_pending_extent()), to ensure it always
10562 * sees the em, either in the pending_chunks list or in the
10563 * pinned_chunks list.
10565 list_move_tail(&em
->list
, &fs_info
->pinned_chunks
);
10567 spin_unlock(&block_group
->lock
);
10570 struct extent_map_tree
*em_tree
;
10572 em_tree
= &fs_info
->mapping_tree
.map_tree
;
10573 write_lock(&em_tree
->lock
);
10575 * The em might be in the pending_chunks list, so make sure the
10576 * chunk mutex is locked, since remove_extent_mapping() will
10577 * delete us from that list.
10579 remove_extent_mapping(em_tree
, em
);
10580 write_unlock(&em_tree
->lock
);
10581 /* once for the tree */
10582 free_extent_map(em
);
10585 mutex_unlock(&fs_info
->chunk_mutex
);
10587 ret
= remove_block_group_free_space(trans
, fs_info
, block_group
);
10591 btrfs_put_block_group(block_group
);
10592 btrfs_put_block_group(block_group
);
10594 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10600 ret
= btrfs_del_item(trans
, root
, path
);
10602 btrfs_free_path(path
);
10606 struct btrfs_trans_handle
*
10607 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10608 const u64 chunk_offset
)
10610 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10611 struct extent_map
*em
;
10612 struct map_lookup
*map
;
10613 unsigned int num_items
;
10615 read_lock(&em_tree
->lock
);
10616 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10617 read_unlock(&em_tree
->lock
);
10618 ASSERT(em
&& em
->start
== chunk_offset
);
10621 * We need to reserve 3 + N units from the metadata space info in order
10622 * to remove a block group (done at btrfs_remove_chunk() and at
10623 * btrfs_remove_block_group()), which are used for:
10625 * 1 unit for adding the free space inode's orphan (located in the tree
10627 * 1 unit for deleting the block group item (located in the extent
10629 * 1 unit for deleting the free space item (located in tree of tree
10631 * N units for deleting N device extent items corresponding to each
10632 * stripe (located in the device tree).
10634 * In order to remove a block group we also need to reserve units in the
10635 * system space info in order to update the chunk tree (update one or
10636 * more device items and remove one chunk item), but this is done at
10637 * btrfs_remove_chunk() through a call to check_system_chunk().
10639 map
= em
->map_lookup
;
10640 num_items
= 3 + map
->num_stripes
;
10641 free_extent_map(em
);
10643 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10648 * Process the unused_bgs list and remove any that don't have any allocated
10649 * space inside of them.
10651 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10653 struct btrfs_block_group_cache
*block_group
;
10654 struct btrfs_space_info
*space_info
;
10655 struct btrfs_trans_handle
*trans
;
10658 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10661 spin_lock(&fs_info
->unused_bgs_lock
);
10662 while (!list_empty(&fs_info
->unused_bgs
)) {
10666 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10667 struct btrfs_block_group_cache
,
10669 list_del_init(&block_group
->bg_list
);
10671 space_info
= block_group
->space_info
;
10673 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10674 btrfs_put_block_group(block_group
);
10677 spin_unlock(&fs_info
->unused_bgs_lock
);
10679 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10681 /* Don't want to race with allocators so take the groups_sem */
10682 down_write(&space_info
->groups_sem
);
10683 spin_lock(&block_group
->lock
);
10684 if (block_group
->reserved
||
10685 btrfs_block_group_used(&block_group
->item
) ||
10687 list_is_singular(&block_group
->list
)) {
10689 * We want to bail if we made new allocations or have
10690 * outstanding allocations in this block group. We do
10691 * the ro check in case balance is currently acting on
10692 * this block group.
10694 spin_unlock(&block_group
->lock
);
10695 up_write(&space_info
->groups_sem
);
10698 spin_unlock(&block_group
->lock
);
10700 /* We don't want to force the issue, only flip if it's ok. */
10701 ret
= inc_block_group_ro(block_group
, 0);
10702 up_write(&space_info
->groups_sem
);
10709 * Want to do this before we do anything else so we can recover
10710 * properly if we fail to join the transaction.
10712 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10713 block_group
->key
.objectid
);
10714 if (IS_ERR(trans
)) {
10715 btrfs_dec_block_group_ro(block_group
);
10716 ret
= PTR_ERR(trans
);
10721 * We could have pending pinned extents for this block group,
10722 * just delete them, we don't care about them anymore.
10724 start
= block_group
->key
.objectid
;
10725 end
= start
+ block_group
->key
.offset
- 1;
10727 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10728 * btrfs_finish_extent_commit(). If we are at transaction N,
10729 * another task might be running finish_extent_commit() for the
10730 * previous transaction N - 1, and have seen a range belonging
10731 * to the block group in freed_extents[] before we were able to
10732 * clear the whole block group range from freed_extents[]. This
10733 * means that task can lookup for the block group after we
10734 * unpinned it from freed_extents[] and removed it, leading to
10735 * a BUG_ON() at btrfs_unpin_extent_range().
10737 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10738 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10741 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10742 btrfs_dec_block_group_ro(block_group
);
10745 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10748 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10749 btrfs_dec_block_group_ro(block_group
);
10752 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10754 /* Reset pinned so btrfs_put_block_group doesn't complain */
10755 spin_lock(&space_info
->lock
);
10756 spin_lock(&block_group
->lock
);
10758 space_info
->bytes_pinned
-= block_group
->pinned
;
10759 space_info
->bytes_readonly
+= block_group
->pinned
;
10760 percpu_counter_add(&space_info
->total_bytes_pinned
,
10761 -block_group
->pinned
);
10762 block_group
->pinned
= 0;
10764 spin_unlock(&block_group
->lock
);
10765 spin_unlock(&space_info
->lock
);
10767 /* DISCARD can flip during remount */
10768 trimming
= btrfs_test_opt(fs_info
, DISCARD
);
10770 /* Implicit trim during transaction commit. */
10772 btrfs_get_block_group_trimming(block_group
);
10775 * Btrfs_remove_chunk will abort the transaction if things go
10778 ret
= btrfs_remove_chunk(trans
, fs_info
,
10779 block_group
->key
.objectid
);
10783 btrfs_put_block_group_trimming(block_group
);
10788 * If we're not mounted with -odiscard, we can just forget
10789 * about this block group. Otherwise we'll need to wait
10790 * until transaction commit to do the actual discard.
10793 spin_lock(&fs_info
->unused_bgs_lock
);
10795 * A concurrent scrub might have added us to the list
10796 * fs_info->unused_bgs, so use a list_move operation
10797 * to add the block group to the deleted_bgs list.
10799 list_move(&block_group
->bg_list
,
10800 &trans
->transaction
->deleted_bgs
);
10801 spin_unlock(&fs_info
->unused_bgs_lock
);
10802 btrfs_get_block_group(block_group
);
10805 btrfs_end_transaction(trans
);
10807 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10808 btrfs_put_block_group(block_group
);
10809 spin_lock(&fs_info
->unused_bgs_lock
);
10811 spin_unlock(&fs_info
->unused_bgs_lock
);
10814 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10816 struct btrfs_space_info
*space_info
;
10817 struct btrfs_super_block
*disk_super
;
10823 disk_super
= fs_info
->super_copy
;
10824 if (!btrfs_super_root(disk_super
))
10827 features
= btrfs_super_incompat_flags(disk_super
);
10828 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10831 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10832 ret
= create_space_info(fs_info
, flags
, &space_info
);
10837 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10838 ret
= create_space_info(fs_info
, flags
, &space_info
);
10840 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10841 ret
= create_space_info(fs_info
, flags
, &space_info
);
10845 flags
= BTRFS_BLOCK_GROUP_DATA
;
10846 ret
= create_space_info(fs_info
, flags
, &space_info
);
10852 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
10853 u64 start
, u64 end
)
10855 return unpin_extent_range(fs_info
, start
, end
, false);
10859 * It used to be that old block groups would be left around forever.
10860 * Iterating over them would be enough to trim unused space. Since we
10861 * now automatically remove them, we also need to iterate over unallocated
10864 * We don't want a transaction for this since the discard may take a
10865 * substantial amount of time. We don't require that a transaction be
10866 * running, but we do need to take a running transaction into account
10867 * to ensure that we're not discarding chunks that were released in
10868 * the current transaction.
10870 * Holding the chunks lock will prevent other threads from allocating
10871 * or releasing chunks, but it won't prevent a running transaction
10872 * from committing and releasing the memory that the pending chunks
10873 * list head uses. For that, we need to take a reference to the
10876 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
10877 u64 minlen
, u64
*trimmed
)
10879 u64 start
= 0, len
= 0;
10884 /* Not writeable = nothing to do. */
10885 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
10888 /* No free space = nothing to do. */
10889 if (device
->total_bytes
<= device
->bytes_used
)
10895 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
10896 struct btrfs_transaction
*trans
;
10899 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
10903 down_read(&fs_info
->commit_root_sem
);
10905 spin_lock(&fs_info
->trans_lock
);
10906 trans
= fs_info
->running_transaction
;
10908 refcount_inc(&trans
->use_count
);
10909 spin_unlock(&fs_info
->trans_lock
);
10911 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
10914 btrfs_put_transaction(trans
);
10917 up_read(&fs_info
->commit_root_sem
);
10918 mutex_unlock(&fs_info
->chunk_mutex
);
10919 if (ret
== -ENOSPC
)
10924 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
10925 up_read(&fs_info
->commit_root_sem
);
10926 mutex_unlock(&fs_info
->chunk_mutex
);
10934 if (fatal_signal_pending(current
)) {
10935 ret
= -ERESTARTSYS
;
10945 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
10947 struct btrfs_block_group_cache
*cache
= NULL
;
10948 struct btrfs_device
*device
;
10949 struct list_head
*devices
;
10954 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10958 * try to trim all FS space, our block group may start from non-zero.
10960 if (range
->len
== total_bytes
)
10961 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10963 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10966 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10967 btrfs_put_block_group(cache
);
10971 start
= max(range
->start
, cache
->key
.objectid
);
10972 end
= min(range
->start
+ range
->len
,
10973 cache
->key
.objectid
+ cache
->key
.offset
);
10975 if (end
- start
>= range
->minlen
) {
10976 if (!block_group_cache_done(cache
)) {
10977 ret
= cache_block_group(cache
, 0);
10979 btrfs_put_block_group(cache
);
10982 ret
= wait_block_group_cache_done(cache
);
10984 btrfs_put_block_group(cache
);
10988 ret
= btrfs_trim_block_group(cache
,
10994 trimmed
+= group_trimmed
;
10996 btrfs_put_block_group(cache
);
11001 cache
= next_block_group(fs_info
, cache
);
11004 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
11005 devices
= &fs_info
->fs_devices
->alloc_list
;
11006 list_for_each_entry(device
, devices
, dev_alloc_list
) {
11007 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11012 trimmed
+= group_trimmed
;
11014 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
11016 range
->len
= trimmed
;
11021 * btrfs_{start,end}_write_no_snapshotting() are similar to
11022 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11023 * data into the page cache through nocow before the subvolume is snapshoted,
11024 * but flush the data into disk after the snapshot creation, or to prevent
11025 * operations while snapshotting is ongoing and that cause the snapshot to be
11026 * inconsistent (writes followed by expanding truncates for example).
11028 void btrfs_end_write_no_snapshotting(struct btrfs_root
*root
)
11030 percpu_counter_dec(&root
->subv_writers
->counter
);
11032 * Make sure counter is updated before we wake up waiters.
11035 if (waitqueue_active(&root
->subv_writers
->wait
))
11036 wake_up(&root
->subv_writers
->wait
);
11039 int btrfs_start_write_no_snapshotting(struct btrfs_root
*root
)
11041 if (atomic_read(&root
->will_be_snapshotted
))
11044 percpu_counter_inc(&root
->subv_writers
->counter
);
11046 * Make sure counter is updated before we check for snapshot creation.
11049 if (atomic_read(&root
->will_be_snapshotted
)) {
11050 btrfs_end_write_no_snapshotting(root
);
11056 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11061 ret
= btrfs_start_write_no_snapshotting(root
);
11064 wait_on_atomic_t(&root
->will_be_snapshotted
, atomic_t_wait
,
11065 TASK_UNINTERRUPTIBLE
);