Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / btrfs / extent-tree.c
blobc1618ab9fecfb06a50861f26e4d445fe9d63190e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
44 #undef SCRAMBLE_DELAYED_REFS
47 * control flags for do_chunk_alloc's force field
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
60 enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_fs_info *fs_info,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_fs_info *fs_info,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_fs_info *fs_info,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_fs_info *fs_info, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 return (cache->flags & bits) == bits;
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 atomic_inc(&cache->count);
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
132 * No better way to resolve, but only to warn.
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 kfree(cache->free_space_ctl);
136 kfree(cache);
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
175 spin_unlock(&info->block_group_cache_lock);
177 return 0;
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
221 spin_unlock(&info->block_group_cache_lock);
223 return ret;
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 u64 start, u64 num_bytes)
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE);
232 set_extent_bits(&fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE);
234 return 0;
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 struct btrfs_block_group_cache *cache)
240 u64 start, end;
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
245 clear_extent_bits(&fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE);
247 clear_extent_bits(&fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE);
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 struct btrfs_block_group_cache *cache)
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(fs_info, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
275 while (nr--) {
276 u64 start, len;
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
295 cache->bytes_super += len;
296 ret = add_excluded_extent(fs_info, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
303 kfree(logical);
305 return 0;
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
311 struct btrfs_caching_control *ctl;
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
319 ctl = cache->caching_ctl;
320 refcount_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
325 static void put_caching_control(struct btrfs_caching_control *ctl)
327 if (refcount_dec_and_test(&ctl->count))
328 kfree(ctl);
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
334 struct btrfs_fs_info *fs_info = block_group->fs_info;
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 fs_info->nodesize : fs_info->sectorsize;
339 u64 step = chunk << 1;
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
350 #endif
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
392 return total_added;
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
409 path = btrfs_alloc_path();
410 if (!path)
411 return -ENOMEM;
413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
415 #ifdef CONFIG_BTRFS_DEBUG
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
421 if (btrfs_should_fragment_free_space(block_group))
422 wakeup = false;
423 #endif
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
430 path->skip_locking = 1;
431 path->search_commit_root = 1;
432 path->reada = READA_FORWARD;
434 key.objectid = last;
435 key.offset = 0;
436 key.type = BTRFS_EXTENT_ITEM_KEY;
438 next:
439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 if (ret < 0)
441 goto out;
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
446 while (1) {
447 if (btrfs_fs_closing(fs_info) > 1) {
448 last = (u64)-1;
449 break;
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
457 break;
459 if (need_resched() ||
460 rwsem_is_contended(&fs_info->commit_root_sem)) {
461 if (wakeup)
462 caching_ctl->progress = last;
463 btrfs_release_path(path);
464 up_read(&fs_info->commit_root_sem);
465 mutex_unlock(&caching_ctl->mutex);
466 cond_resched();
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
474 goto out;
475 if (ret)
476 break;
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
487 if (wakeup)
488 caching_ctl->progress = last;
489 btrfs_release_path(path);
490 goto next;
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
495 continue;
498 if (key.objectid >= block_group->key.objectid +
499 block_group->key.offset)
500 break;
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
509 fs_info->nodesize;
510 else
511 last = key.objectid + key.offset;
513 if (total_found > CACHING_CTL_WAKE_UP) {
514 total_found = 0;
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
519 path->slots[0]++;
521 ret = 0;
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
526 caching_ctl->progress = (u64)-1;
528 out:
529 btrfs_free_path(path);
530 return ret;
533 static noinline void caching_thread(struct btrfs_work *work)
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 struct btrfs_root *extent_root;
539 int ret;
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544 extent_root = fs_info->extent_root;
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
554 spin_lock(&block_group->lock);
555 block_group->caching_ctl = NULL;
556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 spin_unlock(&block_group->lock);
559 #ifdef CONFIG_BTRFS_DEBUG
560 if (btrfs_should_fragment_free_space(block_group)) {
561 u64 bytes_used;
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
570 fragment_free_space(block_group);
572 #endif
574 caching_ctl->progress = (u64)-1;
576 up_read(&fs_info->commit_root_sem);
577 free_excluded_extents(fs_info, block_group);
578 mutex_unlock(&caching_ctl->mutex);
580 wake_up(&caching_ctl->wait);
582 put_caching_control(caching_ctl);
583 btrfs_put_block_group(block_group);
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 int load_cache_only)
589 DEFINE_WAIT(wait);
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
592 int ret = 0;
594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 if (!caching_ctl)
596 return -ENOMEM;
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
603 refcount_set(&caching_ctl->count, 1);
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
607 spin_lock(&cache->lock);
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
623 ctl = cache->caching_ctl;
624 refcount_inc(&ctl->count);
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
628 schedule();
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
638 return 0;
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 mutex_lock(&caching_ctl->mutex);
647 ret = load_free_space_cache(fs_info, cache);
649 spin_lock(&cache->lock);
650 if (ret == 1) {
651 cache->caching_ctl = NULL;
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
654 caching_ctl->progress = (u64)-1;
655 } else {
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
661 cache->has_caching_ctl = 1;
664 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
667 btrfs_should_fragment_free_space(cache)) {
668 u64 bytes_used;
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
677 fragment_free_space(cache);
679 #endif
680 mutex_unlock(&caching_ctl->mutex);
682 wake_up(&caching_ctl->wait);
683 if (ret == 1) {
684 put_caching_control(caching_ctl);
685 free_excluded_extents(fs_info, cache);
686 return 0;
688 } else {
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
699 cache->has_caching_ctl = 1;
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
707 return 0;
710 down_write(&fs_info->commit_root_sem);
711 refcount_inc(&caching_ctl->count);
712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 up_write(&fs_info->commit_root_sem);
715 btrfs_get_block_group(cache);
717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
719 return ret;
723 * return the block group that starts at or after bytenr
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
728 return block_group_cache_tree_search(info, bytenr, 0);
732 * return the block group that contains the given bytenr
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
738 return block_group_cache_tree_search(info, bytenr, 1);
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
744 struct list_head *head = &info->space_info;
745 struct btrfs_space_info *found;
747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
751 if (found->flags & flags) {
752 rcu_read_unlock();
753 return found;
756 rcu_read_unlock();
757 return NULL;
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
763 struct btrfs_space_info *space_info;
764 u64 flags;
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
775 space_info = __find_space_info(fs_info, flags);
776 ASSERT(space_info);
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
798 int ret;
799 struct btrfs_key key;
800 struct btrfs_path *path;
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
806 key.objectid = start;
807 key.offset = len;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 btrfs_free_path(path);
811 return ret;
815 * helper function to lookup reference count and flags of a tree block.
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info, u64 bytenr,
825 u64 offset, int metadata, u64 *refs, u64 *flags)
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
844 metadata = 0;
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
856 search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 if (ret < 0)
866 goto out_free;
868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
875 key.offset == fs_info->nodesize)
876 ret = 0;
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 BUG();
899 #endif
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
908 if (!trans)
909 goto out;
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
916 refcount_inc(&head->refs);
917 spin_unlock(&delayed_refs->lock);
919 btrfs_release_path(path);
922 * Mutex was contended, block until it's released and try
923 * again
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
927 btrfs_put_delayed_ref_head(head);
928 goto search_again;
930 spin_lock(&head->lock);
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
936 num_refs += head->ref_mod;
937 spin_unlock(&head->lock);
938 mutex_unlock(&head->mutex);
940 spin_unlock(&delayed_refs->lock);
941 out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947 out_free:
948 btrfs_free_path(path);
949 return ret;
953 * Back reference rules. Back refs have three main goals:
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
984 * When a tree block is COWed through a tree, there are four cases:
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1004 * Back Reference Key composing:
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1011 * File extents can be referenced by:
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1017 * The extent ref structure for the implicit back refs has fields for:
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
1027 * The extent ref structure for the full back refs has field for:
1029 * - number of pointers in the tree leaf
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1037 * (root_key.objectid, inode objectid, offset in file, 1)
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1044 * Btree extents can be referenced by:
1046 * - Different subvolumes
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 struct btrfs_fs_info *fs_info,
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
1064 struct btrfs_root *root = fs_info->extent_root;
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
1070 struct btrfs_key key;
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
1090 BUG_ON(ret > 0); /* Corruption */
1091 leaf = path->nodes[0];
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1106 btrfs_release_path(path);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
1116 BUG_ON(ret); /* Corruption */
1118 btrfs_extend_item(fs_info, path, new_size);
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1139 #endif
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 return type;
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 return type;
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1196 return BTRFS_REF_TYPE_INVALID;
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1205 lenum = cpu_to_le64(root_objectid);
1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 lenum = cpu_to_le64(owner);
1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 lenum = cpu_to_le64(offset);
1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 struct btrfs_fs_info *fs_info,
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1241 struct btrfs_root *root = fs_info->extent_root;
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
1244 struct extent_buffer *leaf;
1245 u32 nritems;
1246 int ret;
1247 int recow;
1248 int err = -ENOENT;
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1259 again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 btrfs_release_path(path);
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1278 if (!ret)
1279 return 0;
1280 #endif
1281 goto fail;
1284 leaf = path->nodes[0];
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
1310 btrfs_release_path(path);
1311 goto again;
1313 err = 0;
1314 break;
1316 path->slots[0]++;
1318 fail:
1319 return err;
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
1329 struct btrfs_root *root = fs_info->extent_root;
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 u32 size;
1333 u32 num_refs;
1334 int ret;
1336 key.objectid = bytenr;
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
1355 ref = btrfs_item_ptr(leaf, path->slots[0],
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
1372 btrfs_release_path(path);
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
1379 leaf = path->nodes[0];
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397 fail:
1398 btrfs_release_path(path);
1399 return ret;
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_fs_info *fs_info,
1404 struct btrfs_path *path,
1405 int refs_to_drop, int *last_ref)
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
1410 struct extent_buffer *leaf;
1411 u32 num_refs = 0;
1412 int ret = 0;
1414 leaf = path->nodes[0];
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 } else {
1433 BUG();
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
1439 if (num_refs == 0) {
1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 *last_ref = 1;
1442 } else {
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1454 #endif
1455 btrfs_mark_buffer_dirty(leaf);
1457 return ret;
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 struct btrfs_extent_inline_ref *iref)
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
1468 int type;
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 } else {
1502 WARN_ON(1);
1504 return num_refs;
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 struct btrfs_fs_info *fs_info,
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1513 struct btrfs_root *root = fs_info->extent_root;
1514 struct btrfs_key key;
1515 int ret;
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
1531 btrfs_release_path(path);
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1537 #endif
1538 return ret;
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 struct btrfs_fs_info *fs_info,
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
1547 struct btrfs_key key;
1548 int ret;
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
1561 btrfs_release_path(path);
1562 return ret;
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1579 return type;
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
1586 for (; level < BTRFS_MAX_LEVEL; level++) {
1587 if (!path->nodes[level])
1588 break;
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1600 return 1;
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 struct btrfs_fs_info *fs_info,
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1625 struct btrfs_root *root = fs_info->extent_root;
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 int needed;
1642 key.objectid = bytenr;
1643 key.type = BTRFS_EXTENT_ITEM_KEY;
1644 key.offset = num_bytes;
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
1649 path->keep_locks = 1;
1650 } else
1651 extra_size = -1;
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1662 again:
1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 if (ret < 0) {
1665 err = ret;
1666 goto out;
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1684 if (ret) {
1685 key.objectid = bytenr;
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
1696 } else if (WARN_ON(ret)) {
1697 err = -EIO;
1698 goto out;
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1718 #endif
1719 BUG_ON(item_size < sizeof(*ei));
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1783 if (ref_offset < root_objectid)
1784 break;
1787 ptr += btrfs_extent_inline_ref_size(type);
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 err = -EAGAIN;
1805 goto out;
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 if (insert) {
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1814 return err;
1818 * helper to add new inline back ref
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1844 btrfs_extend_item(fs_info, path, size);
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1878 btrfs_mark_buffer_dirty(leaf);
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_fs_info *fs_info,
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1888 int ret;
1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
1894 return ret;
1896 btrfs_release_path(path);
1897 *ref_ret = NULL;
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
1902 } else {
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
1907 return ret;
1911 * helper to update/remove inline back ref
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
1930 u64 refs;
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
1968 *last_ref = 1;
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
1977 btrfs_truncate_item(fs_info, path, item_size, 1);
1979 btrfs_mark_buffer_dirty(leaf);
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 struct btrfs_fs_info *fs_info,
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 update_inline_extent_backref(fs_info, path, iref,
2000 refs_to_add, extent_op, NULL);
2001 } else if (ret == -ENOENT) {
2002 setup_inline_extent_backref(fs_info, path, iref, parent,
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
2007 return ret;
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 struct btrfs_fs_info *fs_info,
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 parent, root_objectid);
2021 } else {
2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2026 return ret;
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 struct btrfs_fs_info *fs_info,
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
2033 int refs_to_drop, int is_data, int *last_ref)
2035 int ret = 0;
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
2039 update_inline_extent_backref(fs_info, path, iref,
2040 -refs_to_drop, NULL, last_ref);
2041 } else if (is_data) {
2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 last_ref);
2044 } else {
2045 *last_ref = 1;
2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2048 return ret;
2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
2055 int j, ret = 0;
2056 u64 bytes_left, end;
2057 u64 aligned_start = ALIGN(start, 1 << 9);
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2065 *discarded_bytes = 0;
2067 if (!len)
2068 return 0;
2070 end = start + len;
2071 bytes_left = len;
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2094 bytes_left = end - start;
2095 continue;
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2112 bytes_left = end - start;
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 GFP_NOFS, 0);
2118 if (!ret)
2119 *discarded_bytes += bytes_left;
2121 return ret;
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 u64 num_bytes, u64 *actual_bytes)
2127 int ret;
2128 u64 discarded_bytes = 0;
2129 struct btrfs_bio *bbio = NULL;
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2136 btrfs_bio_counter_inc_blocked(fs_info);
2137 /* Tell the block device(s) that the sectors can be discarded */
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
2140 /* Error condition is -ENOMEM */
2141 if (!ret) {
2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 int i;
2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 u64 bytes;
2148 struct request_queue *req_q;
2150 if (!stripe->dev->bdev) {
2151 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152 continue;
2154 req_q = bdev_get_queue(stripe->dev->bdev);
2155 if (!blk_queue_discard(req_q))
2156 continue;
2158 ret = btrfs_issue_discard(stripe->dev->bdev,
2159 stripe->physical,
2160 stripe->length,
2161 &bytes);
2162 if (!ret)
2163 discarded_bytes += bytes;
2164 else if (ret != -EOPNOTSUPP)
2165 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2168 * Just in case we get back EOPNOTSUPP for some reason,
2169 * just ignore the return value so we don't screw up
2170 * people calling discard_extent.
2172 ret = 0;
2174 btrfs_put_bbio(bbio);
2176 btrfs_bio_counter_dec(fs_info);
2178 if (actual_bytes)
2179 *actual_bytes = discarded_bytes;
2182 if (ret == -EOPNOTSUPP)
2183 ret = 0;
2184 return ret;
2187 /* Can return -ENOMEM */
2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2189 struct btrfs_root *root,
2190 u64 bytenr, u64 num_bytes, u64 parent,
2191 u64 root_objectid, u64 owner, u64 offset)
2193 struct btrfs_fs_info *fs_info = root->fs_info;
2194 int old_ref_mod, new_ref_mod;
2195 int ret;
2197 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2200 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201 owner, offset, BTRFS_ADD_DELAYED_REF);
2203 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2204 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2205 num_bytes, parent,
2206 root_objectid, (int)owner,
2207 BTRFS_ADD_DELAYED_REF, NULL,
2208 &old_ref_mod, &new_ref_mod);
2209 } else {
2210 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2211 num_bytes, parent,
2212 root_objectid, owner, offset,
2213 0, BTRFS_ADD_DELAYED_REF,
2214 &old_ref_mod, &new_ref_mod);
2217 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2220 return ret;
2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2224 struct btrfs_fs_info *fs_info,
2225 struct btrfs_delayed_ref_node *node,
2226 u64 parent, u64 root_objectid,
2227 u64 owner, u64 offset, int refs_to_add,
2228 struct btrfs_delayed_extent_op *extent_op)
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 struct btrfs_extent_item *item;
2233 struct btrfs_key key;
2234 u64 bytenr = node->bytenr;
2235 u64 num_bytes = node->num_bytes;
2236 u64 refs;
2237 int ret;
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2243 path->reada = READA_FORWARD;
2244 path->leave_spinning = 1;
2245 /* this will setup the path even if it fails to insert the back ref */
2246 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247 num_bytes, parent, root_objectid,
2248 owner, offset,
2249 refs_to_add, extent_op);
2250 if ((ret < 0 && ret != -EAGAIN) || !ret)
2251 goto out;
2254 * Ok we had -EAGAIN which means we didn't have space to insert and
2255 * inline extent ref, so just update the reference count and add a
2256 * normal backref.
2258 leaf = path->nodes[0];
2259 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2260 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261 refs = btrfs_extent_refs(leaf, item);
2262 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263 if (extent_op)
2264 __run_delayed_extent_op(extent_op, leaf, item);
2266 btrfs_mark_buffer_dirty(leaf);
2267 btrfs_release_path(path);
2269 path->reada = READA_FORWARD;
2270 path->leave_spinning = 1;
2271 /* now insert the actual backref */
2272 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273 root_objectid, owner, offset, refs_to_add);
2274 if (ret)
2275 btrfs_abort_transaction(trans, ret);
2276 out:
2277 btrfs_free_path(path);
2278 return ret;
2281 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2282 struct btrfs_fs_info *fs_info,
2283 struct btrfs_delayed_ref_node *node,
2284 struct btrfs_delayed_extent_op *extent_op,
2285 int insert_reserved)
2287 int ret = 0;
2288 struct btrfs_delayed_data_ref *ref;
2289 struct btrfs_key ins;
2290 u64 parent = 0;
2291 u64 ref_root = 0;
2292 u64 flags = 0;
2294 ins.objectid = node->bytenr;
2295 ins.offset = node->num_bytes;
2296 ins.type = BTRFS_EXTENT_ITEM_KEY;
2298 ref = btrfs_delayed_node_to_data_ref(node);
2299 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2301 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302 parent = ref->parent;
2303 ref_root = ref->root;
2305 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2306 if (extent_op)
2307 flags |= extent_op->flags_to_set;
2308 ret = alloc_reserved_file_extent(trans, fs_info,
2309 parent, ref_root, flags,
2310 ref->objectid, ref->offset,
2311 &ins, node->ref_mod);
2312 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2313 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2314 ref_root, ref->objectid,
2315 ref->offset, node->ref_mod,
2316 extent_op);
2317 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2318 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2319 ref_root, ref->objectid,
2320 ref->offset, node->ref_mod,
2321 extent_op);
2322 } else {
2323 BUG();
2325 return ret;
2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329 struct extent_buffer *leaf,
2330 struct btrfs_extent_item *ei)
2332 u64 flags = btrfs_extent_flags(leaf, ei);
2333 if (extent_op->update_flags) {
2334 flags |= extent_op->flags_to_set;
2335 btrfs_set_extent_flags(leaf, ei, flags);
2338 if (extent_op->update_key) {
2339 struct btrfs_tree_block_info *bi;
2340 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341 bi = (struct btrfs_tree_block_info *)(ei + 1);
2342 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2346 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2347 struct btrfs_fs_info *fs_info,
2348 struct btrfs_delayed_ref_head *head,
2349 struct btrfs_delayed_extent_op *extent_op)
2351 struct btrfs_key key;
2352 struct btrfs_path *path;
2353 struct btrfs_extent_item *ei;
2354 struct extent_buffer *leaf;
2355 u32 item_size;
2356 int ret;
2357 int err = 0;
2358 int metadata = !extent_op->is_data;
2360 if (trans->aborted)
2361 return 0;
2363 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2364 metadata = 0;
2366 path = btrfs_alloc_path();
2367 if (!path)
2368 return -ENOMEM;
2370 key.objectid = head->bytenr;
2372 if (metadata) {
2373 key.type = BTRFS_METADATA_ITEM_KEY;
2374 key.offset = extent_op->level;
2375 } else {
2376 key.type = BTRFS_EXTENT_ITEM_KEY;
2377 key.offset = head->num_bytes;
2380 again:
2381 path->reada = READA_FORWARD;
2382 path->leave_spinning = 1;
2383 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2384 if (ret < 0) {
2385 err = ret;
2386 goto out;
2388 if (ret > 0) {
2389 if (metadata) {
2390 if (path->slots[0] > 0) {
2391 path->slots[0]--;
2392 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393 path->slots[0]);
2394 if (key.objectid == head->bytenr &&
2395 key.type == BTRFS_EXTENT_ITEM_KEY &&
2396 key.offset == head->num_bytes)
2397 ret = 0;
2399 if (ret > 0) {
2400 btrfs_release_path(path);
2401 metadata = 0;
2403 key.objectid = head->bytenr;
2404 key.offset = head->num_bytes;
2405 key.type = BTRFS_EXTENT_ITEM_KEY;
2406 goto again;
2408 } else {
2409 err = -EIO;
2410 goto out;
2414 leaf = path->nodes[0];
2415 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417 if (item_size < sizeof(*ei)) {
2418 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2419 if (ret < 0) {
2420 err = ret;
2421 goto out;
2423 leaf = path->nodes[0];
2424 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2426 #endif
2427 BUG_ON(item_size < sizeof(*ei));
2428 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429 __run_delayed_extent_op(extent_op, leaf, ei);
2431 btrfs_mark_buffer_dirty(leaf);
2432 out:
2433 btrfs_free_path(path);
2434 return err;
2437 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2438 struct btrfs_fs_info *fs_info,
2439 struct btrfs_delayed_ref_node *node,
2440 struct btrfs_delayed_extent_op *extent_op,
2441 int insert_reserved)
2443 int ret = 0;
2444 struct btrfs_delayed_tree_ref *ref;
2445 struct btrfs_key ins;
2446 u64 parent = 0;
2447 u64 ref_root = 0;
2448 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2450 ref = btrfs_delayed_node_to_tree_ref(node);
2451 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2453 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454 parent = ref->parent;
2455 ref_root = ref->root;
2457 ins.objectid = node->bytenr;
2458 if (skinny_metadata) {
2459 ins.offset = ref->level;
2460 ins.type = BTRFS_METADATA_ITEM_KEY;
2461 } else {
2462 ins.offset = node->num_bytes;
2463 ins.type = BTRFS_EXTENT_ITEM_KEY;
2466 if (node->ref_mod != 1) {
2467 btrfs_err(fs_info,
2468 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469 node->bytenr, node->ref_mod, node->action, ref_root,
2470 parent);
2471 return -EIO;
2473 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2474 BUG_ON(!extent_op || !extent_op->update_flags);
2475 ret = alloc_reserved_tree_block(trans, fs_info,
2476 parent, ref_root,
2477 extent_op->flags_to_set,
2478 &extent_op->key,
2479 ref->level, &ins);
2480 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2481 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2482 parent, ref_root,
2483 ref->level, 0, 1,
2484 extent_op);
2485 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2486 ret = __btrfs_free_extent(trans, fs_info, node,
2487 parent, ref_root,
2488 ref->level, 0, 1, extent_op);
2489 } else {
2490 BUG();
2492 return ret;
2495 /* helper function to actually process a single delayed ref entry */
2496 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2497 struct btrfs_fs_info *fs_info,
2498 struct btrfs_delayed_ref_node *node,
2499 struct btrfs_delayed_extent_op *extent_op,
2500 int insert_reserved)
2502 int ret = 0;
2504 if (trans->aborted) {
2505 if (insert_reserved)
2506 btrfs_pin_extent(fs_info, node->bytenr,
2507 node->num_bytes, 1);
2508 return 0;
2511 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2513 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2514 insert_reserved);
2515 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516 node->type == BTRFS_SHARED_DATA_REF_KEY)
2517 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2518 insert_reserved);
2519 else
2520 BUG();
2521 return ret;
2524 static inline struct btrfs_delayed_ref_node *
2525 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2527 struct btrfs_delayed_ref_node *ref;
2529 if (RB_EMPTY_ROOT(&head->ref_tree))
2530 return NULL;
2533 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534 * This is to prevent a ref count from going down to zero, which deletes
2535 * the extent item from the extent tree, when there still are references
2536 * to add, which would fail because they would not find the extent item.
2538 if (!list_empty(&head->ref_add_list))
2539 return list_first_entry(&head->ref_add_list,
2540 struct btrfs_delayed_ref_node, add_list);
2542 ref = rb_entry(rb_first(&head->ref_tree),
2543 struct btrfs_delayed_ref_node, ref_node);
2544 ASSERT(list_empty(&ref->add_list));
2545 return ref;
2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549 struct btrfs_delayed_ref_head *head)
2551 spin_lock(&delayed_refs->lock);
2552 head->processing = 0;
2553 delayed_refs->num_heads_ready++;
2554 spin_unlock(&delayed_refs->lock);
2555 btrfs_delayed_ref_unlock(head);
2558 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559 struct btrfs_fs_info *fs_info,
2560 struct btrfs_delayed_ref_head *head)
2562 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563 int ret;
2565 if (!extent_op)
2566 return 0;
2567 head->extent_op = NULL;
2568 if (head->must_insert_reserved) {
2569 btrfs_free_delayed_extent_op(extent_op);
2570 return 0;
2572 spin_unlock(&head->lock);
2573 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2574 btrfs_free_delayed_extent_op(extent_op);
2575 return ret ? ret : 1;
2578 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579 struct btrfs_fs_info *fs_info,
2580 struct btrfs_delayed_ref_head *head)
2582 struct btrfs_delayed_ref_root *delayed_refs;
2583 int ret;
2585 delayed_refs = &trans->transaction->delayed_refs;
2587 ret = cleanup_extent_op(trans, fs_info, head);
2588 if (ret < 0) {
2589 unselect_delayed_ref_head(delayed_refs, head);
2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 return ret;
2592 } else if (ret) {
2593 return ret;
2597 * Need to drop our head ref lock and re-acquire the delayed ref lock
2598 * and then re-check to make sure nobody got added.
2600 spin_unlock(&head->lock);
2601 spin_lock(&delayed_refs->lock);
2602 spin_lock(&head->lock);
2603 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2604 spin_unlock(&head->lock);
2605 spin_unlock(&delayed_refs->lock);
2606 return 1;
2608 delayed_refs->num_heads--;
2609 rb_erase(&head->href_node, &delayed_refs->href_root);
2610 RB_CLEAR_NODE(&head->href_node);
2611 spin_unlock(&delayed_refs->lock);
2612 spin_unlock(&head->lock);
2613 atomic_dec(&delayed_refs->num_entries);
2615 trace_run_delayed_ref_head(fs_info, head, 0);
2617 if (head->total_ref_mod < 0) {
2618 struct btrfs_block_group_cache *cache;
2620 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2621 ASSERT(cache);
2622 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2623 -head->num_bytes);
2624 btrfs_put_block_group(cache);
2626 if (head->is_data) {
2627 spin_lock(&delayed_refs->lock);
2628 delayed_refs->pending_csums -= head->num_bytes;
2629 spin_unlock(&delayed_refs->lock);
2633 if (head->must_insert_reserved) {
2634 btrfs_pin_extent(fs_info, head->bytenr,
2635 head->num_bytes, 1);
2636 if (head->is_data) {
2637 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638 head->num_bytes);
2642 /* Also free its reserved qgroup space */
2643 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644 head->qgroup_reserved);
2645 btrfs_delayed_ref_unlock(head);
2646 btrfs_put_delayed_ref_head(head);
2647 return 0;
2651 * Returns 0 on success or if called with an already aborted transaction.
2652 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2654 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_fs_info *fs_info,
2656 unsigned long nr)
2658 struct btrfs_delayed_ref_root *delayed_refs;
2659 struct btrfs_delayed_ref_node *ref;
2660 struct btrfs_delayed_ref_head *locked_ref = NULL;
2661 struct btrfs_delayed_extent_op *extent_op;
2662 ktime_t start = ktime_get();
2663 int ret;
2664 unsigned long count = 0;
2665 unsigned long actual_count = 0;
2666 int must_insert_reserved = 0;
2668 delayed_refs = &trans->transaction->delayed_refs;
2669 while (1) {
2670 if (!locked_ref) {
2671 if (count >= nr)
2672 break;
2674 spin_lock(&delayed_refs->lock);
2675 locked_ref = btrfs_select_ref_head(trans);
2676 if (!locked_ref) {
2677 spin_unlock(&delayed_refs->lock);
2678 break;
2681 /* grab the lock that says we are going to process
2682 * all the refs for this head */
2683 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2684 spin_unlock(&delayed_refs->lock);
2686 * we may have dropped the spin lock to get the head
2687 * mutex lock, and that might have given someone else
2688 * time to free the head. If that's true, it has been
2689 * removed from our list and we can move on.
2691 if (ret == -EAGAIN) {
2692 locked_ref = NULL;
2693 count++;
2694 continue;
2699 * We need to try and merge add/drops of the same ref since we
2700 * can run into issues with relocate dropping the implicit ref
2701 * and then it being added back again before the drop can
2702 * finish. If we merged anything we need to re-loop so we can
2703 * get a good ref.
2704 * Or we can get node references of the same type that weren't
2705 * merged when created due to bumps in the tree mod seq, and
2706 * we need to merge them to prevent adding an inline extent
2707 * backref before dropping it (triggering a BUG_ON at
2708 * insert_inline_extent_backref()).
2710 spin_lock(&locked_ref->lock);
2711 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712 locked_ref);
2715 * locked_ref is the head node, so we have to go one
2716 * node back for any delayed ref updates
2718 ref = select_delayed_ref(locked_ref);
2720 if (ref && ref->seq &&
2721 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2722 spin_unlock(&locked_ref->lock);
2723 unselect_delayed_ref_head(delayed_refs, locked_ref);
2724 locked_ref = NULL;
2725 cond_resched();
2726 count++;
2727 continue;
2731 * We're done processing refs in this ref_head, clean everything
2732 * up and move on to the next ref_head.
2734 if (!ref) {
2735 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736 if (ret > 0 ) {
2737 /* We dropped our lock, we need to loop. */
2738 ret = 0;
2739 continue;
2740 } else if (ret) {
2741 return ret;
2743 locked_ref = NULL;
2744 count++;
2745 continue;
2748 actual_count++;
2749 ref->in_tree = 0;
2750 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751 RB_CLEAR_NODE(&ref->ref_node);
2752 if (!list_empty(&ref->add_list))
2753 list_del(&ref->add_list);
2755 * When we play the delayed ref, also correct the ref_mod on
2756 * head
2758 switch (ref->action) {
2759 case BTRFS_ADD_DELAYED_REF:
2760 case BTRFS_ADD_DELAYED_EXTENT:
2761 locked_ref->ref_mod -= ref->ref_mod;
2762 break;
2763 case BTRFS_DROP_DELAYED_REF:
2764 locked_ref->ref_mod += ref->ref_mod;
2765 break;
2766 default:
2767 WARN_ON(1);
2769 atomic_dec(&delayed_refs->num_entries);
2772 * Record the must-insert_reserved flag before we drop the spin
2773 * lock.
2775 must_insert_reserved = locked_ref->must_insert_reserved;
2776 locked_ref->must_insert_reserved = 0;
2778 extent_op = locked_ref->extent_op;
2779 locked_ref->extent_op = NULL;
2780 spin_unlock(&locked_ref->lock);
2782 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2783 must_insert_reserved);
2785 btrfs_free_delayed_extent_op(extent_op);
2786 if (ret) {
2787 unselect_delayed_ref_head(delayed_refs, locked_ref);
2788 btrfs_put_delayed_ref(ref);
2789 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790 ret);
2791 return ret;
2794 btrfs_put_delayed_ref(ref);
2795 count++;
2796 cond_resched();
2800 * We don't want to include ref heads since we can have empty ref heads
2801 * and those will drastically skew our runtime down since we just do
2802 * accounting, no actual extent tree updates.
2804 if (actual_count > 0) {
2805 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806 u64 avg;
2809 * We weigh the current average higher than our current runtime
2810 * to avoid large swings in the average.
2812 spin_lock(&delayed_refs->lock);
2813 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2814 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2815 spin_unlock(&delayed_refs->lock);
2817 return 0;
2820 #ifdef SCRAMBLE_DELAYED_REFS
2822 * Normally delayed refs get processed in ascending bytenr order. This
2823 * correlates in most cases to the order added. To expose dependencies on this
2824 * order, we start to process the tree in the middle instead of the beginning
2826 static u64 find_middle(struct rb_root *root)
2828 struct rb_node *n = root->rb_node;
2829 struct btrfs_delayed_ref_node *entry;
2830 int alt = 1;
2831 u64 middle;
2832 u64 first = 0, last = 0;
2834 n = rb_first(root);
2835 if (n) {
2836 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837 first = entry->bytenr;
2839 n = rb_last(root);
2840 if (n) {
2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 last = entry->bytenr;
2844 n = root->rb_node;
2846 while (n) {
2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848 WARN_ON(!entry->in_tree);
2850 middle = entry->bytenr;
2852 if (alt)
2853 n = n->rb_left;
2854 else
2855 n = n->rb_right;
2857 alt = 1 - alt;
2859 return middle;
2861 #endif
2863 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2865 u64 num_bytes;
2867 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868 sizeof(struct btrfs_extent_inline_ref));
2869 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2873 * We don't ever fill up leaves all the way so multiply by 2 just to be
2874 * closer to what we're really going to want to use.
2876 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2880 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881 * would require to store the csums for that many bytes.
2883 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2885 u64 csum_size;
2886 u64 num_csums_per_leaf;
2887 u64 num_csums;
2889 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2890 num_csums_per_leaf = div64_u64(csum_size,
2891 (u64)btrfs_super_csum_size(fs_info->super_copy));
2892 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2893 num_csums += num_csums_per_leaf - 1;
2894 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895 return num_csums;
2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2899 struct btrfs_fs_info *fs_info)
2901 struct btrfs_block_rsv *global_rsv;
2902 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2903 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2904 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2905 u64 num_bytes, num_dirty_bgs_bytes;
2906 int ret = 0;
2908 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2909 num_heads = heads_to_leaves(fs_info, num_heads);
2910 if (num_heads > 1)
2911 num_bytes += (num_heads - 1) * fs_info->nodesize;
2912 num_bytes <<= 1;
2913 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914 fs_info->nodesize;
2915 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2916 num_dirty_bgs);
2917 global_rsv = &fs_info->global_block_rsv;
2920 * If we can't allocate any more chunks lets make sure we have _lots_ of
2921 * wiggle room since running delayed refs can create more delayed refs.
2923 if (global_rsv->space_info->full) {
2924 num_dirty_bgs_bytes <<= 1;
2925 num_bytes <<= 1;
2928 spin_lock(&global_rsv->lock);
2929 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2930 ret = 1;
2931 spin_unlock(&global_rsv->lock);
2932 return ret;
2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2936 struct btrfs_fs_info *fs_info)
2938 u64 num_entries =
2939 atomic_read(&trans->transaction->delayed_refs.num_entries);
2940 u64 avg_runtime;
2941 u64 val;
2943 smp_mb();
2944 avg_runtime = fs_info->avg_delayed_ref_runtime;
2945 val = num_entries * avg_runtime;
2946 if (val >= NSEC_PER_SEC)
2947 return 1;
2948 if (val >= NSEC_PER_SEC / 2)
2949 return 2;
2951 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2954 struct async_delayed_refs {
2955 struct btrfs_root *root;
2956 u64 transid;
2957 int count;
2958 int error;
2959 int sync;
2960 struct completion wait;
2961 struct btrfs_work work;
2964 static inline struct async_delayed_refs *
2965 to_async_delayed_refs(struct btrfs_work *work)
2967 return container_of(work, struct async_delayed_refs, work);
2970 static void delayed_ref_async_start(struct btrfs_work *work)
2972 struct async_delayed_refs *async = to_async_delayed_refs(work);
2973 struct btrfs_trans_handle *trans;
2974 struct btrfs_fs_info *fs_info = async->root->fs_info;
2975 int ret;
2977 /* if the commit is already started, we don't need to wait here */
2978 if (btrfs_transaction_blocked(fs_info))
2979 goto done;
2981 trans = btrfs_join_transaction(async->root);
2982 if (IS_ERR(trans)) {
2983 async->error = PTR_ERR(trans);
2984 goto done;
2988 * trans->sync means that when we call end_transaction, we won't
2989 * wait on delayed refs
2991 trans->sync = true;
2993 /* Don't bother flushing if we got into a different transaction */
2994 if (trans->transid > async->transid)
2995 goto end;
2997 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2998 if (ret)
2999 async->error = ret;
3000 end:
3001 ret = btrfs_end_transaction(trans);
3002 if (ret && !async->error)
3003 async->error = ret;
3004 done:
3005 if (async->sync)
3006 complete(&async->wait);
3007 else
3008 kfree(async);
3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3012 unsigned long count, u64 transid, int wait)
3014 struct async_delayed_refs *async;
3015 int ret;
3017 async = kmalloc(sizeof(*async), GFP_NOFS);
3018 if (!async)
3019 return -ENOMEM;
3021 async->root = fs_info->tree_root;
3022 async->count = count;
3023 async->error = 0;
3024 async->transid = transid;
3025 if (wait)
3026 async->sync = 1;
3027 else
3028 async->sync = 0;
3029 init_completion(&async->wait);
3031 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032 delayed_ref_async_start, NULL, NULL);
3034 btrfs_queue_work(fs_info->extent_workers, &async->work);
3036 if (wait) {
3037 wait_for_completion(&async->wait);
3038 ret = async->error;
3039 kfree(async);
3040 return ret;
3042 return 0;
3046 * this starts processing the delayed reference count updates and
3047 * extent insertions we have queued up so far. count can be
3048 * 0, which means to process everything in the tree at the start
3049 * of the run (but not newly added entries), or it can be some target
3050 * number you'd like to process.
3052 * Returns 0 on success or if called with an aborted transaction
3053 * Returns <0 on error and aborts the transaction
3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3056 struct btrfs_fs_info *fs_info, unsigned long count)
3058 struct rb_node *node;
3059 struct btrfs_delayed_ref_root *delayed_refs;
3060 struct btrfs_delayed_ref_head *head;
3061 int ret;
3062 int run_all = count == (unsigned long)-1;
3063 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3065 /* We'll clean this up in btrfs_cleanup_transaction */
3066 if (trans->aborted)
3067 return 0;
3069 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3070 return 0;
3072 delayed_refs = &trans->transaction->delayed_refs;
3073 if (count == 0)
3074 count = atomic_read(&delayed_refs->num_entries) * 2;
3076 again:
3077 #ifdef SCRAMBLE_DELAYED_REFS
3078 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079 #endif
3080 trans->can_flush_pending_bgs = false;
3081 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3082 if (ret < 0) {
3083 btrfs_abort_transaction(trans, ret);
3084 return ret;
3087 if (run_all) {
3088 if (!list_empty(&trans->new_bgs))
3089 btrfs_create_pending_block_groups(trans, fs_info);
3091 spin_lock(&delayed_refs->lock);
3092 node = rb_first(&delayed_refs->href_root);
3093 if (!node) {
3094 spin_unlock(&delayed_refs->lock);
3095 goto out;
3097 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098 href_node);
3099 refcount_inc(&head->refs);
3100 spin_unlock(&delayed_refs->lock);
3102 /* Mutex was contended, block until it's released and retry. */
3103 mutex_lock(&head->mutex);
3104 mutex_unlock(&head->mutex);
3106 btrfs_put_delayed_ref_head(head);
3107 cond_resched();
3108 goto again;
3110 out:
3111 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3112 return 0;
3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3116 struct btrfs_fs_info *fs_info,
3117 u64 bytenr, u64 num_bytes, u64 flags,
3118 int level, int is_data)
3120 struct btrfs_delayed_extent_op *extent_op;
3121 int ret;
3123 extent_op = btrfs_alloc_delayed_extent_op();
3124 if (!extent_op)
3125 return -ENOMEM;
3127 extent_op->flags_to_set = flags;
3128 extent_op->update_flags = true;
3129 extent_op->update_key = false;
3130 extent_op->is_data = is_data ? true : false;
3131 extent_op->level = level;
3133 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3134 num_bytes, extent_op);
3135 if (ret)
3136 btrfs_free_delayed_extent_op(extent_op);
3137 return ret;
3140 static noinline int check_delayed_ref(struct btrfs_root *root,
3141 struct btrfs_path *path,
3142 u64 objectid, u64 offset, u64 bytenr)
3144 struct btrfs_delayed_ref_head *head;
3145 struct btrfs_delayed_ref_node *ref;
3146 struct btrfs_delayed_data_ref *data_ref;
3147 struct btrfs_delayed_ref_root *delayed_refs;
3148 struct btrfs_transaction *cur_trans;
3149 struct rb_node *node;
3150 int ret = 0;
3152 cur_trans = root->fs_info->running_transaction;
3153 if (!cur_trans)
3154 return 0;
3156 delayed_refs = &cur_trans->delayed_refs;
3157 spin_lock(&delayed_refs->lock);
3158 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3159 if (!head) {
3160 spin_unlock(&delayed_refs->lock);
3161 return 0;
3164 if (!mutex_trylock(&head->mutex)) {
3165 refcount_inc(&head->refs);
3166 spin_unlock(&delayed_refs->lock);
3168 btrfs_release_path(path);
3171 * Mutex was contended, block until it's released and let
3172 * caller try again
3174 mutex_lock(&head->mutex);
3175 mutex_unlock(&head->mutex);
3176 btrfs_put_delayed_ref_head(head);
3177 return -EAGAIN;
3179 spin_unlock(&delayed_refs->lock);
3181 spin_lock(&head->lock);
3183 * XXX: We should replace this with a proper search function in the
3184 * future.
3186 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3188 /* If it's a shared ref we know a cross reference exists */
3189 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190 ret = 1;
3191 break;
3194 data_ref = btrfs_delayed_node_to_data_ref(ref);
3197 * If our ref doesn't match the one we're currently looking at
3198 * then we have a cross reference.
3200 if (data_ref->root != root->root_key.objectid ||
3201 data_ref->objectid != objectid ||
3202 data_ref->offset != offset) {
3203 ret = 1;
3204 break;
3207 spin_unlock(&head->lock);
3208 mutex_unlock(&head->mutex);
3209 return ret;
3212 static noinline int check_committed_ref(struct btrfs_root *root,
3213 struct btrfs_path *path,
3214 u64 objectid, u64 offset, u64 bytenr)
3216 struct btrfs_fs_info *fs_info = root->fs_info;
3217 struct btrfs_root *extent_root = fs_info->extent_root;
3218 struct extent_buffer *leaf;
3219 struct btrfs_extent_data_ref *ref;
3220 struct btrfs_extent_inline_ref *iref;
3221 struct btrfs_extent_item *ei;
3222 struct btrfs_key key;
3223 u32 item_size;
3224 int type;
3225 int ret;
3227 key.objectid = bytenr;
3228 key.offset = (u64)-1;
3229 key.type = BTRFS_EXTENT_ITEM_KEY;
3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 if (ret < 0)
3233 goto out;
3234 BUG_ON(ret == 0); /* Corruption */
3236 ret = -ENOENT;
3237 if (path->slots[0] == 0)
3238 goto out;
3240 path->slots[0]--;
3241 leaf = path->nodes[0];
3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245 goto out;
3247 ret = 1;
3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 if (item_size < sizeof(*ei)) {
3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 goto out;
3254 #endif
3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3257 if (item_size != sizeof(*ei) +
3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 goto out;
3261 if (btrfs_extent_generation(leaf, ei) <=
3262 btrfs_root_last_snapshot(&root->root_item))
3263 goto out;
3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269 goto out;
3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 if (btrfs_extent_refs(leaf, ei) !=
3273 btrfs_extent_data_ref_count(leaf, ref) ||
3274 btrfs_extent_data_ref_root(leaf, ref) !=
3275 root->root_key.objectid ||
3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 goto out;
3280 ret = 0;
3281 out:
3282 return ret;
3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 u64 bytenr)
3288 struct btrfs_path *path;
3289 int ret;
3290 int ret2;
3292 path = btrfs_alloc_path();
3293 if (!path)
3294 return -ENOENT;
3296 do {
3297 ret = check_committed_ref(root, path, objectid,
3298 offset, bytenr);
3299 if (ret && ret != -ENOENT)
3300 goto out;
3302 ret2 = check_delayed_ref(root, path, objectid,
3303 offset, bytenr);
3304 } while (ret2 == -EAGAIN);
3306 if (ret2 && ret2 != -ENOENT) {
3307 ret = ret2;
3308 goto out;
3311 if (ret != -ENOENT || ret2 != -ENOENT)
3312 ret = 0;
3313 out:
3314 btrfs_free_path(path);
3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 WARN_ON(ret > 0);
3317 return ret;
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321 struct btrfs_root *root,
3322 struct extent_buffer *buf,
3323 int full_backref, int inc)
3325 struct btrfs_fs_info *fs_info = root->fs_info;
3326 u64 bytenr;
3327 u64 num_bytes;
3328 u64 parent;
3329 u64 ref_root;
3330 u32 nritems;
3331 struct btrfs_key key;
3332 struct btrfs_file_extent_item *fi;
3333 int i;
3334 int level;
3335 int ret = 0;
3336 int (*process_func)(struct btrfs_trans_handle *,
3337 struct btrfs_root *,
3338 u64, u64, u64, u64, u64, u64);
3341 if (btrfs_is_testing(fs_info))
3342 return 0;
3344 ref_root = btrfs_header_owner(buf);
3345 nritems = btrfs_header_nritems(buf);
3346 level = btrfs_header_level(buf);
3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349 return 0;
3351 if (inc)
3352 process_func = btrfs_inc_extent_ref;
3353 else
3354 process_func = btrfs_free_extent;
3356 if (full_backref)
3357 parent = buf->start;
3358 else
3359 parent = 0;
3361 for (i = 0; i < nritems; i++) {
3362 if (level == 0) {
3363 btrfs_item_key_to_cpu(buf, &key, i);
3364 if (key.type != BTRFS_EXTENT_DATA_KEY)
3365 continue;
3366 fi = btrfs_item_ptr(buf, i,
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(buf, fi) ==
3369 BTRFS_FILE_EXTENT_INLINE)
3370 continue;
3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 if (bytenr == 0)
3373 continue;
3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 key.offset -= btrfs_file_extent_offset(buf, fi);
3377 ret = process_func(trans, root, bytenr, num_bytes,
3378 parent, ref_root, key.objectid,
3379 key.offset);
3380 if (ret)
3381 goto fail;
3382 } else {
3383 bytenr = btrfs_node_blockptr(buf, i);
3384 num_bytes = fs_info->nodesize;
3385 ret = process_func(trans, root, bytenr, num_bytes,
3386 parent, ref_root, level - 1, 0);
3387 if (ret)
3388 goto fail;
3391 return 0;
3392 fail:
3393 return ret;
3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397 struct extent_buffer *buf, int full_backref)
3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403 struct extent_buffer *buf, int full_backref)
3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3408 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409 struct btrfs_fs_info *fs_info,
3410 struct btrfs_path *path,
3411 struct btrfs_block_group_cache *cache)
3413 int ret;
3414 struct btrfs_root *extent_root = fs_info->extent_root;
3415 unsigned long bi;
3416 struct extent_buffer *leaf;
3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419 if (ret) {
3420 if (ret > 0)
3421 ret = -ENOENT;
3422 goto fail;
3425 leaf = path->nodes[0];
3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 btrfs_mark_buffer_dirty(leaf);
3429 fail:
3430 btrfs_release_path(path);
3431 return ret;
3435 static struct btrfs_block_group_cache *
3436 next_block_group(struct btrfs_fs_info *fs_info,
3437 struct btrfs_block_group_cache *cache)
3439 struct rb_node *node;
3441 spin_lock(&fs_info->block_group_cache_lock);
3443 /* If our block group was removed, we need a full search. */
3444 if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3447 spin_unlock(&fs_info->block_group_cache_lock);
3448 btrfs_put_block_group(cache);
3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3451 node = rb_next(&cache->cache_node);
3452 btrfs_put_block_group(cache);
3453 if (node) {
3454 cache = rb_entry(node, struct btrfs_block_group_cache,
3455 cache_node);
3456 btrfs_get_block_group(cache);
3457 } else
3458 cache = NULL;
3459 spin_unlock(&fs_info->block_group_cache_lock);
3460 return cache;
3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 struct btrfs_trans_handle *trans,
3465 struct btrfs_path *path)
3467 struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 struct btrfs_root *root = fs_info->tree_root;
3469 struct inode *inode = NULL;
3470 struct extent_changeset *data_reserved = NULL;
3471 u64 alloc_hint = 0;
3472 int dcs = BTRFS_DC_ERROR;
3473 u64 num_pages = 0;
3474 int retries = 0;
3475 int ret = 0;
3478 * If this block group is smaller than 100 megs don't bother caching the
3479 * block group.
3481 if (block_group->key.offset < (100 * SZ_1M)) {
3482 spin_lock(&block_group->lock);
3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 spin_unlock(&block_group->lock);
3485 return 0;
3488 if (trans->aborted)
3489 return 0;
3490 again:
3491 inode = lookup_free_space_inode(fs_info, block_group, path);
3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 ret = PTR_ERR(inode);
3494 btrfs_release_path(path);
3495 goto out;
3498 if (IS_ERR(inode)) {
3499 BUG_ON(retries);
3500 retries++;
3502 if (block_group->ro)
3503 goto out_free;
3505 ret = create_free_space_inode(fs_info, trans, block_group,
3506 path);
3507 if (ret)
3508 goto out_free;
3509 goto again;
3513 * We want to set the generation to 0, that way if anything goes wrong
3514 * from here on out we know not to trust this cache when we load up next
3515 * time.
3517 BTRFS_I(inode)->generation = 0;
3518 ret = btrfs_update_inode(trans, root, inode);
3519 if (ret) {
3521 * So theoretically we could recover from this, simply set the
3522 * super cache generation to 0 so we know to invalidate the
3523 * cache, but then we'd have to keep track of the block groups
3524 * that fail this way so we know we _have_ to reset this cache
3525 * before the next commit or risk reading stale cache. So to
3526 * limit our exposure to horrible edge cases lets just abort the
3527 * transaction, this only happens in really bad situations
3528 * anyway.
3530 btrfs_abort_transaction(trans, ret);
3531 goto out_put;
3533 WARN_ON(ret);
3535 /* We've already setup this transaction, go ahead and exit */
3536 if (block_group->cache_generation == trans->transid &&
3537 i_size_read(inode)) {
3538 dcs = BTRFS_DC_SETUP;
3539 goto out_put;
3542 if (i_size_read(inode) > 0) {
3543 ret = btrfs_check_trunc_cache_free_space(fs_info,
3544 &fs_info->global_block_rsv);
3545 if (ret)
3546 goto out_put;
3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549 if (ret)
3550 goto out_put;
3553 spin_lock(&block_group->lock);
3554 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3557 * don't bother trying to write stuff out _if_
3558 * a) we're not cached,
3559 * b) we're with nospace_cache mount option,
3560 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3562 dcs = BTRFS_DC_WRITTEN;
3563 spin_unlock(&block_group->lock);
3564 goto out_put;
3566 spin_unlock(&block_group->lock);
3569 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 * skip doing the setup, we've already cleared the cache so we're safe.
3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 ret = -ENOSPC;
3574 goto out_put;
3578 * Try to preallocate enough space based on how big the block group is.
3579 * Keep in mind this has to include any pinned space which could end up
3580 * taking up quite a bit since it's not folded into the other space
3581 * cache.
3583 num_pages = div_u64(block_group->key.offset, SZ_256M);
3584 if (!num_pages)
3585 num_pages = 1;
3587 num_pages *= 16;
3588 num_pages *= PAGE_SIZE;
3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591 if (ret)
3592 goto out_put;
3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 num_pages, num_pages,
3596 &alloc_hint);
3598 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 * of metadata or split extents when writing the cache out, which means
3600 * we can enospc if we are heavily fragmented in addition to just normal
3601 * out of space conditions. So if we hit this just skip setting up any
3602 * other block groups for this transaction, maybe we'll unpin enough
3603 * space the next time around.
3605 if (!ret)
3606 dcs = BTRFS_DC_SETUP;
3607 else if (ret == -ENOSPC)
3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3610 out_put:
3611 iput(inode);
3612 out_free:
3613 btrfs_release_path(path);
3614 out:
3615 spin_lock(&block_group->lock);
3616 if (!ret && dcs == BTRFS_DC_SETUP)
3617 block_group->cache_generation = trans->transid;
3618 block_group->disk_cache_state = dcs;
3619 spin_unlock(&block_group->lock);
3621 extent_changeset_free(data_reserved);
3622 return ret;
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626 struct btrfs_fs_info *fs_info)
3628 struct btrfs_block_group_cache *cache, *tmp;
3629 struct btrfs_transaction *cur_trans = trans->transaction;
3630 struct btrfs_path *path;
3632 if (list_empty(&cur_trans->dirty_bgs) ||
3633 !btrfs_test_opt(fs_info, SPACE_CACHE))
3634 return 0;
3636 path = btrfs_alloc_path();
3637 if (!path)
3638 return -ENOMEM;
3640 /* Could add new block groups, use _safe just in case */
3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 dirty_list) {
3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 cache_save_setup(cache, trans, path);
3647 btrfs_free_path(path);
3648 return 0;
3652 * transaction commit does final block group cache writeback during a
3653 * critical section where nothing is allowed to change the FS. This is
3654 * required in order for the cache to actually match the block group,
3655 * but can introduce a lot of latency into the commit.
3657 * So, btrfs_start_dirty_block_groups is here to kick off block group
3658 * cache IO. There's a chance we'll have to redo some of it if the
3659 * block group changes again during the commit, but it greatly reduces
3660 * the commit latency by getting rid of the easy block groups while
3661 * we're still allowing others to join the commit.
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3664 struct btrfs_fs_info *fs_info)
3666 struct btrfs_block_group_cache *cache;
3667 struct btrfs_transaction *cur_trans = trans->transaction;
3668 int ret = 0;
3669 int should_put;
3670 struct btrfs_path *path = NULL;
3671 LIST_HEAD(dirty);
3672 struct list_head *io = &cur_trans->io_bgs;
3673 int num_started = 0;
3674 int loops = 0;
3676 spin_lock(&cur_trans->dirty_bgs_lock);
3677 if (list_empty(&cur_trans->dirty_bgs)) {
3678 spin_unlock(&cur_trans->dirty_bgs_lock);
3679 return 0;
3681 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682 spin_unlock(&cur_trans->dirty_bgs_lock);
3684 again:
3686 * make sure all the block groups on our dirty list actually
3687 * exist
3689 btrfs_create_pending_block_groups(trans, fs_info);
3691 if (!path) {
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3698 * cache_write_mutex is here only to save us from balance or automatic
3699 * removal of empty block groups deleting this block group while we are
3700 * writing out the cache
3702 mutex_lock(&trans->transaction->cache_write_mutex);
3703 while (!list_empty(&dirty)) {
3704 cache = list_first_entry(&dirty,
3705 struct btrfs_block_group_cache,
3706 dirty_list);
3708 * this can happen if something re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3712 if (!list_empty(&cache->io_list)) {
3713 list_del_init(&cache->io_list);
3714 btrfs_wait_cache_io(trans, cache, path);
3715 btrfs_put_block_group(cache);
3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 * if it should update the cache_state. Don't delete
3722 * until after we wait.
3724 * Since we're not running in the commit critical section
3725 * we need the dirty_bgs_lock to protect from update_block_group
3727 spin_lock(&cur_trans->dirty_bgs_lock);
3728 list_del_init(&cache->dirty_list);
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3731 should_put = 1;
3733 cache_save_setup(cache, trans, path);
3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 cache->io_ctl.inode = NULL;
3737 ret = btrfs_write_out_cache(fs_info, trans,
3738 cache, path);
3739 if (ret == 0 && cache->io_ctl.inode) {
3740 num_started++;
3741 should_put = 0;
3744 * the cache_write_mutex is protecting
3745 * the io_list
3747 list_add_tail(&cache->io_list, io);
3748 } else {
3750 * if we failed to write the cache, the
3751 * generation will be bad and life goes on
3753 ret = 0;
3756 if (!ret) {
3757 ret = write_one_cache_group(trans, fs_info,
3758 path, cache);
3760 * Our block group might still be attached to the list
3761 * of new block groups in the transaction handle of some
3762 * other task (struct btrfs_trans_handle->new_bgs). This
3763 * means its block group item isn't yet in the extent
3764 * tree. If this happens ignore the error, as we will
3765 * try again later in the critical section of the
3766 * transaction commit.
3768 if (ret == -ENOENT) {
3769 ret = 0;
3770 spin_lock(&cur_trans->dirty_bgs_lock);
3771 if (list_empty(&cache->dirty_list)) {
3772 list_add_tail(&cache->dirty_list,
3773 &cur_trans->dirty_bgs);
3774 btrfs_get_block_group(cache);
3776 spin_unlock(&cur_trans->dirty_bgs_lock);
3777 } else if (ret) {
3778 btrfs_abort_transaction(trans, ret);
3782 /* if its not on the io list, we need to put the block group */
3783 if (should_put)
3784 btrfs_put_block_group(cache);
3786 if (ret)
3787 break;
3790 * Avoid blocking other tasks for too long. It might even save
3791 * us from writing caches for block groups that are going to be
3792 * removed.
3794 mutex_unlock(&trans->transaction->cache_write_mutex);
3795 mutex_lock(&trans->transaction->cache_write_mutex);
3797 mutex_unlock(&trans->transaction->cache_write_mutex);
3800 * go through delayed refs for all the stuff we've just kicked off
3801 * and then loop back (just once)
3803 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3804 if (!ret && loops == 0) {
3805 loops++;
3806 spin_lock(&cur_trans->dirty_bgs_lock);
3807 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3809 * dirty_bgs_lock protects us from concurrent block group
3810 * deletes too (not just cache_write_mutex).
3812 if (!list_empty(&dirty)) {
3813 spin_unlock(&cur_trans->dirty_bgs_lock);
3814 goto again;
3816 spin_unlock(&cur_trans->dirty_bgs_lock);
3817 } else if (ret < 0) {
3818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3821 btrfs_free_path(path);
3822 return ret;
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3826 struct btrfs_fs_info *fs_info)
3828 struct btrfs_block_group_cache *cache;
3829 struct btrfs_transaction *cur_trans = trans->transaction;
3830 int ret = 0;
3831 int should_put;
3832 struct btrfs_path *path;
3833 struct list_head *io = &cur_trans->io_bgs;
3834 int num_started = 0;
3836 path = btrfs_alloc_path();
3837 if (!path)
3838 return -ENOMEM;
3841 * Even though we are in the critical section of the transaction commit,
3842 * we can still have concurrent tasks adding elements to this
3843 * transaction's list of dirty block groups. These tasks correspond to
3844 * endio free space workers started when writeback finishes for a
3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 * allocate new block groups as a result of COWing nodes of the root
3847 * tree when updating the free space inode. The writeback for the space
3848 * caches is triggered by an earlier call to
3849 * btrfs_start_dirty_block_groups() and iterations of the following
3850 * loop.
3851 * Also we want to do the cache_save_setup first and then run the
3852 * delayed refs to make sure we have the best chance at doing this all
3853 * in one shot.
3855 spin_lock(&cur_trans->dirty_bgs_lock);
3856 while (!list_empty(&cur_trans->dirty_bgs)) {
3857 cache = list_first_entry(&cur_trans->dirty_bgs,
3858 struct btrfs_block_group_cache,
3859 dirty_list);
3862 * this can happen if cache_save_setup re-dirties a block
3863 * group that is already under IO. Just wait for it to
3864 * finish and then do it all again
3866 if (!list_empty(&cache->io_list)) {
3867 spin_unlock(&cur_trans->dirty_bgs_lock);
3868 list_del_init(&cache->io_list);
3869 btrfs_wait_cache_io(trans, cache, path);
3870 btrfs_put_block_group(cache);
3871 spin_lock(&cur_trans->dirty_bgs_lock);
3875 * don't remove from the dirty list until after we've waited
3876 * on any pending IO
3878 list_del_init(&cache->dirty_list);
3879 spin_unlock(&cur_trans->dirty_bgs_lock);
3880 should_put = 1;
3882 cache_save_setup(cache, trans, path);
3884 if (!ret)
3885 ret = btrfs_run_delayed_refs(trans, fs_info,
3886 (unsigned long) -1);
3888 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889 cache->io_ctl.inode = NULL;
3890 ret = btrfs_write_out_cache(fs_info, trans,
3891 cache, path);
3892 if (ret == 0 && cache->io_ctl.inode) {
3893 num_started++;
3894 should_put = 0;
3895 list_add_tail(&cache->io_list, io);
3896 } else {
3898 * if we failed to write the cache, the
3899 * generation will be bad and life goes on
3901 ret = 0;
3904 if (!ret) {
3905 ret = write_one_cache_group(trans, fs_info,
3906 path, cache);
3908 * One of the free space endio workers might have
3909 * created a new block group while updating a free space
3910 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 * and hasn't released its transaction handle yet, in
3912 * which case the new block group is still attached to
3913 * its transaction handle and its creation has not
3914 * finished yet (no block group item in the extent tree
3915 * yet, etc). If this is the case, wait for all free
3916 * space endio workers to finish and retry. This is a
3917 * a very rare case so no need for a more efficient and
3918 * complex approach.
3920 if (ret == -ENOENT) {
3921 wait_event(cur_trans->writer_wait,
3922 atomic_read(&cur_trans->num_writers) == 1);
3923 ret = write_one_cache_group(trans, fs_info,
3924 path, cache);
3926 if (ret)
3927 btrfs_abort_transaction(trans, ret);
3930 /* if its not on the io list, we need to put the block group */
3931 if (should_put)
3932 btrfs_put_block_group(cache);
3933 spin_lock(&cur_trans->dirty_bgs_lock);
3935 spin_unlock(&cur_trans->dirty_bgs_lock);
3937 while (!list_empty(io)) {
3938 cache = list_first_entry(io, struct btrfs_block_group_cache,
3939 io_list);
3940 list_del_init(&cache->io_list);
3941 btrfs_wait_cache_io(trans, cache, path);
3942 btrfs_put_block_group(cache);
3945 btrfs_free_path(path);
3946 return ret;
3949 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3951 struct btrfs_block_group_cache *block_group;
3952 int readonly = 0;
3954 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3955 if (!block_group || block_group->ro)
3956 readonly = 1;
3957 if (block_group)
3958 btrfs_put_block_group(block_group);
3959 return readonly;
3962 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3964 struct btrfs_block_group_cache *bg;
3965 bool ret = true;
3967 bg = btrfs_lookup_block_group(fs_info, bytenr);
3968 if (!bg)
3969 return false;
3971 spin_lock(&bg->lock);
3972 if (bg->ro)
3973 ret = false;
3974 else
3975 atomic_inc(&bg->nocow_writers);
3976 spin_unlock(&bg->lock);
3978 /* no put on block group, done by btrfs_dec_nocow_writers */
3979 if (!ret)
3980 btrfs_put_block_group(bg);
3982 return ret;
3986 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3988 struct btrfs_block_group_cache *bg;
3990 bg = btrfs_lookup_block_group(fs_info, bytenr);
3991 ASSERT(bg);
3992 if (atomic_dec_and_test(&bg->nocow_writers))
3993 wake_up_atomic_t(&bg->nocow_writers);
3995 * Once for our lookup and once for the lookup done by a previous call
3996 * to btrfs_inc_nocow_writers()
3998 btrfs_put_block_group(bg);
3999 btrfs_put_block_group(bg);
4002 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4004 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4005 TASK_UNINTERRUPTIBLE);
4008 static const char *alloc_name(u64 flags)
4010 switch (flags) {
4011 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4012 return "mixed";
4013 case BTRFS_BLOCK_GROUP_METADATA:
4014 return "metadata";
4015 case BTRFS_BLOCK_GROUP_DATA:
4016 return "data";
4017 case BTRFS_BLOCK_GROUP_SYSTEM:
4018 return "system";
4019 default:
4020 WARN_ON(1);
4021 return "invalid-combination";
4025 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4026 struct btrfs_space_info **new)
4029 struct btrfs_space_info *space_info;
4030 int i;
4031 int ret;
4033 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4034 if (!space_info)
4035 return -ENOMEM;
4037 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4038 GFP_KERNEL);
4039 if (ret) {
4040 kfree(space_info);
4041 return ret;
4044 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4045 INIT_LIST_HEAD(&space_info->block_groups[i]);
4046 init_rwsem(&space_info->groups_sem);
4047 spin_lock_init(&space_info->lock);
4048 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4049 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4050 init_waitqueue_head(&space_info->wait);
4051 INIT_LIST_HEAD(&space_info->ro_bgs);
4052 INIT_LIST_HEAD(&space_info->tickets);
4053 INIT_LIST_HEAD(&space_info->priority_tickets);
4055 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4056 info->space_info_kobj, "%s",
4057 alloc_name(space_info->flags));
4058 if (ret) {
4059 percpu_counter_destroy(&space_info->total_bytes_pinned);
4060 kfree(space_info);
4061 return ret;
4064 *new = space_info;
4065 list_add_rcu(&space_info->list, &info->space_info);
4066 if (flags & BTRFS_BLOCK_GROUP_DATA)
4067 info->data_sinfo = space_info;
4069 return ret;
4072 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4073 u64 total_bytes, u64 bytes_used,
4074 u64 bytes_readonly,
4075 struct btrfs_space_info **space_info)
4077 struct btrfs_space_info *found;
4078 int factor;
4080 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4081 BTRFS_BLOCK_GROUP_RAID10))
4082 factor = 2;
4083 else
4084 factor = 1;
4086 found = __find_space_info(info, flags);
4087 ASSERT(found);
4088 spin_lock(&found->lock);
4089 found->total_bytes += total_bytes;
4090 found->disk_total += total_bytes * factor;
4091 found->bytes_used += bytes_used;
4092 found->disk_used += bytes_used * factor;
4093 found->bytes_readonly += bytes_readonly;
4094 if (total_bytes > 0)
4095 found->full = 0;
4096 space_info_add_new_bytes(info, found, total_bytes -
4097 bytes_used - bytes_readonly);
4098 spin_unlock(&found->lock);
4099 *space_info = found;
4102 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4104 u64 extra_flags = chunk_to_extended(flags) &
4105 BTRFS_EXTENDED_PROFILE_MASK;
4107 write_seqlock(&fs_info->profiles_lock);
4108 if (flags & BTRFS_BLOCK_GROUP_DATA)
4109 fs_info->avail_data_alloc_bits |= extra_flags;
4110 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4111 fs_info->avail_metadata_alloc_bits |= extra_flags;
4112 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113 fs_info->avail_system_alloc_bits |= extra_flags;
4114 write_sequnlock(&fs_info->profiles_lock);
4118 * returns target flags in extended format or 0 if restripe for this
4119 * chunk_type is not in progress
4121 * should be called with either volume_mutex or balance_lock held
4123 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4125 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4126 u64 target = 0;
4128 if (!bctl)
4129 return 0;
4131 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4132 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4133 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4134 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4135 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4137 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4138 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4142 return target;
4146 * @flags: available profiles in extended format (see ctree.h)
4148 * Returns reduced profile in chunk format. If profile changing is in
4149 * progress (either running or paused) picks the target profile (if it's
4150 * already available), otherwise falls back to plain reducing.
4152 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4154 u64 num_devices = fs_info->fs_devices->rw_devices;
4155 u64 target;
4156 u64 raid_type;
4157 u64 allowed = 0;
4160 * see if restripe for this chunk_type is in progress, if so
4161 * try to reduce to the target profile
4163 spin_lock(&fs_info->balance_lock);
4164 target = get_restripe_target(fs_info, flags);
4165 if (target) {
4166 /* pick target profile only if it's already available */
4167 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4168 spin_unlock(&fs_info->balance_lock);
4169 return extended_to_chunk(target);
4172 spin_unlock(&fs_info->balance_lock);
4174 /* First, mask out the RAID levels which aren't possible */
4175 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4176 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4177 allowed |= btrfs_raid_group[raid_type];
4179 allowed &= flags;
4181 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4182 allowed = BTRFS_BLOCK_GROUP_RAID6;
4183 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4184 allowed = BTRFS_BLOCK_GROUP_RAID5;
4185 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4186 allowed = BTRFS_BLOCK_GROUP_RAID10;
4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4188 allowed = BTRFS_BLOCK_GROUP_RAID1;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4190 allowed = BTRFS_BLOCK_GROUP_RAID0;
4192 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4194 return extended_to_chunk(flags | allowed);
4197 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4199 unsigned seq;
4200 u64 flags;
4202 do {
4203 flags = orig_flags;
4204 seq = read_seqbegin(&fs_info->profiles_lock);
4206 if (flags & BTRFS_BLOCK_GROUP_DATA)
4207 flags |= fs_info->avail_data_alloc_bits;
4208 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4209 flags |= fs_info->avail_system_alloc_bits;
4210 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4211 flags |= fs_info->avail_metadata_alloc_bits;
4212 } while (read_seqretry(&fs_info->profiles_lock, seq));
4214 return btrfs_reduce_alloc_profile(fs_info, flags);
4217 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4219 struct btrfs_fs_info *fs_info = root->fs_info;
4220 u64 flags;
4221 u64 ret;
4223 if (data)
4224 flags = BTRFS_BLOCK_GROUP_DATA;
4225 else if (root == fs_info->chunk_root)
4226 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4227 else
4228 flags = BTRFS_BLOCK_GROUP_METADATA;
4230 ret = get_alloc_profile(fs_info, flags);
4231 return ret;
4234 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4236 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4239 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4241 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4244 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4246 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4249 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4250 bool may_use_included)
4252 ASSERT(s_info);
4253 return s_info->bytes_used + s_info->bytes_reserved +
4254 s_info->bytes_pinned + s_info->bytes_readonly +
4255 (may_use_included ? s_info->bytes_may_use : 0);
4258 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4260 struct btrfs_root *root = inode->root;
4261 struct btrfs_fs_info *fs_info = root->fs_info;
4262 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4263 u64 used;
4264 int ret = 0;
4265 int need_commit = 2;
4266 int have_pinned_space;
4268 /* make sure bytes are sectorsize aligned */
4269 bytes = ALIGN(bytes, fs_info->sectorsize);
4271 if (btrfs_is_free_space_inode(inode)) {
4272 need_commit = 0;
4273 ASSERT(current->journal_info);
4276 again:
4277 /* make sure we have enough space to handle the data first */
4278 spin_lock(&data_sinfo->lock);
4279 used = btrfs_space_info_used(data_sinfo, true);
4281 if (used + bytes > data_sinfo->total_bytes) {
4282 struct btrfs_trans_handle *trans;
4285 * if we don't have enough free bytes in this space then we need
4286 * to alloc a new chunk.
4288 if (!data_sinfo->full) {
4289 u64 alloc_target;
4291 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4292 spin_unlock(&data_sinfo->lock);
4294 alloc_target = btrfs_data_alloc_profile(fs_info);
4296 * It is ugly that we don't call nolock join
4297 * transaction for the free space inode case here.
4298 * But it is safe because we only do the data space
4299 * reservation for the free space cache in the
4300 * transaction context, the common join transaction
4301 * just increase the counter of the current transaction
4302 * handler, doesn't try to acquire the trans_lock of
4303 * the fs.
4305 trans = btrfs_join_transaction(root);
4306 if (IS_ERR(trans))
4307 return PTR_ERR(trans);
4309 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4310 CHUNK_ALLOC_NO_FORCE);
4311 btrfs_end_transaction(trans);
4312 if (ret < 0) {
4313 if (ret != -ENOSPC)
4314 return ret;
4315 else {
4316 have_pinned_space = 1;
4317 goto commit_trans;
4321 goto again;
4325 * If we don't have enough pinned space to deal with this
4326 * allocation, and no removed chunk in current transaction,
4327 * don't bother committing the transaction.
4329 have_pinned_space = percpu_counter_compare(
4330 &data_sinfo->total_bytes_pinned,
4331 used + bytes - data_sinfo->total_bytes);
4332 spin_unlock(&data_sinfo->lock);
4334 /* commit the current transaction and try again */
4335 commit_trans:
4336 if (need_commit &&
4337 !atomic_read(&fs_info->open_ioctl_trans)) {
4338 need_commit--;
4340 if (need_commit > 0) {
4341 btrfs_start_delalloc_roots(fs_info, 0, -1);
4342 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4343 (u64)-1);
4346 trans = btrfs_join_transaction(root);
4347 if (IS_ERR(trans))
4348 return PTR_ERR(trans);
4349 if (have_pinned_space >= 0 ||
4350 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4351 &trans->transaction->flags) ||
4352 need_commit > 0) {
4353 ret = btrfs_commit_transaction(trans);
4354 if (ret)
4355 return ret;
4357 * The cleaner kthread might still be doing iput
4358 * operations. Wait for it to finish so that
4359 * more space is released.
4361 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4362 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4363 goto again;
4364 } else {
4365 btrfs_end_transaction(trans);
4369 trace_btrfs_space_reservation(fs_info,
4370 "space_info:enospc",
4371 data_sinfo->flags, bytes, 1);
4372 return -ENOSPC;
4374 data_sinfo->bytes_may_use += bytes;
4375 trace_btrfs_space_reservation(fs_info, "space_info",
4376 data_sinfo->flags, bytes, 1);
4377 spin_unlock(&data_sinfo->lock);
4379 return ret;
4382 int btrfs_check_data_free_space(struct inode *inode,
4383 struct extent_changeset **reserved, u64 start, u64 len)
4385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4386 int ret;
4388 /* align the range */
4389 len = round_up(start + len, fs_info->sectorsize) -
4390 round_down(start, fs_info->sectorsize);
4391 start = round_down(start, fs_info->sectorsize);
4393 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4394 if (ret < 0)
4395 return ret;
4397 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4398 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4399 if (ret < 0)
4400 btrfs_free_reserved_data_space_noquota(inode, start, len);
4401 else
4402 ret = 0;
4403 return ret;
4407 * Called if we need to clear a data reservation for this inode
4408 * Normally in a error case.
4410 * This one will *NOT* use accurate qgroup reserved space API, just for case
4411 * which we can't sleep and is sure it won't affect qgroup reserved space.
4412 * Like clear_bit_hook().
4414 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4415 u64 len)
4417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4418 struct btrfs_space_info *data_sinfo;
4420 /* Make sure the range is aligned to sectorsize */
4421 len = round_up(start + len, fs_info->sectorsize) -
4422 round_down(start, fs_info->sectorsize);
4423 start = round_down(start, fs_info->sectorsize);
4425 data_sinfo = fs_info->data_sinfo;
4426 spin_lock(&data_sinfo->lock);
4427 if (WARN_ON(data_sinfo->bytes_may_use < len))
4428 data_sinfo->bytes_may_use = 0;
4429 else
4430 data_sinfo->bytes_may_use -= len;
4431 trace_btrfs_space_reservation(fs_info, "space_info",
4432 data_sinfo->flags, len, 0);
4433 spin_unlock(&data_sinfo->lock);
4437 * Called if we need to clear a data reservation for this inode
4438 * Normally in a error case.
4440 * This one will handle the per-inode data rsv map for accurate reserved
4441 * space framework.
4443 void btrfs_free_reserved_data_space(struct inode *inode,
4444 struct extent_changeset *reserved, u64 start, u64 len)
4446 struct btrfs_root *root = BTRFS_I(inode)->root;
4448 /* Make sure the range is aligned to sectorsize */
4449 len = round_up(start + len, root->fs_info->sectorsize) -
4450 round_down(start, root->fs_info->sectorsize);
4451 start = round_down(start, root->fs_info->sectorsize);
4453 btrfs_free_reserved_data_space_noquota(inode, start, len);
4454 btrfs_qgroup_free_data(inode, reserved, start, len);
4457 static void force_metadata_allocation(struct btrfs_fs_info *info)
4459 struct list_head *head = &info->space_info;
4460 struct btrfs_space_info *found;
4462 rcu_read_lock();
4463 list_for_each_entry_rcu(found, head, list) {
4464 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4465 found->force_alloc = CHUNK_ALLOC_FORCE;
4467 rcu_read_unlock();
4470 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4472 return (global->size << 1);
4475 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4476 struct btrfs_space_info *sinfo, int force)
4478 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4479 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4480 u64 thresh;
4482 if (force == CHUNK_ALLOC_FORCE)
4483 return 1;
4486 * We need to take into account the global rsv because for all intents
4487 * and purposes it's used space. Don't worry about locking the
4488 * global_rsv, it doesn't change except when the transaction commits.
4490 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4491 bytes_used += calc_global_rsv_need_space(global_rsv);
4494 * in limited mode, we want to have some free space up to
4495 * about 1% of the FS size.
4497 if (force == CHUNK_ALLOC_LIMITED) {
4498 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4499 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4501 if (sinfo->total_bytes - bytes_used < thresh)
4502 return 1;
4505 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4506 return 0;
4507 return 1;
4510 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4512 u64 num_dev;
4514 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4515 BTRFS_BLOCK_GROUP_RAID0 |
4516 BTRFS_BLOCK_GROUP_RAID5 |
4517 BTRFS_BLOCK_GROUP_RAID6))
4518 num_dev = fs_info->fs_devices->rw_devices;
4519 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4520 num_dev = 2;
4521 else
4522 num_dev = 1; /* DUP or single */
4524 return num_dev;
4528 * If @is_allocation is true, reserve space in the system space info necessary
4529 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4530 * removing a chunk.
4532 void check_system_chunk(struct btrfs_trans_handle *trans,
4533 struct btrfs_fs_info *fs_info, u64 type)
4535 struct btrfs_space_info *info;
4536 u64 left;
4537 u64 thresh;
4538 int ret = 0;
4539 u64 num_devs;
4542 * Needed because we can end up allocating a system chunk and for an
4543 * atomic and race free space reservation in the chunk block reserve.
4545 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4547 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4548 spin_lock(&info->lock);
4549 left = info->total_bytes - btrfs_space_info_used(info, true);
4550 spin_unlock(&info->lock);
4552 num_devs = get_profile_num_devs(fs_info, type);
4554 /* num_devs device items to update and 1 chunk item to add or remove */
4555 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4556 btrfs_calc_trans_metadata_size(fs_info, 1);
4558 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4560 left, thresh, type);
4561 dump_space_info(fs_info, info, 0, 0);
4564 if (left < thresh) {
4565 u64 flags = btrfs_system_alloc_profile(fs_info);
4568 * Ignore failure to create system chunk. We might end up not
4569 * needing it, as we might not need to COW all nodes/leafs from
4570 * the paths we visit in the chunk tree (they were already COWed
4571 * or created in the current transaction for example).
4573 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4576 if (!ret) {
4577 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4578 &fs_info->chunk_block_rsv,
4579 thresh, BTRFS_RESERVE_NO_FLUSH);
4580 if (!ret)
4581 trans->chunk_bytes_reserved += thresh;
4586 * If force is CHUNK_ALLOC_FORCE:
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4589 * If force is NOT CHUNK_ALLOC_FORCE:
4590 * - return 0 if it doesn't need to allocate a new chunk,
4591 * - return 1 if it successfully allocates a chunk,
4592 * - return errors including -ENOSPC otherwise.
4594 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4595 struct btrfs_fs_info *fs_info, u64 flags, int force)
4597 struct btrfs_space_info *space_info;
4598 int wait_for_alloc = 0;
4599 int ret = 0;
4601 /* Don't re-enter if we're already allocating a chunk */
4602 if (trans->allocating_chunk)
4603 return -ENOSPC;
4605 space_info = __find_space_info(fs_info, flags);
4606 if (!space_info) {
4607 ret = create_space_info(fs_info, flags, &space_info);
4608 if (ret)
4609 return ret;
4612 again:
4613 spin_lock(&space_info->lock);
4614 if (force < space_info->force_alloc)
4615 force = space_info->force_alloc;
4616 if (space_info->full) {
4617 if (should_alloc_chunk(fs_info, space_info, force))
4618 ret = -ENOSPC;
4619 else
4620 ret = 0;
4621 spin_unlock(&space_info->lock);
4622 return ret;
4625 if (!should_alloc_chunk(fs_info, space_info, force)) {
4626 spin_unlock(&space_info->lock);
4627 return 0;
4628 } else if (space_info->chunk_alloc) {
4629 wait_for_alloc = 1;
4630 } else {
4631 space_info->chunk_alloc = 1;
4634 spin_unlock(&space_info->lock);
4636 mutex_lock(&fs_info->chunk_mutex);
4639 * The chunk_mutex is held throughout the entirety of a chunk
4640 * allocation, so once we've acquired the chunk_mutex we know that the
4641 * other guy is done and we need to recheck and see if we should
4642 * allocate.
4644 if (wait_for_alloc) {
4645 mutex_unlock(&fs_info->chunk_mutex);
4646 wait_for_alloc = 0;
4647 goto again;
4650 trans->allocating_chunk = true;
4653 * If we have mixed data/metadata chunks we want to make sure we keep
4654 * allocating mixed chunks instead of individual chunks.
4656 if (btrfs_mixed_space_info(space_info))
4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4660 * if we're doing a data chunk, go ahead and make sure that
4661 * we keep a reasonable number of metadata chunks allocated in the
4662 * FS as well.
4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4665 fs_info->data_chunk_allocations++;
4666 if (!(fs_info->data_chunk_allocations %
4667 fs_info->metadata_ratio))
4668 force_metadata_allocation(fs_info);
4672 * Check if we have enough space in SYSTEM chunk because we may need
4673 * to update devices.
4675 check_system_chunk(trans, fs_info, flags);
4677 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4678 trans->allocating_chunk = false;
4680 spin_lock(&space_info->lock);
4681 if (ret < 0 && ret != -ENOSPC)
4682 goto out;
4683 if (ret)
4684 space_info->full = 1;
4685 else
4686 ret = 1;
4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4689 out:
4690 space_info->chunk_alloc = 0;
4691 spin_unlock(&space_info->lock);
4692 mutex_unlock(&fs_info->chunk_mutex);
4694 * When we allocate a new chunk we reserve space in the chunk block
4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 * add new nodes/leafs to it if we end up needing to do it when
4697 * inserting the chunk item and updating device items as part of the
4698 * second phase of chunk allocation, performed by
4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 * large number of new block groups to create in our transaction
4701 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 * in extreme cases - like having a single transaction create many new
4703 * block groups when starting to write out the free space caches of all
4704 * the block groups that were made dirty during the lifetime of the
4705 * transaction.
4707 if (trans->can_flush_pending_bgs &&
4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4709 btrfs_create_pending_block_groups(trans, fs_info);
4710 btrfs_trans_release_chunk_metadata(trans);
4712 return ret;
4715 static int can_overcommit(struct btrfs_fs_info *fs_info,
4716 struct btrfs_space_info *space_info, u64 bytes,
4717 enum btrfs_reserve_flush_enum flush,
4718 bool system_chunk)
4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4721 u64 profile;
4722 u64 space_size;
4723 u64 avail;
4724 u64 used;
4726 /* Don't overcommit when in mixed mode. */
4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 return 0;
4730 if (system_chunk)
4731 profile = btrfs_system_alloc_profile(fs_info);
4732 else
4733 profile = btrfs_metadata_alloc_profile(fs_info);
4735 used = btrfs_space_info_used(space_info, false);
4738 * We only want to allow over committing if we have lots of actual space
4739 * free, but if we don't have enough space to handle the global reserve
4740 * space then we could end up having a real enospc problem when trying
4741 * to allocate a chunk or some other such important allocation.
4743 spin_lock(&global_rsv->lock);
4744 space_size = calc_global_rsv_need_space(global_rsv);
4745 spin_unlock(&global_rsv->lock);
4746 if (used + space_size >= space_info->total_bytes)
4747 return 0;
4749 used += space_info->bytes_may_use;
4751 avail = atomic64_read(&fs_info->free_chunk_space);
4754 * If we have dup, raid1 or raid10 then only half of the free
4755 * space is actually useable. For raid56, the space info used
4756 * doesn't include the parity drive, so we don't have to
4757 * change the math
4759 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 BTRFS_BLOCK_GROUP_RAID1 |
4761 BTRFS_BLOCK_GROUP_RAID10))
4762 avail >>= 1;
4765 * If we aren't flushing all things, let us overcommit up to
4766 * 1/2th of the space. If we can flush, don't let us overcommit
4767 * too much, let it overcommit up to 1/8 of the space.
4769 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4770 avail >>= 3;
4771 else
4772 avail >>= 1;
4774 if (used + bytes < space_info->total_bytes + avail)
4775 return 1;
4776 return 0;
4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4780 unsigned long nr_pages, int nr_items)
4782 struct super_block *sb = fs_info->sb;
4784 if (down_read_trylock(&sb->s_umount)) {
4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 up_read(&sb->s_umount);
4787 } else {
4789 * We needn't worry the filesystem going from r/w to r/o though
4790 * we don't acquire ->s_umount mutex, because the filesystem
4791 * should guarantee the delalloc inodes list be empty after
4792 * the filesystem is readonly(all dirty pages are written to
4793 * the disk).
4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4796 if (!current->journal_info)
4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4801 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4802 u64 to_reclaim)
4804 u64 bytes;
4805 u64 nr;
4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4808 nr = div64_u64(to_reclaim, bytes);
4809 if (!nr)
4810 nr = 1;
4811 return nr;
4814 #define EXTENT_SIZE_PER_ITEM SZ_256K
4817 * shrink metadata reservation for delalloc
4819 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 u64 orig, bool wait_ordered)
4822 struct btrfs_space_info *space_info;
4823 struct btrfs_trans_handle *trans;
4824 u64 delalloc_bytes;
4825 u64 max_reclaim;
4826 u64 items;
4827 long time_left;
4828 unsigned long nr_pages;
4829 int loops;
4830 enum btrfs_reserve_flush_enum flush;
4832 /* Calc the number of the pages we need flush for space reservation */
4833 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4834 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4836 trans = (struct btrfs_trans_handle *)current->journal_info;
4837 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4839 delalloc_bytes = percpu_counter_sum_positive(
4840 &fs_info->delalloc_bytes);
4841 if (delalloc_bytes == 0) {
4842 if (trans)
4843 return;
4844 if (wait_ordered)
4845 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4846 return;
4849 loops = 0;
4850 while (delalloc_bytes && loops < 3) {
4851 max_reclaim = min(delalloc_bytes, to_reclaim);
4852 nr_pages = max_reclaim >> PAGE_SHIFT;
4853 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4855 * We need to wait for the async pages to actually start before
4856 * we do anything.
4858 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4859 if (!max_reclaim)
4860 goto skip_async;
4862 if (max_reclaim <= nr_pages)
4863 max_reclaim = 0;
4864 else
4865 max_reclaim -= nr_pages;
4867 wait_event(fs_info->async_submit_wait,
4868 atomic_read(&fs_info->async_delalloc_pages) <=
4869 (int)max_reclaim);
4870 skip_async:
4871 if (!trans)
4872 flush = BTRFS_RESERVE_FLUSH_ALL;
4873 else
4874 flush = BTRFS_RESERVE_NO_FLUSH;
4875 spin_lock(&space_info->lock);
4876 if (list_empty(&space_info->tickets) &&
4877 list_empty(&space_info->priority_tickets)) {
4878 spin_unlock(&space_info->lock);
4879 break;
4881 spin_unlock(&space_info->lock);
4883 loops++;
4884 if (wait_ordered && !trans) {
4885 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4886 } else {
4887 time_left = schedule_timeout_killable(1);
4888 if (time_left)
4889 break;
4891 delalloc_bytes = percpu_counter_sum_positive(
4892 &fs_info->delalloc_bytes);
4896 struct reserve_ticket {
4897 u64 bytes;
4898 int error;
4899 struct list_head list;
4900 wait_queue_head_t wait;
4904 * maybe_commit_transaction - possibly commit the transaction if its ok to
4905 * @root - the root we're allocating for
4906 * @bytes - the number of bytes we want to reserve
4907 * @force - force the commit
4909 * This will check to make sure that committing the transaction will actually
4910 * get us somewhere and then commit the transaction if it does. Otherwise it
4911 * will return -ENOSPC.
4913 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4914 struct btrfs_space_info *space_info)
4916 struct reserve_ticket *ticket = NULL;
4917 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4918 struct btrfs_trans_handle *trans;
4919 u64 bytes;
4921 trans = (struct btrfs_trans_handle *)current->journal_info;
4922 if (trans)
4923 return -EAGAIN;
4925 spin_lock(&space_info->lock);
4926 if (!list_empty(&space_info->priority_tickets))
4927 ticket = list_first_entry(&space_info->priority_tickets,
4928 struct reserve_ticket, list);
4929 else if (!list_empty(&space_info->tickets))
4930 ticket = list_first_entry(&space_info->tickets,
4931 struct reserve_ticket, list);
4932 bytes = (ticket) ? ticket->bytes : 0;
4933 spin_unlock(&space_info->lock);
4935 if (!bytes)
4936 return 0;
4938 /* See if there is enough pinned space to make this reservation */
4939 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4940 bytes) >= 0)
4941 goto commit;
4944 * See if there is some space in the delayed insertion reservation for
4945 * this reservation.
4947 if (space_info != delayed_rsv->space_info)
4948 return -ENOSPC;
4950 spin_lock(&delayed_rsv->lock);
4951 if (delayed_rsv->size > bytes)
4952 bytes = 0;
4953 else
4954 bytes -= delayed_rsv->size;
4955 spin_unlock(&delayed_rsv->lock);
4957 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4958 bytes) < 0) {
4959 return -ENOSPC;
4962 commit:
4963 trans = btrfs_join_transaction(fs_info->extent_root);
4964 if (IS_ERR(trans))
4965 return -ENOSPC;
4967 return btrfs_commit_transaction(trans);
4971 * Try to flush some data based on policy set by @state. This is only advisory
4972 * and may fail for various reasons. The caller is supposed to examine the
4973 * state of @space_info to detect the outcome.
4975 static void flush_space(struct btrfs_fs_info *fs_info,
4976 struct btrfs_space_info *space_info, u64 num_bytes,
4977 int state)
4979 struct btrfs_root *root = fs_info->extent_root;
4980 struct btrfs_trans_handle *trans;
4981 int nr;
4982 int ret = 0;
4984 switch (state) {
4985 case FLUSH_DELAYED_ITEMS_NR:
4986 case FLUSH_DELAYED_ITEMS:
4987 if (state == FLUSH_DELAYED_ITEMS_NR)
4988 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4989 else
4990 nr = -1;
4992 trans = btrfs_join_transaction(root);
4993 if (IS_ERR(trans)) {
4994 ret = PTR_ERR(trans);
4995 break;
4997 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4998 btrfs_end_transaction(trans);
4999 break;
5000 case FLUSH_DELALLOC:
5001 case FLUSH_DELALLOC_WAIT:
5002 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5003 state == FLUSH_DELALLOC_WAIT);
5004 break;
5005 case ALLOC_CHUNK:
5006 trans = btrfs_join_transaction(root);
5007 if (IS_ERR(trans)) {
5008 ret = PTR_ERR(trans);
5009 break;
5011 ret = do_chunk_alloc(trans, fs_info,
5012 btrfs_metadata_alloc_profile(fs_info),
5013 CHUNK_ALLOC_NO_FORCE);
5014 btrfs_end_transaction(trans);
5015 if (ret > 0 || ret == -ENOSPC)
5016 ret = 0;
5017 break;
5018 case COMMIT_TRANS:
5019 ret = may_commit_transaction(fs_info, space_info);
5020 break;
5021 default:
5022 ret = -ENOSPC;
5023 break;
5026 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5027 ret);
5028 return;
5031 static inline u64
5032 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5033 struct btrfs_space_info *space_info,
5034 bool system_chunk)
5036 struct reserve_ticket *ticket;
5037 u64 used;
5038 u64 expected;
5039 u64 to_reclaim = 0;
5041 list_for_each_entry(ticket, &space_info->tickets, list)
5042 to_reclaim += ticket->bytes;
5043 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5044 to_reclaim += ticket->bytes;
5045 if (to_reclaim)
5046 return to_reclaim;
5048 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5049 if (can_overcommit(fs_info, space_info, to_reclaim,
5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5051 return 0;
5053 used = btrfs_space_info_used(space_info, true);
5055 if (can_overcommit(fs_info, space_info, SZ_1M,
5056 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5057 expected = div_factor_fine(space_info->total_bytes, 95);
5058 else
5059 expected = div_factor_fine(space_info->total_bytes, 90);
5061 if (used > expected)
5062 to_reclaim = used - expected;
5063 else
5064 to_reclaim = 0;
5065 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5066 space_info->bytes_reserved);
5067 return to_reclaim;
5070 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5071 struct btrfs_space_info *space_info,
5072 u64 used, bool system_chunk)
5074 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5076 /* If we're just plain full then async reclaim just slows us down. */
5077 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5078 return 0;
5080 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081 system_chunk))
5082 return 0;
5084 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5085 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5088 static void wake_all_tickets(struct list_head *head)
5090 struct reserve_ticket *ticket;
5092 while (!list_empty(head)) {
5093 ticket = list_first_entry(head, struct reserve_ticket, list);
5094 list_del_init(&ticket->list);
5095 ticket->error = -ENOSPC;
5096 wake_up(&ticket->wait);
5101 * This is for normal flushers, we can wait all goddamned day if we want to. We
5102 * will loop and continuously try to flush as long as we are making progress.
5103 * We count progress as clearing off tickets each time we have to loop.
5105 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5107 struct btrfs_fs_info *fs_info;
5108 struct btrfs_space_info *space_info;
5109 u64 to_reclaim;
5110 int flush_state;
5111 int commit_cycles = 0;
5112 u64 last_tickets_id;
5114 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5115 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5117 spin_lock(&space_info->lock);
5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 false);
5120 if (!to_reclaim) {
5121 space_info->flush = 0;
5122 spin_unlock(&space_info->lock);
5123 return;
5125 last_tickets_id = space_info->tickets_id;
5126 spin_unlock(&space_info->lock);
5128 flush_state = FLUSH_DELAYED_ITEMS_NR;
5129 do {
5130 flush_space(fs_info, space_info, to_reclaim, flush_state);
5131 spin_lock(&space_info->lock);
5132 if (list_empty(&space_info->tickets)) {
5133 space_info->flush = 0;
5134 spin_unlock(&space_info->lock);
5135 return;
5137 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5138 space_info,
5139 false);
5140 if (last_tickets_id == space_info->tickets_id) {
5141 flush_state++;
5142 } else {
5143 last_tickets_id = space_info->tickets_id;
5144 flush_state = FLUSH_DELAYED_ITEMS_NR;
5145 if (commit_cycles)
5146 commit_cycles--;
5149 if (flush_state > COMMIT_TRANS) {
5150 commit_cycles++;
5151 if (commit_cycles > 2) {
5152 wake_all_tickets(&space_info->tickets);
5153 space_info->flush = 0;
5154 } else {
5155 flush_state = FLUSH_DELAYED_ITEMS_NR;
5158 spin_unlock(&space_info->lock);
5159 } while (flush_state <= COMMIT_TRANS);
5162 void btrfs_init_async_reclaim_work(struct work_struct *work)
5164 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5167 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5168 struct btrfs_space_info *space_info,
5169 struct reserve_ticket *ticket)
5171 u64 to_reclaim;
5172 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5174 spin_lock(&space_info->lock);
5175 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5176 false);
5177 if (!to_reclaim) {
5178 spin_unlock(&space_info->lock);
5179 return;
5181 spin_unlock(&space_info->lock);
5183 do {
5184 flush_space(fs_info, space_info, to_reclaim, flush_state);
5185 flush_state++;
5186 spin_lock(&space_info->lock);
5187 if (ticket->bytes == 0) {
5188 spin_unlock(&space_info->lock);
5189 return;
5191 spin_unlock(&space_info->lock);
5194 * Priority flushers can't wait on delalloc without
5195 * deadlocking.
5197 if (flush_state == FLUSH_DELALLOC ||
5198 flush_state == FLUSH_DELALLOC_WAIT)
5199 flush_state = ALLOC_CHUNK;
5200 } while (flush_state < COMMIT_TRANS);
5203 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5204 struct btrfs_space_info *space_info,
5205 struct reserve_ticket *ticket, u64 orig_bytes)
5208 DEFINE_WAIT(wait);
5209 int ret = 0;
5211 spin_lock(&space_info->lock);
5212 while (ticket->bytes > 0 && ticket->error == 0) {
5213 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5214 if (ret) {
5215 ret = -EINTR;
5216 break;
5218 spin_unlock(&space_info->lock);
5220 schedule();
5222 finish_wait(&ticket->wait, &wait);
5223 spin_lock(&space_info->lock);
5225 if (!ret)
5226 ret = ticket->error;
5227 if (!list_empty(&ticket->list))
5228 list_del_init(&ticket->list);
5229 if (ticket->bytes && ticket->bytes < orig_bytes) {
5230 u64 num_bytes = orig_bytes - ticket->bytes;
5231 space_info->bytes_may_use -= num_bytes;
5232 trace_btrfs_space_reservation(fs_info, "space_info",
5233 space_info->flags, num_bytes, 0);
5235 spin_unlock(&space_info->lock);
5237 return ret;
5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242 * @root - the root we're allocating for
5243 * @space_info - the space info we want to allocate from
5244 * @orig_bytes - the number of bytes we want
5245 * @flush - whether or not we can flush to make our reservation
5247 * This will reserve orig_bytes number of bytes from the space info associated
5248 * with the block_rsv. If there is not enough space it will make an attempt to
5249 * flush out space to make room. It will do this by flushing delalloc if
5250 * possible or committing the transaction. If flush is 0 then no attempts to
5251 * regain reservations will be made and this will fail if there is not enough
5252 * space already.
5254 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5255 struct btrfs_space_info *space_info,
5256 u64 orig_bytes,
5257 enum btrfs_reserve_flush_enum flush,
5258 bool system_chunk)
5260 struct reserve_ticket ticket;
5261 u64 used;
5262 int ret = 0;
5264 ASSERT(orig_bytes);
5265 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5267 spin_lock(&space_info->lock);
5268 ret = -ENOSPC;
5269 used = btrfs_space_info_used(space_info, true);
5272 * If we have enough space then hooray, make our reservation and carry
5273 * on. If not see if we can overcommit, and if we can, hooray carry on.
5274 * If not things get more complicated.
5276 if (used + orig_bytes <= space_info->total_bytes) {
5277 space_info->bytes_may_use += orig_bytes;
5278 trace_btrfs_space_reservation(fs_info, "space_info",
5279 space_info->flags, orig_bytes, 1);
5280 ret = 0;
5281 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5282 system_chunk)) {
5283 space_info->bytes_may_use += orig_bytes;
5284 trace_btrfs_space_reservation(fs_info, "space_info",
5285 space_info->flags, orig_bytes, 1);
5286 ret = 0;
5290 * If we couldn't make a reservation then setup our reservation ticket
5291 * and kick the async worker if it's not already running.
5293 * If we are a priority flusher then we just need to add our ticket to
5294 * the list and we will do our own flushing further down.
5296 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5297 ticket.bytes = orig_bytes;
5298 ticket.error = 0;
5299 init_waitqueue_head(&ticket.wait);
5300 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5301 list_add_tail(&ticket.list, &space_info->tickets);
5302 if (!space_info->flush) {
5303 space_info->flush = 1;
5304 trace_btrfs_trigger_flush(fs_info,
5305 space_info->flags,
5306 orig_bytes, flush,
5307 "enospc");
5308 queue_work(system_unbound_wq,
5309 &fs_info->async_reclaim_work);
5311 } else {
5312 list_add_tail(&ticket.list,
5313 &space_info->priority_tickets);
5315 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5316 used += orig_bytes;
5318 * We will do the space reservation dance during log replay,
5319 * which means we won't have fs_info->fs_root set, so don't do
5320 * the async reclaim as we will panic.
5322 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5323 need_do_async_reclaim(fs_info, space_info,
5324 used, system_chunk) &&
5325 !work_busy(&fs_info->async_reclaim_work)) {
5326 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5327 orig_bytes, flush, "preempt");
5328 queue_work(system_unbound_wq,
5329 &fs_info->async_reclaim_work);
5332 spin_unlock(&space_info->lock);
5333 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5334 return ret;
5336 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5337 return wait_reserve_ticket(fs_info, space_info, &ticket,
5338 orig_bytes);
5340 ret = 0;
5341 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5342 spin_lock(&space_info->lock);
5343 if (ticket.bytes) {
5344 if (ticket.bytes < orig_bytes) {
5345 u64 num_bytes = orig_bytes - ticket.bytes;
5346 space_info->bytes_may_use -= num_bytes;
5347 trace_btrfs_space_reservation(fs_info, "space_info",
5348 space_info->flags,
5349 num_bytes, 0);
5352 list_del_init(&ticket.list);
5353 ret = -ENOSPC;
5355 spin_unlock(&space_info->lock);
5356 ASSERT(list_empty(&ticket.list));
5357 return ret;
5361 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362 * @root - the root we're allocating for
5363 * @block_rsv - the block_rsv we're allocating for
5364 * @orig_bytes - the number of bytes we want
5365 * @flush - whether or not we can flush to make our reservation
5367 * This will reserve orgi_bytes number of bytes from the space info associated
5368 * with the block_rsv. If there is not enough space it will make an attempt to
5369 * flush out space to make room. It will do this by flushing delalloc if
5370 * possible or committing the transaction. If flush is 0 then no attempts to
5371 * regain reservations will be made and this will fail if there is not enough
5372 * space already.
5374 static int reserve_metadata_bytes(struct btrfs_root *root,
5375 struct btrfs_block_rsv *block_rsv,
5376 u64 orig_bytes,
5377 enum btrfs_reserve_flush_enum flush)
5379 struct btrfs_fs_info *fs_info = root->fs_info;
5380 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5381 int ret;
5382 bool system_chunk = (root == fs_info->chunk_root);
5384 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5385 orig_bytes, flush, system_chunk);
5386 if (ret == -ENOSPC &&
5387 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5388 if (block_rsv != global_rsv &&
5389 !block_rsv_use_bytes(global_rsv, orig_bytes))
5390 ret = 0;
5392 if (ret == -ENOSPC)
5393 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5394 block_rsv->space_info->flags,
5395 orig_bytes, 1);
5396 return ret;
5399 static struct btrfs_block_rsv *get_block_rsv(
5400 const struct btrfs_trans_handle *trans,
5401 const struct btrfs_root *root)
5403 struct btrfs_fs_info *fs_info = root->fs_info;
5404 struct btrfs_block_rsv *block_rsv = NULL;
5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5407 (root == fs_info->csum_root && trans->adding_csums) ||
5408 (root == fs_info->uuid_root))
5409 block_rsv = trans->block_rsv;
5411 if (!block_rsv)
5412 block_rsv = root->block_rsv;
5414 if (!block_rsv)
5415 block_rsv = &fs_info->empty_block_rsv;
5417 return block_rsv;
5420 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 u64 num_bytes)
5423 int ret = -ENOSPC;
5424 spin_lock(&block_rsv->lock);
5425 if (block_rsv->reserved >= num_bytes) {
5426 block_rsv->reserved -= num_bytes;
5427 if (block_rsv->reserved < block_rsv->size)
5428 block_rsv->full = 0;
5429 ret = 0;
5431 spin_unlock(&block_rsv->lock);
5432 return ret;
5435 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 u64 num_bytes, int update_size)
5438 spin_lock(&block_rsv->lock);
5439 block_rsv->reserved += num_bytes;
5440 if (update_size)
5441 block_rsv->size += num_bytes;
5442 else if (block_rsv->reserved >= block_rsv->size)
5443 block_rsv->full = 1;
5444 spin_unlock(&block_rsv->lock);
5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 struct btrfs_block_rsv *dest, u64 num_bytes,
5449 int min_factor)
5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 u64 min_bytes;
5454 if (global_rsv->space_info != dest->space_info)
5455 return -ENOSPC;
5457 spin_lock(&global_rsv->lock);
5458 min_bytes = div_factor(global_rsv->size, min_factor);
5459 if (global_rsv->reserved < min_bytes + num_bytes) {
5460 spin_unlock(&global_rsv->lock);
5461 return -ENOSPC;
5463 global_rsv->reserved -= num_bytes;
5464 if (global_rsv->reserved < global_rsv->size)
5465 global_rsv->full = 0;
5466 spin_unlock(&global_rsv->lock);
5468 block_rsv_add_bytes(dest, num_bytes, 1);
5469 return 0;
5473 * This is for space we already have accounted in space_info->bytes_may_use, so
5474 * basically when we're returning space from block_rsv's.
5476 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 struct btrfs_space_info *space_info,
5478 u64 num_bytes)
5480 struct reserve_ticket *ticket;
5481 struct list_head *head;
5482 u64 used;
5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 bool check_overcommit = false;
5486 spin_lock(&space_info->lock);
5487 head = &space_info->priority_tickets;
5490 * If we are over our limit then we need to check and see if we can
5491 * overcommit, and if we can't then we just need to free up our space
5492 * and not satisfy any requests.
5494 used = btrfs_space_info_used(space_info, true);
5495 if (used - num_bytes >= space_info->total_bytes)
5496 check_overcommit = true;
5497 again:
5498 while (!list_empty(head) && num_bytes) {
5499 ticket = list_first_entry(head, struct reserve_ticket,
5500 list);
5502 * We use 0 bytes because this space is already reserved, so
5503 * adding the ticket space would be a double count.
5505 if (check_overcommit &&
5506 !can_overcommit(fs_info, space_info, 0, flush, false))
5507 break;
5508 if (num_bytes >= ticket->bytes) {
5509 list_del_init(&ticket->list);
5510 num_bytes -= ticket->bytes;
5511 ticket->bytes = 0;
5512 space_info->tickets_id++;
5513 wake_up(&ticket->wait);
5514 } else {
5515 ticket->bytes -= num_bytes;
5516 num_bytes = 0;
5520 if (num_bytes && head == &space_info->priority_tickets) {
5521 head = &space_info->tickets;
5522 flush = BTRFS_RESERVE_FLUSH_ALL;
5523 goto again;
5525 space_info->bytes_may_use -= num_bytes;
5526 trace_btrfs_space_reservation(fs_info, "space_info",
5527 space_info->flags, num_bytes, 0);
5528 spin_unlock(&space_info->lock);
5532 * This is for newly allocated space that isn't accounted in
5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5534 * we use this helper.
5536 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 struct btrfs_space_info *space_info,
5538 u64 num_bytes)
5540 struct reserve_ticket *ticket;
5541 struct list_head *head = &space_info->priority_tickets;
5543 again:
5544 while (!list_empty(head) && num_bytes) {
5545 ticket = list_first_entry(head, struct reserve_ticket,
5546 list);
5547 if (num_bytes >= ticket->bytes) {
5548 trace_btrfs_space_reservation(fs_info, "space_info",
5549 space_info->flags,
5550 ticket->bytes, 1);
5551 list_del_init(&ticket->list);
5552 num_bytes -= ticket->bytes;
5553 space_info->bytes_may_use += ticket->bytes;
5554 ticket->bytes = 0;
5555 space_info->tickets_id++;
5556 wake_up(&ticket->wait);
5557 } else {
5558 trace_btrfs_space_reservation(fs_info, "space_info",
5559 space_info->flags,
5560 num_bytes, 1);
5561 space_info->bytes_may_use += num_bytes;
5562 ticket->bytes -= num_bytes;
5563 num_bytes = 0;
5567 if (num_bytes && head == &space_info->priority_tickets) {
5568 head = &space_info->tickets;
5569 goto again;
5573 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5574 struct btrfs_block_rsv *block_rsv,
5575 struct btrfs_block_rsv *dest, u64 num_bytes)
5577 struct btrfs_space_info *space_info = block_rsv->space_info;
5578 u64 ret;
5580 spin_lock(&block_rsv->lock);
5581 if (num_bytes == (u64)-1)
5582 num_bytes = block_rsv->size;
5583 block_rsv->size -= num_bytes;
5584 if (block_rsv->reserved >= block_rsv->size) {
5585 num_bytes = block_rsv->reserved - block_rsv->size;
5586 block_rsv->reserved = block_rsv->size;
5587 block_rsv->full = 1;
5588 } else {
5589 num_bytes = 0;
5591 spin_unlock(&block_rsv->lock);
5593 ret = num_bytes;
5594 if (num_bytes > 0) {
5595 if (dest) {
5596 spin_lock(&dest->lock);
5597 if (!dest->full) {
5598 u64 bytes_to_add;
5600 bytes_to_add = dest->size - dest->reserved;
5601 bytes_to_add = min(num_bytes, bytes_to_add);
5602 dest->reserved += bytes_to_add;
5603 if (dest->reserved >= dest->size)
5604 dest->full = 1;
5605 num_bytes -= bytes_to_add;
5607 spin_unlock(&dest->lock);
5609 if (num_bytes)
5610 space_info_add_old_bytes(fs_info, space_info,
5611 num_bytes);
5613 return ret;
5616 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5617 struct btrfs_block_rsv *dst, u64 num_bytes,
5618 int update_size)
5620 int ret;
5622 ret = block_rsv_use_bytes(src, num_bytes);
5623 if (ret)
5624 return ret;
5626 block_rsv_add_bytes(dst, num_bytes, update_size);
5627 return 0;
5630 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5632 memset(rsv, 0, sizeof(*rsv));
5633 spin_lock_init(&rsv->lock);
5634 rsv->type = type;
5637 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5638 struct btrfs_block_rsv *rsv,
5639 unsigned short type)
5641 btrfs_init_block_rsv(rsv, type);
5642 rsv->space_info = __find_space_info(fs_info,
5643 BTRFS_BLOCK_GROUP_METADATA);
5646 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5647 unsigned short type)
5649 struct btrfs_block_rsv *block_rsv;
5651 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5652 if (!block_rsv)
5653 return NULL;
5655 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5656 return block_rsv;
5659 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5660 struct btrfs_block_rsv *rsv)
5662 if (!rsv)
5663 return;
5664 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5665 kfree(rsv);
5668 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5670 kfree(rsv);
5673 int btrfs_block_rsv_add(struct btrfs_root *root,
5674 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5675 enum btrfs_reserve_flush_enum flush)
5677 int ret;
5679 if (num_bytes == 0)
5680 return 0;
5682 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5683 if (!ret) {
5684 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5685 return 0;
5688 return ret;
5691 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5693 u64 num_bytes = 0;
5694 int ret = -ENOSPC;
5696 if (!block_rsv)
5697 return 0;
5699 spin_lock(&block_rsv->lock);
5700 num_bytes = div_factor(block_rsv->size, min_factor);
5701 if (block_rsv->reserved >= num_bytes)
5702 ret = 0;
5703 spin_unlock(&block_rsv->lock);
5705 return ret;
5708 int btrfs_block_rsv_refill(struct btrfs_root *root,
5709 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5710 enum btrfs_reserve_flush_enum flush)
5712 u64 num_bytes = 0;
5713 int ret = -ENOSPC;
5715 if (!block_rsv)
5716 return 0;
5718 spin_lock(&block_rsv->lock);
5719 num_bytes = min_reserved;
5720 if (block_rsv->reserved >= num_bytes)
5721 ret = 0;
5722 else
5723 num_bytes -= block_rsv->reserved;
5724 spin_unlock(&block_rsv->lock);
5726 if (!ret)
5727 return 0;
5729 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5730 if (!ret) {
5731 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5732 return 0;
5735 return ret;
5739 * btrfs_inode_rsv_refill - refill the inode block rsv.
5740 * @inode - the inode we are refilling.
5741 * @flush - the flusing restriction.
5743 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5744 * block_rsv->size as the minimum size. We'll either refill the missing amount
5745 * or return if we already have enough space. This will also handle the resreve
5746 * tracepoint for the reserved amount.
5748 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5749 enum btrfs_reserve_flush_enum flush)
5751 struct btrfs_root *root = inode->root;
5752 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5753 u64 num_bytes = 0;
5754 int ret = -ENOSPC;
5756 spin_lock(&block_rsv->lock);
5757 if (block_rsv->reserved < block_rsv->size)
5758 num_bytes = block_rsv->size - block_rsv->reserved;
5759 spin_unlock(&block_rsv->lock);
5761 if (num_bytes == 0)
5762 return 0;
5764 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5765 if (!ret) {
5766 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5767 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5768 btrfs_ino(inode), num_bytes, 1);
5770 return ret;
5774 * btrfs_inode_rsv_release - release any excessive reservation.
5775 * @inode - the inode we need to release from.
5777 * This is the same as btrfs_block_rsv_release, except that it handles the
5778 * tracepoint for the reservation.
5780 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5782 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5783 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5784 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5785 u64 released = 0;
5788 * Since we statically set the block_rsv->size we just want to say we
5789 * are releasing 0 bytes, and then we'll just get the reservation over
5790 * the size free'd.
5792 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5793 if (released > 0)
5794 trace_btrfs_space_reservation(fs_info, "delalloc",
5795 btrfs_ino(inode), released, 0);
5798 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5799 struct btrfs_block_rsv *block_rsv,
5800 u64 num_bytes)
5802 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5804 if (global_rsv == block_rsv ||
5805 block_rsv->space_info != global_rsv->space_info)
5806 global_rsv = NULL;
5807 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5812 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5813 struct btrfs_space_info *sinfo = block_rsv->space_info;
5814 u64 num_bytes;
5817 * The global block rsv is based on the size of the extent tree, the
5818 * checksum tree and the root tree. If the fs is empty we want to set
5819 * it to a minimal amount for safety.
5821 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5822 btrfs_root_used(&fs_info->csum_root->root_item) +
5823 btrfs_root_used(&fs_info->tree_root->root_item);
5824 num_bytes = max_t(u64, num_bytes, SZ_16M);
5826 spin_lock(&sinfo->lock);
5827 spin_lock(&block_rsv->lock);
5829 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5831 if (block_rsv->reserved < block_rsv->size) {
5832 num_bytes = btrfs_space_info_used(sinfo, true);
5833 if (sinfo->total_bytes > num_bytes) {
5834 num_bytes = sinfo->total_bytes - num_bytes;
5835 num_bytes = min(num_bytes,
5836 block_rsv->size - block_rsv->reserved);
5837 block_rsv->reserved += num_bytes;
5838 sinfo->bytes_may_use += num_bytes;
5839 trace_btrfs_space_reservation(fs_info, "space_info",
5840 sinfo->flags, num_bytes,
5843 } else if (block_rsv->reserved > block_rsv->size) {
5844 num_bytes = block_rsv->reserved - block_rsv->size;
5845 sinfo->bytes_may_use -= num_bytes;
5846 trace_btrfs_space_reservation(fs_info, "space_info",
5847 sinfo->flags, num_bytes, 0);
5848 block_rsv->reserved = block_rsv->size;
5851 if (block_rsv->reserved == block_rsv->size)
5852 block_rsv->full = 1;
5853 else
5854 block_rsv->full = 0;
5856 spin_unlock(&block_rsv->lock);
5857 spin_unlock(&sinfo->lock);
5860 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5862 struct btrfs_space_info *space_info;
5864 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5865 fs_info->chunk_block_rsv.space_info = space_info;
5867 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5868 fs_info->global_block_rsv.space_info = space_info;
5869 fs_info->trans_block_rsv.space_info = space_info;
5870 fs_info->empty_block_rsv.space_info = space_info;
5871 fs_info->delayed_block_rsv.space_info = space_info;
5873 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5874 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5875 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5876 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5877 if (fs_info->quota_root)
5878 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5879 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5881 update_global_block_rsv(fs_info);
5884 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5886 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5887 (u64)-1);
5888 WARN_ON(fs_info->trans_block_rsv.size > 0);
5889 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5890 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5891 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5892 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5893 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5896 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5897 struct btrfs_fs_info *fs_info)
5899 if (!trans->block_rsv) {
5900 ASSERT(!trans->bytes_reserved);
5901 return;
5904 if (!trans->bytes_reserved)
5905 return;
5907 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5908 trace_btrfs_space_reservation(fs_info, "transaction",
5909 trans->transid, trans->bytes_reserved, 0);
5910 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5911 trans->bytes_reserved);
5912 trans->bytes_reserved = 0;
5916 * To be called after all the new block groups attached to the transaction
5917 * handle have been created (btrfs_create_pending_block_groups()).
5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5921 struct btrfs_fs_info *fs_info = trans->fs_info;
5923 if (!trans->chunk_bytes_reserved)
5924 return;
5926 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5928 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5929 trans->chunk_bytes_reserved);
5930 trans->chunk_bytes_reserved = 0;
5933 /* Can only return 0 or -ENOSPC */
5934 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5935 struct btrfs_inode *inode)
5937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938 struct btrfs_root *root = inode->root;
5940 * We always use trans->block_rsv here as we will have reserved space
5941 * for our orphan when starting the transaction, using get_block_rsv()
5942 * here will sometimes make us choose the wrong block rsv as we could be
5943 * doing a reloc inode for a non refcounted root.
5945 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5946 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5949 * We need to hold space in order to delete our orphan item once we've
5950 * added it, so this takes the reservation so we can release it later
5951 * when we are truly done with the orphan item.
5953 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5955 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5956 num_bytes, 1);
5957 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5960 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5963 struct btrfs_root *root = inode->root;
5964 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5966 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5967 num_bytes, 0);
5968 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5972 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5973 * root: the root of the parent directory
5974 * rsv: block reservation
5975 * items: the number of items that we need do reservation
5976 * qgroup_reserved: used to return the reserved size in qgroup
5978 * This function is used to reserve the space for snapshot/subvolume
5979 * creation and deletion. Those operations are different with the
5980 * common file/directory operations, they change two fs/file trees
5981 * and root tree, the number of items that the qgroup reserves is
5982 * different with the free space reservation. So we can not use
5983 * the space reservation mechanism in start_transaction().
5985 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5986 struct btrfs_block_rsv *rsv,
5987 int items,
5988 u64 *qgroup_reserved,
5989 bool use_global_rsv)
5991 u64 num_bytes;
5992 int ret;
5993 struct btrfs_fs_info *fs_info = root->fs_info;
5994 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5996 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5997 /* One for parent inode, two for dir entries */
5998 num_bytes = 3 * fs_info->nodesize;
5999 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
6000 if (ret)
6001 return ret;
6002 } else {
6003 num_bytes = 0;
6006 *qgroup_reserved = num_bytes;
6008 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6009 rsv->space_info = __find_space_info(fs_info,
6010 BTRFS_BLOCK_GROUP_METADATA);
6011 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6012 BTRFS_RESERVE_FLUSH_ALL);
6014 if (ret == -ENOSPC && use_global_rsv)
6015 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6017 if (ret && *qgroup_reserved)
6018 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6020 return ret;
6023 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6024 struct btrfs_block_rsv *rsv)
6026 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6029 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6030 struct btrfs_inode *inode)
6032 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6033 u64 reserve_size = 0;
6034 u64 csum_leaves;
6035 unsigned outstanding_extents;
6037 lockdep_assert_held(&inode->lock);
6038 outstanding_extents = inode->outstanding_extents;
6039 if (outstanding_extents)
6040 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6041 outstanding_extents + 1);
6042 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6043 inode->csum_bytes);
6044 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6045 csum_leaves);
6047 spin_lock(&block_rsv->lock);
6048 block_rsv->size = reserve_size;
6049 spin_unlock(&block_rsv->lock);
6052 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6055 struct btrfs_root *root = inode->root;
6056 unsigned nr_extents;
6057 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6058 int ret = 0;
6059 bool delalloc_lock = true;
6061 /* If we are a free space inode we need to not flush since we will be in
6062 * the middle of a transaction commit. We also don't need the delalloc
6063 * mutex since we won't race with anybody. We need this mostly to make
6064 * lockdep shut its filthy mouth.
6066 * If we have a transaction open (can happen if we call truncate_block
6067 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6069 if (btrfs_is_free_space_inode(inode)) {
6070 flush = BTRFS_RESERVE_NO_FLUSH;
6071 delalloc_lock = false;
6072 } else if (current->journal_info) {
6073 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6076 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6077 btrfs_transaction_in_commit(fs_info))
6078 schedule_timeout(1);
6080 if (delalloc_lock)
6081 mutex_lock(&inode->delalloc_mutex);
6083 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6085 /* Add our new extents and calculate the new rsv size. */
6086 spin_lock(&inode->lock);
6087 nr_extents = count_max_extents(num_bytes);
6088 btrfs_mod_outstanding_extents(inode, nr_extents);
6089 inode->csum_bytes += num_bytes;
6090 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6091 spin_unlock(&inode->lock);
6093 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6094 ret = btrfs_qgroup_reserve_meta(root,
6095 nr_extents * fs_info->nodesize, true);
6096 if (ret)
6097 goto out_fail;
6100 ret = btrfs_inode_rsv_refill(inode, flush);
6101 if (unlikely(ret)) {
6102 btrfs_qgroup_free_meta(root,
6103 nr_extents * fs_info->nodesize);
6104 goto out_fail;
6107 if (delalloc_lock)
6108 mutex_unlock(&inode->delalloc_mutex);
6109 return 0;
6111 out_fail:
6112 spin_lock(&inode->lock);
6113 nr_extents = count_max_extents(num_bytes);
6114 btrfs_mod_outstanding_extents(inode, -nr_extents);
6115 inode->csum_bytes -= num_bytes;
6116 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6117 spin_unlock(&inode->lock);
6119 btrfs_inode_rsv_release(inode);
6120 if (delalloc_lock)
6121 mutex_unlock(&inode->delalloc_mutex);
6122 return ret;
6126 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6127 * @inode: the inode to release the reservation for.
6128 * @num_bytes: the number of bytes we are releasing.
6130 * This will release the metadata reservation for an inode. This can be called
6131 * once we complete IO for a given set of bytes to release their metadata
6132 * reservations, or on error for the same reason.
6134 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6138 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6139 spin_lock(&inode->lock);
6140 inode->csum_bytes -= num_bytes;
6141 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6142 spin_unlock(&inode->lock);
6144 if (btrfs_is_testing(fs_info))
6145 return;
6147 btrfs_inode_rsv_release(inode);
6151 * btrfs_delalloc_release_extents - release our outstanding_extents
6152 * @inode: the inode to balance the reservation for.
6153 * @num_bytes: the number of bytes we originally reserved with
6155 * When we reserve space we increase outstanding_extents for the extents we may
6156 * add. Once we've set the range as delalloc or created our ordered extents we
6157 * have outstanding_extents to track the real usage, so we use this to free our
6158 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6159 * with btrfs_delalloc_reserve_metadata.
6161 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6164 unsigned num_extents;
6166 spin_lock(&inode->lock);
6167 num_extents = count_max_extents(num_bytes);
6168 btrfs_mod_outstanding_extents(inode, -num_extents);
6169 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6170 spin_unlock(&inode->lock);
6172 if (btrfs_is_testing(fs_info))
6173 return;
6175 btrfs_inode_rsv_release(inode);
6179 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6180 * delalloc
6181 * @inode: inode we're writing to
6182 * @start: start range we are writing to
6183 * @len: how long the range we are writing to
6184 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6185 * current reservation.
6187 * This will do the following things
6189 * o reserve space in data space info for num bytes
6190 * and reserve precious corresponding qgroup space
6191 * (Done in check_data_free_space)
6193 * o reserve space for metadata space, based on the number of outstanding
6194 * extents and how much csums will be needed
6195 * also reserve metadata space in a per root over-reserve method.
6196 * o add to the inodes->delalloc_bytes
6197 * o add it to the fs_info's delalloc inodes list.
6198 * (Above 3 all done in delalloc_reserve_metadata)
6200 * Return 0 for success
6201 * Return <0 for error(-ENOSPC or -EQUOT)
6203 int btrfs_delalloc_reserve_space(struct inode *inode,
6204 struct extent_changeset **reserved, u64 start, u64 len)
6206 int ret;
6208 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6209 if (ret < 0)
6210 return ret;
6211 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6212 if (ret < 0)
6213 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6214 return ret;
6218 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6219 * @inode: inode we're releasing space for
6220 * @start: start position of the space already reserved
6221 * @len: the len of the space already reserved
6222 * @release_bytes: the len of the space we consumed or didn't use
6224 * This function will release the metadata space that was not used and will
6225 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6226 * list if there are no delalloc bytes left.
6227 * Also it will handle the qgroup reserved space.
6229 void btrfs_delalloc_release_space(struct inode *inode,
6230 struct extent_changeset *reserved,
6231 u64 start, u64 len)
6233 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6234 btrfs_free_reserved_data_space(inode, reserved, start, len);
6237 static int update_block_group(struct btrfs_trans_handle *trans,
6238 struct btrfs_fs_info *info, u64 bytenr,
6239 u64 num_bytes, int alloc)
6241 struct btrfs_block_group_cache *cache = NULL;
6242 u64 total = num_bytes;
6243 u64 old_val;
6244 u64 byte_in_group;
6245 int factor;
6247 /* block accounting for super block */
6248 spin_lock(&info->delalloc_root_lock);
6249 old_val = btrfs_super_bytes_used(info->super_copy);
6250 if (alloc)
6251 old_val += num_bytes;
6252 else
6253 old_val -= num_bytes;
6254 btrfs_set_super_bytes_used(info->super_copy, old_val);
6255 spin_unlock(&info->delalloc_root_lock);
6257 while (total) {
6258 cache = btrfs_lookup_block_group(info, bytenr);
6259 if (!cache)
6260 return -ENOENT;
6261 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6262 BTRFS_BLOCK_GROUP_RAID1 |
6263 BTRFS_BLOCK_GROUP_RAID10))
6264 factor = 2;
6265 else
6266 factor = 1;
6268 * If this block group has free space cache written out, we
6269 * need to make sure to load it if we are removing space. This
6270 * is because we need the unpinning stage to actually add the
6271 * space back to the block group, otherwise we will leak space.
6273 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6274 cache_block_group(cache, 1);
6276 byte_in_group = bytenr - cache->key.objectid;
6277 WARN_ON(byte_in_group > cache->key.offset);
6279 spin_lock(&cache->space_info->lock);
6280 spin_lock(&cache->lock);
6282 if (btrfs_test_opt(info, SPACE_CACHE) &&
6283 cache->disk_cache_state < BTRFS_DC_CLEAR)
6284 cache->disk_cache_state = BTRFS_DC_CLEAR;
6286 old_val = btrfs_block_group_used(&cache->item);
6287 num_bytes = min(total, cache->key.offset - byte_in_group);
6288 if (alloc) {
6289 old_val += num_bytes;
6290 btrfs_set_block_group_used(&cache->item, old_val);
6291 cache->reserved -= num_bytes;
6292 cache->space_info->bytes_reserved -= num_bytes;
6293 cache->space_info->bytes_used += num_bytes;
6294 cache->space_info->disk_used += num_bytes * factor;
6295 spin_unlock(&cache->lock);
6296 spin_unlock(&cache->space_info->lock);
6297 } else {
6298 old_val -= num_bytes;
6299 btrfs_set_block_group_used(&cache->item, old_val);
6300 cache->pinned += num_bytes;
6301 cache->space_info->bytes_pinned += num_bytes;
6302 cache->space_info->bytes_used -= num_bytes;
6303 cache->space_info->disk_used -= num_bytes * factor;
6304 spin_unlock(&cache->lock);
6305 spin_unlock(&cache->space_info->lock);
6307 trace_btrfs_space_reservation(info, "pinned",
6308 cache->space_info->flags,
6309 num_bytes, 1);
6310 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6311 num_bytes);
6312 set_extent_dirty(info->pinned_extents,
6313 bytenr, bytenr + num_bytes - 1,
6314 GFP_NOFS | __GFP_NOFAIL);
6317 spin_lock(&trans->transaction->dirty_bgs_lock);
6318 if (list_empty(&cache->dirty_list)) {
6319 list_add_tail(&cache->dirty_list,
6320 &trans->transaction->dirty_bgs);
6321 trans->transaction->num_dirty_bgs++;
6322 btrfs_get_block_group(cache);
6324 spin_unlock(&trans->transaction->dirty_bgs_lock);
6327 * No longer have used bytes in this block group, queue it for
6328 * deletion. We do this after adding the block group to the
6329 * dirty list to avoid races between cleaner kthread and space
6330 * cache writeout.
6332 if (!alloc && old_val == 0) {
6333 spin_lock(&info->unused_bgs_lock);
6334 if (list_empty(&cache->bg_list)) {
6335 btrfs_get_block_group(cache);
6336 list_add_tail(&cache->bg_list,
6337 &info->unused_bgs);
6339 spin_unlock(&info->unused_bgs_lock);
6342 btrfs_put_block_group(cache);
6343 total -= num_bytes;
6344 bytenr += num_bytes;
6346 return 0;
6349 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6351 struct btrfs_block_group_cache *cache;
6352 u64 bytenr;
6354 spin_lock(&fs_info->block_group_cache_lock);
6355 bytenr = fs_info->first_logical_byte;
6356 spin_unlock(&fs_info->block_group_cache_lock);
6358 if (bytenr < (u64)-1)
6359 return bytenr;
6361 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6362 if (!cache)
6363 return 0;
6365 bytenr = cache->key.objectid;
6366 btrfs_put_block_group(cache);
6368 return bytenr;
6371 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6372 struct btrfs_block_group_cache *cache,
6373 u64 bytenr, u64 num_bytes, int reserved)
6375 spin_lock(&cache->space_info->lock);
6376 spin_lock(&cache->lock);
6377 cache->pinned += num_bytes;
6378 cache->space_info->bytes_pinned += num_bytes;
6379 if (reserved) {
6380 cache->reserved -= num_bytes;
6381 cache->space_info->bytes_reserved -= num_bytes;
6383 spin_unlock(&cache->lock);
6384 spin_unlock(&cache->space_info->lock);
6386 trace_btrfs_space_reservation(fs_info, "pinned",
6387 cache->space_info->flags, num_bytes, 1);
6388 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6389 set_extent_dirty(fs_info->pinned_extents, bytenr,
6390 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6391 return 0;
6395 * this function must be called within transaction
6397 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6398 u64 bytenr, u64 num_bytes, int reserved)
6400 struct btrfs_block_group_cache *cache;
6402 cache = btrfs_lookup_block_group(fs_info, bytenr);
6403 BUG_ON(!cache); /* Logic error */
6405 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6407 btrfs_put_block_group(cache);
6408 return 0;
6412 * this function must be called within transaction
6414 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6415 u64 bytenr, u64 num_bytes)
6417 struct btrfs_block_group_cache *cache;
6418 int ret;
6420 cache = btrfs_lookup_block_group(fs_info, bytenr);
6421 if (!cache)
6422 return -EINVAL;
6425 * pull in the free space cache (if any) so that our pin
6426 * removes the free space from the cache. We have load_only set
6427 * to one because the slow code to read in the free extents does check
6428 * the pinned extents.
6430 cache_block_group(cache, 1);
6432 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6434 /* remove us from the free space cache (if we're there at all) */
6435 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6436 btrfs_put_block_group(cache);
6437 return ret;
6440 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6441 u64 start, u64 num_bytes)
6443 int ret;
6444 struct btrfs_block_group_cache *block_group;
6445 struct btrfs_caching_control *caching_ctl;
6447 block_group = btrfs_lookup_block_group(fs_info, start);
6448 if (!block_group)
6449 return -EINVAL;
6451 cache_block_group(block_group, 0);
6452 caching_ctl = get_caching_control(block_group);
6454 if (!caching_ctl) {
6455 /* Logic error */
6456 BUG_ON(!block_group_cache_done(block_group));
6457 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6458 } else {
6459 mutex_lock(&caching_ctl->mutex);
6461 if (start >= caching_ctl->progress) {
6462 ret = add_excluded_extent(fs_info, start, num_bytes);
6463 } else if (start + num_bytes <= caching_ctl->progress) {
6464 ret = btrfs_remove_free_space(block_group,
6465 start, num_bytes);
6466 } else {
6467 num_bytes = caching_ctl->progress - start;
6468 ret = btrfs_remove_free_space(block_group,
6469 start, num_bytes);
6470 if (ret)
6471 goto out_lock;
6473 num_bytes = (start + num_bytes) -
6474 caching_ctl->progress;
6475 start = caching_ctl->progress;
6476 ret = add_excluded_extent(fs_info, start, num_bytes);
6478 out_lock:
6479 mutex_unlock(&caching_ctl->mutex);
6480 put_caching_control(caching_ctl);
6482 btrfs_put_block_group(block_group);
6483 return ret;
6486 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6487 struct extent_buffer *eb)
6489 struct btrfs_file_extent_item *item;
6490 struct btrfs_key key;
6491 int found_type;
6492 int i;
6494 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6495 return 0;
6497 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6498 btrfs_item_key_to_cpu(eb, &key, i);
6499 if (key.type != BTRFS_EXTENT_DATA_KEY)
6500 continue;
6501 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6502 found_type = btrfs_file_extent_type(eb, item);
6503 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6504 continue;
6505 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6506 continue;
6507 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6508 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6509 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6512 return 0;
6515 static void
6516 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6518 atomic_inc(&bg->reservations);
6521 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522 const u64 start)
6524 struct btrfs_block_group_cache *bg;
6526 bg = btrfs_lookup_block_group(fs_info, start);
6527 ASSERT(bg);
6528 if (atomic_dec_and_test(&bg->reservations))
6529 wake_up_atomic_t(&bg->reservations);
6530 btrfs_put_block_group(bg);
6533 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6535 struct btrfs_space_info *space_info = bg->space_info;
6537 ASSERT(bg->ro);
6539 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6540 return;
6543 * Our block group is read only but before we set it to read only,
6544 * some task might have had allocated an extent from it already, but it
6545 * has not yet created a respective ordered extent (and added it to a
6546 * root's list of ordered extents).
6547 * Therefore wait for any task currently allocating extents, since the
6548 * block group's reservations counter is incremented while a read lock
6549 * on the groups' semaphore is held and decremented after releasing
6550 * the read access on that semaphore and creating the ordered extent.
6552 down_write(&space_info->groups_sem);
6553 up_write(&space_info->groups_sem);
6555 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6556 TASK_UNINTERRUPTIBLE);
6560 * btrfs_add_reserved_bytes - update the block_group and space info counters
6561 * @cache: The cache we are manipulating
6562 * @ram_bytes: The number of bytes of file content, and will be same to
6563 * @num_bytes except for the compress path.
6564 * @num_bytes: The number of bytes in question
6565 * @delalloc: The blocks are allocated for the delalloc write
6567 * This is called by the allocator when it reserves space. If this is a
6568 * reservation and the block group has become read only we cannot make the
6569 * reservation and return -EAGAIN, otherwise this function always succeeds.
6571 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6572 u64 ram_bytes, u64 num_bytes, int delalloc)
6574 struct btrfs_space_info *space_info = cache->space_info;
6575 int ret = 0;
6577 spin_lock(&space_info->lock);
6578 spin_lock(&cache->lock);
6579 if (cache->ro) {
6580 ret = -EAGAIN;
6581 } else {
6582 cache->reserved += num_bytes;
6583 space_info->bytes_reserved += num_bytes;
6585 trace_btrfs_space_reservation(cache->fs_info,
6586 "space_info", space_info->flags,
6587 ram_bytes, 0);
6588 space_info->bytes_may_use -= ram_bytes;
6589 if (delalloc)
6590 cache->delalloc_bytes += num_bytes;
6592 spin_unlock(&cache->lock);
6593 spin_unlock(&space_info->lock);
6594 return ret;
6598 * btrfs_free_reserved_bytes - update the block_group and space info counters
6599 * @cache: The cache we are manipulating
6600 * @num_bytes: The number of bytes in question
6601 * @delalloc: The blocks are allocated for the delalloc write
6603 * This is called by somebody who is freeing space that was never actually used
6604 * on disk. For example if you reserve some space for a new leaf in transaction
6605 * A and before transaction A commits you free that leaf, you call this with
6606 * reserve set to 0 in order to clear the reservation.
6609 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6610 u64 num_bytes, int delalloc)
6612 struct btrfs_space_info *space_info = cache->space_info;
6613 int ret = 0;
6615 spin_lock(&space_info->lock);
6616 spin_lock(&cache->lock);
6617 if (cache->ro)
6618 space_info->bytes_readonly += num_bytes;
6619 cache->reserved -= num_bytes;
6620 space_info->bytes_reserved -= num_bytes;
6622 if (delalloc)
6623 cache->delalloc_bytes -= num_bytes;
6624 spin_unlock(&cache->lock);
6625 spin_unlock(&space_info->lock);
6626 return ret;
6628 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6630 struct btrfs_caching_control *next;
6631 struct btrfs_caching_control *caching_ctl;
6632 struct btrfs_block_group_cache *cache;
6634 down_write(&fs_info->commit_root_sem);
6636 list_for_each_entry_safe(caching_ctl, next,
6637 &fs_info->caching_block_groups, list) {
6638 cache = caching_ctl->block_group;
6639 if (block_group_cache_done(cache)) {
6640 cache->last_byte_to_unpin = (u64)-1;
6641 list_del_init(&caching_ctl->list);
6642 put_caching_control(caching_ctl);
6643 } else {
6644 cache->last_byte_to_unpin = caching_ctl->progress;
6648 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6649 fs_info->pinned_extents = &fs_info->freed_extents[1];
6650 else
6651 fs_info->pinned_extents = &fs_info->freed_extents[0];
6653 up_write(&fs_info->commit_root_sem);
6655 update_global_block_rsv(fs_info);
6659 * Returns the free cluster for the given space info and sets empty_cluster to
6660 * what it should be based on the mount options.
6662 static struct btrfs_free_cluster *
6663 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6664 struct btrfs_space_info *space_info, u64 *empty_cluster)
6666 struct btrfs_free_cluster *ret = NULL;
6668 *empty_cluster = 0;
6669 if (btrfs_mixed_space_info(space_info))
6670 return ret;
6672 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6673 ret = &fs_info->meta_alloc_cluster;
6674 if (btrfs_test_opt(fs_info, SSD))
6675 *empty_cluster = SZ_2M;
6676 else
6677 *empty_cluster = SZ_64K;
6678 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6679 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6680 *empty_cluster = SZ_2M;
6681 ret = &fs_info->data_alloc_cluster;
6684 return ret;
6687 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6688 u64 start, u64 end,
6689 const bool return_free_space)
6691 struct btrfs_block_group_cache *cache = NULL;
6692 struct btrfs_space_info *space_info;
6693 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6694 struct btrfs_free_cluster *cluster = NULL;
6695 u64 len;
6696 u64 total_unpinned = 0;
6697 u64 empty_cluster = 0;
6698 bool readonly;
6700 while (start <= end) {
6701 readonly = false;
6702 if (!cache ||
6703 start >= cache->key.objectid + cache->key.offset) {
6704 if (cache)
6705 btrfs_put_block_group(cache);
6706 total_unpinned = 0;
6707 cache = btrfs_lookup_block_group(fs_info, start);
6708 BUG_ON(!cache); /* Logic error */
6710 cluster = fetch_cluster_info(fs_info,
6711 cache->space_info,
6712 &empty_cluster);
6713 empty_cluster <<= 1;
6716 len = cache->key.objectid + cache->key.offset - start;
6717 len = min(len, end + 1 - start);
6719 if (start < cache->last_byte_to_unpin) {
6720 len = min(len, cache->last_byte_to_unpin - start);
6721 if (return_free_space)
6722 btrfs_add_free_space(cache, start, len);
6725 start += len;
6726 total_unpinned += len;
6727 space_info = cache->space_info;
6730 * If this space cluster has been marked as fragmented and we've
6731 * unpinned enough in this block group to potentially allow a
6732 * cluster to be created inside of it go ahead and clear the
6733 * fragmented check.
6735 if (cluster && cluster->fragmented &&
6736 total_unpinned > empty_cluster) {
6737 spin_lock(&cluster->lock);
6738 cluster->fragmented = 0;
6739 spin_unlock(&cluster->lock);
6742 spin_lock(&space_info->lock);
6743 spin_lock(&cache->lock);
6744 cache->pinned -= len;
6745 space_info->bytes_pinned -= len;
6747 trace_btrfs_space_reservation(fs_info, "pinned",
6748 space_info->flags, len, 0);
6749 space_info->max_extent_size = 0;
6750 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6751 if (cache->ro) {
6752 space_info->bytes_readonly += len;
6753 readonly = true;
6755 spin_unlock(&cache->lock);
6756 if (!readonly && return_free_space &&
6757 global_rsv->space_info == space_info) {
6758 u64 to_add = len;
6760 spin_lock(&global_rsv->lock);
6761 if (!global_rsv->full) {
6762 to_add = min(len, global_rsv->size -
6763 global_rsv->reserved);
6764 global_rsv->reserved += to_add;
6765 space_info->bytes_may_use += to_add;
6766 if (global_rsv->reserved >= global_rsv->size)
6767 global_rsv->full = 1;
6768 trace_btrfs_space_reservation(fs_info,
6769 "space_info",
6770 space_info->flags,
6771 to_add, 1);
6772 len -= to_add;
6774 spin_unlock(&global_rsv->lock);
6775 /* Add to any tickets we may have */
6776 if (len)
6777 space_info_add_new_bytes(fs_info, space_info,
6778 len);
6780 spin_unlock(&space_info->lock);
6783 if (cache)
6784 btrfs_put_block_group(cache);
6785 return 0;
6788 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6789 struct btrfs_fs_info *fs_info)
6791 struct btrfs_block_group_cache *block_group, *tmp;
6792 struct list_head *deleted_bgs;
6793 struct extent_io_tree *unpin;
6794 u64 start;
6795 u64 end;
6796 int ret;
6798 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6799 unpin = &fs_info->freed_extents[1];
6800 else
6801 unpin = &fs_info->freed_extents[0];
6803 while (!trans->aborted) {
6804 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6805 ret = find_first_extent_bit(unpin, 0, &start, &end,
6806 EXTENT_DIRTY, NULL);
6807 if (ret) {
6808 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6809 break;
6812 if (btrfs_test_opt(fs_info, DISCARD))
6813 ret = btrfs_discard_extent(fs_info, start,
6814 end + 1 - start, NULL);
6816 clear_extent_dirty(unpin, start, end);
6817 unpin_extent_range(fs_info, start, end, true);
6818 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6819 cond_resched();
6823 * Transaction is finished. We don't need the lock anymore. We
6824 * do need to clean up the block groups in case of a transaction
6825 * abort.
6827 deleted_bgs = &trans->transaction->deleted_bgs;
6828 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6829 u64 trimmed = 0;
6831 ret = -EROFS;
6832 if (!trans->aborted)
6833 ret = btrfs_discard_extent(fs_info,
6834 block_group->key.objectid,
6835 block_group->key.offset,
6836 &trimmed);
6838 list_del_init(&block_group->bg_list);
6839 btrfs_put_block_group_trimming(block_group);
6840 btrfs_put_block_group(block_group);
6842 if (ret) {
6843 const char *errstr = btrfs_decode_error(ret);
6844 btrfs_warn(fs_info,
6845 "discard failed while removing blockgroup: errno=%d %s",
6846 ret, errstr);
6850 return 0;
6853 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6854 struct btrfs_fs_info *info,
6855 struct btrfs_delayed_ref_node *node, u64 parent,
6856 u64 root_objectid, u64 owner_objectid,
6857 u64 owner_offset, int refs_to_drop,
6858 struct btrfs_delayed_extent_op *extent_op)
6860 struct btrfs_key key;
6861 struct btrfs_path *path;
6862 struct btrfs_root *extent_root = info->extent_root;
6863 struct extent_buffer *leaf;
6864 struct btrfs_extent_item *ei;
6865 struct btrfs_extent_inline_ref *iref;
6866 int ret;
6867 int is_data;
6868 int extent_slot = 0;
6869 int found_extent = 0;
6870 int num_to_del = 1;
6871 u32 item_size;
6872 u64 refs;
6873 u64 bytenr = node->bytenr;
6874 u64 num_bytes = node->num_bytes;
6875 int last_ref = 0;
6876 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6878 path = btrfs_alloc_path();
6879 if (!path)
6880 return -ENOMEM;
6882 path->reada = READA_FORWARD;
6883 path->leave_spinning = 1;
6885 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6886 BUG_ON(!is_data && refs_to_drop != 1);
6888 if (is_data)
6889 skinny_metadata = false;
6891 ret = lookup_extent_backref(trans, info, path, &iref,
6892 bytenr, num_bytes, parent,
6893 root_objectid, owner_objectid,
6894 owner_offset);
6895 if (ret == 0) {
6896 extent_slot = path->slots[0];
6897 while (extent_slot >= 0) {
6898 btrfs_item_key_to_cpu(path->nodes[0], &key,
6899 extent_slot);
6900 if (key.objectid != bytenr)
6901 break;
6902 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6903 key.offset == num_bytes) {
6904 found_extent = 1;
6905 break;
6907 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6908 key.offset == owner_objectid) {
6909 found_extent = 1;
6910 break;
6912 if (path->slots[0] - extent_slot > 5)
6913 break;
6914 extent_slot--;
6916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6917 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6918 if (found_extent && item_size < sizeof(*ei))
6919 found_extent = 0;
6920 #endif
6921 if (!found_extent) {
6922 BUG_ON(iref);
6923 ret = remove_extent_backref(trans, info, path, NULL,
6924 refs_to_drop,
6925 is_data, &last_ref);
6926 if (ret) {
6927 btrfs_abort_transaction(trans, ret);
6928 goto out;
6930 btrfs_release_path(path);
6931 path->leave_spinning = 1;
6933 key.objectid = bytenr;
6934 key.type = BTRFS_EXTENT_ITEM_KEY;
6935 key.offset = num_bytes;
6937 if (!is_data && skinny_metadata) {
6938 key.type = BTRFS_METADATA_ITEM_KEY;
6939 key.offset = owner_objectid;
6942 ret = btrfs_search_slot(trans, extent_root,
6943 &key, path, -1, 1);
6944 if (ret > 0 && skinny_metadata && path->slots[0]) {
6946 * Couldn't find our skinny metadata item,
6947 * see if we have ye olde extent item.
6949 path->slots[0]--;
6950 btrfs_item_key_to_cpu(path->nodes[0], &key,
6951 path->slots[0]);
6952 if (key.objectid == bytenr &&
6953 key.type == BTRFS_EXTENT_ITEM_KEY &&
6954 key.offset == num_bytes)
6955 ret = 0;
6958 if (ret > 0 && skinny_metadata) {
6959 skinny_metadata = false;
6960 key.objectid = bytenr;
6961 key.type = BTRFS_EXTENT_ITEM_KEY;
6962 key.offset = num_bytes;
6963 btrfs_release_path(path);
6964 ret = btrfs_search_slot(trans, extent_root,
6965 &key, path, -1, 1);
6968 if (ret) {
6969 btrfs_err(info,
6970 "umm, got %d back from search, was looking for %llu",
6971 ret, bytenr);
6972 if (ret > 0)
6973 btrfs_print_leaf(path->nodes[0]);
6975 if (ret < 0) {
6976 btrfs_abort_transaction(trans, ret);
6977 goto out;
6979 extent_slot = path->slots[0];
6981 } else if (WARN_ON(ret == -ENOENT)) {
6982 btrfs_print_leaf(path->nodes[0]);
6983 btrfs_err(info,
6984 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6985 bytenr, parent, root_objectid, owner_objectid,
6986 owner_offset);
6987 btrfs_abort_transaction(trans, ret);
6988 goto out;
6989 } else {
6990 btrfs_abort_transaction(trans, ret);
6991 goto out;
6994 leaf = path->nodes[0];
6995 item_size = btrfs_item_size_nr(leaf, extent_slot);
6996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6997 if (item_size < sizeof(*ei)) {
6998 BUG_ON(found_extent || extent_slot != path->slots[0]);
6999 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7001 if (ret < 0) {
7002 btrfs_abort_transaction(trans, ret);
7003 goto out;
7006 btrfs_release_path(path);
7007 path->leave_spinning = 1;
7009 key.objectid = bytenr;
7010 key.type = BTRFS_EXTENT_ITEM_KEY;
7011 key.offset = num_bytes;
7013 ret = btrfs_search_slot(trans, extent_root, &key, path,
7014 -1, 1);
7015 if (ret) {
7016 btrfs_err(info,
7017 "umm, got %d back from search, was looking for %llu",
7018 ret, bytenr);
7019 btrfs_print_leaf(path->nodes[0]);
7021 if (ret < 0) {
7022 btrfs_abort_transaction(trans, ret);
7023 goto out;
7026 extent_slot = path->slots[0];
7027 leaf = path->nodes[0];
7028 item_size = btrfs_item_size_nr(leaf, extent_slot);
7030 #endif
7031 BUG_ON(item_size < sizeof(*ei));
7032 ei = btrfs_item_ptr(leaf, extent_slot,
7033 struct btrfs_extent_item);
7034 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7035 key.type == BTRFS_EXTENT_ITEM_KEY) {
7036 struct btrfs_tree_block_info *bi;
7037 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7038 bi = (struct btrfs_tree_block_info *)(ei + 1);
7039 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7042 refs = btrfs_extent_refs(leaf, ei);
7043 if (refs < refs_to_drop) {
7044 btrfs_err(info,
7045 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7046 refs_to_drop, refs, bytenr);
7047 ret = -EINVAL;
7048 btrfs_abort_transaction(trans, ret);
7049 goto out;
7051 refs -= refs_to_drop;
7053 if (refs > 0) {
7054 if (extent_op)
7055 __run_delayed_extent_op(extent_op, leaf, ei);
7057 * In the case of inline back ref, reference count will
7058 * be updated by remove_extent_backref
7060 if (iref) {
7061 BUG_ON(!found_extent);
7062 } else {
7063 btrfs_set_extent_refs(leaf, ei, refs);
7064 btrfs_mark_buffer_dirty(leaf);
7066 if (found_extent) {
7067 ret = remove_extent_backref(trans, info, path,
7068 iref, refs_to_drop,
7069 is_data, &last_ref);
7070 if (ret) {
7071 btrfs_abort_transaction(trans, ret);
7072 goto out;
7075 } else {
7076 if (found_extent) {
7077 BUG_ON(is_data && refs_to_drop !=
7078 extent_data_ref_count(path, iref));
7079 if (iref) {
7080 BUG_ON(path->slots[0] != extent_slot);
7081 } else {
7082 BUG_ON(path->slots[0] != extent_slot + 1);
7083 path->slots[0] = extent_slot;
7084 num_to_del = 2;
7088 last_ref = 1;
7089 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7090 num_to_del);
7091 if (ret) {
7092 btrfs_abort_transaction(trans, ret);
7093 goto out;
7095 btrfs_release_path(path);
7097 if (is_data) {
7098 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7099 if (ret) {
7100 btrfs_abort_transaction(trans, ret);
7101 goto out;
7105 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7106 if (ret) {
7107 btrfs_abort_transaction(trans, ret);
7108 goto out;
7111 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7112 if (ret) {
7113 btrfs_abort_transaction(trans, ret);
7114 goto out;
7117 btrfs_release_path(path);
7119 out:
7120 btrfs_free_path(path);
7121 return ret;
7125 * when we free an block, it is possible (and likely) that we free the last
7126 * delayed ref for that extent as well. This searches the delayed ref tree for
7127 * a given extent, and if there are no other delayed refs to be processed, it
7128 * removes it from the tree.
7130 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7131 u64 bytenr)
7133 struct btrfs_delayed_ref_head *head;
7134 struct btrfs_delayed_ref_root *delayed_refs;
7135 int ret = 0;
7137 delayed_refs = &trans->transaction->delayed_refs;
7138 spin_lock(&delayed_refs->lock);
7139 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7140 if (!head)
7141 goto out_delayed_unlock;
7143 spin_lock(&head->lock);
7144 if (!RB_EMPTY_ROOT(&head->ref_tree))
7145 goto out;
7147 if (head->extent_op) {
7148 if (!head->must_insert_reserved)
7149 goto out;
7150 btrfs_free_delayed_extent_op(head->extent_op);
7151 head->extent_op = NULL;
7155 * waiting for the lock here would deadlock. If someone else has it
7156 * locked they are already in the process of dropping it anyway
7158 if (!mutex_trylock(&head->mutex))
7159 goto out;
7162 * at this point we have a head with no other entries. Go
7163 * ahead and process it.
7165 rb_erase(&head->href_node, &delayed_refs->href_root);
7166 RB_CLEAR_NODE(&head->href_node);
7167 atomic_dec(&delayed_refs->num_entries);
7170 * we don't take a ref on the node because we're removing it from the
7171 * tree, so we just steal the ref the tree was holding.
7173 delayed_refs->num_heads--;
7174 if (head->processing == 0)
7175 delayed_refs->num_heads_ready--;
7176 head->processing = 0;
7177 spin_unlock(&head->lock);
7178 spin_unlock(&delayed_refs->lock);
7180 BUG_ON(head->extent_op);
7181 if (head->must_insert_reserved)
7182 ret = 1;
7184 mutex_unlock(&head->mutex);
7185 btrfs_put_delayed_ref_head(head);
7186 return ret;
7187 out:
7188 spin_unlock(&head->lock);
7190 out_delayed_unlock:
7191 spin_unlock(&delayed_refs->lock);
7192 return 0;
7195 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7196 struct btrfs_root *root,
7197 struct extent_buffer *buf,
7198 u64 parent, int last_ref)
7200 struct btrfs_fs_info *fs_info = root->fs_info;
7201 int pin = 1;
7202 int ret;
7204 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7205 int old_ref_mod, new_ref_mod;
7207 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7208 root->root_key.objectid,
7209 btrfs_header_level(buf), 0,
7210 BTRFS_DROP_DELAYED_REF);
7211 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7212 buf->len, parent,
7213 root->root_key.objectid,
7214 btrfs_header_level(buf),
7215 BTRFS_DROP_DELAYED_REF, NULL,
7216 &old_ref_mod, &new_ref_mod);
7217 BUG_ON(ret); /* -ENOMEM */
7218 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7221 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7222 struct btrfs_block_group_cache *cache;
7224 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225 ret = check_ref_cleanup(trans, buf->start);
7226 if (!ret)
7227 goto out;
7230 pin = 0;
7231 cache = btrfs_lookup_block_group(fs_info, buf->start);
7233 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7234 pin_down_extent(fs_info, cache, buf->start,
7235 buf->len, 1);
7236 btrfs_put_block_group(cache);
7237 goto out;
7240 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7242 btrfs_add_free_space(cache, buf->start, buf->len);
7243 btrfs_free_reserved_bytes(cache, buf->len, 0);
7244 btrfs_put_block_group(cache);
7245 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7247 out:
7248 if (pin)
7249 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7250 root->root_key.objectid);
7252 if (last_ref) {
7254 * Deleting the buffer, clear the corrupt flag since it doesn't
7255 * matter anymore.
7257 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7263 struct btrfs_root *root,
7264 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7265 u64 owner, u64 offset)
7267 struct btrfs_fs_info *fs_info = root->fs_info;
7268 int old_ref_mod, new_ref_mod;
7269 int ret;
7271 if (btrfs_is_testing(fs_info))
7272 return 0;
7274 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7275 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7276 root_objectid, owner, offset,
7277 BTRFS_DROP_DELAYED_REF);
7280 * tree log blocks never actually go into the extent allocation
7281 * tree, just update pinning info and exit early.
7283 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7284 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7285 /* unlocks the pinned mutex */
7286 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7287 old_ref_mod = new_ref_mod = 0;
7288 ret = 0;
7289 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7290 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7291 num_bytes, parent,
7292 root_objectid, (int)owner,
7293 BTRFS_DROP_DELAYED_REF, NULL,
7294 &old_ref_mod, &new_ref_mod);
7295 } else {
7296 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7297 num_bytes, parent,
7298 root_objectid, owner, offset,
7299 0, BTRFS_DROP_DELAYED_REF,
7300 &old_ref_mod, &new_ref_mod);
7303 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7304 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7306 return ret;
7310 * when we wait for progress in the block group caching, its because
7311 * our allocation attempt failed at least once. So, we must sleep
7312 * and let some progress happen before we try again.
7314 * This function will sleep at least once waiting for new free space to
7315 * show up, and then it will check the block group free space numbers
7316 * for our min num_bytes. Another option is to have it go ahead
7317 * and look in the rbtree for a free extent of a given size, but this
7318 * is a good start.
7320 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7321 * any of the information in this block group.
7323 static noinline void
7324 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7325 u64 num_bytes)
7327 struct btrfs_caching_control *caching_ctl;
7329 caching_ctl = get_caching_control(cache);
7330 if (!caching_ctl)
7331 return;
7333 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7334 (cache->free_space_ctl->free_space >= num_bytes));
7336 put_caching_control(caching_ctl);
7339 static noinline int
7340 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7342 struct btrfs_caching_control *caching_ctl;
7343 int ret = 0;
7345 caching_ctl = get_caching_control(cache);
7346 if (!caching_ctl)
7347 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7349 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7350 if (cache->cached == BTRFS_CACHE_ERROR)
7351 ret = -EIO;
7352 put_caching_control(caching_ctl);
7353 return ret;
7356 int __get_raid_index(u64 flags)
7358 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7359 return BTRFS_RAID_RAID10;
7360 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7361 return BTRFS_RAID_RAID1;
7362 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7363 return BTRFS_RAID_DUP;
7364 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7365 return BTRFS_RAID_RAID0;
7366 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7367 return BTRFS_RAID_RAID5;
7368 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7369 return BTRFS_RAID_RAID6;
7371 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7374 int get_block_group_index(struct btrfs_block_group_cache *cache)
7376 return __get_raid_index(cache->flags);
7379 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7380 [BTRFS_RAID_RAID10] = "raid10",
7381 [BTRFS_RAID_RAID1] = "raid1",
7382 [BTRFS_RAID_DUP] = "dup",
7383 [BTRFS_RAID_RAID0] = "raid0",
7384 [BTRFS_RAID_SINGLE] = "single",
7385 [BTRFS_RAID_RAID5] = "raid5",
7386 [BTRFS_RAID_RAID6] = "raid6",
7389 static const char *get_raid_name(enum btrfs_raid_types type)
7391 if (type >= BTRFS_NR_RAID_TYPES)
7392 return NULL;
7394 return btrfs_raid_type_names[type];
7397 enum btrfs_loop_type {
7398 LOOP_CACHING_NOWAIT = 0,
7399 LOOP_CACHING_WAIT = 1,
7400 LOOP_ALLOC_CHUNK = 2,
7401 LOOP_NO_EMPTY_SIZE = 3,
7404 static inline void
7405 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7406 int delalloc)
7408 if (delalloc)
7409 down_read(&cache->data_rwsem);
7412 static inline void
7413 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7414 int delalloc)
7416 btrfs_get_block_group(cache);
7417 if (delalloc)
7418 down_read(&cache->data_rwsem);
7421 static struct btrfs_block_group_cache *
7422 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7423 struct btrfs_free_cluster *cluster,
7424 int delalloc)
7426 struct btrfs_block_group_cache *used_bg = NULL;
7428 spin_lock(&cluster->refill_lock);
7429 while (1) {
7430 used_bg = cluster->block_group;
7431 if (!used_bg)
7432 return NULL;
7434 if (used_bg == block_group)
7435 return used_bg;
7437 btrfs_get_block_group(used_bg);
7439 if (!delalloc)
7440 return used_bg;
7442 if (down_read_trylock(&used_bg->data_rwsem))
7443 return used_bg;
7445 spin_unlock(&cluster->refill_lock);
7447 /* We should only have one-level nested. */
7448 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7450 spin_lock(&cluster->refill_lock);
7451 if (used_bg == cluster->block_group)
7452 return used_bg;
7454 up_read(&used_bg->data_rwsem);
7455 btrfs_put_block_group(used_bg);
7459 static inline void
7460 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7461 int delalloc)
7463 if (delalloc)
7464 up_read(&cache->data_rwsem);
7465 btrfs_put_block_group(cache);
7469 * walks the btree of allocated extents and find a hole of a given size.
7470 * The key ins is changed to record the hole:
7471 * ins->objectid == start position
7472 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7473 * ins->offset == the size of the hole.
7474 * Any available blocks before search_start are skipped.
7476 * If there is no suitable free space, we will record the max size of
7477 * the free space extent currently.
7479 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7480 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7481 u64 hint_byte, struct btrfs_key *ins,
7482 u64 flags, int delalloc)
7484 int ret = 0;
7485 struct btrfs_root *root = fs_info->extent_root;
7486 struct btrfs_free_cluster *last_ptr = NULL;
7487 struct btrfs_block_group_cache *block_group = NULL;
7488 u64 search_start = 0;
7489 u64 max_extent_size = 0;
7490 u64 empty_cluster = 0;
7491 struct btrfs_space_info *space_info;
7492 int loop = 0;
7493 int index = __get_raid_index(flags);
7494 bool failed_cluster_refill = false;
7495 bool failed_alloc = false;
7496 bool use_cluster = true;
7497 bool have_caching_bg = false;
7498 bool orig_have_caching_bg = false;
7499 bool full_search = false;
7501 WARN_ON(num_bytes < fs_info->sectorsize);
7502 ins->type = BTRFS_EXTENT_ITEM_KEY;
7503 ins->objectid = 0;
7504 ins->offset = 0;
7506 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7508 space_info = __find_space_info(fs_info, flags);
7509 if (!space_info) {
7510 btrfs_err(fs_info, "No space info for %llu", flags);
7511 return -ENOSPC;
7515 * If our free space is heavily fragmented we may not be able to make
7516 * big contiguous allocations, so instead of doing the expensive search
7517 * for free space, simply return ENOSPC with our max_extent_size so we
7518 * can go ahead and search for a more manageable chunk.
7520 * If our max_extent_size is large enough for our allocation simply
7521 * disable clustering since we will likely not be able to find enough
7522 * space to create a cluster and induce latency trying.
7524 if (unlikely(space_info->max_extent_size)) {
7525 spin_lock(&space_info->lock);
7526 if (space_info->max_extent_size &&
7527 num_bytes > space_info->max_extent_size) {
7528 ins->offset = space_info->max_extent_size;
7529 spin_unlock(&space_info->lock);
7530 return -ENOSPC;
7531 } else if (space_info->max_extent_size) {
7532 use_cluster = false;
7534 spin_unlock(&space_info->lock);
7537 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7538 if (last_ptr) {
7539 spin_lock(&last_ptr->lock);
7540 if (last_ptr->block_group)
7541 hint_byte = last_ptr->window_start;
7542 if (last_ptr->fragmented) {
7544 * We still set window_start so we can keep track of the
7545 * last place we found an allocation to try and save
7546 * some time.
7548 hint_byte = last_ptr->window_start;
7549 use_cluster = false;
7551 spin_unlock(&last_ptr->lock);
7554 search_start = max(search_start, first_logical_byte(fs_info, 0));
7555 search_start = max(search_start, hint_byte);
7556 if (search_start == hint_byte) {
7557 block_group = btrfs_lookup_block_group(fs_info, search_start);
7559 * we don't want to use the block group if it doesn't match our
7560 * allocation bits, or if its not cached.
7562 * However if we are re-searching with an ideal block group
7563 * picked out then we don't care that the block group is cached.
7565 if (block_group && block_group_bits(block_group, flags) &&
7566 block_group->cached != BTRFS_CACHE_NO) {
7567 down_read(&space_info->groups_sem);
7568 if (list_empty(&block_group->list) ||
7569 block_group->ro) {
7571 * someone is removing this block group,
7572 * we can't jump into the have_block_group
7573 * target because our list pointers are not
7574 * valid
7576 btrfs_put_block_group(block_group);
7577 up_read(&space_info->groups_sem);
7578 } else {
7579 index = get_block_group_index(block_group);
7580 btrfs_lock_block_group(block_group, delalloc);
7581 goto have_block_group;
7583 } else if (block_group) {
7584 btrfs_put_block_group(block_group);
7587 search:
7588 have_caching_bg = false;
7589 if (index == 0 || index == __get_raid_index(flags))
7590 full_search = true;
7591 down_read(&space_info->groups_sem);
7592 list_for_each_entry(block_group, &space_info->block_groups[index],
7593 list) {
7594 u64 offset;
7595 int cached;
7597 /* If the block group is read-only, we can skip it entirely. */
7598 if (unlikely(block_group->ro))
7599 continue;
7601 btrfs_grab_block_group(block_group, delalloc);
7602 search_start = block_group->key.objectid;
7605 * this can happen if we end up cycling through all the
7606 * raid types, but we want to make sure we only allocate
7607 * for the proper type.
7609 if (!block_group_bits(block_group, flags)) {
7610 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7611 BTRFS_BLOCK_GROUP_RAID1 |
7612 BTRFS_BLOCK_GROUP_RAID5 |
7613 BTRFS_BLOCK_GROUP_RAID6 |
7614 BTRFS_BLOCK_GROUP_RAID10;
7617 * if they asked for extra copies and this block group
7618 * doesn't provide them, bail. This does allow us to
7619 * fill raid0 from raid1.
7621 if ((flags & extra) && !(block_group->flags & extra))
7622 goto loop;
7625 have_block_group:
7626 cached = block_group_cache_done(block_group);
7627 if (unlikely(!cached)) {
7628 have_caching_bg = true;
7629 ret = cache_block_group(block_group, 0);
7630 BUG_ON(ret < 0);
7631 ret = 0;
7634 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7635 goto loop;
7638 * Ok we want to try and use the cluster allocator, so
7639 * lets look there
7641 if (last_ptr && use_cluster) {
7642 struct btrfs_block_group_cache *used_block_group;
7643 unsigned long aligned_cluster;
7645 * the refill lock keeps out other
7646 * people trying to start a new cluster
7648 used_block_group = btrfs_lock_cluster(block_group,
7649 last_ptr,
7650 delalloc);
7651 if (!used_block_group)
7652 goto refill_cluster;
7654 if (used_block_group != block_group &&
7655 (used_block_group->ro ||
7656 !block_group_bits(used_block_group, flags)))
7657 goto release_cluster;
7659 offset = btrfs_alloc_from_cluster(used_block_group,
7660 last_ptr,
7661 num_bytes,
7662 used_block_group->key.objectid,
7663 &max_extent_size);
7664 if (offset) {
7665 /* we have a block, we're done */
7666 spin_unlock(&last_ptr->refill_lock);
7667 trace_btrfs_reserve_extent_cluster(fs_info,
7668 used_block_group,
7669 search_start, num_bytes);
7670 if (used_block_group != block_group) {
7671 btrfs_release_block_group(block_group,
7672 delalloc);
7673 block_group = used_block_group;
7675 goto checks;
7678 WARN_ON(last_ptr->block_group != used_block_group);
7679 release_cluster:
7680 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7681 * set up a new clusters, so lets just skip it
7682 * and let the allocator find whatever block
7683 * it can find. If we reach this point, we
7684 * will have tried the cluster allocator
7685 * plenty of times and not have found
7686 * anything, so we are likely way too
7687 * fragmented for the clustering stuff to find
7688 * anything.
7690 * However, if the cluster is taken from the
7691 * current block group, release the cluster
7692 * first, so that we stand a better chance of
7693 * succeeding in the unclustered
7694 * allocation. */
7695 if (loop >= LOOP_NO_EMPTY_SIZE &&
7696 used_block_group != block_group) {
7697 spin_unlock(&last_ptr->refill_lock);
7698 btrfs_release_block_group(used_block_group,
7699 delalloc);
7700 goto unclustered_alloc;
7704 * this cluster didn't work out, free it and
7705 * start over
7707 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7709 if (used_block_group != block_group)
7710 btrfs_release_block_group(used_block_group,
7711 delalloc);
7712 refill_cluster:
7713 if (loop >= LOOP_NO_EMPTY_SIZE) {
7714 spin_unlock(&last_ptr->refill_lock);
7715 goto unclustered_alloc;
7718 aligned_cluster = max_t(unsigned long,
7719 empty_cluster + empty_size,
7720 block_group->full_stripe_len);
7722 /* allocate a cluster in this block group */
7723 ret = btrfs_find_space_cluster(fs_info, block_group,
7724 last_ptr, search_start,
7725 num_bytes,
7726 aligned_cluster);
7727 if (ret == 0) {
7729 * now pull our allocation out of this
7730 * cluster
7732 offset = btrfs_alloc_from_cluster(block_group,
7733 last_ptr,
7734 num_bytes,
7735 search_start,
7736 &max_extent_size);
7737 if (offset) {
7738 /* we found one, proceed */
7739 spin_unlock(&last_ptr->refill_lock);
7740 trace_btrfs_reserve_extent_cluster(fs_info,
7741 block_group, search_start,
7742 num_bytes);
7743 goto checks;
7745 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7746 && !failed_cluster_refill) {
7747 spin_unlock(&last_ptr->refill_lock);
7749 failed_cluster_refill = true;
7750 wait_block_group_cache_progress(block_group,
7751 num_bytes + empty_cluster + empty_size);
7752 goto have_block_group;
7756 * at this point we either didn't find a cluster
7757 * or we weren't able to allocate a block from our
7758 * cluster. Free the cluster we've been trying
7759 * to use, and go to the next block group
7761 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7762 spin_unlock(&last_ptr->refill_lock);
7763 goto loop;
7766 unclustered_alloc:
7768 * We are doing an unclustered alloc, set the fragmented flag so
7769 * we don't bother trying to setup a cluster again until we get
7770 * more space.
7772 if (unlikely(last_ptr)) {
7773 spin_lock(&last_ptr->lock);
7774 last_ptr->fragmented = 1;
7775 spin_unlock(&last_ptr->lock);
7777 if (cached) {
7778 struct btrfs_free_space_ctl *ctl =
7779 block_group->free_space_ctl;
7781 spin_lock(&ctl->tree_lock);
7782 if (ctl->free_space <
7783 num_bytes + empty_cluster + empty_size) {
7784 if (ctl->free_space > max_extent_size)
7785 max_extent_size = ctl->free_space;
7786 spin_unlock(&ctl->tree_lock);
7787 goto loop;
7789 spin_unlock(&ctl->tree_lock);
7792 offset = btrfs_find_space_for_alloc(block_group, search_start,
7793 num_bytes, empty_size,
7794 &max_extent_size);
7796 * If we didn't find a chunk, and we haven't failed on this
7797 * block group before, and this block group is in the middle of
7798 * caching and we are ok with waiting, then go ahead and wait
7799 * for progress to be made, and set failed_alloc to true.
7801 * If failed_alloc is true then we've already waited on this
7802 * block group once and should move on to the next block group.
7804 if (!offset && !failed_alloc && !cached &&
7805 loop > LOOP_CACHING_NOWAIT) {
7806 wait_block_group_cache_progress(block_group,
7807 num_bytes + empty_size);
7808 failed_alloc = true;
7809 goto have_block_group;
7810 } else if (!offset) {
7811 goto loop;
7813 checks:
7814 search_start = ALIGN(offset, fs_info->stripesize);
7816 /* move on to the next group */
7817 if (search_start + num_bytes >
7818 block_group->key.objectid + block_group->key.offset) {
7819 btrfs_add_free_space(block_group, offset, num_bytes);
7820 goto loop;
7823 if (offset < search_start)
7824 btrfs_add_free_space(block_group, offset,
7825 search_start - offset);
7826 BUG_ON(offset > search_start);
7828 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7829 num_bytes, delalloc);
7830 if (ret == -EAGAIN) {
7831 btrfs_add_free_space(block_group, offset, num_bytes);
7832 goto loop;
7834 btrfs_inc_block_group_reservations(block_group);
7836 /* we are all good, lets return */
7837 ins->objectid = search_start;
7838 ins->offset = num_bytes;
7840 trace_btrfs_reserve_extent(fs_info, block_group,
7841 search_start, num_bytes);
7842 btrfs_release_block_group(block_group, delalloc);
7843 break;
7844 loop:
7845 failed_cluster_refill = false;
7846 failed_alloc = false;
7847 BUG_ON(index != get_block_group_index(block_group));
7848 btrfs_release_block_group(block_group, delalloc);
7849 cond_resched();
7851 up_read(&space_info->groups_sem);
7853 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7854 && !orig_have_caching_bg)
7855 orig_have_caching_bg = true;
7857 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7858 goto search;
7860 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7861 goto search;
7864 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7865 * caching kthreads as we move along
7866 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7867 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7868 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7869 * again
7871 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7872 index = 0;
7873 if (loop == LOOP_CACHING_NOWAIT) {
7875 * We want to skip the LOOP_CACHING_WAIT step if we
7876 * don't have any uncached bgs and we've already done a
7877 * full search through.
7879 if (orig_have_caching_bg || !full_search)
7880 loop = LOOP_CACHING_WAIT;
7881 else
7882 loop = LOOP_ALLOC_CHUNK;
7883 } else {
7884 loop++;
7887 if (loop == LOOP_ALLOC_CHUNK) {
7888 struct btrfs_trans_handle *trans;
7889 int exist = 0;
7891 trans = current->journal_info;
7892 if (trans)
7893 exist = 1;
7894 else
7895 trans = btrfs_join_transaction(root);
7897 if (IS_ERR(trans)) {
7898 ret = PTR_ERR(trans);
7899 goto out;
7902 ret = do_chunk_alloc(trans, fs_info, flags,
7903 CHUNK_ALLOC_FORCE);
7906 * If we can't allocate a new chunk we've already looped
7907 * through at least once, move on to the NO_EMPTY_SIZE
7908 * case.
7910 if (ret == -ENOSPC)
7911 loop = LOOP_NO_EMPTY_SIZE;
7914 * Do not bail out on ENOSPC since we
7915 * can do more things.
7917 if (ret < 0 && ret != -ENOSPC)
7918 btrfs_abort_transaction(trans, ret);
7919 else
7920 ret = 0;
7921 if (!exist)
7922 btrfs_end_transaction(trans);
7923 if (ret)
7924 goto out;
7927 if (loop == LOOP_NO_EMPTY_SIZE) {
7929 * Don't loop again if we already have no empty_size and
7930 * no empty_cluster.
7932 if (empty_size == 0 &&
7933 empty_cluster == 0) {
7934 ret = -ENOSPC;
7935 goto out;
7937 empty_size = 0;
7938 empty_cluster = 0;
7941 goto search;
7942 } else if (!ins->objectid) {
7943 ret = -ENOSPC;
7944 } else if (ins->objectid) {
7945 if (!use_cluster && last_ptr) {
7946 spin_lock(&last_ptr->lock);
7947 last_ptr->window_start = ins->objectid;
7948 spin_unlock(&last_ptr->lock);
7950 ret = 0;
7952 out:
7953 if (ret == -ENOSPC) {
7954 spin_lock(&space_info->lock);
7955 space_info->max_extent_size = max_extent_size;
7956 spin_unlock(&space_info->lock);
7957 ins->offset = max_extent_size;
7959 return ret;
7962 static void dump_space_info(struct btrfs_fs_info *fs_info,
7963 struct btrfs_space_info *info, u64 bytes,
7964 int dump_block_groups)
7966 struct btrfs_block_group_cache *cache;
7967 int index = 0;
7969 spin_lock(&info->lock);
7970 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7971 info->flags,
7972 info->total_bytes - btrfs_space_info_used(info, true),
7973 info->full ? "" : "not ");
7974 btrfs_info(fs_info,
7975 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7976 info->total_bytes, info->bytes_used, info->bytes_pinned,
7977 info->bytes_reserved, info->bytes_may_use,
7978 info->bytes_readonly);
7979 spin_unlock(&info->lock);
7981 if (!dump_block_groups)
7982 return;
7984 down_read(&info->groups_sem);
7985 again:
7986 list_for_each_entry(cache, &info->block_groups[index], list) {
7987 spin_lock(&cache->lock);
7988 btrfs_info(fs_info,
7989 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7990 cache->key.objectid, cache->key.offset,
7991 btrfs_block_group_used(&cache->item), cache->pinned,
7992 cache->reserved, cache->ro ? "[readonly]" : "");
7993 btrfs_dump_free_space(cache, bytes);
7994 spin_unlock(&cache->lock);
7996 if (++index < BTRFS_NR_RAID_TYPES)
7997 goto again;
7998 up_read(&info->groups_sem);
8001 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8002 u64 num_bytes, u64 min_alloc_size,
8003 u64 empty_size, u64 hint_byte,
8004 struct btrfs_key *ins, int is_data, int delalloc)
8006 struct btrfs_fs_info *fs_info = root->fs_info;
8007 bool final_tried = num_bytes == min_alloc_size;
8008 u64 flags;
8009 int ret;
8011 flags = get_alloc_profile_by_root(root, is_data);
8012 again:
8013 WARN_ON(num_bytes < fs_info->sectorsize);
8014 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8015 hint_byte, ins, flags, delalloc);
8016 if (!ret && !is_data) {
8017 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8018 } else if (ret == -ENOSPC) {
8019 if (!final_tried && ins->offset) {
8020 num_bytes = min(num_bytes >> 1, ins->offset);
8021 num_bytes = round_down(num_bytes,
8022 fs_info->sectorsize);
8023 num_bytes = max(num_bytes, min_alloc_size);
8024 ram_bytes = num_bytes;
8025 if (num_bytes == min_alloc_size)
8026 final_tried = true;
8027 goto again;
8028 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8029 struct btrfs_space_info *sinfo;
8031 sinfo = __find_space_info(fs_info, flags);
8032 btrfs_err(fs_info,
8033 "allocation failed flags %llu, wanted %llu",
8034 flags, num_bytes);
8035 if (sinfo)
8036 dump_space_info(fs_info, sinfo, num_bytes, 1);
8040 return ret;
8043 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8044 u64 start, u64 len,
8045 int pin, int delalloc)
8047 struct btrfs_block_group_cache *cache;
8048 int ret = 0;
8050 cache = btrfs_lookup_block_group(fs_info, start);
8051 if (!cache) {
8052 btrfs_err(fs_info, "Unable to find block group for %llu",
8053 start);
8054 return -ENOSPC;
8057 if (pin)
8058 pin_down_extent(fs_info, cache, start, len, 1);
8059 else {
8060 if (btrfs_test_opt(fs_info, DISCARD))
8061 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8062 btrfs_add_free_space(cache, start, len);
8063 btrfs_free_reserved_bytes(cache, len, delalloc);
8064 trace_btrfs_reserved_extent_free(fs_info, start, len);
8067 btrfs_put_block_group(cache);
8068 return ret;
8071 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8072 u64 start, u64 len, int delalloc)
8074 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8077 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8078 u64 start, u64 len)
8080 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8083 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8084 struct btrfs_fs_info *fs_info,
8085 u64 parent, u64 root_objectid,
8086 u64 flags, u64 owner, u64 offset,
8087 struct btrfs_key *ins, int ref_mod)
8089 int ret;
8090 struct btrfs_extent_item *extent_item;
8091 struct btrfs_extent_inline_ref *iref;
8092 struct btrfs_path *path;
8093 struct extent_buffer *leaf;
8094 int type;
8095 u32 size;
8097 if (parent > 0)
8098 type = BTRFS_SHARED_DATA_REF_KEY;
8099 else
8100 type = BTRFS_EXTENT_DATA_REF_KEY;
8102 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8104 path = btrfs_alloc_path();
8105 if (!path)
8106 return -ENOMEM;
8108 path->leave_spinning = 1;
8109 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8110 ins, size);
8111 if (ret) {
8112 btrfs_free_path(path);
8113 return ret;
8116 leaf = path->nodes[0];
8117 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8118 struct btrfs_extent_item);
8119 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8120 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8121 btrfs_set_extent_flags(leaf, extent_item,
8122 flags | BTRFS_EXTENT_FLAG_DATA);
8124 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8125 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8126 if (parent > 0) {
8127 struct btrfs_shared_data_ref *ref;
8128 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8129 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8130 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8131 } else {
8132 struct btrfs_extent_data_ref *ref;
8133 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8134 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8135 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8136 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8137 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8140 btrfs_mark_buffer_dirty(path->nodes[0]);
8141 btrfs_free_path(path);
8143 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8144 ins->offset);
8145 if (ret)
8146 return ret;
8148 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8149 if (ret) { /* -ENOENT, logic error */
8150 btrfs_err(fs_info, "update block group failed for %llu %llu",
8151 ins->objectid, ins->offset);
8152 BUG();
8154 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8155 return ret;
8158 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8159 struct btrfs_fs_info *fs_info,
8160 u64 parent, u64 root_objectid,
8161 u64 flags, struct btrfs_disk_key *key,
8162 int level, struct btrfs_key *ins)
8164 int ret;
8165 struct btrfs_extent_item *extent_item;
8166 struct btrfs_tree_block_info *block_info;
8167 struct btrfs_extent_inline_ref *iref;
8168 struct btrfs_path *path;
8169 struct extent_buffer *leaf;
8170 u32 size = sizeof(*extent_item) + sizeof(*iref);
8171 u64 num_bytes = ins->offset;
8172 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8174 if (!skinny_metadata)
8175 size += sizeof(*block_info);
8177 path = btrfs_alloc_path();
8178 if (!path) {
8179 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8180 fs_info->nodesize);
8181 return -ENOMEM;
8184 path->leave_spinning = 1;
8185 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8186 ins, size);
8187 if (ret) {
8188 btrfs_free_path(path);
8189 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8190 fs_info->nodesize);
8191 return ret;
8194 leaf = path->nodes[0];
8195 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8196 struct btrfs_extent_item);
8197 btrfs_set_extent_refs(leaf, extent_item, 1);
8198 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8199 btrfs_set_extent_flags(leaf, extent_item,
8200 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8202 if (skinny_metadata) {
8203 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8204 num_bytes = fs_info->nodesize;
8205 } else {
8206 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8207 btrfs_set_tree_block_key(leaf, block_info, key);
8208 btrfs_set_tree_block_level(leaf, block_info, level);
8209 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8212 if (parent > 0) {
8213 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8214 btrfs_set_extent_inline_ref_type(leaf, iref,
8215 BTRFS_SHARED_BLOCK_REF_KEY);
8216 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8217 } else {
8218 btrfs_set_extent_inline_ref_type(leaf, iref,
8219 BTRFS_TREE_BLOCK_REF_KEY);
8220 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8223 btrfs_mark_buffer_dirty(leaf);
8224 btrfs_free_path(path);
8226 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8227 num_bytes);
8228 if (ret)
8229 return ret;
8231 ret = update_block_group(trans, fs_info, ins->objectid,
8232 fs_info->nodesize, 1);
8233 if (ret) { /* -ENOENT, logic error */
8234 btrfs_err(fs_info, "update block group failed for %llu %llu",
8235 ins->objectid, ins->offset);
8236 BUG();
8239 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8240 fs_info->nodesize);
8241 return ret;
8244 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8245 struct btrfs_root *root, u64 owner,
8246 u64 offset, u64 ram_bytes,
8247 struct btrfs_key *ins)
8249 struct btrfs_fs_info *fs_info = root->fs_info;
8250 int ret;
8252 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8254 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8255 root->root_key.objectid, owner, offset,
8256 BTRFS_ADD_DELAYED_EXTENT);
8258 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8259 ins->offset, 0,
8260 root->root_key.objectid, owner,
8261 offset, ram_bytes,
8262 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8263 return ret;
8267 * this is used by the tree logging recovery code. It records that
8268 * an extent has been allocated and makes sure to clear the free
8269 * space cache bits as well
8271 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8272 struct btrfs_fs_info *fs_info,
8273 u64 root_objectid, u64 owner, u64 offset,
8274 struct btrfs_key *ins)
8276 int ret;
8277 struct btrfs_block_group_cache *block_group;
8278 struct btrfs_space_info *space_info;
8281 * Mixed block groups will exclude before processing the log so we only
8282 * need to do the exclude dance if this fs isn't mixed.
8284 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8285 ret = __exclude_logged_extent(fs_info, ins->objectid,
8286 ins->offset);
8287 if (ret)
8288 return ret;
8291 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8292 if (!block_group)
8293 return -EINVAL;
8295 space_info = block_group->space_info;
8296 spin_lock(&space_info->lock);
8297 spin_lock(&block_group->lock);
8298 space_info->bytes_reserved += ins->offset;
8299 block_group->reserved += ins->offset;
8300 spin_unlock(&block_group->lock);
8301 spin_unlock(&space_info->lock);
8303 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8304 0, owner, offset, ins, 1);
8305 btrfs_put_block_group(block_group);
8306 return ret;
8309 static struct extent_buffer *
8310 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8311 u64 bytenr, int level)
8313 struct btrfs_fs_info *fs_info = root->fs_info;
8314 struct extent_buffer *buf;
8316 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8317 if (IS_ERR(buf))
8318 return buf;
8320 btrfs_set_header_generation(buf, trans->transid);
8321 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8322 btrfs_tree_lock(buf);
8323 clean_tree_block(fs_info, buf);
8324 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8326 btrfs_set_lock_blocking(buf);
8327 set_extent_buffer_uptodate(buf);
8329 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8330 buf->log_index = root->log_transid % 2;
8332 * we allow two log transactions at a time, use different
8333 * EXENT bit to differentiate dirty pages.
8335 if (buf->log_index == 0)
8336 set_extent_dirty(&root->dirty_log_pages, buf->start,
8337 buf->start + buf->len - 1, GFP_NOFS);
8338 else
8339 set_extent_new(&root->dirty_log_pages, buf->start,
8340 buf->start + buf->len - 1);
8341 } else {
8342 buf->log_index = -1;
8343 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8344 buf->start + buf->len - 1, GFP_NOFS);
8346 trans->dirty = true;
8347 /* this returns a buffer locked for blocking */
8348 return buf;
8351 static struct btrfs_block_rsv *
8352 use_block_rsv(struct btrfs_trans_handle *trans,
8353 struct btrfs_root *root, u32 blocksize)
8355 struct btrfs_fs_info *fs_info = root->fs_info;
8356 struct btrfs_block_rsv *block_rsv;
8357 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8358 int ret;
8359 bool global_updated = false;
8361 block_rsv = get_block_rsv(trans, root);
8363 if (unlikely(block_rsv->size == 0))
8364 goto try_reserve;
8365 again:
8366 ret = block_rsv_use_bytes(block_rsv, blocksize);
8367 if (!ret)
8368 return block_rsv;
8370 if (block_rsv->failfast)
8371 return ERR_PTR(ret);
8373 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8374 global_updated = true;
8375 update_global_block_rsv(fs_info);
8376 goto again;
8379 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8380 static DEFINE_RATELIMIT_STATE(_rs,
8381 DEFAULT_RATELIMIT_INTERVAL * 10,
8382 /*DEFAULT_RATELIMIT_BURST*/ 1);
8383 if (__ratelimit(&_rs))
8384 WARN(1, KERN_DEBUG
8385 "BTRFS: block rsv returned %d\n", ret);
8387 try_reserve:
8388 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8389 BTRFS_RESERVE_NO_FLUSH);
8390 if (!ret)
8391 return block_rsv;
8393 * If we couldn't reserve metadata bytes try and use some from
8394 * the global reserve if its space type is the same as the global
8395 * reservation.
8397 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8398 block_rsv->space_info == global_rsv->space_info) {
8399 ret = block_rsv_use_bytes(global_rsv, blocksize);
8400 if (!ret)
8401 return global_rsv;
8403 return ERR_PTR(ret);
8406 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8407 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8409 block_rsv_add_bytes(block_rsv, blocksize, 0);
8410 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8414 * finds a free extent and does all the dirty work required for allocation
8415 * returns the tree buffer or an ERR_PTR on error.
8417 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8418 struct btrfs_root *root,
8419 u64 parent, u64 root_objectid,
8420 const struct btrfs_disk_key *key,
8421 int level, u64 hint,
8422 u64 empty_size)
8424 struct btrfs_fs_info *fs_info = root->fs_info;
8425 struct btrfs_key ins;
8426 struct btrfs_block_rsv *block_rsv;
8427 struct extent_buffer *buf;
8428 struct btrfs_delayed_extent_op *extent_op;
8429 u64 flags = 0;
8430 int ret;
8431 u32 blocksize = fs_info->nodesize;
8432 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8434 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8435 if (btrfs_is_testing(fs_info)) {
8436 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8437 level);
8438 if (!IS_ERR(buf))
8439 root->alloc_bytenr += blocksize;
8440 return buf;
8442 #endif
8444 block_rsv = use_block_rsv(trans, root, blocksize);
8445 if (IS_ERR(block_rsv))
8446 return ERR_CAST(block_rsv);
8448 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8449 empty_size, hint, &ins, 0, 0);
8450 if (ret)
8451 goto out_unuse;
8453 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8454 if (IS_ERR(buf)) {
8455 ret = PTR_ERR(buf);
8456 goto out_free_reserved;
8459 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8460 if (parent == 0)
8461 parent = ins.objectid;
8462 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8463 } else
8464 BUG_ON(parent > 0);
8466 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8467 extent_op = btrfs_alloc_delayed_extent_op();
8468 if (!extent_op) {
8469 ret = -ENOMEM;
8470 goto out_free_buf;
8472 if (key)
8473 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8474 else
8475 memset(&extent_op->key, 0, sizeof(extent_op->key));
8476 extent_op->flags_to_set = flags;
8477 extent_op->update_key = skinny_metadata ? false : true;
8478 extent_op->update_flags = true;
8479 extent_op->is_data = false;
8480 extent_op->level = level;
8482 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8483 root_objectid, level, 0,
8484 BTRFS_ADD_DELAYED_EXTENT);
8485 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8486 ins.offset, parent,
8487 root_objectid, level,
8488 BTRFS_ADD_DELAYED_EXTENT,
8489 extent_op, NULL, NULL);
8490 if (ret)
8491 goto out_free_delayed;
8493 return buf;
8495 out_free_delayed:
8496 btrfs_free_delayed_extent_op(extent_op);
8497 out_free_buf:
8498 free_extent_buffer(buf);
8499 out_free_reserved:
8500 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8501 out_unuse:
8502 unuse_block_rsv(fs_info, block_rsv, blocksize);
8503 return ERR_PTR(ret);
8506 struct walk_control {
8507 u64 refs[BTRFS_MAX_LEVEL];
8508 u64 flags[BTRFS_MAX_LEVEL];
8509 struct btrfs_key update_progress;
8510 int stage;
8511 int level;
8512 int shared_level;
8513 int update_ref;
8514 int keep_locks;
8515 int reada_slot;
8516 int reada_count;
8517 int for_reloc;
8520 #define DROP_REFERENCE 1
8521 #define UPDATE_BACKREF 2
8523 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8524 struct btrfs_root *root,
8525 struct walk_control *wc,
8526 struct btrfs_path *path)
8528 struct btrfs_fs_info *fs_info = root->fs_info;
8529 u64 bytenr;
8530 u64 generation;
8531 u64 refs;
8532 u64 flags;
8533 u32 nritems;
8534 struct btrfs_key key;
8535 struct extent_buffer *eb;
8536 int ret;
8537 int slot;
8538 int nread = 0;
8540 if (path->slots[wc->level] < wc->reada_slot) {
8541 wc->reada_count = wc->reada_count * 2 / 3;
8542 wc->reada_count = max(wc->reada_count, 2);
8543 } else {
8544 wc->reada_count = wc->reada_count * 3 / 2;
8545 wc->reada_count = min_t(int, wc->reada_count,
8546 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8549 eb = path->nodes[wc->level];
8550 nritems = btrfs_header_nritems(eb);
8552 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8553 if (nread >= wc->reada_count)
8554 break;
8556 cond_resched();
8557 bytenr = btrfs_node_blockptr(eb, slot);
8558 generation = btrfs_node_ptr_generation(eb, slot);
8560 if (slot == path->slots[wc->level])
8561 goto reada;
8563 if (wc->stage == UPDATE_BACKREF &&
8564 generation <= root->root_key.offset)
8565 continue;
8567 /* We don't lock the tree block, it's OK to be racy here */
8568 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8569 wc->level - 1, 1, &refs,
8570 &flags);
8571 /* We don't care about errors in readahead. */
8572 if (ret < 0)
8573 continue;
8574 BUG_ON(refs == 0);
8576 if (wc->stage == DROP_REFERENCE) {
8577 if (refs == 1)
8578 goto reada;
8580 if (wc->level == 1 &&
8581 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8582 continue;
8583 if (!wc->update_ref ||
8584 generation <= root->root_key.offset)
8585 continue;
8586 btrfs_node_key_to_cpu(eb, &key, slot);
8587 ret = btrfs_comp_cpu_keys(&key,
8588 &wc->update_progress);
8589 if (ret < 0)
8590 continue;
8591 } else {
8592 if (wc->level == 1 &&
8593 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8594 continue;
8596 reada:
8597 readahead_tree_block(fs_info, bytenr);
8598 nread++;
8600 wc->reada_slot = slot;
8604 * helper to process tree block while walking down the tree.
8606 * when wc->stage == UPDATE_BACKREF, this function updates
8607 * back refs for pointers in the block.
8609 * NOTE: return value 1 means we should stop walking down.
8611 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8612 struct btrfs_root *root,
8613 struct btrfs_path *path,
8614 struct walk_control *wc, int lookup_info)
8616 struct btrfs_fs_info *fs_info = root->fs_info;
8617 int level = wc->level;
8618 struct extent_buffer *eb = path->nodes[level];
8619 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8620 int ret;
8622 if (wc->stage == UPDATE_BACKREF &&
8623 btrfs_header_owner(eb) != root->root_key.objectid)
8624 return 1;
8627 * when reference count of tree block is 1, it won't increase
8628 * again. once full backref flag is set, we never clear it.
8630 if (lookup_info &&
8631 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8632 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8633 BUG_ON(!path->locks[level]);
8634 ret = btrfs_lookup_extent_info(trans, fs_info,
8635 eb->start, level, 1,
8636 &wc->refs[level],
8637 &wc->flags[level]);
8638 BUG_ON(ret == -ENOMEM);
8639 if (ret)
8640 return ret;
8641 BUG_ON(wc->refs[level] == 0);
8644 if (wc->stage == DROP_REFERENCE) {
8645 if (wc->refs[level] > 1)
8646 return 1;
8648 if (path->locks[level] && !wc->keep_locks) {
8649 btrfs_tree_unlock_rw(eb, path->locks[level]);
8650 path->locks[level] = 0;
8652 return 0;
8655 /* wc->stage == UPDATE_BACKREF */
8656 if (!(wc->flags[level] & flag)) {
8657 BUG_ON(!path->locks[level]);
8658 ret = btrfs_inc_ref(trans, root, eb, 1);
8659 BUG_ON(ret); /* -ENOMEM */
8660 ret = btrfs_dec_ref(trans, root, eb, 0);
8661 BUG_ON(ret); /* -ENOMEM */
8662 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8663 eb->len, flag,
8664 btrfs_header_level(eb), 0);
8665 BUG_ON(ret); /* -ENOMEM */
8666 wc->flags[level] |= flag;
8670 * the block is shared by multiple trees, so it's not good to
8671 * keep the tree lock
8673 if (path->locks[level] && level > 0) {
8674 btrfs_tree_unlock_rw(eb, path->locks[level]);
8675 path->locks[level] = 0;
8677 return 0;
8681 * helper to process tree block pointer.
8683 * when wc->stage == DROP_REFERENCE, this function checks
8684 * reference count of the block pointed to. if the block
8685 * is shared and we need update back refs for the subtree
8686 * rooted at the block, this function changes wc->stage to
8687 * UPDATE_BACKREF. if the block is shared and there is no
8688 * need to update back, this function drops the reference
8689 * to the block.
8691 * NOTE: return value 1 means we should stop walking down.
8693 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8694 struct btrfs_root *root,
8695 struct btrfs_path *path,
8696 struct walk_control *wc, int *lookup_info)
8698 struct btrfs_fs_info *fs_info = root->fs_info;
8699 u64 bytenr;
8700 u64 generation;
8701 u64 parent;
8702 u32 blocksize;
8703 struct btrfs_key key;
8704 struct extent_buffer *next;
8705 int level = wc->level;
8706 int reada = 0;
8707 int ret = 0;
8708 bool need_account = false;
8710 generation = btrfs_node_ptr_generation(path->nodes[level],
8711 path->slots[level]);
8713 * if the lower level block was created before the snapshot
8714 * was created, we know there is no need to update back refs
8715 * for the subtree
8717 if (wc->stage == UPDATE_BACKREF &&
8718 generation <= root->root_key.offset) {
8719 *lookup_info = 1;
8720 return 1;
8723 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8724 blocksize = fs_info->nodesize;
8726 next = find_extent_buffer(fs_info, bytenr);
8727 if (!next) {
8728 next = btrfs_find_create_tree_block(fs_info, bytenr);
8729 if (IS_ERR(next))
8730 return PTR_ERR(next);
8732 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8733 level - 1);
8734 reada = 1;
8736 btrfs_tree_lock(next);
8737 btrfs_set_lock_blocking(next);
8739 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8740 &wc->refs[level - 1],
8741 &wc->flags[level - 1]);
8742 if (ret < 0)
8743 goto out_unlock;
8745 if (unlikely(wc->refs[level - 1] == 0)) {
8746 btrfs_err(fs_info, "Missing references.");
8747 ret = -EIO;
8748 goto out_unlock;
8750 *lookup_info = 0;
8752 if (wc->stage == DROP_REFERENCE) {
8753 if (wc->refs[level - 1] > 1) {
8754 need_account = true;
8755 if (level == 1 &&
8756 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8757 goto skip;
8759 if (!wc->update_ref ||
8760 generation <= root->root_key.offset)
8761 goto skip;
8763 btrfs_node_key_to_cpu(path->nodes[level], &key,
8764 path->slots[level]);
8765 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8766 if (ret < 0)
8767 goto skip;
8769 wc->stage = UPDATE_BACKREF;
8770 wc->shared_level = level - 1;
8772 } else {
8773 if (level == 1 &&
8774 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8775 goto skip;
8778 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8779 btrfs_tree_unlock(next);
8780 free_extent_buffer(next);
8781 next = NULL;
8782 *lookup_info = 1;
8785 if (!next) {
8786 if (reada && level == 1)
8787 reada_walk_down(trans, root, wc, path);
8788 next = read_tree_block(fs_info, bytenr, generation);
8789 if (IS_ERR(next)) {
8790 return PTR_ERR(next);
8791 } else if (!extent_buffer_uptodate(next)) {
8792 free_extent_buffer(next);
8793 return -EIO;
8795 btrfs_tree_lock(next);
8796 btrfs_set_lock_blocking(next);
8799 level--;
8800 ASSERT(level == btrfs_header_level(next));
8801 if (level != btrfs_header_level(next)) {
8802 btrfs_err(root->fs_info, "mismatched level");
8803 ret = -EIO;
8804 goto out_unlock;
8806 path->nodes[level] = next;
8807 path->slots[level] = 0;
8808 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8809 wc->level = level;
8810 if (wc->level == 1)
8811 wc->reada_slot = 0;
8812 return 0;
8813 skip:
8814 wc->refs[level - 1] = 0;
8815 wc->flags[level - 1] = 0;
8816 if (wc->stage == DROP_REFERENCE) {
8817 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8818 parent = path->nodes[level]->start;
8819 } else {
8820 ASSERT(root->root_key.objectid ==
8821 btrfs_header_owner(path->nodes[level]));
8822 if (root->root_key.objectid !=
8823 btrfs_header_owner(path->nodes[level])) {
8824 btrfs_err(root->fs_info,
8825 "mismatched block owner");
8826 ret = -EIO;
8827 goto out_unlock;
8829 parent = 0;
8832 if (need_account) {
8833 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8834 generation, level - 1);
8835 if (ret) {
8836 btrfs_err_rl(fs_info,
8837 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8838 ret);
8841 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8842 parent, root->root_key.objectid,
8843 level - 1, 0);
8844 if (ret)
8845 goto out_unlock;
8848 *lookup_info = 1;
8849 ret = 1;
8851 out_unlock:
8852 btrfs_tree_unlock(next);
8853 free_extent_buffer(next);
8855 return ret;
8859 * helper to process tree block while walking up the tree.
8861 * when wc->stage == DROP_REFERENCE, this function drops
8862 * reference count on the block.
8864 * when wc->stage == UPDATE_BACKREF, this function changes
8865 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8866 * to UPDATE_BACKREF previously while processing the block.
8868 * NOTE: return value 1 means we should stop walking up.
8870 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8871 struct btrfs_root *root,
8872 struct btrfs_path *path,
8873 struct walk_control *wc)
8875 struct btrfs_fs_info *fs_info = root->fs_info;
8876 int ret;
8877 int level = wc->level;
8878 struct extent_buffer *eb = path->nodes[level];
8879 u64 parent = 0;
8881 if (wc->stage == UPDATE_BACKREF) {
8882 BUG_ON(wc->shared_level < level);
8883 if (level < wc->shared_level)
8884 goto out;
8886 ret = find_next_key(path, level + 1, &wc->update_progress);
8887 if (ret > 0)
8888 wc->update_ref = 0;
8890 wc->stage = DROP_REFERENCE;
8891 wc->shared_level = -1;
8892 path->slots[level] = 0;
8895 * check reference count again if the block isn't locked.
8896 * we should start walking down the tree again if reference
8897 * count is one.
8899 if (!path->locks[level]) {
8900 BUG_ON(level == 0);
8901 btrfs_tree_lock(eb);
8902 btrfs_set_lock_blocking(eb);
8903 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8905 ret = btrfs_lookup_extent_info(trans, fs_info,
8906 eb->start, level, 1,
8907 &wc->refs[level],
8908 &wc->flags[level]);
8909 if (ret < 0) {
8910 btrfs_tree_unlock_rw(eb, path->locks[level]);
8911 path->locks[level] = 0;
8912 return ret;
8914 BUG_ON(wc->refs[level] == 0);
8915 if (wc->refs[level] == 1) {
8916 btrfs_tree_unlock_rw(eb, path->locks[level]);
8917 path->locks[level] = 0;
8918 return 1;
8923 /* wc->stage == DROP_REFERENCE */
8924 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8926 if (wc->refs[level] == 1) {
8927 if (level == 0) {
8928 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8929 ret = btrfs_dec_ref(trans, root, eb, 1);
8930 else
8931 ret = btrfs_dec_ref(trans, root, eb, 0);
8932 BUG_ON(ret); /* -ENOMEM */
8933 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8934 if (ret) {
8935 btrfs_err_rl(fs_info,
8936 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8937 ret);
8940 /* make block locked assertion in clean_tree_block happy */
8941 if (!path->locks[level] &&
8942 btrfs_header_generation(eb) == trans->transid) {
8943 btrfs_tree_lock(eb);
8944 btrfs_set_lock_blocking(eb);
8945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8947 clean_tree_block(fs_info, eb);
8950 if (eb == root->node) {
8951 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8952 parent = eb->start;
8953 else
8954 BUG_ON(root->root_key.objectid !=
8955 btrfs_header_owner(eb));
8956 } else {
8957 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8958 parent = path->nodes[level + 1]->start;
8959 else
8960 BUG_ON(root->root_key.objectid !=
8961 btrfs_header_owner(path->nodes[level + 1]));
8964 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8965 out:
8966 wc->refs[level] = 0;
8967 wc->flags[level] = 0;
8968 return 0;
8971 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8972 struct btrfs_root *root,
8973 struct btrfs_path *path,
8974 struct walk_control *wc)
8976 int level = wc->level;
8977 int lookup_info = 1;
8978 int ret;
8980 while (level >= 0) {
8981 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8982 if (ret > 0)
8983 break;
8985 if (level == 0)
8986 break;
8988 if (path->slots[level] >=
8989 btrfs_header_nritems(path->nodes[level]))
8990 break;
8992 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8993 if (ret > 0) {
8994 path->slots[level]++;
8995 continue;
8996 } else if (ret < 0)
8997 return ret;
8998 level = wc->level;
9000 return 0;
9003 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9004 struct btrfs_root *root,
9005 struct btrfs_path *path,
9006 struct walk_control *wc, int max_level)
9008 int level = wc->level;
9009 int ret;
9011 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9012 while (level < max_level && path->nodes[level]) {
9013 wc->level = level;
9014 if (path->slots[level] + 1 <
9015 btrfs_header_nritems(path->nodes[level])) {
9016 path->slots[level]++;
9017 return 0;
9018 } else {
9019 ret = walk_up_proc(trans, root, path, wc);
9020 if (ret > 0)
9021 return 0;
9023 if (path->locks[level]) {
9024 btrfs_tree_unlock_rw(path->nodes[level],
9025 path->locks[level]);
9026 path->locks[level] = 0;
9028 free_extent_buffer(path->nodes[level]);
9029 path->nodes[level] = NULL;
9030 level++;
9033 return 1;
9037 * drop a subvolume tree.
9039 * this function traverses the tree freeing any blocks that only
9040 * referenced by the tree.
9042 * when a shared tree block is found. this function decreases its
9043 * reference count by one. if update_ref is true, this function
9044 * also make sure backrefs for the shared block and all lower level
9045 * blocks are properly updated.
9047 * If called with for_reloc == 0, may exit early with -EAGAIN
9049 int btrfs_drop_snapshot(struct btrfs_root *root,
9050 struct btrfs_block_rsv *block_rsv, int update_ref,
9051 int for_reloc)
9053 struct btrfs_fs_info *fs_info = root->fs_info;
9054 struct btrfs_path *path;
9055 struct btrfs_trans_handle *trans;
9056 struct btrfs_root *tree_root = fs_info->tree_root;
9057 struct btrfs_root_item *root_item = &root->root_item;
9058 struct walk_control *wc;
9059 struct btrfs_key key;
9060 int err = 0;
9061 int ret;
9062 int level;
9063 bool root_dropped = false;
9065 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9067 path = btrfs_alloc_path();
9068 if (!path) {
9069 err = -ENOMEM;
9070 goto out;
9073 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9074 if (!wc) {
9075 btrfs_free_path(path);
9076 err = -ENOMEM;
9077 goto out;
9080 trans = btrfs_start_transaction(tree_root, 0);
9081 if (IS_ERR(trans)) {
9082 err = PTR_ERR(trans);
9083 goto out_free;
9086 if (block_rsv)
9087 trans->block_rsv = block_rsv;
9089 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9090 level = btrfs_header_level(root->node);
9091 path->nodes[level] = btrfs_lock_root_node(root);
9092 btrfs_set_lock_blocking(path->nodes[level]);
9093 path->slots[level] = 0;
9094 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9095 memset(&wc->update_progress, 0,
9096 sizeof(wc->update_progress));
9097 } else {
9098 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9099 memcpy(&wc->update_progress, &key,
9100 sizeof(wc->update_progress));
9102 level = root_item->drop_level;
9103 BUG_ON(level == 0);
9104 path->lowest_level = level;
9105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9106 path->lowest_level = 0;
9107 if (ret < 0) {
9108 err = ret;
9109 goto out_end_trans;
9111 WARN_ON(ret > 0);
9114 * unlock our path, this is safe because only this
9115 * function is allowed to delete this snapshot
9117 btrfs_unlock_up_safe(path, 0);
9119 level = btrfs_header_level(root->node);
9120 while (1) {
9121 btrfs_tree_lock(path->nodes[level]);
9122 btrfs_set_lock_blocking(path->nodes[level]);
9123 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9125 ret = btrfs_lookup_extent_info(trans, fs_info,
9126 path->nodes[level]->start,
9127 level, 1, &wc->refs[level],
9128 &wc->flags[level]);
9129 if (ret < 0) {
9130 err = ret;
9131 goto out_end_trans;
9133 BUG_ON(wc->refs[level] == 0);
9135 if (level == root_item->drop_level)
9136 break;
9138 btrfs_tree_unlock(path->nodes[level]);
9139 path->locks[level] = 0;
9140 WARN_ON(wc->refs[level] != 1);
9141 level--;
9145 wc->level = level;
9146 wc->shared_level = -1;
9147 wc->stage = DROP_REFERENCE;
9148 wc->update_ref = update_ref;
9149 wc->keep_locks = 0;
9150 wc->for_reloc = for_reloc;
9151 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9153 while (1) {
9155 ret = walk_down_tree(trans, root, path, wc);
9156 if (ret < 0) {
9157 err = ret;
9158 break;
9161 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9162 if (ret < 0) {
9163 err = ret;
9164 break;
9167 if (ret > 0) {
9168 BUG_ON(wc->stage != DROP_REFERENCE);
9169 break;
9172 if (wc->stage == DROP_REFERENCE) {
9173 level = wc->level;
9174 btrfs_node_key(path->nodes[level],
9175 &root_item->drop_progress,
9176 path->slots[level]);
9177 root_item->drop_level = level;
9180 BUG_ON(wc->level == 0);
9181 if (btrfs_should_end_transaction(trans) ||
9182 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9183 ret = btrfs_update_root(trans, tree_root,
9184 &root->root_key,
9185 root_item);
9186 if (ret) {
9187 btrfs_abort_transaction(trans, ret);
9188 err = ret;
9189 goto out_end_trans;
9192 btrfs_end_transaction_throttle(trans);
9193 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9194 btrfs_debug(fs_info,
9195 "drop snapshot early exit");
9196 err = -EAGAIN;
9197 goto out_free;
9200 trans = btrfs_start_transaction(tree_root, 0);
9201 if (IS_ERR(trans)) {
9202 err = PTR_ERR(trans);
9203 goto out_free;
9205 if (block_rsv)
9206 trans->block_rsv = block_rsv;
9209 btrfs_release_path(path);
9210 if (err)
9211 goto out_end_trans;
9213 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9214 if (ret) {
9215 btrfs_abort_transaction(trans, ret);
9216 err = ret;
9217 goto out_end_trans;
9220 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9221 ret = btrfs_find_root(tree_root, &root->root_key, path,
9222 NULL, NULL);
9223 if (ret < 0) {
9224 btrfs_abort_transaction(trans, ret);
9225 err = ret;
9226 goto out_end_trans;
9227 } else if (ret > 0) {
9228 /* if we fail to delete the orphan item this time
9229 * around, it'll get picked up the next time.
9231 * The most common failure here is just -ENOENT.
9233 btrfs_del_orphan_item(trans, tree_root,
9234 root->root_key.objectid);
9238 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9239 btrfs_add_dropped_root(trans, root);
9240 } else {
9241 free_extent_buffer(root->node);
9242 free_extent_buffer(root->commit_root);
9243 btrfs_put_fs_root(root);
9245 root_dropped = true;
9246 out_end_trans:
9247 btrfs_end_transaction_throttle(trans);
9248 out_free:
9249 kfree(wc);
9250 btrfs_free_path(path);
9251 out:
9253 * So if we need to stop dropping the snapshot for whatever reason we
9254 * need to make sure to add it back to the dead root list so that we
9255 * keep trying to do the work later. This also cleans up roots if we
9256 * don't have it in the radix (like when we recover after a power fail
9257 * or unmount) so we don't leak memory.
9259 if (!for_reloc && !root_dropped)
9260 btrfs_add_dead_root(root);
9261 if (err && err != -EAGAIN)
9262 btrfs_handle_fs_error(fs_info, err, NULL);
9263 return err;
9267 * drop subtree rooted at tree block 'node'.
9269 * NOTE: this function will unlock and release tree block 'node'
9270 * only used by relocation code
9272 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9273 struct btrfs_root *root,
9274 struct extent_buffer *node,
9275 struct extent_buffer *parent)
9277 struct btrfs_fs_info *fs_info = root->fs_info;
9278 struct btrfs_path *path;
9279 struct walk_control *wc;
9280 int level;
9281 int parent_level;
9282 int ret = 0;
9283 int wret;
9285 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9287 path = btrfs_alloc_path();
9288 if (!path)
9289 return -ENOMEM;
9291 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9292 if (!wc) {
9293 btrfs_free_path(path);
9294 return -ENOMEM;
9297 btrfs_assert_tree_locked(parent);
9298 parent_level = btrfs_header_level(parent);
9299 extent_buffer_get(parent);
9300 path->nodes[parent_level] = parent;
9301 path->slots[parent_level] = btrfs_header_nritems(parent);
9303 btrfs_assert_tree_locked(node);
9304 level = btrfs_header_level(node);
9305 path->nodes[level] = node;
9306 path->slots[level] = 0;
9307 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9309 wc->refs[parent_level] = 1;
9310 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9311 wc->level = level;
9312 wc->shared_level = -1;
9313 wc->stage = DROP_REFERENCE;
9314 wc->update_ref = 0;
9315 wc->keep_locks = 1;
9316 wc->for_reloc = 1;
9317 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9319 while (1) {
9320 wret = walk_down_tree(trans, root, path, wc);
9321 if (wret < 0) {
9322 ret = wret;
9323 break;
9326 wret = walk_up_tree(trans, root, path, wc, parent_level);
9327 if (wret < 0)
9328 ret = wret;
9329 if (wret != 0)
9330 break;
9333 kfree(wc);
9334 btrfs_free_path(path);
9335 return ret;
9338 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9340 u64 num_devices;
9341 u64 stripped;
9344 * if restripe for this chunk_type is on pick target profile and
9345 * return, otherwise do the usual balance
9347 stripped = get_restripe_target(fs_info, flags);
9348 if (stripped)
9349 return extended_to_chunk(stripped);
9351 num_devices = fs_info->fs_devices->rw_devices;
9353 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9354 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9355 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9357 if (num_devices == 1) {
9358 stripped |= BTRFS_BLOCK_GROUP_DUP;
9359 stripped = flags & ~stripped;
9361 /* turn raid0 into single device chunks */
9362 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9363 return stripped;
9365 /* turn mirroring into duplication */
9366 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9367 BTRFS_BLOCK_GROUP_RAID10))
9368 return stripped | BTRFS_BLOCK_GROUP_DUP;
9369 } else {
9370 /* they already had raid on here, just return */
9371 if (flags & stripped)
9372 return flags;
9374 stripped |= BTRFS_BLOCK_GROUP_DUP;
9375 stripped = flags & ~stripped;
9377 /* switch duplicated blocks with raid1 */
9378 if (flags & BTRFS_BLOCK_GROUP_DUP)
9379 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9381 /* this is drive concat, leave it alone */
9384 return flags;
9387 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9389 struct btrfs_space_info *sinfo = cache->space_info;
9390 u64 num_bytes;
9391 u64 min_allocable_bytes;
9392 int ret = -ENOSPC;
9395 * We need some metadata space and system metadata space for
9396 * allocating chunks in some corner cases until we force to set
9397 * it to be readonly.
9399 if ((sinfo->flags &
9400 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9401 !force)
9402 min_allocable_bytes = SZ_1M;
9403 else
9404 min_allocable_bytes = 0;
9406 spin_lock(&sinfo->lock);
9407 spin_lock(&cache->lock);
9409 if (cache->ro) {
9410 cache->ro++;
9411 ret = 0;
9412 goto out;
9415 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9416 cache->bytes_super - btrfs_block_group_used(&cache->item);
9418 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9419 min_allocable_bytes <= sinfo->total_bytes) {
9420 sinfo->bytes_readonly += num_bytes;
9421 cache->ro++;
9422 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9423 ret = 0;
9425 out:
9426 spin_unlock(&cache->lock);
9427 spin_unlock(&sinfo->lock);
9428 return ret;
9431 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9432 struct btrfs_block_group_cache *cache)
9435 struct btrfs_trans_handle *trans;
9436 u64 alloc_flags;
9437 int ret;
9439 again:
9440 trans = btrfs_join_transaction(fs_info->extent_root);
9441 if (IS_ERR(trans))
9442 return PTR_ERR(trans);
9445 * we're not allowed to set block groups readonly after the dirty
9446 * block groups cache has started writing. If it already started,
9447 * back off and let this transaction commit
9449 mutex_lock(&fs_info->ro_block_group_mutex);
9450 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9451 u64 transid = trans->transid;
9453 mutex_unlock(&fs_info->ro_block_group_mutex);
9454 btrfs_end_transaction(trans);
9456 ret = btrfs_wait_for_commit(fs_info, transid);
9457 if (ret)
9458 return ret;
9459 goto again;
9463 * if we are changing raid levels, try to allocate a corresponding
9464 * block group with the new raid level.
9466 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9467 if (alloc_flags != cache->flags) {
9468 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9469 CHUNK_ALLOC_FORCE);
9471 * ENOSPC is allowed here, we may have enough space
9472 * already allocated at the new raid level to
9473 * carry on
9475 if (ret == -ENOSPC)
9476 ret = 0;
9477 if (ret < 0)
9478 goto out;
9481 ret = inc_block_group_ro(cache, 0);
9482 if (!ret)
9483 goto out;
9484 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9485 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9486 CHUNK_ALLOC_FORCE);
9487 if (ret < 0)
9488 goto out;
9489 ret = inc_block_group_ro(cache, 0);
9490 out:
9491 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9492 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9493 mutex_lock(&fs_info->chunk_mutex);
9494 check_system_chunk(trans, fs_info, alloc_flags);
9495 mutex_unlock(&fs_info->chunk_mutex);
9497 mutex_unlock(&fs_info->ro_block_group_mutex);
9499 btrfs_end_transaction(trans);
9500 return ret;
9503 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9504 struct btrfs_fs_info *fs_info, u64 type)
9506 u64 alloc_flags = get_alloc_profile(fs_info, type);
9508 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9512 * helper to account the unused space of all the readonly block group in the
9513 * space_info. takes mirrors into account.
9515 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9517 struct btrfs_block_group_cache *block_group;
9518 u64 free_bytes = 0;
9519 int factor;
9521 /* It's df, we don't care if it's racy */
9522 if (list_empty(&sinfo->ro_bgs))
9523 return 0;
9525 spin_lock(&sinfo->lock);
9526 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9527 spin_lock(&block_group->lock);
9529 if (!block_group->ro) {
9530 spin_unlock(&block_group->lock);
9531 continue;
9534 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9535 BTRFS_BLOCK_GROUP_RAID10 |
9536 BTRFS_BLOCK_GROUP_DUP))
9537 factor = 2;
9538 else
9539 factor = 1;
9541 free_bytes += (block_group->key.offset -
9542 btrfs_block_group_used(&block_group->item)) *
9543 factor;
9545 spin_unlock(&block_group->lock);
9547 spin_unlock(&sinfo->lock);
9549 return free_bytes;
9552 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9554 struct btrfs_space_info *sinfo = cache->space_info;
9555 u64 num_bytes;
9557 BUG_ON(!cache->ro);
9559 spin_lock(&sinfo->lock);
9560 spin_lock(&cache->lock);
9561 if (!--cache->ro) {
9562 num_bytes = cache->key.offset - cache->reserved -
9563 cache->pinned - cache->bytes_super -
9564 btrfs_block_group_used(&cache->item);
9565 sinfo->bytes_readonly -= num_bytes;
9566 list_del_init(&cache->ro_list);
9568 spin_unlock(&cache->lock);
9569 spin_unlock(&sinfo->lock);
9573 * checks to see if its even possible to relocate this block group.
9575 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9576 * ok to go ahead and try.
9578 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9580 struct btrfs_root *root = fs_info->extent_root;
9581 struct btrfs_block_group_cache *block_group;
9582 struct btrfs_space_info *space_info;
9583 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9584 struct btrfs_device *device;
9585 struct btrfs_trans_handle *trans;
9586 u64 min_free;
9587 u64 dev_min = 1;
9588 u64 dev_nr = 0;
9589 u64 target;
9590 int debug;
9591 int index;
9592 int full = 0;
9593 int ret = 0;
9595 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9597 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9599 /* odd, couldn't find the block group, leave it alone */
9600 if (!block_group) {
9601 if (debug)
9602 btrfs_warn(fs_info,
9603 "can't find block group for bytenr %llu",
9604 bytenr);
9605 return -1;
9608 min_free = btrfs_block_group_used(&block_group->item);
9610 /* no bytes used, we're good */
9611 if (!min_free)
9612 goto out;
9614 space_info = block_group->space_info;
9615 spin_lock(&space_info->lock);
9617 full = space_info->full;
9620 * if this is the last block group we have in this space, we can't
9621 * relocate it unless we're able to allocate a new chunk below.
9623 * Otherwise, we need to make sure we have room in the space to handle
9624 * all of the extents from this block group. If we can, we're good
9626 if ((space_info->total_bytes != block_group->key.offset) &&
9627 (btrfs_space_info_used(space_info, false) + min_free <
9628 space_info->total_bytes)) {
9629 spin_unlock(&space_info->lock);
9630 goto out;
9632 spin_unlock(&space_info->lock);
9635 * ok we don't have enough space, but maybe we have free space on our
9636 * devices to allocate new chunks for relocation, so loop through our
9637 * alloc devices and guess if we have enough space. if this block
9638 * group is going to be restriped, run checks against the target
9639 * profile instead of the current one.
9641 ret = -1;
9644 * index:
9645 * 0: raid10
9646 * 1: raid1
9647 * 2: dup
9648 * 3: raid0
9649 * 4: single
9651 target = get_restripe_target(fs_info, block_group->flags);
9652 if (target) {
9653 index = __get_raid_index(extended_to_chunk(target));
9654 } else {
9656 * this is just a balance, so if we were marked as full
9657 * we know there is no space for a new chunk
9659 if (full) {
9660 if (debug)
9661 btrfs_warn(fs_info,
9662 "no space to alloc new chunk for block group %llu",
9663 block_group->key.objectid);
9664 goto out;
9667 index = get_block_group_index(block_group);
9670 if (index == BTRFS_RAID_RAID10) {
9671 dev_min = 4;
9672 /* Divide by 2 */
9673 min_free >>= 1;
9674 } else if (index == BTRFS_RAID_RAID1) {
9675 dev_min = 2;
9676 } else if (index == BTRFS_RAID_DUP) {
9677 /* Multiply by 2 */
9678 min_free <<= 1;
9679 } else if (index == BTRFS_RAID_RAID0) {
9680 dev_min = fs_devices->rw_devices;
9681 min_free = div64_u64(min_free, dev_min);
9684 /* We need to do this so that we can look at pending chunks */
9685 trans = btrfs_join_transaction(root);
9686 if (IS_ERR(trans)) {
9687 ret = PTR_ERR(trans);
9688 goto out;
9691 mutex_lock(&fs_info->chunk_mutex);
9692 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9693 u64 dev_offset;
9696 * check to make sure we can actually find a chunk with enough
9697 * space to fit our block group in.
9699 if (device->total_bytes > device->bytes_used + min_free &&
9700 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9701 ret = find_free_dev_extent(trans, device, min_free,
9702 &dev_offset, NULL);
9703 if (!ret)
9704 dev_nr++;
9706 if (dev_nr >= dev_min)
9707 break;
9709 ret = -1;
9712 if (debug && ret == -1)
9713 btrfs_warn(fs_info,
9714 "no space to allocate a new chunk for block group %llu",
9715 block_group->key.objectid);
9716 mutex_unlock(&fs_info->chunk_mutex);
9717 btrfs_end_transaction(trans);
9718 out:
9719 btrfs_put_block_group(block_group);
9720 return ret;
9723 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9724 struct btrfs_path *path,
9725 struct btrfs_key *key)
9727 struct btrfs_root *root = fs_info->extent_root;
9728 int ret = 0;
9729 struct btrfs_key found_key;
9730 struct extent_buffer *leaf;
9731 int slot;
9733 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9734 if (ret < 0)
9735 goto out;
9737 while (1) {
9738 slot = path->slots[0];
9739 leaf = path->nodes[0];
9740 if (slot >= btrfs_header_nritems(leaf)) {
9741 ret = btrfs_next_leaf(root, path);
9742 if (ret == 0)
9743 continue;
9744 if (ret < 0)
9745 goto out;
9746 break;
9748 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9750 if (found_key.objectid >= key->objectid &&
9751 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9752 struct extent_map_tree *em_tree;
9753 struct extent_map *em;
9755 em_tree = &root->fs_info->mapping_tree.map_tree;
9756 read_lock(&em_tree->lock);
9757 em = lookup_extent_mapping(em_tree, found_key.objectid,
9758 found_key.offset);
9759 read_unlock(&em_tree->lock);
9760 if (!em) {
9761 btrfs_err(fs_info,
9762 "logical %llu len %llu found bg but no related chunk",
9763 found_key.objectid, found_key.offset);
9764 ret = -ENOENT;
9765 } else {
9766 ret = 0;
9768 free_extent_map(em);
9769 goto out;
9771 path->slots[0]++;
9773 out:
9774 return ret;
9777 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9779 struct btrfs_block_group_cache *block_group;
9780 u64 last = 0;
9782 while (1) {
9783 struct inode *inode;
9785 block_group = btrfs_lookup_first_block_group(info, last);
9786 while (block_group) {
9787 spin_lock(&block_group->lock);
9788 if (block_group->iref)
9789 break;
9790 spin_unlock(&block_group->lock);
9791 block_group = next_block_group(info, block_group);
9793 if (!block_group) {
9794 if (last == 0)
9795 break;
9796 last = 0;
9797 continue;
9800 inode = block_group->inode;
9801 block_group->iref = 0;
9802 block_group->inode = NULL;
9803 spin_unlock(&block_group->lock);
9804 ASSERT(block_group->io_ctl.inode == NULL);
9805 iput(inode);
9806 last = block_group->key.objectid + block_group->key.offset;
9807 btrfs_put_block_group(block_group);
9812 * Must be called only after stopping all workers, since we could have block
9813 * group caching kthreads running, and therefore they could race with us if we
9814 * freed the block groups before stopping them.
9816 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9818 struct btrfs_block_group_cache *block_group;
9819 struct btrfs_space_info *space_info;
9820 struct btrfs_caching_control *caching_ctl;
9821 struct rb_node *n;
9823 down_write(&info->commit_root_sem);
9824 while (!list_empty(&info->caching_block_groups)) {
9825 caching_ctl = list_entry(info->caching_block_groups.next,
9826 struct btrfs_caching_control, list);
9827 list_del(&caching_ctl->list);
9828 put_caching_control(caching_ctl);
9830 up_write(&info->commit_root_sem);
9832 spin_lock(&info->unused_bgs_lock);
9833 while (!list_empty(&info->unused_bgs)) {
9834 block_group = list_first_entry(&info->unused_bgs,
9835 struct btrfs_block_group_cache,
9836 bg_list);
9837 list_del_init(&block_group->bg_list);
9838 btrfs_put_block_group(block_group);
9840 spin_unlock(&info->unused_bgs_lock);
9842 spin_lock(&info->block_group_cache_lock);
9843 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9844 block_group = rb_entry(n, struct btrfs_block_group_cache,
9845 cache_node);
9846 rb_erase(&block_group->cache_node,
9847 &info->block_group_cache_tree);
9848 RB_CLEAR_NODE(&block_group->cache_node);
9849 spin_unlock(&info->block_group_cache_lock);
9851 down_write(&block_group->space_info->groups_sem);
9852 list_del(&block_group->list);
9853 up_write(&block_group->space_info->groups_sem);
9856 * We haven't cached this block group, which means we could
9857 * possibly have excluded extents on this block group.
9859 if (block_group->cached == BTRFS_CACHE_NO ||
9860 block_group->cached == BTRFS_CACHE_ERROR)
9861 free_excluded_extents(info, block_group);
9863 btrfs_remove_free_space_cache(block_group);
9864 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9865 ASSERT(list_empty(&block_group->dirty_list));
9866 ASSERT(list_empty(&block_group->io_list));
9867 ASSERT(list_empty(&block_group->bg_list));
9868 ASSERT(atomic_read(&block_group->count) == 1);
9869 btrfs_put_block_group(block_group);
9871 spin_lock(&info->block_group_cache_lock);
9873 spin_unlock(&info->block_group_cache_lock);
9875 /* now that all the block groups are freed, go through and
9876 * free all the space_info structs. This is only called during
9877 * the final stages of unmount, and so we know nobody is
9878 * using them. We call synchronize_rcu() once before we start,
9879 * just to be on the safe side.
9881 synchronize_rcu();
9883 release_global_block_rsv(info);
9885 while (!list_empty(&info->space_info)) {
9886 int i;
9888 space_info = list_entry(info->space_info.next,
9889 struct btrfs_space_info,
9890 list);
9893 * Do not hide this behind enospc_debug, this is actually
9894 * important and indicates a real bug if this happens.
9896 if (WARN_ON(space_info->bytes_pinned > 0 ||
9897 space_info->bytes_reserved > 0 ||
9898 space_info->bytes_may_use > 0))
9899 dump_space_info(info, space_info, 0, 0);
9900 list_del(&space_info->list);
9901 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9902 struct kobject *kobj;
9903 kobj = space_info->block_group_kobjs[i];
9904 space_info->block_group_kobjs[i] = NULL;
9905 if (kobj) {
9906 kobject_del(kobj);
9907 kobject_put(kobj);
9910 kobject_del(&space_info->kobj);
9911 kobject_put(&space_info->kobj);
9913 return 0;
9916 static void link_block_group(struct btrfs_block_group_cache *cache)
9918 struct btrfs_space_info *space_info = cache->space_info;
9919 int index = get_block_group_index(cache);
9920 bool first = false;
9922 down_write(&space_info->groups_sem);
9923 if (list_empty(&space_info->block_groups[index]))
9924 first = true;
9925 list_add_tail(&cache->list, &space_info->block_groups[index]);
9926 up_write(&space_info->groups_sem);
9928 if (first) {
9929 struct raid_kobject *rkobj;
9930 int ret;
9932 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9933 if (!rkobj)
9934 goto out_err;
9935 rkobj->raid_type = index;
9936 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9937 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9938 "%s", get_raid_name(index));
9939 if (ret) {
9940 kobject_put(&rkobj->kobj);
9941 goto out_err;
9943 space_info->block_group_kobjs[index] = &rkobj->kobj;
9946 return;
9947 out_err:
9948 btrfs_warn(cache->fs_info,
9949 "failed to add kobject for block cache, ignoring");
9952 static struct btrfs_block_group_cache *
9953 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9954 u64 start, u64 size)
9956 struct btrfs_block_group_cache *cache;
9958 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9959 if (!cache)
9960 return NULL;
9962 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9963 GFP_NOFS);
9964 if (!cache->free_space_ctl) {
9965 kfree(cache);
9966 return NULL;
9969 cache->key.objectid = start;
9970 cache->key.offset = size;
9971 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9973 cache->fs_info = fs_info;
9974 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9975 set_free_space_tree_thresholds(cache);
9977 atomic_set(&cache->count, 1);
9978 spin_lock_init(&cache->lock);
9979 init_rwsem(&cache->data_rwsem);
9980 INIT_LIST_HEAD(&cache->list);
9981 INIT_LIST_HEAD(&cache->cluster_list);
9982 INIT_LIST_HEAD(&cache->bg_list);
9983 INIT_LIST_HEAD(&cache->ro_list);
9984 INIT_LIST_HEAD(&cache->dirty_list);
9985 INIT_LIST_HEAD(&cache->io_list);
9986 btrfs_init_free_space_ctl(cache);
9987 atomic_set(&cache->trimming, 0);
9988 mutex_init(&cache->free_space_lock);
9989 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9991 return cache;
9994 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9996 struct btrfs_path *path;
9997 int ret;
9998 struct btrfs_block_group_cache *cache;
9999 struct btrfs_space_info *space_info;
10000 struct btrfs_key key;
10001 struct btrfs_key found_key;
10002 struct extent_buffer *leaf;
10003 int need_clear = 0;
10004 u64 cache_gen;
10005 u64 feature;
10006 int mixed;
10008 feature = btrfs_super_incompat_flags(info->super_copy);
10009 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10011 key.objectid = 0;
10012 key.offset = 0;
10013 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10014 path = btrfs_alloc_path();
10015 if (!path)
10016 return -ENOMEM;
10017 path->reada = READA_FORWARD;
10019 cache_gen = btrfs_super_cache_generation(info->super_copy);
10020 if (btrfs_test_opt(info, SPACE_CACHE) &&
10021 btrfs_super_generation(info->super_copy) != cache_gen)
10022 need_clear = 1;
10023 if (btrfs_test_opt(info, CLEAR_CACHE))
10024 need_clear = 1;
10026 while (1) {
10027 ret = find_first_block_group(info, path, &key);
10028 if (ret > 0)
10029 break;
10030 if (ret != 0)
10031 goto error;
10033 leaf = path->nodes[0];
10034 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10036 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10037 found_key.offset);
10038 if (!cache) {
10039 ret = -ENOMEM;
10040 goto error;
10043 if (need_clear) {
10045 * When we mount with old space cache, we need to
10046 * set BTRFS_DC_CLEAR and set dirty flag.
10048 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10049 * truncate the old free space cache inode and
10050 * setup a new one.
10051 * b) Setting 'dirty flag' makes sure that we flush
10052 * the new space cache info onto disk.
10054 if (btrfs_test_opt(info, SPACE_CACHE))
10055 cache->disk_cache_state = BTRFS_DC_CLEAR;
10058 read_extent_buffer(leaf, &cache->item,
10059 btrfs_item_ptr_offset(leaf, path->slots[0]),
10060 sizeof(cache->item));
10061 cache->flags = btrfs_block_group_flags(&cache->item);
10062 if (!mixed &&
10063 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10064 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10065 btrfs_err(info,
10066 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10067 cache->key.objectid);
10068 ret = -EINVAL;
10069 goto error;
10072 key.objectid = found_key.objectid + found_key.offset;
10073 btrfs_release_path(path);
10076 * We need to exclude the super stripes now so that the space
10077 * info has super bytes accounted for, otherwise we'll think
10078 * we have more space than we actually do.
10080 ret = exclude_super_stripes(info, cache);
10081 if (ret) {
10083 * We may have excluded something, so call this just in
10084 * case.
10086 free_excluded_extents(info, cache);
10087 btrfs_put_block_group(cache);
10088 goto error;
10092 * check for two cases, either we are full, and therefore
10093 * don't need to bother with the caching work since we won't
10094 * find any space, or we are empty, and we can just add all
10095 * the space in and be done with it. This saves us _alot_ of
10096 * time, particularly in the full case.
10098 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10099 cache->last_byte_to_unpin = (u64)-1;
10100 cache->cached = BTRFS_CACHE_FINISHED;
10101 free_excluded_extents(info, cache);
10102 } else if (btrfs_block_group_used(&cache->item) == 0) {
10103 cache->last_byte_to_unpin = (u64)-1;
10104 cache->cached = BTRFS_CACHE_FINISHED;
10105 add_new_free_space(cache, info,
10106 found_key.objectid,
10107 found_key.objectid +
10108 found_key.offset);
10109 free_excluded_extents(info, cache);
10112 ret = btrfs_add_block_group_cache(info, cache);
10113 if (ret) {
10114 btrfs_remove_free_space_cache(cache);
10115 btrfs_put_block_group(cache);
10116 goto error;
10119 trace_btrfs_add_block_group(info, cache, 0);
10120 update_space_info(info, cache->flags, found_key.offset,
10121 btrfs_block_group_used(&cache->item),
10122 cache->bytes_super, &space_info);
10124 cache->space_info = space_info;
10126 link_block_group(cache);
10128 set_avail_alloc_bits(info, cache->flags);
10129 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10130 inc_block_group_ro(cache, 1);
10131 } else if (btrfs_block_group_used(&cache->item) == 0) {
10132 spin_lock(&info->unused_bgs_lock);
10133 /* Should always be true but just in case. */
10134 if (list_empty(&cache->bg_list)) {
10135 btrfs_get_block_group(cache);
10136 list_add_tail(&cache->bg_list,
10137 &info->unused_bgs);
10139 spin_unlock(&info->unused_bgs_lock);
10143 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10144 if (!(get_alloc_profile(info, space_info->flags) &
10145 (BTRFS_BLOCK_GROUP_RAID10 |
10146 BTRFS_BLOCK_GROUP_RAID1 |
10147 BTRFS_BLOCK_GROUP_RAID5 |
10148 BTRFS_BLOCK_GROUP_RAID6 |
10149 BTRFS_BLOCK_GROUP_DUP)))
10150 continue;
10152 * avoid allocating from un-mirrored block group if there are
10153 * mirrored block groups.
10155 list_for_each_entry(cache,
10156 &space_info->block_groups[BTRFS_RAID_RAID0],
10157 list)
10158 inc_block_group_ro(cache, 1);
10159 list_for_each_entry(cache,
10160 &space_info->block_groups[BTRFS_RAID_SINGLE],
10161 list)
10162 inc_block_group_ro(cache, 1);
10165 init_global_block_rsv(info);
10166 ret = 0;
10167 error:
10168 btrfs_free_path(path);
10169 return ret;
10172 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10173 struct btrfs_fs_info *fs_info)
10175 struct btrfs_block_group_cache *block_group, *tmp;
10176 struct btrfs_root *extent_root = fs_info->extent_root;
10177 struct btrfs_block_group_item item;
10178 struct btrfs_key key;
10179 int ret = 0;
10180 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10182 trans->can_flush_pending_bgs = false;
10183 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10184 if (ret)
10185 goto next;
10187 spin_lock(&block_group->lock);
10188 memcpy(&item, &block_group->item, sizeof(item));
10189 memcpy(&key, &block_group->key, sizeof(key));
10190 spin_unlock(&block_group->lock);
10192 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10193 sizeof(item));
10194 if (ret)
10195 btrfs_abort_transaction(trans, ret);
10196 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10197 key.offset);
10198 if (ret)
10199 btrfs_abort_transaction(trans, ret);
10200 add_block_group_free_space(trans, fs_info, block_group);
10201 /* already aborted the transaction if it failed. */
10202 next:
10203 list_del_init(&block_group->bg_list);
10205 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10208 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10209 struct btrfs_fs_info *fs_info, u64 bytes_used,
10210 u64 type, u64 chunk_offset, u64 size)
10212 struct btrfs_block_group_cache *cache;
10213 int ret;
10215 btrfs_set_log_full_commit(fs_info, trans);
10217 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10218 if (!cache)
10219 return -ENOMEM;
10221 btrfs_set_block_group_used(&cache->item, bytes_used);
10222 btrfs_set_block_group_chunk_objectid(&cache->item,
10223 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10224 btrfs_set_block_group_flags(&cache->item, type);
10226 cache->flags = type;
10227 cache->last_byte_to_unpin = (u64)-1;
10228 cache->cached = BTRFS_CACHE_FINISHED;
10229 cache->needs_free_space = 1;
10230 ret = exclude_super_stripes(fs_info, cache);
10231 if (ret) {
10233 * We may have excluded something, so call this just in
10234 * case.
10236 free_excluded_extents(fs_info, cache);
10237 btrfs_put_block_group(cache);
10238 return ret;
10241 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10243 free_excluded_extents(fs_info, cache);
10245 #ifdef CONFIG_BTRFS_DEBUG
10246 if (btrfs_should_fragment_free_space(cache)) {
10247 u64 new_bytes_used = size - bytes_used;
10249 bytes_used += new_bytes_used >> 1;
10250 fragment_free_space(cache);
10252 #endif
10254 * Ensure the corresponding space_info object is created and
10255 * assigned to our block group. We want our bg to be added to the rbtree
10256 * with its ->space_info set.
10258 cache->space_info = __find_space_info(fs_info, cache->flags);
10259 if (!cache->space_info) {
10260 ret = create_space_info(fs_info, cache->flags,
10261 &cache->space_info);
10262 if (ret) {
10263 btrfs_remove_free_space_cache(cache);
10264 btrfs_put_block_group(cache);
10265 return ret;
10269 ret = btrfs_add_block_group_cache(fs_info, cache);
10270 if (ret) {
10271 btrfs_remove_free_space_cache(cache);
10272 btrfs_put_block_group(cache);
10273 return ret;
10277 * Now that our block group has its ->space_info set and is inserted in
10278 * the rbtree, update the space info's counters.
10280 trace_btrfs_add_block_group(fs_info, cache, 1);
10281 update_space_info(fs_info, cache->flags, size, bytes_used,
10282 cache->bytes_super, &cache->space_info);
10283 update_global_block_rsv(fs_info);
10285 link_block_group(cache);
10287 list_add_tail(&cache->bg_list, &trans->new_bgs);
10289 set_avail_alloc_bits(fs_info, type);
10290 return 0;
10293 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10295 u64 extra_flags = chunk_to_extended(flags) &
10296 BTRFS_EXTENDED_PROFILE_MASK;
10298 write_seqlock(&fs_info->profiles_lock);
10299 if (flags & BTRFS_BLOCK_GROUP_DATA)
10300 fs_info->avail_data_alloc_bits &= ~extra_flags;
10301 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10302 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10303 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10304 fs_info->avail_system_alloc_bits &= ~extra_flags;
10305 write_sequnlock(&fs_info->profiles_lock);
10308 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10309 struct btrfs_fs_info *fs_info, u64 group_start,
10310 struct extent_map *em)
10312 struct btrfs_root *root = fs_info->extent_root;
10313 struct btrfs_path *path;
10314 struct btrfs_block_group_cache *block_group;
10315 struct btrfs_free_cluster *cluster;
10316 struct btrfs_root *tree_root = fs_info->tree_root;
10317 struct btrfs_key key;
10318 struct inode *inode;
10319 struct kobject *kobj = NULL;
10320 int ret;
10321 int index;
10322 int factor;
10323 struct btrfs_caching_control *caching_ctl = NULL;
10324 bool remove_em;
10326 block_group = btrfs_lookup_block_group(fs_info, group_start);
10327 BUG_ON(!block_group);
10328 BUG_ON(!block_group->ro);
10331 * Free the reserved super bytes from this block group before
10332 * remove it.
10334 free_excluded_extents(fs_info, block_group);
10335 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10336 block_group->key.offset);
10338 memcpy(&key, &block_group->key, sizeof(key));
10339 index = get_block_group_index(block_group);
10340 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10341 BTRFS_BLOCK_GROUP_RAID1 |
10342 BTRFS_BLOCK_GROUP_RAID10))
10343 factor = 2;
10344 else
10345 factor = 1;
10347 /* make sure this block group isn't part of an allocation cluster */
10348 cluster = &fs_info->data_alloc_cluster;
10349 spin_lock(&cluster->refill_lock);
10350 btrfs_return_cluster_to_free_space(block_group, cluster);
10351 spin_unlock(&cluster->refill_lock);
10354 * make sure this block group isn't part of a metadata
10355 * allocation cluster
10357 cluster = &fs_info->meta_alloc_cluster;
10358 spin_lock(&cluster->refill_lock);
10359 btrfs_return_cluster_to_free_space(block_group, cluster);
10360 spin_unlock(&cluster->refill_lock);
10362 path = btrfs_alloc_path();
10363 if (!path) {
10364 ret = -ENOMEM;
10365 goto out;
10369 * get the inode first so any iput calls done for the io_list
10370 * aren't the final iput (no unlinks allowed now)
10372 inode = lookup_free_space_inode(fs_info, block_group, path);
10374 mutex_lock(&trans->transaction->cache_write_mutex);
10376 * make sure our free spache cache IO is done before remove the
10377 * free space inode
10379 spin_lock(&trans->transaction->dirty_bgs_lock);
10380 if (!list_empty(&block_group->io_list)) {
10381 list_del_init(&block_group->io_list);
10383 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10385 spin_unlock(&trans->transaction->dirty_bgs_lock);
10386 btrfs_wait_cache_io(trans, block_group, path);
10387 btrfs_put_block_group(block_group);
10388 spin_lock(&trans->transaction->dirty_bgs_lock);
10391 if (!list_empty(&block_group->dirty_list)) {
10392 list_del_init(&block_group->dirty_list);
10393 btrfs_put_block_group(block_group);
10395 spin_unlock(&trans->transaction->dirty_bgs_lock);
10396 mutex_unlock(&trans->transaction->cache_write_mutex);
10398 if (!IS_ERR(inode)) {
10399 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10400 if (ret) {
10401 btrfs_add_delayed_iput(inode);
10402 goto out;
10404 clear_nlink(inode);
10405 /* One for the block groups ref */
10406 spin_lock(&block_group->lock);
10407 if (block_group->iref) {
10408 block_group->iref = 0;
10409 block_group->inode = NULL;
10410 spin_unlock(&block_group->lock);
10411 iput(inode);
10412 } else {
10413 spin_unlock(&block_group->lock);
10415 /* One for our lookup ref */
10416 btrfs_add_delayed_iput(inode);
10419 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10420 key.offset = block_group->key.objectid;
10421 key.type = 0;
10423 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10424 if (ret < 0)
10425 goto out;
10426 if (ret > 0)
10427 btrfs_release_path(path);
10428 if (ret == 0) {
10429 ret = btrfs_del_item(trans, tree_root, path);
10430 if (ret)
10431 goto out;
10432 btrfs_release_path(path);
10435 spin_lock(&fs_info->block_group_cache_lock);
10436 rb_erase(&block_group->cache_node,
10437 &fs_info->block_group_cache_tree);
10438 RB_CLEAR_NODE(&block_group->cache_node);
10440 if (fs_info->first_logical_byte == block_group->key.objectid)
10441 fs_info->first_logical_byte = (u64)-1;
10442 spin_unlock(&fs_info->block_group_cache_lock);
10444 down_write(&block_group->space_info->groups_sem);
10446 * we must use list_del_init so people can check to see if they
10447 * are still on the list after taking the semaphore
10449 list_del_init(&block_group->list);
10450 if (list_empty(&block_group->space_info->block_groups[index])) {
10451 kobj = block_group->space_info->block_group_kobjs[index];
10452 block_group->space_info->block_group_kobjs[index] = NULL;
10453 clear_avail_alloc_bits(fs_info, block_group->flags);
10455 up_write(&block_group->space_info->groups_sem);
10456 if (kobj) {
10457 kobject_del(kobj);
10458 kobject_put(kobj);
10461 if (block_group->has_caching_ctl)
10462 caching_ctl = get_caching_control(block_group);
10463 if (block_group->cached == BTRFS_CACHE_STARTED)
10464 wait_block_group_cache_done(block_group);
10465 if (block_group->has_caching_ctl) {
10466 down_write(&fs_info->commit_root_sem);
10467 if (!caching_ctl) {
10468 struct btrfs_caching_control *ctl;
10470 list_for_each_entry(ctl,
10471 &fs_info->caching_block_groups, list)
10472 if (ctl->block_group == block_group) {
10473 caching_ctl = ctl;
10474 refcount_inc(&caching_ctl->count);
10475 break;
10478 if (caching_ctl)
10479 list_del_init(&caching_ctl->list);
10480 up_write(&fs_info->commit_root_sem);
10481 if (caching_ctl) {
10482 /* Once for the caching bgs list and once for us. */
10483 put_caching_control(caching_ctl);
10484 put_caching_control(caching_ctl);
10488 spin_lock(&trans->transaction->dirty_bgs_lock);
10489 if (!list_empty(&block_group->dirty_list)) {
10490 WARN_ON(1);
10492 if (!list_empty(&block_group->io_list)) {
10493 WARN_ON(1);
10495 spin_unlock(&trans->transaction->dirty_bgs_lock);
10496 btrfs_remove_free_space_cache(block_group);
10498 spin_lock(&block_group->space_info->lock);
10499 list_del_init(&block_group->ro_list);
10501 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10502 WARN_ON(block_group->space_info->total_bytes
10503 < block_group->key.offset);
10504 WARN_ON(block_group->space_info->bytes_readonly
10505 < block_group->key.offset);
10506 WARN_ON(block_group->space_info->disk_total
10507 < block_group->key.offset * factor);
10509 block_group->space_info->total_bytes -= block_group->key.offset;
10510 block_group->space_info->bytes_readonly -= block_group->key.offset;
10511 block_group->space_info->disk_total -= block_group->key.offset * factor;
10513 spin_unlock(&block_group->space_info->lock);
10515 memcpy(&key, &block_group->key, sizeof(key));
10517 mutex_lock(&fs_info->chunk_mutex);
10518 if (!list_empty(&em->list)) {
10519 /* We're in the transaction->pending_chunks list. */
10520 free_extent_map(em);
10522 spin_lock(&block_group->lock);
10523 block_group->removed = 1;
10525 * At this point trimming can't start on this block group, because we
10526 * removed the block group from the tree fs_info->block_group_cache_tree
10527 * so no one can't find it anymore and even if someone already got this
10528 * block group before we removed it from the rbtree, they have already
10529 * incremented block_group->trimming - if they didn't, they won't find
10530 * any free space entries because we already removed them all when we
10531 * called btrfs_remove_free_space_cache().
10533 * And we must not remove the extent map from the fs_info->mapping_tree
10534 * to prevent the same logical address range and physical device space
10535 * ranges from being reused for a new block group. This is because our
10536 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10537 * completely transactionless, so while it is trimming a range the
10538 * currently running transaction might finish and a new one start,
10539 * allowing for new block groups to be created that can reuse the same
10540 * physical device locations unless we take this special care.
10542 * There may also be an implicit trim operation if the file system
10543 * is mounted with -odiscard. The same protections must remain
10544 * in place until the extents have been discarded completely when
10545 * the transaction commit has completed.
10547 remove_em = (atomic_read(&block_group->trimming) == 0);
10549 * Make sure a trimmer task always sees the em in the pinned_chunks list
10550 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10551 * before checking block_group->removed).
10553 if (!remove_em) {
10555 * Our em might be in trans->transaction->pending_chunks which
10556 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10557 * and so is the fs_info->pinned_chunks list.
10559 * So at this point we must be holding the chunk_mutex to avoid
10560 * any races with chunk allocation (more specifically at
10561 * volumes.c:contains_pending_extent()), to ensure it always
10562 * sees the em, either in the pending_chunks list or in the
10563 * pinned_chunks list.
10565 list_move_tail(&em->list, &fs_info->pinned_chunks);
10567 spin_unlock(&block_group->lock);
10569 if (remove_em) {
10570 struct extent_map_tree *em_tree;
10572 em_tree = &fs_info->mapping_tree.map_tree;
10573 write_lock(&em_tree->lock);
10575 * The em might be in the pending_chunks list, so make sure the
10576 * chunk mutex is locked, since remove_extent_mapping() will
10577 * delete us from that list.
10579 remove_extent_mapping(em_tree, em);
10580 write_unlock(&em_tree->lock);
10581 /* once for the tree */
10582 free_extent_map(em);
10585 mutex_unlock(&fs_info->chunk_mutex);
10587 ret = remove_block_group_free_space(trans, fs_info, block_group);
10588 if (ret)
10589 goto out;
10591 btrfs_put_block_group(block_group);
10592 btrfs_put_block_group(block_group);
10594 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10595 if (ret > 0)
10596 ret = -EIO;
10597 if (ret < 0)
10598 goto out;
10600 ret = btrfs_del_item(trans, root, path);
10601 out:
10602 btrfs_free_path(path);
10603 return ret;
10606 struct btrfs_trans_handle *
10607 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10608 const u64 chunk_offset)
10610 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10611 struct extent_map *em;
10612 struct map_lookup *map;
10613 unsigned int num_items;
10615 read_lock(&em_tree->lock);
10616 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10617 read_unlock(&em_tree->lock);
10618 ASSERT(em && em->start == chunk_offset);
10621 * We need to reserve 3 + N units from the metadata space info in order
10622 * to remove a block group (done at btrfs_remove_chunk() and at
10623 * btrfs_remove_block_group()), which are used for:
10625 * 1 unit for adding the free space inode's orphan (located in the tree
10626 * of tree roots).
10627 * 1 unit for deleting the block group item (located in the extent
10628 * tree).
10629 * 1 unit for deleting the free space item (located in tree of tree
10630 * roots).
10631 * N units for deleting N device extent items corresponding to each
10632 * stripe (located in the device tree).
10634 * In order to remove a block group we also need to reserve units in the
10635 * system space info in order to update the chunk tree (update one or
10636 * more device items and remove one chunk item), but this is done at
10637 * btrfs_remove_chunk() through a call to check_system_chunk().
10639 map = em->map_lookup;
10640 num_items = 3 + map->num_stripes;
10641 free_extent_map(em);
10643 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10644 num_items, 1);
10648 * Process the unused_bgs list and remove any that don't have any allocated
10649 * space inside of them.
10651 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10653 struct btrfs_block_group_cache *block_group;
10654 struct btrfs_space_info *space_info;
10655 struct btrfs_trans_handle *trans;
10656 int ret = 0;
10658 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10659 return;
10661 spin_lock(&fs_info->unused_bgs_lock);
10662 while (!list_empty(&fs_info->unused_bgs)) {
10663 u64 start, end;
10664 int trimming;
10666 block_group = list_first_entry(&fs_info->unused_bgs,
10667 struct btrfs_block_group_cache,
10668 bg_list);
10669 list_del_init(&block_group->bg_list);
10671 space_info = block_group->space_info;
10673 if (ret || btrfs_mixed_space_info(space_info)) {
10674 btrfs_put_block_group(block_group);
10675 continue;
10677 spin_unlock(&fs_info->unused_bgs_lock);
10679 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10681 /* Don't want to race with allocators so take the groups_sem */
10682 down_write(&space_info->groups_sem);
10683 spin_lock(&block_group->lock);
10684 if (block_group->reserved ||
10685 btrfs_block_group_used(&block_group->item) ||
10686 block_group->ro ||
10687 list_is_singular(&block_group->list)) {
10689 * We want to bail if we made new allocations or have
10690 * outstanding allocations in this block group. We do
10691 * the ro check in case balance is currently acting on
10692 * this block group.
10694 spin_unlock(&block_group->lock);
10695 up_write(&space_info->groups_sem);
10696 goto next;
10698 spin_unlock(&block_group->lock);
10700 /* We don't want to force the issue, only flip if it's ok. */
10701 ret = inc_block_group_ro(block_group, 0);
10702 up_write(&space_info->groups_sem);
10703 if (ret < 0) {
10704 ret = 0;
10705 goto next;
10709 * Want to do this before we do anything else so we can recover
10710 * properly if we fail to join the transaction.
10712 trans = btrfs_start_trans_remove_block_group(fs_info,
10713 block_group->key.objectid);
10714 if (IS_ERR(trans)) {
10715 btrfs_dec_block_group_ro(block_group);
10716 ret = PTR_ERR(trans);
10717 goto next;
10721 * We could have pending pinned extents for this block group,
10722 * just delete them, we don't care about them anymore.
10724 start = block_group->key.objectid;
10725 end = start + block_group->key.offset - 1;
10727 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10728 * btrfs_finish_extent_commit(). If we are at transaction N,
10729 * another task might be running finish_extent_commit() for the
10730 * previous transaction N - 1, and have seen a range belonging
10731 * to the block group in freed_extents[] before we were able to
10732 * clear the whole block group range from freed_extents[]. This
10733 * means that task can lookup for the block group after we
10734 * unpinned it from freed_extents[] and removed it, leading to
10735 * a BUG_ON() at btrfs_unpin_extent_range().
10737 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10738 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10739 EXTENT_DIRTY);
10740 if (ret) {
10741 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10742 btrfs_dec_block_group_ro(block_group);
10743 goto end_trans;
10745 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10746 EXTENT_DIRTY);
10747 if (ret) {
10748 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10749 btrfs_dec_block_group_ro(block_group);
10750 goto end_trans;
10752 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10754 /* Reset pinned so btrfs_put_block_group doesn't complain */
10755 spin_lock(&space_info->lock);
10756 spin_lock(&block_group->lock);
10758 space_info->bytes_pinned -= block_group->pinned;
10759 space_info->bytes_readonly += block_group->pinned;
10760 percpu_counter_add(&space_info->total_bytes_pinned,
10761 -block_group->pinned);
10762 block_group->pinned = 0;
10764 spin_unlock(&block_group->lock);
10765 spin_unlock(&space_info->lock);
10767 /* DISCARD can flip during remount */
10768 trimming = btrfs_test_opt(fs_info, DISCARD);
10770 /* Implicit trim during transaction commit. */
10771 if (trimming)
10772 btrfs_get_block_group_trimming(block_group);
10775 * Btrfs_remove_chunk will abort the transaction if things go
10776 * horribly wrong.
10778 ret = btrfs_remove_chunk(trans, fs_info,
10779 block_group->key.objectid);
10781 if (ret) {
10782 if (trimming)
10783 btrfs_put_block_group_trimming(block_group);
10784 goto end_trans;
10788 * If we're not mounted with -odiscard, we can just forget
10789 * about this block group. Otherwise we'll need to wait
10790 * until transaction commit to do the actual discard.
10792 if (trimming) {
10793 spin_lock(&fs_info->unused_bgs_lock);
10795 * A concurrent scrub might have added us to the list
10796 * fs_info->unused_bgs, so use a list_move operation
10797 * to add the block group to the deleted_bgs list.
10799 list_move(&block_group->bg_list,
10800 &trans->transaction->deleted_bgs);
10801 spin_unlock(&fs_info->unused_bgs_lock);
10802 btrfs_get_block_group(block_group);
10804 end_trans:
10805 btrfs_end_transaction(trans);
10806 next:
10807 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10808 btrfs_put_block_group(block_group);
10809 spin_lock(&fs_info->unused_bgs_lock);
10811 spin_unlock(&fs_info->unused_bgs_lock);
10814 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10816 struct btrfs_space_info *space_info;
10817 struct btrfs_super_block *disk_super;
10818 u64 features;
10819 u64 flags;
10820 int mixed = 0;
10821 int ret;
10823 disk_super = fs_info->super_copy;
10824 if (!btrfs_super_root(disk_super))
10825 return -EINVAL;
10827 features = btrfs_super_incompat_flags(disk_super);
10828 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10829 mixed = 1;
10831 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10832 ret = create_space_info(fs_info, flags, &space_info);
10833 if (ret)
10834 goto out;
10836 if (mixed) {
10837 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10838 ret = create_space_info(fs_info, flags, &space_info);
10839 } else {
10840 flags = BTRFS_BLOCK_GROUP_METADATA;
10841 ret = create_space_info(fs_info, flags, &space_info);
10842 if (ret)
10843 goto out;
10845 flags = BTRFS_BLOCK_GROUP_DATA;
10846 ret = create_space_info(fs_info, flags, &space_info);
10848 out:
10849 return ret;
10852 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10853 u64 start, u64 end)
10855 return unpin_extent_range(fs_info, start, end, false);
10859 * It used to be that old block groups would be left around forever.
10860 * Iterating over them would be enough to trim unused space. Since we
10861 * now automatically remove them, we also need to iterate over unallocated
10862 * space.
10864 * We don't want a transaction for this since the discard may take a
10865 * substantial amount of time. We don't require that a transaction be
10866 * running, but we do need to take a running transaction into account
10867 * to ensure that we're not discarding chunks that were released in
10868 * the current transaction.
10870 * Holding the chunks lock will prevent other threads from allocating
10871 * or releasing chunks, but it won't prevent a running transaction
10872 * from committing and releasing the memory that the pending chunks
10873 * list head uses. For that, we need to take a reference to the
10874 * transaction.
10876 static int btrfs_trim_free_extents(struct btrfs_device *device,
10877 u64 minlen, u64 *trimmed)
10879 u64 start = 0, len = 0;
10880 int ret;
10882 *trimmed = 0;
10884 /* Not writeable = nothing to do. */
10885 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10886 return 0;
10888 /* No free space = nothing to do. */
10889 if (device->total_bytes <= device->bytes_used)
10890 return 0;
10892 ret = 0;
10894 while (1) {
10895 struct btrfs_fs_info *fs_info = device->fs_info;
10896 struct btrfs_transaction *trans;
10897 u64 bytes;
10899 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10900 if (ret)
10901 return ret;
10903 down_read(&fs_info->commit_root_sem);
10905 spin_lock(&fs_info->trans_lock);
10906 trans = fs_info->running_transaction;
10907 if (trans)
10908 refcount_inc(&trans->use_count);
10909 spin_unlock(&fs_info->trans_lock);
10911 ret = find_free_dev_extent_start(trans, device, minlen, start,
10912 &start, &len);
10913 if (trans)
10914 btrfs_put_transaction(trans);
10916 if (ret) {
10917 up_read(&fs_info->commit_root_sem);
10918 mutex_unlock(&fs_info->chunk_mutex);
10919 if (ret == -ENOSPC)
10920 ret = 0;
10921 break;
10924 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10925 up_read(&fs_info->commit_root_sem);
10926 mutex_unlock(&fs_info->chunk_mutex);
10928 if (ret)
10929 break;
10931 start += len;
10932 *trimmed += bytes;
10934 if (fatal_signal_pending(current)) {
10935 ret = -ERESTARTSYS;
10936 break;
10939 cond_resched();
10942 return ret;
10945 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10947 struct btrfs_block_group_cache *cache = NULL;
10948 struct btrfs_device *device;
10949 struct list_head *devices;
10950 u64 group_trimmed;
10951 u64 start;
10952 u64 end;
10953 u64 trimmed = 0;
10954 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10955 int ret = 0;
10958 * try to trim all FS space, our block group may start from non-zero.
10960 if (range->len == total_bytes)
10961 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10962 else
10963 cache = btrfs_lookup_block_group(fs_info, range->start);
10965 while (cache) {
10966 if (cache->key.objectid >= (range->start + range->len)) {
10967 btrfs_put_block_group(cache);
10968 break;
10971 start = max(range->start, cache->key.objectid);
10972 end = min(range->start + range->len,
10973 cache->key.objectid + cache->key.offset);
10975 if (end - start >= range->minlen) {
10976 if (!block_group_cache_done(cache)) {
10977 ret = cache_block_group(cache, 0);
10978 if (ret) {
10979 btrfs_put_block_group(cache);
10980 break;
10982 ret = wait_block_group_cache_done(cache);
10983 if (ret) {
10984 btrfs_put_block_group(cache);
10985 break;
10988 ret = btrfs_trim_block_group(cache,
10989 &group_trimmed,
10990 start,
10991 end,
10992 range->minlen);
10994 trimmed += group_trimmed;
10995 if (ret) {
10996 btrfs_put_block_group(cache);
10997 break;
11001 cache = next_block_group(fs_info, cache);
11004 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11005 devices = &fs_info->fs_devices->alloc_list;
11006 list_for_each_entry(device, devices, dev_alloc_list) {
11007 ret = btrfs_trim_free_extents(device, range->minlen,
11008 &group_trimmed);
11009 if (ret)
11010 break;
11012 trimmed += group_trimmed;
11014 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11016 range->len = trimmed;
11017 return ret;
11021 * btrfs_{start,end}_write_no_snapshotting() are similar to
11022 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11023 * data into the page cache through nocow before the subvolume is snapshoted,
11024 * but flush the data into disk after the snapshot creation, or to prevent
11025 * operations while snapshotting is ongoing and that cause the snapshot to be
11026 * inconsistent (writes followed by expanding truncates for example).
11028 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11030 percpu_counter_dec(&root->subv_writers->counter);
11032 * Make sure counter is updated before we wake up waiters.
11034 smp_mb();
11035 if (waitqueue_active(&root->subv_writers->wait))
11036 wake_up(&root->subv_writers->wait);
11039 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11041 if (atomic_read(&root->will_be_snapshotted))
11042 return 0;
11044 percpu_counter_inc(&root->subv_writers->counter);
11046 * Make sure counter is updated before we check for snapshot creation.
11048 smp_mb();
11049 if (atomic_read(&root->will_be_snapshotted)) {
11050 btrfs_end_write_no_snapshotting(root);
11051 return 0;
11053 return 1;
11056 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11058 while (true) {
11059 int ret;
11061 ret = btrfs_start_write_no_snapshotting(root);
11062 if (ret)
11063 break;
11064 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11065 TASK_UNINTERRUPTIBLE);