2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 #include "compression.h"
30 static struct kmem_cache
*btrfs_ordered_extent_cache
;
32 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
34 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
36 return entry
->file_offset
+ entry
->len
;
39 /* returns NULL if the insertion worked, or it returns the node it did find
42 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
45 struct rb_node
**p
= &root
->rb_node
;
46 struct rb_node
*parent
= NULL
;
47 struct btrfs_ordered_extent
*entry
;
51 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
53 if (file_offset
< entry
->file_offset
)
55 else if (file_offset
>= entry_end(entry
))
61 rb_link_node(node
, parent
, p
);
62 rb_insert_color(node
, root
);
66 static void ordered_data_tree_panic(struct inode
*inode
, int errno
,
69 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
70 btrfs_panic(fs_info
, errno
,
71 "Inconsistency in ordered tree at offset %llu", offset
);
75 * look for a given offset in the tree, and if it can't be found return the
78 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
79 struct rb_node
**prev_ret
)
81 struct rb_node
*n
= root
->rb_node
;
82 struct rb_node
*prev
= NULL
;
84 struct btrfs_ordered_extent
*entry
;
85 struct btrfs_ordered_extent
*prev_entry
= NULL
;
88 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
92 if (file_offset
< entry
->file_offset
)
94 else if (file_offset
>= entry_end(entry
))
102 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
103 test
= rb_next(prev
);
106 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
108 if (file_offset
< entry_end(prev_entry
))
114 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
116 while (prev
&& file_offset
< entry_end(prev_entry
)) {
117 test
= rb_prev(prev
);
120 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
129 * helper to check if a given offset is inside a given entry
131 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
133 if (file_offset
< entry
->file_offset
||
134 entry
->file_offset
+ entry
->len
<= file_offset
)
139 static int range_overlaps(struct btrfs_ordered_extent
*entry
, u64 file_offset
,
142 if (file_offset
+ len
<= entry
->file_offset
||
143 entry
->file_offset
+ entry
->len
<= file_offset
)
149 * look find the first ordered struct that has this offset, otherwise
150 * the first one less than this offset
152 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
155 struct rb_root
*root
= &tree
->tree
;
156 struct rb_node
*prev
= NULL
;
158 struct btrfs_ordered_extent
*entry
;
161 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
163 if (offset_in_entry(entry
, file_offset
))
166 ret
= __tree_search(root
, file_offset
, &prev
);
174 /* allocate and add a new ordered_extent into the per-inode tree.
175 * file_offset is the logical offset in the file
177 * start is the disk block number of an extent already reserved in the
178 * extent allocation tree
180 * len is the length of the extent
182 * The tree is given a single reference on the ordered extent that was
185 static int __btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
186 u64 start
, u64 len
, u64 disk_len
,
187 int type
, int dio
, int compress_type
)
189 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
190 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
191 struct btrfs_ordered_inode_tree
*tree
;
192 struct rb_node
*node
;
193 struct btrfs_ordered_extent
*entry
;
195 tree
= &BTRFS_I(inode
)->ordered_tree
;
196 entry
= kmem_cache_zalloc(btrfs_ordered_extent_cache
, GFP_NOFS
);
200 entry
->file_offset
= file_offset
;
201 entry
->start
= start
;
203 entry
->disk_len
= disk_len
;
204 entry
->bytes_left
= len
;
205 entry
->inode
= igrab(inode
);
206 entry
->compress_type
= compress_type
;
207 entry
->truncated_len
= (u64
)-1;
208 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
209 set_bit(type
, &entry
->flags
);
212 set_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
);
214 /* one ref for the tree */
215 refcount_set(&entry
->refs
, 1);
216 init_waitqueue_head(&entry
->wait
);
217 INIT_LIST_HEAD(&entry
->list
);
218 INIT_LIST_HEAD(&entry
->root_extent_list
);
219 INIT_LIST_HEAD(&entry
->work_list
);
220 init_completion(&entry
->completion
);
221 INIT_LIST_HEAD(&entry
->log_list
);
222 INIT_LIST_HEAD(&entry
->trans_list
);
224 trace_btrfs_ordered_extent_add(inode
, entry
);
226 spin_lock_irq(&tree
->lock
);
227 node
= tree_insert(&tree
->tree
, file_offset
,
230 ordered_data_tree_panic(inode
, -EEXIST
, file_offset
);
231 spin_unlock_irq(&tree
->lock
);
233 spin_lock(&root
->ordered_extent_lock
);
234 list_add_tail(&entry
->root_extent_list
,
235 &root
->ordered_extents
);
236 root
->nr_ordered_extents
++;
237 if (root
->nr_ordered_extents
== 1) {
238 spin_lock(&fs_info
->ordered_root_lock
);
239 BUG_ON(!list_empty(&root
->ordered_root
));
240 list_add_tail(&root
->ordered_root
, &fs_info
->ordered_roots
);
241 spin_unlock(&fs_info
->ordered_root_lock
);
243 spin_unlock(&root
->ordered_extent_lock
);
246 * We don't need the count_max_extents here, we can assume that all of
247 * that work has been done at higher layers, so this is truly the
248 * smallest the extent is going to get.
250 spin_lock(&BTRFS_I(inode
)->lock
);
251 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
252 spin_unlock(&BTRFS_I(inode
)->lock
);
257 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
258 u64 start
, u64 len
, u64 disk_len
, int type
)
260 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
262 BTRFS_COMPRESS_NONE
);
265 int btrfs_add_ordered_extent_dio(struct inode
*inode
, u64 file_offset
,
266 u64 start
, u64 len
, u64 disk_len
, int type
)
268 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
270 BTRFS_COMPRESS_NONE
);
273 int btrfs_add_ordered_extent_compress(struct inode
*inode
, u64 file_offset
,
274 u64 start
, u64 len
, u64 disk_len
,
275 int type
, int compress_type
)
277 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
287 void btrfs_add_ordered_sum(struct inode
*inode
,
288 struct btrfs_ordered_extent
*entry
,
289 struct btrfs_ordered_sum
*sum
)
291 struct btrfs_ordered_inode_tree
*tree
;
293 tree
= &BTRFS_I(inode
)->ordered_tree
;
294 spin_lock_irq(&tree
->lock
);
295 list_add_tail(&sum
->list
, &entry
->list
);
296 spin_unlock_irq(&tree
->lock
);
300 * this is used to account for finished IO across a given range
301 * of the file. The IO may span ordered extents. If
302 * a given ordered_extent is completely done, 1 is returned, otherwise
305 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
306 * to make sure this function only returns 1 once for a given ordered extent.
308 * file_offset is updated to one byte past the range that is recorded as
309 * complete. This allows you to walk forward in the file.
311 int btrfs_dec_test_first_ordered_pending(struct inode
*inode
,
312 struct btrfs_ordered_extent
**cached
,
313 u64
*file_offset
, u64 io_size
, int uptodate
)
315 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
316 struct btrfs_ordered_inode_tree
*tree
;
317 struct rb_node
*node
;
318 struct btrfs_ordered_extent
*entry
= NULL
;
325 tree
= &BTRFS_I(inode
)->ordered_tree
;
326 spin_lock_irqsave(&tree
->lock
, flags
);
327 node
= tree_search(tree
, *file_offset
);
333 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
334 if (!offset_in_entry(entry
, *file_offset
)) {
339 dec_start
= max(*file_offset
, entry
->file_offset
);
340 dec_end
= min(*file_offset
+ io_size
, entry
->file_offset
+
342 *file_offset
= dec_end
;
343 if (dec_start
> dec_end
) {
344 btrfs_crit(fs_info
, "bad ordering dec_start %llu end %llu",
347 to_dec
= dec_end
- dec_start
;
348 if (to_dec
> entry
->bytes_left
) {
350 "bad ordered accounting left %llu size %llu",
351 entry
->bytes_left
, to_dec
);
353 entry
->bytes_left
-= to_dec
;
355 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
357 if (entry
->bytes_left
== 0) {
358 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
360 * Implicit memory barrier after test_and_set_bit
362 if (waitqueue_active(&entry
->wait
))
363 wake_up(&entry
->wait
);
368 if (!ret
&& cached
&& entry
) {
370 refcount_inc(&entry
->refs
);
372 spin_unlock_irqrestore(&tree
->lock
, flags
);
377 * this is used to account for finished IO across a given range
378 * of the file. The IO should not span ordered extents. If
379 * a given ordered_extent is completely done, 1 is returned, otherwise
382 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
383 * to make sure this function only returns 1 once for a given ordered extent.
385 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
386 struct btrfs_ordered_extent
**cached
,
387 u64 file_offset
, u64 io_size
, int uptodate
)
389 struct btrfs_ordered_inode_tree
*tree
;
390 struct rb_node
*node
;
391 struct btrfs_ordered_extent
*entry
= NULL
;
395 tree
= &BTRFS_I(inode
)->ordered_tree
;
396 spin_lock_irqsave(&tree
->lock
, flags
);
397 if (cached
&& *cached
) {
402 node
= tree_search(tree
, file_offset
);
408 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
410 if (!offset_in_entry(entry
, file_offset
)) {
415 if (io_size
> entry
->bytes_left
) {
416 btrfs_crit(BTRFS_I(inode
)->root
->fs_info
,
417 "bad ordered accounting left %llu size %llu",
418 entry
->bytes_left
, io_size
);
420 entry
->bytes_left
-= io_size
;
422 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
424 if (entry
->bytes_left
== 0) {
425 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
427 * Implicit memory barrier after test_and_set_bit
429 if (waitqueue_active(&entry
->wait
))
430 wake_up(&entry
->wait
);
435 if (!ret
&& cached
&& entry
) {
437 refcount_inc(&entry
->refs
);
439 spin_unlock_irqrestore(&tree
->lock
, flags
);
443 /* Needs to either be called under a log transaction or the log_mutex */
444 void btrfs_get_logged_extents(struct btrfs_inode
*inode
,
445 struct list_head
*logged_list
,
449 struct btrfs_ordered_inode_tree
*tree
;
450 struct btrfs_ordered_extent
*ordered
;
452 struct rb_node
*prev
;
454 tree
= &inode
->ordered_tree
;
455 spin_lock_irq(&tree
->lock
);
456 n
= __tree_search(&tree
->tree
, end
, &prev
);
459 for (; n
; n
= rb_prev(n
)) {
460 ordered
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
461 if (ordered
->file_offset
> end
)
463 if (entry_end(ordered
) <= start
)
465 if (test_and_set_bit(BTRFS_ORDERED_LOGGED
, &ordered
->flags
))
467 list_add(&ordered
->log_list
, logged_list
);
468 refcount_inc(&ordered
->refs
);
470 spin_unlock_irq(&tree
->lock
);
473 void btrfs_put_logged_extents(struct list_head
*logged_list
)
475 struct btrfs_ordered_extent
*ordered
;
477 while (!list_empty(logged_list
)) {
478 ordered
= list_first_entry(logged_list
,
479 struct btrfs_ordered_extent
,
481 list_del_init(&ordered
->log_list
);
482 btrfs_put_ordered_extent(ordered
);
486 void btrfs_submit_logged_extents(struct list_head
*logged_list
,
487 struct btrfs_root
*log
)
489 int index
= log
->log_transid
% 2;
491 spin_lock_irq(&log
->log_extents_lock
[index
]);
492 list_splice_tail(logged_list
, &log
->logged_list
[index
]);
493 spin_unlock_irq(&log
->log_extents_lock
[index
]);
496 void btrfs_wait_logged_extents(struct btrfs_trans_handle
*trans
,
497 struct btrfs_root
*log
, u64 transid
)
499 struct btrfs_ordered_extent
*ordered
;
500 int index
= transid
% 2;
502 spin_lock_irq(&log
->log_extents_lock
[index
]);
503 while (!list_empty(&log
->logged_list
[index
])) {
505 ordered
= list_first_entry(&log
->logged_list
[index
],
506 struct btrfs_ordered_extent
,
508 list_del_init(&ordered
->log_list
);
509 inode
= ordered
->inode
;
510 spin_unlock_irq(&log
->log_extents_lock
[index
]);
512 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
513 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
514 u64 start
= ordered
->file_offset
;
515 u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
518 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
520 wait_event(ordered
->wait
, test_bit(BTRFS_ORDERED_IO_DONE
,
524 * In order to keep us from losing our ordered extent
525 * information when committing the transaction we have to make
526 * sure that any logged extents are completed when we go to
527 * commit the transaction. To do this we simply increase the
528 * current transactions pending_ordered counter and decrement it
529 * when the ordered extent completes.
531 if (!test_bit(BTRFS_ORDERED_COMPLETE
, &ordered
->flags
)) {
532 struct btrfs_ordered_inode_tree
*tree
;
534 tree
= &BTRFS_I(inode
)->ordered_tree
;
535 spin_lock_irq(&tree
->lock
);
536 if (!test_bit(BTRFS_ORDERED_COMPLETE
, &ordered
->flags
)) {
537 set_bit(BTRFS_ORDERED_PENDING
, &ordered
->flags
);
538 atomic_inc(&trans
->transaction
->pending_ordered
);
540 spin_unlock_irq(&tree
->lock
);
542 btrfs_put_ordered_extent(ordered
);
543 spin_lock_irq(&log
->log_extents_lock
[index
]);
545 spin_unlock_irq(&log
->log_extents_lock
[index
]);
548 void btrfs_free_logged_extents(struct btrfs_root
*log
, u64 transid
)
550 struct btrfs_ordered_extent
*ordered
;
551 int index
= transid
% 2;
553 spin_lock_irq(&log
->log_extents_lock
[index
]);
554 while (!list_empty(&log
->logged_list
[index
])) {
555 ordered
= list_first_entry(&log
->logged_list
[index
],
556 struct btrfs_ordered_extent
,
558 list_del_init(&ordered
->log_list
);
559 spin_unlock_irq(&log
->log_extents_lock
[index
]);
560 btrfs_put_ordered_extent(ordered
);
561 spin_lock_irq(&log
->log_extents_lock
[index
]);
563 spin_unlock_irq(&log
->log_extents_lock
[index
]);
567 * used to drop a reference on an ordered extent. This will free
568 * the extent if the last reference is dropped
570 void btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
572 struct list_head
*cur
;
573 struct btrfs_ordered_sum
*sum
;
575 trace_btrfs_ordered_extent_put(entry
->inode
, entry
);
577 if (refcount_dec_and_test(&entry
->refs
)) {
578 ASSERT(list_empty(&entry
->log_list
));
579 ASSERT(list_empty(&entry
->trans_list
));
580 ASSERT(list_empty(&entry
->root_extent_list
));
581 ASSERT(RB_EMPTY_NODE(&entry
->rb_node
));
583 btrfs_add_delayed_iput(entry
->inode
);
584 while (!list_empty(&entry
->list
)) {
585 cur
= entry
->list
.next
;
586 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
587 list_del(&sum
->list
);
590 kmem_cache_free(btrfs_ordered_extent_cache
, entry
);
595 * remove an ordered extent from the tree. No references are dropped
596 * and waiters are woken up.
598 void btrfs_remove_ordered_extent(struct inode
*inode
,
599 struct btrfs_ordered_extent
*entry
)
601 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
602 struct btrfs_ordered_inode_tree
*tree
;
603 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
604 struct btrfs_root
*root
= btrfs_inode
->root
;
605 struct rb_node
*node
;
606 bool dec_pending_ordered
= false;
608 /* This is paired with btrfs_add_ordered_extent. */
609 spin_lock(&btrfs_inode
->lock
);
610 btrfs_mod_outstanding_extents(btrfs_inode
, -1);
611 spin_unlock(&btrfs_inode
->lock
);
612 if (root
!= fs_info
->tree_root
)
613 btrfs_delalloc_release_metadata(btrfs_inode
, entry
->len
);
615 tree
= &btrfs_inode
->ordered_tree
;
616 spin_lock_irq(&tree
->lock
);
617 node
= &entry
->rb_node
;
618 rb_erase(node
, &tree
->tree
);
620 if (tree
->last
== node
)
622 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
623 if (test_and_clear_bit(BTRFS_ORDERED_PENDING
, &entry
->flags
))
624 dec_pending_ordered
= true;
625 spin_unlock_irq(&tree
->lock
);
628 * The current running transaction is waiting on us, we need to let it
629 * know that we're complete and wake it up.
631 if (dec_pending_ordered
) {
632 struct btrfs_transaction
*trans
;
635 * The checks for trans are just a formality, it should be set,
636 * but if it isn't we don't want to deref/assert under the spin
637 * lock, so be nice and check if trans is set, but ASSERT() so
638 * if it isn't set a developer will notice.
640 spin_lock(&fs_info
->trans_lock
);
641 trans
= fs_info
->running_transaction
;
643 refcount_inc(&trans
->use_count
);
644 spin_unlock(&fs_info
->trans_lock
);
648 if (atomic_dec_and_test(&trans
->pending_ordered
))
649 wake_up(&trans
->pending_wait
);
650 btrfs_put_transaction(trans
);
654 spin_lock(&root
->ordered_extent_lock
);
655 list_del_init(&entry
->root_extent_list
);
656 root
->nr_ordered_extents
--;
658 trace_btrfs_ordered_extent_remove(inode
, entry
);
660 if (!root
->nr_ordered_extents
) {
661 spin_lock(&fs_info
->ordered_root_lock
);
662 BUG_ON(list_empty(&root
->ordered_root
));
663 list_del_init(&root
->ordered_root
);
664 spin_unlock(&fs_info
->ordered_root_lock
);
666 spin_unlock(&root
->ordered_extent_lock
);
667 wake_up(&entry
->wait
);
670 static void btrfs_run_ordered_extent_work(struct btrfs_work
*work
)
672 struct btrfs_ordered_extent
*ordered
;
674 ordered
= container_of(work
, struct btrfs_ordered_extent
, flush_work
);
675 btrfs_start_ordered_extent(ordered
->inode
, ordered
, 1);
676 complete(&ordered
->completion
);
680 * wait for all the ordered extents in a root. This is done when balancing
681 * space between drives.
683 u64
btrfs_wait_ordered_extents(struct btrfs_root
*root
, u64 nr
,
684 const u64 range_start
, const u64 range_len
)
686 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
690 struct btrfs_ordered_extent
*ordered
, *next
;
692 const u64 range_end
= range_start
+ range_len
;
694 mutex_lock(&root
->ordered_extent_mutex
);
695 spin_lock(&root
->ordered_extent_lock
);
696 list_splice_init(&root
->ordered_extents
, &splice
);
697 while (!list_empty(&splice
) && nr
) {
698 ordered
= list_first_entry(&splice
, struct btrfs_ordered_extent
,
701 if (range_end
<= ordered
->start
||
702 ordered
->start
+ ordered
->disk_len
<= range_start
) {
703 list_move_tail(&ordered
->root_extent_list
, &skipped
);
704 cond_resched_lock(&root
->ordered_extent_lock
);
708 list_move_tail(&ordered
->root_extent_list
,
709 &root
->ordered_extents
);
710 refcount_inc(&ordered
->refs
);
711 spin_unlock(&root
->ordered_extent_lock
);
713 btrfs_init_work(&ordered
->flush_work
,
714 btrfs_flush_delalloc_helper
,
715 btrfs_run_ordered_extent_work
, NULL
, NULL
);
716 list_add_tail(&ordered
->work_list
, &works
);
717 btrfs_queue_work(fs_info
->flush_workers
, &ordered
->flush_work
);
720 spin_lock(&root
->ordered_extent_lock
);
725 list_splice_tail(&skipped
, &root
->ordered_extents
);
726 list_splice_tail(&splice
, &root
->ordered_extents
);
727 spin_unlock(&root
->ordered_extent_lock
);
729 list_for_each_entry_safe(ordered
, next
, &works
, work_list
) {
730 list_del_init(&ordered
->work_list
);
731 wait_for_completion(&ordered
->completion
);
732 btrfs_put_ordered_extent(ordered
);
735 mutex_unlock(&root
->ordered_extent_mutex
);
740 u64
btrfs_wait_ordered_roots(struct btrfs_fs_info
*fs_info
, u64 nr
,
741 const u64 range_start
, const u64 range_len
)
743 struct btrfs_root
*root
;
744 struct list_head splice
;
748 INIT_LIST_HEAD(&splice
);
750 mutex_lock(&fs_info
->ordered_operations_mutex
);
751 spin_lock(&fs_info
->ordered_root_lock
);
752 list_splice_init(&fs_info
->ordered_roots
, &splice
);
753 while (!list_empty(&splice
) && nr
) {
754 root
= list_first_entry(&splice
, struct btrfs_root
,
756 root
= btrfs_grab_fs_root(root
);
758 list_move_tail(&root
->ordered_root
,
759 &fs_info
->ordered_roots
);
760 spin_unlock(&fs_info
->ordered_root_lock
);
762 done
= btrfs_wait_ordered_extents(root
, nr
,
763 range_start
, range_len
);
764 btrfs_put_fs_root(root
);
767 spin_lock(&fs_info
->ordered_root_lock
);
772 list_splice_tail(&splice
, &fs_info
->ordered_roots
);
773 spin_unlock(&fs_info
->ordered_root_lock
);
774 mutex_unlock(&fs_info
->ordered_operations_mutex
);
780 * Used to start IO or wait for a given ordered extent to finish.
782 * If wait is one, this effectively waits on page writeback for all the pages
783 * in the extent, and it waits on the io completion code to insert
784 * metadata into the btree corresponding to the extent
786 void btrfs_start_ordered_extent(struct inode
*inode
,
787 struct btrfs_ordered_extent
*entry
,
790 u64 start
= entry
->file_offset
;
791 u64 end
= start
+ entry
->len
- 1;
793 trace_btrfs_ordered_extent_start(inode
, entry
);
796 * pages in the range can be dirty, clean or writeback. We
797 * start IO on any dirty ones so the wait doesn't stall waiting
798 * for the flusher thread to find them
800 if (!test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
801 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
803 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
809 * Used to wait on ordered extents across a large range of bytes.
811 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
817 struct btrfs_ordered_extent
*ordered
;
819 if (start
+ len
< start
) {
820 orig_end
= INT_LIMIT(loff_t
);
822 orig_end
= start
+ len
- 1;
823 if (orig_end
> INT_LIMIT(loff_t
))
824 orig_end
= INT_LIMIT(loff_t
);
827 /* start IO across the range first to instantiate any delalloc
830 ret
= btrfs_fdatawrite_range(inode
, start
, orig_end
);
835 * If we have a writeback error don't return immediately. Wait first
836 * for any ordered extents that haven't completed yet. This is to make
837 * sure no one can dirty the same page ranges and call writepages()
838 * before the ordered extents complete - to avoid failures (-EEXIST)
839 * when adding the new ordered extents to the ordered tree.
841 ret_wb
= filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
845 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
848 if (ordered
->file_offset
> orig_end
) {
849 btrfs_put_ordered_extent(ordered
);
852 if (ordered
->file_offset
+ ordered
->len
<= start
) {
853 btrfs_put_ordered_extent(ordered
);
856 btrfs_start_ordered_extent(inode
, ordered
, 1);
857 end
= ordered
->file_offset
;
858 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
))
860 btrfs_put_ordered_extent(ordered
);
861 if (ret
|| end
== 0 || end
== start
)
865 return ret_wb
? ret_wb
: ret
;
869 * find an ordered extent corresponding to file_offset. return NULL if
870 * nothing is found, otherwise take a reference on the extent and return it
872 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
875 struct btrfs_ordered_inode_tree
*tree
;
876 struct rb_node
*node
;
877 struct btrfs_ordered_extent
*entry
= NULL
;
879 tree
= &BTRFS_I(inode
)->ordered_tree
;
880 spin_lock_irq(&tree
->lock
);
881 node
= tree_search(tree
, file_offset
);
885 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
886 if (!offset_in_entry(entry
, file_offset
))
889 refcount_inc(&entry
->refs
);
891 spin_unlock_irq(&tree
->lock
);
895 /* Since the DIO code tries to lock a wide area we need to look for any ordered
896 * extents that exist in the range, rather than just the start of the range.
898 struct btrfs_ordered_extent
*btrfs_lookup_ordered_range(
899 struct btrfs_inode
*inode
, u64 file_offset
, u64 len
)
901 struct btrfs_ordered_inode_tree
*tree
;
902 struct rb_node
*node
;
903 struct btrfs_ordered_extent
*entry
= NULL
;
905 tree
= &inode
->ordered_tree
;
906 spin_lock_irq(&tree
->lock
);
907 node
= tree_search(tree
, file_offset
);
909 node
= tree_search(tree
, file_offset
+ len
);
915 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
916 if (range_overlaps(entry
, file_offset
, len
))
919 if (entry
->file_offset
>= file_offset
+ len
) {
924 node
= rb_next(node
);
930 refcount_inc(&entry
->refs
);
931 spin_unlock_irq(&tree
->lock
);
935 bool btrfs_have_ordered_extents_in_range(struct inode
*inode
,
939 struct btrfs_ordered_extent
*oe
;
941 oe
= btrfs_lookup_ordered_range(BTRFS_I(inode
), file_offset
, len
);
943 btrfs_put_ordered_extent(oe
);
950 * lookup and return any extent before 'file_offset'. NULL is returned
953 struct btrfs_ordered_extent
*
954 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
956 struct btrfs_ordered_inode_tree
*tree
;
957 struct rb_node
*node
;
958 struct btrfs_ordered_extent
*entry
= NULL
;
960 tree
= &BTRFS_I(inode
)->ordered_tree
;
961 spin_lock_irq(&tree
->lock
);
962 node
= tree_search(tree
, file_offset
);
966 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
967 refcount_inc(&entry
->refs
);
969 spin_unlock_irq(&tree
->lock
);
974 * After an extent is done, call this to conditionally update the on disk
975 * i_size. i_size is updated to cover any fully written part of the file.
977 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
978 struct btrfs_ordered_extent
*ordered
)
980 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
983 u64 i_size
= i_size_read(inode
);
984 struct rb_node
*node
;
985 struct rb_node
*prev
= NULL
;
986 struct btrfs_ordered_extent
*test
;
988 u64 orig_offset
= offset
;
990 spin_lock_irq(&tree
->lock
);
992 offset
= entry_end(ordered
);
993 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
))
995 ordered
->file_offset
+
996 ordered
->truncated_len
);
998 offset
= ALIGN(offset
, btrfs_inode_sectorsize(inode
));
1000 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
1004 * If ordered is not NULL, then this is called from endio and
1005 * disk_i_size will be updated by either truncate itself or any
1006 * in-flight IOs which are inside the disk_i_size.
1008 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
1009 * fails somehow, we need to make sure we have a precise disk_i_size by
1010 * updating it as usual.
1013 if (!ordered
&& disk_i_size
> i_size
) {
1014 BTRFS_I(inode
)->disk_i_size
= orig_offset
;
1020 * if the disk i_size is already at the inode->i_size, or
1021 * this ordered extent is inside the disk i_size, we're done
1023 if (disk_i_size
== i_size
)
1027 * We still need to update disk_i_size if outstanding_isize is greater
1030 if (offset
<= disk_i_size
&&
1031 (!ordered
|| ordered
->outstanding_isize
<= disk_i_size
))
1035 * walk backward from this ordered extent to disk_i_size.
1036 * if we find an ordered extent then we can't update disk i_size
1040 node
= rb_prev(&ordered
->rb_node
);
1042 prev
= tree_search(tree
, offset
);
1044 * we insert file extents without involving ordered struct,
1045 * so there should be no ordered struct cover this offset
1048 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
1050 BUG_ON(offset_in_entry(test
, offset
));
1054 for (; node
; node
= rb_prev(node
)) {
1055 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
1057 /* We treat this entry as if it doesn't exist */
1058 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &test
->flags
))
1061 if (entry_end(test
) <= disk_i_size
)
1063 if (test
->file_offset
>= i_size
)
1067 * We don't update disk_i_size now, so record this undealt
1068 * i_size. Or we will not know the real i_size.
1070 if (test
->outstanding_isize
< offset
)
1071 test
->outstanding_isize
= offset
;
1073 ordered
->outstanding_isize
> test
->outstanding_isize
)
1074 test
->outstanding_isize
= ordered
->outstanding_isize
;
1077 new_i_size
= min_t(u64
, offset
, i_size
);
1080 * Some ordered extents may completed before the current one, and
1081 * we hold the real i_size in ->outstanding_isize.
1083 if (ordered
&& ordered
->outstanding_isize
> new_i_size
)
1084 new_i_size
= min_t(u64
, ordered
->outstanding_isize
, i_size
);
1085 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
1089 * We need to do this because we can't remove ordered extents until
1090 * after the i_disk_size has been updated and then the inode has been
1091 * updated to reflect the change, so we need to tell anybody who finds
1092 * this ordered extent that we've already done all the real work, we
1093 * just haven't completed all the other work.
1096 set_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &ordered
->flags
);
1097 spin_unlock_irq(&tree
->lock
);
1102 * search the ordered extents for one corresponding to 'offset' and
1103 * try to find a checksum. This is used because we allow pages to
1104 * be reclaimed before their checksum is actually put into the btree
1106 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
1109 struct btrfs_ordered_sum
*ordered_sum
;
1110 struct btrfs_ordered_extent
*ordered
;
1111 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
1112 unsigned long num_sectors
;
1114 u32 sectorsize
= btrfs_inode_sectorsize(inode
);
1117 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
1121 spin_lock_irq(&tree
->lock
);
1122 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
1123 if (disk_bytenr
>= ordered_sum
->bytenr
&&
1124 disk_bytenr
< ordered_sum
->bytenr
+ ordered_sum
->len
) {
1125 i
= (disk_bytenr
- ordered_sum
->bytenr
) >>
1126 inode
->i_sb
->s_blocksize_bits
;
1127 num_sectors
= ordered_sum
->len
>>
1128 inode
->i_sb
->s_blocksize_bits
;
1129 num_sectors
= min_t(int, len
- index
, num_sectors
- i
);
1130 memcpy(sum
+ index
, ordered_sum
->sums
+ i
,
1133 index
+= (int)num_sectors
;
1136 disk_bytenr
+= num_sectors
* sectorsize
;
1140 spin_unlock_irq(&tree
->lock
);
1141 btrfs_put_ordered_extent(ordered
);
1145 int __init
ordered_data_init(void)
1147 btrfs_ordered_extent_cache
= kmem_cache_create("btrfs_ordered_extent",
1148 sizeof(struct btrfs_ordered_extent
), 0,
1151 if (!btrfs_ordered_extent_cache
)
1157 void ordered_data_exit(void)
1159 kmem_cache_destroy(btrfs_ordered_extent_cache
);