2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
27 #include "print-tree.h"
30 #include "compression.h"
32 #include "inode-map.h"
34 /* magic values for the inode_only field in btrfs_log_inode:
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
45 * directory trouble cases
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
54 * rename foo/some_dir foo2/some_dir
56 * fsync foo/some_dir/some_file
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
101 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
102 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
106 struct btrfs_log_ctx
*ctx
);
107 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
108 struct btrfs_root
*root
,
109 struct btrfs_path
*path
, u64 objectid
);
110 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
111 struct btrfs_root
*root
,
112 struct btrfs_root
*log
,
113 struct btrfs_path
*path
,
114 u64 dirid
, int del_all
);
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
144 static int start_log_trans(struct btrfs_trans_handle
*trans
,
145 struct btrfs_root
*root
,
146 struct btrfs_log_ctx
*ctx
)
148 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
151 mutex_lock(&root
->log_mutex
);
153 if (root
->log_root
) {
154 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
159 if (!root
->log_start_pid
) {
160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
161 root
->log_start_pid
= current
->pid
;
162 } else if (root
->log_start_pid
!= current
->pid
) {
163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
166 mutex_lock(&fs_info
->tree_log_mutex
);
167 if (!fs_info
->log_root_tree
)
168 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
169 mutex_unlock(&fs_info
->tree_log_mutex
);
173 ret
= btrfs_add_log_tree(trans
, root
);
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
178 root
->log_start_pid
= current
->pid
;
181 atomic_inc(&root
->log_batch
);
182 atomic_inc(&root
->log_writers
);
184 int index
= root
->log_transid
% 2;
185 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
186 ctx
->log_transid
= root
->log_transid
;
190 mutex_unlock(&root
->log_mutex
);
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
199 static int join_running_log_trans(struct btrfs_root
*root
)
207 mutex_lock(&root
->log_mutex
);
208 if (root
->log_root
) {
210 atomic_inc(&root
->log_writers
);
212 mutex_unlock(&root
->log_mutex
);
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
221 int btrfs_pin_log_trans(struct btrfs_root
*root
)
225 mutex_lock(&root
->log_mutex
);
226 atomic_inc(&root
->log_writers
);
227 mutex_unlock(&root
->log_mutex
);
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
235 void btrfs_end_log_trans(struct btrfs_root
*root
)
237 if (atomic_dec_and_test(&root
->log_writers
)) {
239 * Implicit memory barrier after atomic_dec_and_test
241 if (waitqueue_active(&root
->log_writer_wait
))
242 wake_up(&root
->log_writer_wait
);
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
253 struct walk_control
{
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
269 /* pin only walk, we record which extents on disk belong to the
274 /* what stage of the replay code we're currently in */
277 /* the root we are currently replaying */
278 struct btrfs_root
*replay_dest
;
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle
*trans
;
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
288 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
289 struct walk_control
*wc
, u64 gen
);
293 * process_func used to pin down extents, write them or wait on them
295 static int process_one_buffer(struct btrfs_root
*log
,
296 struct extent_buffer
*eb
,
297 struct walk_control
*wc
, u64 gen
)
299 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
307 ret
= btrfs_read_buffer(eb
, gen
);
313 ret
= btrfs_pin_extent_for_log_replay(fs_info
, eb
->start
,
316 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
317 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
318 ret
= btrfs_exclude_logged_extents(fs_info
, eb
);
320 btrfs_write_tree_block(eb
);
322 btrfs_wait_tree_block_writeback(eb
);
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
342 struct btrfs_root
*root
,
343 struct btrfs_path
*path
,
344 struct extent_buffer
*eb
, int slot
,
345 struct btrfs_key
*key
)
347 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
350 u64 saved_i_size
= 0;
351 int save_old_i_size
= 0;
352 unsigned long src_ptr
;
353 unsigned long dst_ptr
;
354 int overwrite_root
= 0;
355 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
357 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
360 item_size
= btrfs_item_size_nr(eb
, slot
);
361 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
363 /* look for the key in the destination tree */
364 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
371 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
373 if (dst_size
!= item_size
)
376 if (item_size
== 0) {
377 btrfs_release_path(path
);
380 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
381 src_copy
= kmalloc(item_size
, GFP_NOFS
);
382 if (!dst_copy
|| !src_copy
) {
383 btrfs_release_path(path
);
389 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
391 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
392 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
394 ret
= memcmp(dst_copy
, src_copy
, item_size
);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
405 btrfs_release_path(path
);
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
414 struct btrfs_inode_item
*item
;
418 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
419 struct btrfs_inode_item
);
420 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
421 item
= btrfs_item_ptr(eb
, slot
,
422 struct btrfs_inode_item
);
423 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode
= btrfs_inode_mode(eb
, item
);
432 btrfs_set_inode_size(eb
, item
, 0);
434 } else if (inode_item
) {
435 struct btrfs_inode_item
*item
;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
443 btrfs_set_inode_nbytes(eb
, item
, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode
= btrfs_inode_mode(eb
, item
);
452 btrfs_set_inode_size(eb
, item
, 0);
455 btrfs_release_path(path
);
456 /* try to insert the key into the destination tree */
457 path
->skip_release_on_error
= 1;
458 ret
= btrfs_insert_empty_item(trans
, root
, path
,
460 path
->skip_release_on_error
= 0;
462 /* make sure any existing item is the correct size */
463 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
465 found_size
= btrfs_item_size_nr(path
->nodes
[0],
467 if (found_size
> item_size
)
468 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
469 else if (found_size
< item_size
)
470 btrfs_extend_item(fs_info
, path
,
471 item_size
- found_size
);
475 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
487 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
488 struct btrfs_inode_item
*src_item
;
489 struct btrfs_inode_item
*dst_item
;
491 src_item
= (struct btrfs_inode_item
*)src_ptr
;
492 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
494 if (btrfs_inode_generation(eb
, src_item
) == 0) {
495 struct extent_buffer
*dst_eb
= path
->nodes
[0];
496 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
505 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
506 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
508 struct btrfs_map_token token
;
510 btrfs_init_map_token(&token
);
511 btrfs_set_token_inode_size(dst_eb
, dst_item
,
517 if (overwrite_root
&&
518 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
519 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
521 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
526 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
529 if (save_old_i_size
) {
530 struct btrfs_inode_item
*dst_item
;
531 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
532 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
535 /* make sure the generation is filled in */
536 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
537 struct btrfs_inode_item
*dst_item
;
538 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
539 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
540 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
545 btrfs_mark_buffer_dirty(path
->nodes
[0]);
546 btrfs_release_path(path
);
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
554 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
557 struct btrfs_key key
;
560 key
.objectid
= objectid
;
561 key
.type
= BTRFS_INODE_ITEM_KEY
;
563 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
566 } else if (is_bad_inode(inode
)) {
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
585 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
586 struct btrfs_root
*root
,
587 struct btrfs_path
*path
,
588 struct extent_buffer
*eb
, int slot
,
589 struct btrfs_key
*key
)
591 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
594 u64 start
= key
->offset
;
596 struct btrfs_file_extent_item
*item
;
597 struct inode
*inode
= NULL
;
601 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
602 found_type
= btrfs_file_extent_type(eb
, item
);
604 if (found_type
== BTRFS_FILE_EXTENT_REG
||
605 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
606 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
607 extent_end
= start
+ nbytes
;
610 * We don't add to the inodes nbytes if we are prealloc or a
613 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
615 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
616 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
617 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
618 extent_end
= ALIGN(start
+ size
,
619 fs_info
->sectorsize
);
625 inode
= read_one_inode(root
, key
->objectid
);
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
636 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
637 btrfs_ino(BTRFS_I(inode
)), start
, 0);
640 (found_type
== BTRFS_FILE_EXTENT_REG
||
641 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
642 struct btrfs_file_extent_item cmp1
;
643 struct btrfs_file_extent_item cmp2
;
644 struct btrfs_file_extent_item
*existing
;
645 struct extent_buffer
*leaf
;
647 leaf
= path
->nodes
[0];
648 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
649 struct btrfs_file_extent_item
);
651 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
653 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
660 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
661 btrfs_release_path(path
);
665 btrfs_release_path(path
);
667 /* drop any overlapping extents */
668 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
672 if (found_type
== BTRFS_FILE_EXTENT_REG
||
673 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
675 unsigned long dest_offset
;
676 struct btrfs_key ins
;
678 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
679 btrfs_fs_incompat(fs_info
, NO_HOLES
))
682 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
686 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
688 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
689 (unsigned long)item
, sizeof(*item
));
691 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
692 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
693 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
694 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
704 ret
= btrfs_qgroup_trace_extent(trans
, fs_info
,
705 btrfs_file_extent_disk_bytenr(eb
, item
),
706 btrfs_file_extent_disk_num_bytes(eb
, item
),
711 if (ins
.objectid
> 0) {
714 LIST_HEAD(ordered_sums
);
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
719 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
722 ret
= btrfs_inc_extent_ref(trans
, root
,
723 ins
.objectid
, ins
.offset
,
724 0, root
->root_key
.objectid
,
725 key
->objectid
, offset
);
730 * insert the extent pointer in the extent
733 ret
= btrfs_alloc_logged_file_extent(trans
,
735 root
->root_key
.objectid
,
736 key
->objectid
, offset
, &ins
);
740 btrfs_release_path(path
);
742 if (btrfs_file_extent_compression(eb
, item
)) {
743 csum_start
= ins
.objectid
;
744 csum_end
= csum_start
+ ins
.offset
;
746 csum_start
= ins
.objectid
+
747 btrfs_file_extent_offset(eb
, item
);
748 csum_end
= csum_start
+
749 btrfs_file_extent_num_bytes(eb
, item
);
752 ret
= btrfs_lookup_csums_range(root
->log_root
,
753 csum_start
, csum_end
- 1,
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
806 while (!list_empty(&ordered_sums
)) {
807 struct btrfs_ordered_sum
*sums
;
808 sums
= list_entry(ordered_sums
.next
,
809 struct btrfs_ordered_sum
,
812 ret
= btrfs_del_csums(trans
, fs_info
,
816 ret
= btrfs_csum_file_blocks(trans
,
817 fs_info
->csum_root
, sums
);
818 list_del(&sums
->list
);
824 btrfs_release_path(path
);
826 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
827 /* inline extents are easy, we just overwrite them */
828 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
833 inode_add_bytes(inode
, nbytes
);
835 ret
= btrfs_update_inode(trans
, root
, inode
);
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
850 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
851 struct btrfs_root
*root
,
852 struct btrfs_path
*path
,
853 struct btrfs_inode
*dir
,
854 struct btrfs_dir_item
*di
)
856 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
860 struct extent_buffer
*leaf
;
861 struct btrfs_key location
;
864 leaf
= path
->nodes
[0];
866 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
867 name_len
= btrfs_dir_name_len(leaf
, di
);
868 name
= kmalloc(name_len
, GFP_NOFS
);
872 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
873 btrfs_release_path(path
);
875 inode
= read_one_inode(root
, location
.objectid
);
881 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
885 ret
= btrfs_unlink_inode(trans
, root
, dir
, BTRFS_I(inode
), name
,
890 ret
= btrfs_run_delayed_items(trans
, fs_info
);
898 * helper function to see if a given name and sequence number found
899 * in an inode back reference are already in a directory and correctly
900 * point to this inode
902 static noinline
int inode_in_dir(struct btrfs_root
*root
,
903 struct btrfs_path
*path
,
904 u64 dirid
, u64 objectid
, u64 index
,
905 const char *name
, int name_len
)
907 struct btrfs_dir_item
*di
;
908 struct btrfs_key location
;
911 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
912 index
, name
, name_len
, 0);
913 if (di
&& !IS_ERR(di
)) {
914 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
915 if (location
.objectid
!= objectid
)
919 btrfs_release_path(path
);
921 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
922 if (di
&& !IS_ERR(di
)) {
923 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
924 if (location
.objectid
!= objectid
)
930 btrfs_release_path(path
);
935 * helper function to check a log tree for a named back reference in
936 * an inode. This is used to decide if a back reference that is
937 * found in the subvolume conflicts with what we find in the log.
939 * inode backreferences may have multiple refs in a single item,
940 * during replay we process one reference at a time, and we don't
941 * want to delete valid links to a file from the subvolume if that
942 * link is also in the log.
944 static noinline
int backref_in_log(struct btrfs_root
*log
,
945 struct btrfs_key
*key
,
947 const char *name
, int namelen
)
949 struct btrfs_path
*path
;
950 struct btrfs_inode_ref
*ref
;
952 unsigned long ptr_end
;
953 unsigned long name_ptr
;
959 path
= btrfs_alloc_path();
963 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
967 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
969 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
970 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
971 name
, namelen
, NULL
))
977 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
978 ptr_end
= ptr
+ item_size
;
979 while (ptr
< ptr_end
) {
980 ref
= (struct btrfs_inode_ref
*)ptr
;
981 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
982 if (found_name_len
== namelen
) {
983 name_ptr
= (unsigned long)(ref
+ 1);
984 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
991 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
994 btrfs_free_path(path
);
998 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
999 struct btrfs_root
*root
,
1000 struct btrfs_path
*path
,
1001 struct btrfs_root
*log_root
,
1002 struct btrfs_inode
*dir
,
1003 struct btrfs_inode
*inode
,
1004 u64 inode_objectid
, u64 parent_objectid
,
1005 u64 ref_index
, char *name
, int namelen
,
1008 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1011 int victim_name_len
;
1012 struct extent_buffer
*leaf
;
1013 struct btrfs_dir_item
*di
;
1014 struct btrfs_key search_key
;
1015 struct btrfs_inode_extref
*extref
;
1018 /* Search old style refs */
1019 search_key
.objectid
= inode_objectid
;
1020 search_key
.type
= BTRFS_INODE_REF_KEY
;
1021 search_key
.offset
= parent_objectid
;
1022 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1024 struct btrfs_inode_ref
*victim_ref
;
1026 unsigned long ptr_end
;
1028 leaf
= path
->nodes
[0];
1030 /* are we trying to overwrite a back ref for the root directory
1031 * if so, just jump out, we're done
1033 if (search_key
.objectid
== search_key
.offset
)
1036 /* check all the names in this back reference to see
1037 * if they are in the log. if so, we allow them to stay
1038 * otherwise they must be unlinked as a conflict
1040 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1041 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1042 while (ptr
< ptr_end
) {
1043 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1044 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1046 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1050 read_extent_buffer(leaf
, victim_name
,
1051 (unsigned long)(victim_ref
+ 1),
1054 if (!backref_in_log(log_root
, &search_key
,
1058 inc_nlink(&inode
->vfs_inode
);
1059 btrfs_release_path(path
);
1061 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1062 victim_name
, victim_name_len
);
1066 ret
= btrfs_run_delayed_items(trans
, fs_info
);
1074 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1078 * NOTE: we have searched root tree and checked the
1079 * corresponding ref, it does not need to check again.
1083 btrfs_release_path(path
);
1085 /* Same search but for extended refs */
1086 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1087 inode_objectid
, parent_objectid
, 0,
1089 if (!IS_ERR_OR_NULL(extref
)) {
1093 struct inode
*victim_parent
;
1095 leaf
= path
->nodes
[0];
1097 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1098 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1100 while (cur_offset
< item_size
) {
1101 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1103 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1105 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1108 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1111 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1114 search_key
.objectid
= inode_objectid
;
1115 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1116 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1120 if (!backref_in_log(log_root
, &search_key
,
1121 parent_objectid
, victim_name
,
1124 victim_parent
= read_one_inode(root
,
1126 if (victim_parent
) {
1127 inc_nlink(&inode
->vfs_inode
);
1128 btrfs_release_path(path
);
1130 ret
= btrfs_unlink_inode(trans
, root
,
1131 BTRFS_I(victim_parent
),
1136 ret
= btrfs_run_delayed_items(
1140 iput(victim_parent
);
1149 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1153 btrfs_release_path(path
);
1155 /* look for a conflicting sequence number */
1156 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1157 ref_index
, name
, namelen
, 0);
1158 if (di
&& !IS_ERR(di
)) {
1159 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1163 btrfs_release_path(path
);
1165 /* look for a conflicing name */
1166 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1168 if (di
&& !IS_ERR(di
)) {
1169 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1173 btrfs_release_path(path
);
1178 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1179 u32
*namelen
, char **name
, u64
*index
,
1180 u64
*parent_objectid
)
1182 struct btrfs_inode_extref
*extref
;
1184 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1186 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1187 *name
= kmalloc(*namelen
, GFP_NOFS
);
1191 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1194 *index
= btrfs_inode_extref_index(eb
, extref
);
1195 if (parent_objectid
)
1196 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1201 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1202 u32
*namelen
, char **name
, u64
*index
)
1204 struct btrfs_inode_ref
*ref
;
1206 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1208 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1209 *name
= kmalloc(*namelen
, GFP_NOFS
);
1213 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1215 *index
= btrfs_inode_ref_index(eb
, ref
);
1221 * replay one inode back reference item found in the log tree.
1222 * eb, slot and key refer to the buffer and key found in the log tree.
1223 * root is the destination we are replaying into, and path is for temp
1224 * use by this function. (it should be released on return).
1226 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1227 struct btrfs_root
*root
,
1228 struct btrfs_root
*log
,
1229 struct btrfs_path
*path
,
1230 struct extent_buffer
*eb
, int slot
,
1231 struct btrfs_key
*key
)
1233 struct inode
*dir
= NULL
;
1234 struct inode
*inode
= NULL
;
1235 unsigned long ref_ptr
;
1236 unsigned long ref_end
;
1240 int search_done
= 0;
1241 int log_ref_ver
= 0;
1242 u64 parent_objectid
;
1245 int ref_struct_size
;
1247 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1248 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1250 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1251 struct btrfs_inode_extref
*r
;
1253 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1255 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1256 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1258 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1259 parent_objectid
= key
->offset
;
1261 inode_objectid
= key
->objectid
;
1264 * it is possible that we didn't log all the parent directories
1265 * for a given inode. If we don't find the dir, just don't
1266 * copy the back ref in. The link count fixup code will take
1269 dir
= read_one_inode(root
, parent_objectid
);
1275 inode
= read_one_inode(root
, inode_objectid
);
1281 while (ref_ptr
< ref_end
) {
1283 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1284 &ref_index
, &parent_objectid
);
1286 * parent object can change from one array
1290 dir
= read_one_inode(root
, parent_objectid
);
1296 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1302 /* if we already have a perfect match, we're done */
1303 if (!inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1304 btrfs_ino(BTRFS_I(inode
)), ref_index
,
1307 * look for a conflicting back reference in the
1308 * metadata. if we find one we have to unlink that name
1309 * of the file before we add our new link. Later on, we
1310 * overwrite any existing back reference, and we don't
1311 * want to create dangling pointers in the directory.
1315 ret
= __add_inode_ref(trans
, root
, path
, log
,
1320 ref_index
, name
, namelen
,
1329 /* insert our name */
1330 ret
= btrfs_add_link(trans
, BTRFS_I(dir
),
1332 name
, namelen
, 0, ref_index
);
1336 btrfs_update_inode(trans
, root
, inode
);
1339 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1348 /* finally write the back reference in the inode */
1349 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1351 btrfs_release_path(path
);
1358 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1359 struct btrfs_root
*root
, u64 ino
)
1363 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1370 static int count_inode_extrefs(struct btrfs_root
*root
,
1371 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1375 unsigned int nlink
= 0;
1378 u64 inode_objectid
= btrfs_ino(inode
);
1381 struct btrfs_inode_extref
*extref
;
1382 struct extent_buffer
*leaf
;
1385 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1390 leaf
= path
->nodes
[0];
1391 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1392 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1395 while (cur_offset
< item_size
) {
1396 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1397 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1401 cur_offset
+= name_len
+ sizeof(*extref
);
1405 btrfs_release_path(path
);
1407 btrfs_release_path(path
);
1409 if (ret
< 0 && ret
!= -ENOENT
)
1414 static int count_inode_refs(struct btrfs_root
*root
,
1415 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1418 struct btrfs_key key
;
1419 unsigned int nlink
= 0;
1421 unsigned long ptr_end
;
1423 u64 ino
= btrfs_ino(inode
);
1426 key
.type
= BTRFS_INODE_REF_KEY
;
1427 key
.offset
= (u64
)-1;
1430 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1434 if (path
->slots
[0] == 0)
1439 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1441 if (key
.objectid
!= ino
||
1442 key
.type
!= BTRFS_INODE_REF_KEY
)
1444 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1445 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1447 while (ptr
< ptr_end
) {
1448 struct btrfs_inode_ref
*ref
;
1450 ref
= (struct btrfs_inode_ref
*)ptr
;
1451 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1453 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1457 if (key
.offset
== 0)
1459 if (path
->slots
[0] > 0) {
1464 btrfs_release_path(path
);
1466 btrfs_release_path(path
);
1472 * There are a few corners where the link count of the file can't
1473 * be properly maintained during replay. So, instead of adding
1474 * lots of complexity to the log code, we just scan the backrefs
1475 * for any file that has been through replay.
1477 * The scan will update the link count on the inode to reflect the
1478 * number of back refs found. If it goes down to zero, the iput
1479 * will free the inode.
1481 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1482 struct btrfs_root
*root
,
1483 struct inode
*inode
)
1485 struct btrfs_path
*path
;
1488 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1490 path
= btrfs_alloc_path();
1494 ret
= count_inode_refs(root
, BTRFS_I(inode
), path
);
1500 ret
= count_inode_extrefs(root
, BTRFS_I(inode
), path
);
1508 if (nlink
!= inode
->i_nlink
) {
1509 set_nlink(inode
, nlink
);
1510 btrfs_update_inode(trans
, root
, inode
);
1512 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1514 if (inode
->i_nlink
== 0) {
1515 if (S_ISDIR(inode
->i_mode
)) {
1516 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1521 ret
= insert_orphan_item(trans
, root
, ino
);
1525 btrfs_free_path(path
);
1529 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1530 struct btrfs_root
*root
,
1531 struct btrfs_path
*path
)
1534 struct btrfs_key key
;
1535 struct inode
*inode
;
1537 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1538 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1539 key
.offset
= (u64
)-1;
1541 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1546 if (path
->slots
[0] == 0)
1551 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1552 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1553 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1556 ret
= btrfs_del_item(trans
, root
, path
);
1560 btrfs_release_path(path
);
1561 inode
= read_one_inode(root
, key
.offset
);
1565 ret
= fixup_inode_link_count(trans
, root
, inode
);
1571 * fixup on a directory may create new entries,
1572 * make sure we always look for the highset possible
1575 key
.offset
= (u64
)-1;
1579 btrfs_release_path(path
);
1585 * record a given inode in the fixup dir so we can check its link
1586 * count when replay is done. The link count is incremented here
1587 * so the inode won't go away until we check it
1589 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1590 struct btrfs_root
*root
,
1591 struct btrfs_path
*path
,
1594 struct btrfs_key key
;
1596 struct inode
*inode
;
1598 inode
= read_one_inode(root
, objectid
);
1602 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1603 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1604 key
.offset
= objectid
;
1606 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1608 btrfs_release_path(path
);
1610 if (!inode
->i_nlink
)
1611 set_nlink(inode
, 1);
1614 ret
= btrfs_update_inode(trans
, root
, inode
);
1615 } else if (ret
== -EEXIST
) {
1618 BUG(); /* Logic Error */
1626 * when replaying the log for a directory, we only insert names
1627 * for inodes that actually exist. This means an fsync on a directory
1628 * does not implicitly fsync all the new files in it
1630 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1631 struct btrfs_root
*root
,
1632 u64 dirid
, u64 index
,
1633 char *name
, int name_len
,
1634 struct btrfs_key
*location
)
1636 struct inode
*inode
;
1640 inode
= read_one_inode(root
, location
->objectid
);
1644 dir
= read_one_inode(root
, dirid
);
1650 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1651 name_len
, 1, index
);
1653 /* FIXME, put inode into FIXUP list */
1661 * Return true if an inode reference exists in the log for the given name,
1662 * inode and parent inode.
1664 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1665 const char *name
, const int name_len
,
1666 const u64 dirid
, const u64 ino
)
1668 struct btrfs_key search_key
;
1670 search_key
.objectid
= ino
;
1671 search_key
.type
= BTRFS_INODE_REF_KEY
;
1672 search_key
.offset
= dirid
;
1673 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1676 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1677 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1678 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1685 * take a single entry in a log directory item and replay it into
1688 * if a conflicting item exists in the subdirectory already,
1689 * the inode it points to is unlinked and put into the link count
1692 * If a name from the log points to a file or directory that does
1693 * not exist in the FS, it is skipped. fsyncs on directories
1694 * do not force down inodes inside that directory, just changes to the
1695 * names or unlinks in a directory.
1697 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1698 * non-existing inode) and 1 if the name was replayed.
1700 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1701 struct btrfs_root
*root
,
1702 struct btrfs_path
*path
,
1703 struct extent_buffer
*eb
,
1704 struct btrfs_dir_item
*di
,
1705 struct btrfs_key
*key
)
1709 struct btrfs_dir_item
*dst_di
;
1710 struct btrfs_key found_key
;
1711 struct btrfs_key log_key
;
1716 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1717 bool name_added
= false;
1719 dir
= read_one_inode(root
, key
->objectid
);
1723 name_len
= btrfs_dir_name_len(eb
, di
);
1724 name
= kmalloc(name_len
, GFP_NOFS
);
1730 log_type
= btrfs_dir_type(eb
, di
);
1731 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1734 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1735 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1740 btrfs_release_path(path
);
1742 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1743 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1745 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1746 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1755 if (IS_ERR_OR_NULL(dst_di
)) {
1756 /* we need a sequence number to insert, so we only
1757 * do inserts for the BTRFS_DIR_INDEX_KEY types
1759 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1764 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1765 /* the existing item matches the logged item */
1766 if (found_key
.objectid
== log_key
.objectid
&&
1767 found_key
.type
== log_key
.type
&&
1768 found_key
.offset
== log_key
.offset
&&
1769 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1770 update_size
= false;
1775 * don't drop the conflicting directory entry if the inode
1776 * for the new entry doesn't exist
1781 ret
= drop_one_dir_item(trans
, root
, path
, BTRFS_I(dir
), dst_di
);
1785 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1788 btrfs_release_path(path
);
1789 if (!ret
&& update_size
) {
1790 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name_len
* 2);
1791 ret
= btrfs_update_inode(trans
, root
, dir
);
1795 if (!ret
&& name_added
)
1800 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1801 key
->objectid
, log_key
.objectid
)) {
1802 /* The dentry will be added later. */
1804 update_size
= false;
1807 btrfs_release_path(path
);
1808 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1809 name
, name_len
, &log_key
);
1810 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1814 update_size
= false;
1820 * find all the names in a directory item and reconcile them into
1821 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1822 * one name in a directory item, but the same code gets used for
1823 * both directory index types
1825 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1826 struct btrfs_root
*root
,
1827 struct btrfs_path
*path
,
1828 struct extent_buffer
*eb
, int slot
,
1829 struct btrfs_key
*key
)
1832 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1833 struct btrfs_dir_item
*di
;
1836 unsigned long ptr_end
;
1837 struct btrfs_path
*fixup_path
= NULL
;
1839 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1840 ptr_end
= ptr
+ item_size
;
1841 while (ptr
< ptr_end
) {
1842 di
= (struct btrfs_dir_item
*)ptr
;
1843 name_len
= btrfs_dir_name_len(eb
, di
);
1844 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1847 ptr
= (unsigned long)(di
+ 1);
1851 * If this entry refers to a non-directory (directories can not
1852 * have a link count > 1) and it was added in the transaction
1853 * that was not committed, make sure we fixup the link count of
1854 * the inode it the entry points to. Otherwise something like
1855 * the following would result in a directory pointing to an
1856 * inode with a wrong link that does not account for this dir
1864 * ln testdir/bar testdir/bar_link
1865 * ln testdir/foo testdir/foo_link
1866 * xfs_io -c "fsync" testdir/bar
1870 * mount fs, log replay happens
1872 * File foo would remain with a link count of 1 when it has two
1873 * entries pointing to it in the directory testdir. This would
1874 * make it impossible to ever delete the parent directory has
1875 * it would result in stale dentries that can never be deleted.
1877 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1878 struct btrfs_key di_key
;
1881 fixup_path
= btrfs_alloc_path();
1888 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1889 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1896 btrfs_free_path(fixup_path
);
1901 * directory replay has two parts. There are the standard directory
1902 * items in the log copied from the subvolume, and range items
1903 * created in the log while the subvolume was logged.
1905 * The range items tell us which parts of the key space the log
1906 * is authoritative for. During replay, if a key in the subvolume
1907 * directory is in a logged range item, but not actually in the log
1908 * that means it was deleted from the directory before the fsync
1909 * and should be removed.
1911 static noinline
int find_dir_range(struct btrfs_root
*root
,
1912 struct btrfs_path
*path
,
1913 u64 dirid
, int key_type
,
1914 u64
*start_ret
, u64
*end_ret
)
1916 struct btrfs_key key
;
1918 struct btrfs_dir_log_item
*item
;
1922 if (*start_ret
== (u64
)-1)
1925 key
.objectid
= dirid
;
1926 key
.type
= key_type
;
1927 key
.offset
= *start_ret
;
1929 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1933 if (path
->slots
[0] == 0)
1938 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1940 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1944 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1945 struct btrfs_dir_log_item
);
1946 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1948 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1950 *start_ret
= key
.offset
;
1951 *end_ret
= found_end
;
1956 /* check the next slot in the tree to see if it is a valid item */
1957 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1959 if (path
->slots
[0] >= nritems
) {
1960 ret
= btrfs_next_leaf(root
, path
);
1965 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1967 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1971 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1972 struct btrfs_dir_log_item
);
1973 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1974 *start_ret
= key
.offset
;
1975 *end_ret
= found_end
;
1978 btrfs_release_path(path
);
1983 * this looks for a given directory item in the log. If the directory
1984 * item is not in the log, the item is removed and the inode it points
1987 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1988 struct btrfs_root
*root
,
1989 struct btrfs_root
*log
,
1990 struct btrfs_path
*path
,
1991 struct btrfs_path
*log_path
,
1993 struct btrfs_key
*dir_key
)
1995 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1997 struct extent_buffer
*eb
;
2000 struct btrfs_dir_item
*di
;
2001 struct btrfs_dir_item
*log_di
;
2004 unsigned long ptr_end
;
2006 struct inode
*inode
;
2007 struct btrfs_key location
;
2010 eb
= path
->nodes
[0];
2011 slot
= path
->slots
[0];
2012 item_size
= btrfs_item_size_nr(eb
, slot
);
2013 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2014 ptr_end
= ptr
+ item_size
;
2015 while (ptr
< ptr_end
) {
2016 di
= (struct btrfs_dir_item
*)ptr
;
2017 name_len
= btrfs_dir_name_len(eb
, di
);
2018 name
= kmalloc(name_len
, GFP_NOFS
);
2023 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2026 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2027 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2030 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2031 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2037 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2038 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2039 btrfs_release_path(path
);
2040 btrfs_release_path(log_path
);
2041 inode
= read_one_inode(root
, location
.objectid
);
2047 ret
= link_to_fixup_dir(trans
, root
,
2048 path
, location
.objectid
);
2056 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
2057 BTRFS_I(inode
), name
, name_len
);
2059 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2065 /* there might still be more names under this key
2066 * check and repeat if required
2068 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2074 } else if (IS_ERR(log_di
)) {
2076 return PTR_ERR(log_di
);
2078 btrfs_release_path(log_path
);
2081 ptr
= (unsigned long)(di
+ 1);
2086 btrfs_release_path(path
);
2087 btrfs_release_path(log_path
);
2091 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2092 struct btrfs_root
*root
,
2093 struct btrfs_root
*log
,
2094 struct btrfs_path
*path
,
2097 struct btrfs_key search_key
;
2098 struct btrfs_path
*log_path
;
2103 log_path
= btrfs_alloc_path();
2107 search_key
.objectid
= ino
;
2108 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2109 search_key
.offset
= 0;
2111 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2115 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2116 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2117 struct btrfs_key key
;
2118 struct btrfs_dir_item
*di
;
2119 struct btrfs_dir_item
*log_di
;
2123 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2124 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2129 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2130 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2132 while (cur
< total_size
) {
2133 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2134 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2135 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2138 name
= kmalloc(name_len
, GFP_NOFS
);
2143 read_extent_buffer(path
->nodes
[0], name
,
2144 (unsigned long)(di
+ 1), name_len
);
2146 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2148 btrfs_release_path(log_path
);
2150 /* Doesn't exist in log tree, so delete it. */
2151 btrfs_release_path(path
);
2152 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2153 name
, name_len
, -1);
2160 ret
= btrfs_delete_one_dir_name(trans
, root
,
2164 btrfs_release_path(path
);
2169 if (IS_ERR(log_di
)) {
2170 ret
= PTR_ERR(log_di
);
2174 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2177 ret
= btrfs_next_leaf(root
, path
);
2183 btrfs_free_path(log_path
);
2184 btrfs_release_path(path
);
2190 * deletion replay happens before we copy any new directory items
2191 * out of the log or out of backreferences from inodes. It
2192 * scans the log to find ranges of keys that log is authoritative for,
2193 * and then scans the directory to find items in those ranges that are
2194 * not present in the log.
2196 * Anything we don't find in the log is unlinked and removed from the
2199 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2200 struct btrfs_root
*root
,
2201 struct btrfs_root
*log
,
2202 struct btrfs_path
*path
,
2203 u64 dirid
, int del_all
)
2207 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2209 struct btrfs_key dir_key
;
2210 struct btrfs_key found_key
;
2211 struct btrfs_path
*log_path
;
2214 dir_key
.objectid
= dirid
;
2215 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2216 log_path
= btrfs_alloc_path();
2220 dir
= read_one_inode(root
, dirid
);
2221 /* it isn't an error if the inode isn't there, that can happen
2222 * because we replay the deletes before we copy in the inode item
2226 btrfs_free_path(log_path
);
2234 range_end
= (u64
)-1;
2236 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2237 &range_start
, &range_end
);
2242 dir_key
.offset
= range_start
;
2245 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2250 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2251 if (path
->slots
[0] >= nritems
) {
2252 ret
= btrfs_next_leaf(root
, path
);
2256 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2258 if (found_key
.objectid
!= dirid
||
2259 found_key
.type
!= dir_key
.type
)
2262 if (found_key
.offset
> range_end
)
2265 ret
= check_item_in_log(trans
, root
, log
, path
,
2270 if (found_key
.offset
== (u64
)-1)
2272 dir_key
.offset
= found_key
.offset
+ 1;
2274 btrfs_release_path(path
);
2275 if (range_end
== (u64
)-1)
2277 range_start
= range_end
+ 1;
2282 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2283 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2284 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2285 btrfs_release_path(path
);
2289 btrfs_release_path(path
);
2290 btrfs_free_path(log_path
);
2296 * the process_func used to replay items from the log tree. This
2297 * gets called in two different stages. The first stage just looks
2298 * for inodes and makes sure they are all copied into the subvolume.
2300 * The second stage copies all the other item types from the log into
2301 * the subvolume. The two stage approach is slower, but gets rid of
2302 * lots of complexity around inodes referencing other inodes that exist
2303 * only in the log (references come from either directory items or inode
2306 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2307 struct walk_control
*wc
, u64 gen
)
2310 struct btrfs_path
*path
;
2311 struct btrfs_root
*root
= wc
->replay_dest
;
2312 struct btrfs_key key
;
2317 ret
= btrfs_read_buffer(eb
, gen
);
2321 level
= btrfs_header_level(eb
);
2326 path
= btrfs_alloc_path();
2330 nritems
= btrfs_header_nritems(eb
);
2331 for (i
= 0; i
< nritems
; i
++) {
2332 btrfs_item_key_to_cpu(eb
, &key
, i
);
2334 /* inode keys are done during the first stage */
2335 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2336 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2337 struct btrfs_inode_item
*inode_item
;
2340 inode_item
= btrfs_item_ptr(eb
, i
,
2341 struct btrfs_inode_item
);
2342 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2343 path
, key
.objectid
);
2346 mode
= btrfs_inode_mode(eb
, inode_item
);
2347 if (S_ISDIR(mode
)) {
2348 ret
= replay_dir_deletes(wc
->trans
,
2349 root
, log
, path
, key
.objectid
, 0);
2353 ret
= overwrite_item(wc
->trans
, root
, path
,
2358 /* for regular files, make sure corresponding
2359 * orphan item exist. extents past the new EOF
2360 * will be truncated later by orphan cleanup.
2362 if (S_ISREG(mode
)) {
2363 ret
= insert_orphan_item(wc
->trans
, root
,
2369 ret
= link_to_fixup_dir(wc
->trans
, root
,
2370 path
, key
.objectid
);
2375 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2376 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2377 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2383 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2386 /* these keys are simply copied */
2387 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2388 ret
= overwrite_item(wc
->trans
, root
, path
,
2392 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2393 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2394 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2396 if (ret
&& ret
!= -ENOENT
)
2399 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2400 ret
= replay_one_extent(wc
->trans
, root
, path
,
2404 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2405 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2411 btrfs_free_path(path
);
2415 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2416 struct btrfs_root
*root
,
2417 struct btrfs_path
*path
, int *level
,
2418 struct walk_control
*wc
)
2420 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2424 struct extent_buffer
*next
;
2425 struct extent_buffer
*cur
;
2426 struct extent_buffer
*parent
;
2430 WARN_ON(*level
< 0);
2431 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2433 while (*level
> 0) {
2434 WARN_ON(*level
< 0);
2435 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2436 cur
= path
->nodes
[*level
];
2438 WARN_ON(btrfs_header_level(cur
) != *level
);
2440 if (path
->slots
[*level
] >=
2441 btrfs_header_nritems(cur
))
2444 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2445 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2446 blocksize
= fs_info
->nodesize
;
2448 parent
= path
->nodes
[*level
];
2449 root_owner
= btrfs_header_owner(parent
);
2451 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2453 return PTR_ERR(next
);
2456 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2458 free_extent_buffer(next
);
2462 path
->slots
[*level
]++;
2464 ret
= btrfs_read_buffer(next
, ptr_gen
);
2466 free_extent_buffer(next
);
2471 btrfs_tree_lock(next
);
2472 btrfs_set_lock_blocking(next
);
2473 clean_tree_block(fs_info
, next
);
2474 btrfs_wait_tree_block_writeback(next
);
2475 btrfs_tree_unlock(next
);
2477 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2478 clear_extent_buffer_dirty(next
);
2481 WARN_ON(root_owner
!=
2482 BTRFS_TREE_LOG_OBJECTID
);
2483 ret
= btrfs_free_and_pin_reserved_extent(
2487 free_extent_buffer(next
);
2491 free_extent_buffer(next
);
2494 ret
= btrfs_read_buffer(next
, ptr_gen
);
2496 free_extent_buffer(next
);
2500 WARN_ON(*level
<= 0);
2501 if (path
->nodes
[*level
-1])
2502 free_extent_buffer(path
->nodes
[*level
-1]);
2503 path
->nodes
[*level
-1] = next
;
2504 *level
= btrfs_header_level(next
);
2505 path
->slots
[*level
] = 0;
2508 WARN_ON(*level
< 0);
2509 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2511 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2517 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2518 struct btrfs_root
*root
,
2519 struct btrfs_path
*path
, int *level
,
2520 struct walk_control
*wc
)
2522 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2528 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2529 slot
= path
->slots
[i
];
2530 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2533 WARN_ON(*level
== 0);
2536 struct extent_buffer
*parent
;
2537 if (path
->nodes
[*level
] == root
->node
)
2538 parent
= path
->nodes
[*level
];
2540 parent
= path
->nodes
[*level
+ 1];
2542 root_owner
= btrfs_header_owner(parent
);
2543 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2544 btrfs_header_generation(path
->nodes
[*level
]));
2549 struct extent_buffer
*next
;
2551 next
= path
->nodes
[*level
];
2554 btrfs_tree_lock(next
);
2555 btrfs_set_lock_blocking(next
);
2556 clean_tree_block(fs_info
, next
);
2557 btrfs_wait_tree_block_writeback(next
);
2558 btrfs_tree_unlock(next
);
2560 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2561 clear_extent_buffer_dirty(next
);
2564 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2565 ret
= btrfs_free_and_pin_reserved_extent(
2567 path
->nodes
[*level
]->start
,
2568 path
->nodes
[*level
]->len
);
2572 free_extent_buffer(path
->nodes
[*level
]);
2573 path
->nodes
[*level
] = NULL
;
2581 * drop the reference count on the tree rooted at 'snap'. This traverses
2582 * the tree freeing any blocks that have a ref count of zero after being
2585 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2586 struct btrfs_root
*log
, struct walk_control
*wc
)
2588 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2592 struct btrfs_path
*path
;
2595 path
= btrfs_alloc_path();
2599 level
= btrfs_header_level(log
->node
);
2601 path
->nodes
[level
] = log
->node
;
2602 extent_buffer_get(log
->node
);
2603 path
->slots
[level
] = 0;
2606 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2614 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2623 /* was the root node processed? if not, catch it here */
2624 if (path
->nodes
[orig_level
]) {
2625 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2626 btrfs_header_generation(path
->nodes
[orig_level
]));
2630 struct extent_buffer
*next
;
2632 next
= path
->nodes
[orig_level
];
2635 btrfs_tree_lock(next
);
2636 btrfs_set_lock_blocking(next
);
2637 clean_tree_block(fs_info
, next
);
2638 btrfs_wait_tree_block_writeback(next
);
2639 btrfs_tree_unlock(next
);
2641 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2642 clear_extent_buffer_dirty(next
);
2645 WARN_ON(log
->root_key
.objectid
!=
2646 BTRFS_TREE_LOG_OBJECTID
);
2647 ret
= btrfs_free_and_pin_reserved_extent(fs_info
,
2648 next
->start
, next
->len
);
2655 btrfs_free_path(path
);
2660 * helper function to update the item for a given subvolumes log root
2661 * in the tree of log roots
2663 static int update_log_root(struct btrfs_trans_handle
*trans
,
2664 struct btrfs_root
*log
)
2666 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2669 if (log
->log_transid
== 1) {
2670 /* insert root item on the first sync */
2671 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2672 &log
->root_key
, &log
->root_item
);
2674 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2675 &log
->root_key
, &log
->root_item
);
2680 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2683 int index
= transid
% 2;
2686 * we only allow two pending log transactions at a time,
2687 * so we know that if ours is more than 2 older than the
2688 * current transaction, we're done
2691 prepare_to_wait(&root
->log_commit_wait
[index
],
2692 &wait
, TASK_UNINTERRUPTIBLE
);
2694 if (!(root
->log_transid_committed
< transid
&&
2695 atomic_read(&root
->log_commit
[index
])))
2698 mutex_unlock(&root
->log_mutex
);
2700 mutex_lock(&root
->log_mutex
);
2702 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2705 static void wait_for_writer(struct btrfs_root
*root
)
2710 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2711 TASK_UNINTERRUPTIBLE
);
2712 if (!atomic_read(&root
->log_writers
))
2715 mutex_unlock(&root
->log_mutex
);
2717 mutex_lock(&root
->log_mutex
);
2719 finish_wait(&root
->log_writer_wait
, &wait
);
2722 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2723 struct btrfs_log_ctx
*ctx
)
2728 mutex_lock(&root
->log_mutex
);
2729 list_del_init(&ctx
->list
);
2730 mutex_unlock(&root
->log_mutex
);
2734 * Invoked in log mutex context, or be sure there is no other task which
2735 * can access the list.
2737 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2738 int index
, int error
)
2740 struct btrfs_log_ctx
*ctx
;
2741 struct btrfs_log_ctx
*safe
;
2743 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2744 list_del_init(&ctx
->list
);
2745 ctx
->log_ret
= error
;
2748 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2752 * btrfs_sync_log does sends a given tree log down to the disk and
2753 * updates the super blocks to record it. When this call is done,
2754 * you know that any inodes previously logged are safely on disk only
2757 * Any other return value means you need to call btrfs_commit_transaction.
2758 * Some of the edge cases for fsyncing directories that have had unlinks
2759 * or renames done in the past mean that sometimes the only safe
2760 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2761 * that has happened.
2763 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2764 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2770 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2771 struct btrfs_root
*log
= root
->log_root
;
2772 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
2773 int log_transid
= 0;
2774 struct btrfs_log_ctx root_log_ctx
;
2775 struct blk_plug plug
;
2777 mutex_lock(&root
->log_mutex
);
2778 log_transid
= ctx
->log_transid
;
2779 if (root
->log_transid_committed
>= log_transid
) {
2780 mutex_unlock(&root
->log_mutex
);
2781 return ctx
->log_ret
;
2784 index1
= log_transid
% 2;
2785 if (atomic_read(&root
->log_commit
[index1
])) {
2786 wait_log_commit(root
, log_transid
);
2787 mutex_unlock(&root
->log_mutex
);
2788 return ctx
->log_ret
;
2790 ASSERT(log_transid
== root
->log_transid
);
2791 atomic_set(&root
->log_commit
[index1
], 1);
2793 /* wait for previous tree log sync to complete */
2794 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2795 wait_log_commit(root
, log_transid
- 1);
2798 int batch
= atomic_read(&root
->log_batch
);
2799 /* when we're on an ssd, just kick the log commit out */
2800 if (!btrfs_test_opt(fs_info
, SSD
) &&
2801 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2802 mutex_unlock(&root
->log_mutex
);
2803 schedule_timeout_uninterruptible(1);
2804 mutex_lock(&root
->log_mutex
);
2806 wait_for_writer(root
);
2807 if (batch
== atomic_read(&root
->log_batch
))
2811 /* bail out if we need to do a full commit */
2812 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2814 btrfs_free_logged_extents(log
, log_transid
);
2815 mutex_unlock(&root
->log_mutex
);
2819 if (log_transid
% 2 == 0)
2820 mark
= EXTENT_DIRTY
;
2824 /* we start IO on all the marked extents here, but we don't actually
2825 * wait for them until later.
2827 blk_start_plug(&plug
);
2828 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
2830 blk_finish_plug(&plug
);
2831 btrfs_abort_transaction(trans
, ret
);
2832 btrfs_free_logged_extents(log
, log_transid
);
2833 btrfs_set_log_full_commit(fs_info
, trans
);
2834 mutex_unlock(&root
->log_mutex
);
2838 btrfs_set_root_node(&log
->root_item
, log
->node
);
2840 root
->log_transid
++;
2841 log
->log_transid
= root
->log_transid
;
2842 root
->log_start_pid
= 0;
2844 * IO has been started, blocks of the log tree have WRITTEN flag set
2845 * in their headers. new modifications of the log will be written to
2846 * new positions. so it's safe to allow log writers to go in.
2848 mutex_unlock(&root
->log_mutex
);
2850 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2852 mutex_lock(&log_root_tree
->log_mutex
);
2853 atomic_inc(&log_root_tree
->log_batch
);
2854 atomic_inc(&log_root_tree
->log_writers
);
2856 index2
= log_root_tree
->log_transid
% 2;
2857 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2858 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2860 mutex_unlock(&log_root_tree
->log_mutex
);
2862 ret
= update_log_root(trans
, log
);
2864 mutex_lock(&log_root_tree
->log_mutex
);
2865 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2867 * Implicit memory barrier after atomic_dec_and_test
2869 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2870 wake_up(&log_root_tree
->log_writer_wait
);
2874 if (!list_empty(&root_log_ctx
.list
))
2875 list_del_init(&root_log_ctx
.list
);
2877 blk_finish_plug(&plug
);
2878 btrfs_set_log_full_commit(fs_info
, trans
);
2880 if (ret
!= -ENOSPC
) {
2881 btrfs_abort_transaction(trans
, ret
);
2882 mutex_unlock(&log_root_tree
->log_mutex
);
2885 btrfs_wait_tree_log_extents(log
, mark
);
2886 btrfs_free_logged_extents(log
, log_transid
);
2887 mutex_unlock(&log_root_tree
->log_mutex
);
2892 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2893 blk_finish_plug(&plug
);
2894 list_del_init(&root_log_ctx
.list
);
2895 mutex_unlock(&log_root_tree
->log_mutex
);
2896 ret
= root_log_ctx
.log_ret
;
2900 index2
= root_log_ctx
.log_transid
% 2;
2901 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2902 blk_finish_plug(&plug
);
2903 ret
= btrfs_wait_tree_log_extents(log
, mark
);
2904 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2905 wait_log_commit(log_root_tree
,
2906 root_log_ctx
.log_transid
);
2907 mutex_unlock(&log_root_tree
->log_mutex
);
2909 ret
= root_log_ctx
.log_ret
;
2912 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2913 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2915 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2916 wait_log_commit(log_root_tree
,
2917 root_log_ctx
.log_transid
- 1);
2920 wait_for_writer(log_root_tree
);
2923 * now that we've moved on to the tree of log tree roots,
2924 * check the full commit flag again
2926 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2927 blk_finish_plug(&plug
);
2928 btrfs_wait_tree_log_extents(log
, mark
);
2929 btrfs_free_logged_extents(log
, log_transid
);
2930 mutex_unlock(&log_root_tree
->log_mutex
);
2932 goto out_wake_log_root
;
2935 ret
= btrfs_write_marked_extents(fs_info
,
2936 &log_root_tree
->dirty_log_pages
,
2937 EXTENT_DIRTY
| EXTENT_NEW
);
2938 blk_finish_plug(&plug
);
2940 btrfs_set_log_full_commit(fs_info
, trans
);
2941 btrfs_abort_transaction(trans
, ret
);
2942 btrfs_free_logged_extents(log
, log_transid
);
2943 mutex_unlock(&log_root_tree
->log_mutex
);
2944 goto out_wake_log_root
;
2946 ret
= btrfs_wait_tree_log_extents(log
, mark
);
2948 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
2949 EXTENT_NEW
| EXTENT_DIRTY
);
2951 btrfs_set_log_full_commit(fs_info
, trans
);
2952 btrfs_free_logged_extents(log
, log_transid
);
2953 mutex_unlock(&log_root_tree
->log_mutex
);
2954 goto out_wake_log_root
;
2956 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2958 btrfs_set_super_log_root(fs_info
->super_for_commit
,
2959 log_root_tree
->node
->start
);
2960 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
2961 btrfs_header_level(log_root_tree
->node
));
2963 log_root_tree
->log_transid
++;
2964 mutex_unlock(&log_root_tree
->log_mutex
);
2967 * nobody else is going to jump in and write the the ctree
2968 * super here because the log_commit atomic below is protecting
2969 * us. We must be called with a transaction handle pinning
2970 * the running transaction open, so a full commit can't hop
2971 * in and cause problems either.
2973 ret
= write_all_supers(fs_info
, 1);
2975 btrfs_set_log_full_commit(fs_info
, trans
);
2976 btrfs_abort_transaction(trans
, ret
);
2977 goto out_wake_log_root
;
2980 mutex_lock(&root
->log_mutex
);
2981 if (root
->last_log_commit
< log_transid
)
2982 root
->last_log_commit
= log_transid
;
2983 mutex_unlock(&root
->log_mutex
);
2986 mutex_lock(&log_root_tree
->log_mutex
);
2987 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2989 log_root_tree
->log_transid_committed
++;
2990 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2991 mutex_unlock(&log_root_tree
->log_mutex
);
2994 * The barrier before waitqueue_active is implied by mutex_unlock
2996 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2997 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2999 mutex_lock(&root
->log_mutex
);
3000 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
3001 root
->log_transid_committed
++;
3002 atomic_set(&root
->log_commit
[index1
], 0);
3003 mutex_unlock(&root
->log_mutex
);
3006 * The barrier before waitqueue_active is implied by mutex_unlock
3008 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
3009 wake_up(&root
->log_commit_wait
[index1
]);
3013 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3014 struct btrfs_root
*log
)
3019 struct walk_control wc
= {
3021 .process_func
= process_one_buffer
3024 ret
= walk_log_tree(trans
, log
, &wc
);
3025 /* I don't think this can happen but just in case */
3027 btrfs_abort_transaction(trans
, ret
);
3030 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3032 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
,
3037 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3038 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
);
3042 * We may have short-circuited the log tree with the full commit logic
3043 * and left ordered extents on our list, so clear these out to keep us
3044 * from leaking inodes and memory.
3046 btrfs_free_logged_extents(log
, 0);
3047 btrfs_free_logged_extents(log
, 1);
3049 free_extent_buffer(log
->node
);
3054 * free all the extents used by the tree log. This should be called
3055 * at commit time of the full transaction
3057 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3059 if (root
->log_root
) {
3060 free_log_tree(trans
, root
->log_root
);
3061 root
->log_root
= NULL
;
3066 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3067 struct btrfs_fs_info
*fs_info
)
3069 if (fs_info
->log_root_tree
) {
3070 free_log_tree(trans
, fs_info
->log_root_tree
);
3071 fs_info
->log_root_tree
= NULL
;
3077 * If both a file and directory are logged, and unlinks or renames are
3078 * mixed in, we have a few interesting corners:
3080 * create file X in dir Y
3081 * link file X to X.link in dir Y
3083 * unlink file X but leave X.link
3086 * After a crash we would expect only X.link to exist. But file X
3087 * didn't get fsync'd again so the log has back refs for X and X.link.
3089 * We solve this by removing directory entries and inode backrefs from the
3090 * log when a file that was logged in the current transaction is
3091 * unlinked. Any later fsync will include the updated log entries, and
3092 * we'll be able to reconstruct the proper directory items from backrefs.
3094 * This optimizations allows us to avoid relogging the entire inode
3095 * or the entire directory.
3097 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3098 struct btrfs_root
*root
,
3099 const char *name
, int name_len
,
3100 struct btrfs_inode
*dir
, u64 index
)
3102 struct btrfs_root
*log
;
3103 struct btrfs_dir_item
*di
;
3104 struct btrfs_path
*path
;
3108 u64 dir_ino
= btrfs_ino(dir
);
3110 if (dir
->logged_trans
< trans
->transid
)
3113 ret
= join_running_log_trans(root
);
3117 mutex_lock(&dir
->log_mutex
);
3119 log
= root
->log_root
;
3120 path
= btrfs_alloc_path();
3126 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3127 name
, name_len
, -1);
3133 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3134 bytes_del
+= name_len
;
3140 btrfs_release_path(path
);
3141 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3142 index
, name
, name_len
, -1);
3148 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3149 bytes_del
+= name_len
;
3156 /* update the directory size in the log to reflect the names
3160 struct btrfs_key key
;
3162 key
.objectid
= dir_ino
;
3164 key
.type
= BTRFS_INODE_ITEM_KEY
;
3165 btrfs_release_path(path
);
3167 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3173 struct btrfs_inode_item
*item
;
3176 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3177 struct btrfs_inode_item
);
3178 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3179 if (i_size
> bytes_del
)
3180 i_size
-= bytes_del
;
3183 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3184 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3187 btrfs_release_path(path
);
3190 btrfs_free_path(path
);
3192 mutex_unlock(&dir
->log_mutex
);
3193 if (ret
== -ENOSPC
) {
3194 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3197 btrfs_abort_transaction(trans
, ret
);
3199 btrfs_end_log_trans(root
);
3204 /* see comments for btrfs_del_dir_entries_in_log */
3205 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3206 struct btrfs_root
*root
,
3207 const char *name
, int name_len
,
3208 struct btrfs_inode
*inode
, u64 dirid
)
3210 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3211 struct btrfs_root
*log
;
3215 if (inode
->logged_trans
< trans
->transid
)
3218 ret
= join_running_log_trans(root
);
3221 log
= root
->log_root
;
3222 mutex_lock(&inode
->log_mutex
);
3224 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3226 mutex_unlock(&inode
->log_mutex
);
3227 if (ret
== -ENOSPC
) {
3228 btrfs_set_log_full_commit(fs_info
, trans
);
3230 } else if (ret
< 0 && ret
!= -ENOENT
)
3231 btrfs_abort_transaction(trans
, ret
);
3232 btrfs_end_log_trans(root
);
3238 * creates a range item in the log for 'dirid'. first_offset and
3239 * last_offset tell us which parts of the key space the log should
3240 * be considered authoritative for.
3242 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3243 struct btrfs_root
*log
,
3244 struct btrfs_path
*path
,
3245 int key_type
, u64 dirid
,
3246 u64 first_offset
, u64 last_offset
)
3249 struct btrfs_key key
;
3250 struct btrfs_dir_log_item
*item
;
3252 key
.objectid
= dirid
;
3253 key
.offset
= first_offset
;
3254 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3255 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3257 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3258 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3262 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3263 struct btrfs_dir_log_item
);
3264 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3265 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3266 btrfs_release_path(path
);
3271 * log all the items included in the current transaction for a given
3272 * directory. This also creates the range items in the log tree required
3273 * to replay anything deleted before the fsync
3275 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3276 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3277 struct btrfs_path
*path
,
3278 struct btrfs_path
*dst_path
, int key_type
,
3279 struct btrfs_log_ctx
*ctx
,
3280 u64 min_offset
, u64
*last_offset_ret
)
3282 struct btrfs_key min_key
;
3283 struct btrfs_root
*log
= root
->log_root
;
3284 struct extent_buffer
*src
;
3289 u64 first_offset
= min_offset
;
3290 u64 last_offset
= (u64
)-1;
3291 u64 ino
= btrfs_ino(inode
);
3293 log
= root
->log_root
;
3295 min_key
.objectid
= ino
;
3296 min_key
.type
= key_type
;
3297 min_key
.offset
= min_offset
;
3299 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3302 * we didn't find anything from this transaction, see if there
3303 * is anything at all
3305 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3306 min_key
.objectid
= ino
;
3307 min_key
.type
= key_type
;
3308 min_key
.offset
= (u64
)-1;
3309 btrfs_release_path(path
);
3310 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3312 btrfs_release_path(path
);
3315 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3317 /* if ret == 0 there are items for this type,
3318 * create a range to tell us the last key of this type.
3319 * otherwise, there are no items in this directory after
3320 * *min_offset, and we create a range to indicate that.
3323 struct btrfs_key tmp
;
3324 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3326 if (key_type
== tmp
.type
)
3327 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3332 /* go backward to find any previous key */
3333 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3335 struct btrfs_key tmp
;
3336 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3337 if (key_type
== tmp
.type
) {
3338 first_offset
= tmp
.offset
;
3339 ret
= overwrite_item(trans
, log
, dst_path
,
3340 path
->nodes
[0], path
->slots
[0],
3348 btrfs_release_path(path
);
3350 /* find the first key from this transaction again */
3351 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3352 if (WARN_ON(ret
!= 0))
3356 * we have a block from this transaction, log every item in it
3357 * from our directory
3360 struct btrfs_key tmp
;
3361 src
= path
->nodes
[0];
3362 nritems
= btrfs_header_nritems(src
);
3363 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3364 struct btrfs_dir_item
*di
;
3366 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3368 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3370 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3378 * We must make sure that when we log a directory entry,
3379 * the corresponding inode, after log replay, has a
3380 * matching link count. For example:
3386 * xfs_io -c "fsync" mydir
3388 * <mount fs and log replay>
3390 * Would result in a fsync log that when replayed, our
3391 * file inode would have a link count of 1, but we get
3392 * two directory entries pointing to the same inode.
3393 * After removing one of the names, it would not be
3394 * possible to remove the other name, which resulted
3395 * always in stale file handle errors, and would not
3396 * be possible to rmdir the parent directory, since
3397 * its i_size could never decrement to the value
3398 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3400 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3401 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3403 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3404 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3405 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3406 ctx
->log_new_dentries
= true;
3408 path
->slots
[0] = nritems
;
3411 * look ahead to the next item and see if it is also
3412 * from this directory and from this transaction
3414 ret
= btrfs_next_leaf(root
, path
);
3416 last_offset
= (u64
)-1;
3419 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3420 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3421 last_offset
= (u64
)-1;
3424 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3425 ret
= overwrite_item(trans
, log
, dst_path
,
3426 path
->nodes
[0], path
->slots
[0],
3431 last_offset
= tmp
.offset
;
3436 btrfs_release_path(path
);
3437 btrfs_release_path(dst_path
);
3440 *last_offset_ret
= last_offset
;
3442 * insert the log range keys to indicate where the log
3445 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3446 ino
, first_offset
, last_offset
);
3454 * logging directories is very similar to logging inodes, We find all the items
3455 * from the current transaction and write them to the log.
3457 * The recovery code scans the directory in the subvolume, and if it finds a
3458 * key in the range logged that is not present in the log tree, then it means
3459 * that dir entry was unlinked during the transaction.
3461 * In order for that scan to work, we must include one key smaller than
3462 * the smallest logged by this transaction and one key larger than the largest
3463 * key logged by this transaction.
3465 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3466 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3467 struct btrfs_path
*path
,
3468 struct btrfs_path
*dst_path
,
3469 struct btrfs_log_ctx
*ctx
)
3474 int key_type
= BTRFS_DIR_ITEM_KEY
;
3480 ret
= log_dir_items(trans
, root
, inode
, path
, dst_path
, key_type
,
3481 ctx
, min_key
, &max_key
);
3484 if (max_key
== (u64
)-1)
3486 min_key
= max_key
+ 1;
3489 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3490 key_type
= BTRFS_DIR_INDEX_KEY
;
3497 * a helper function to drop items from the log before we relog an
3498 * inode. max_key_type indicates the highest item type to remove.
3499 * This cannot be run for file data extents because it does not
3500 * free the extents they point to.
3502 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3503 struct btrfs_root
*log
,
3504 struct btrfs_path
*path
,
3505 u64 objectid
, int max_key_type
)
3508 struct btrfs_key key
;
3509 struct btrfs_key found_key
;
3512 key
.objectid
= objectid
;
3513 key
.type
= max_key_type
;
3514 key
.offset
= (u64
)-1;
3517 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3518 BUG_ON(ret
== 0); /* Logic error */
3522 if (path
->slots
[0] == 0)
3526 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3529 if (found_key
.objectid
!= objectid
)
3532 found_key
.offset
= 0;
3534 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3537 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3538 path
->slots
[0] - start_slot
+ 1);
3540 * If start slot isn't 0 then we don't need to re-search, we've
3541 * found the last guy with the objectid in this tree.
3543 if (ret
|| start_slot
!= 0)
3545 btrfs_release_path(path
);
3547 btrfs_release_path(path
);
3553 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3554 struct extent_buffer
*leaf
,
3555 struct btrfs_inode_item
*item
,
3556 struct inode
*inode
, int log_inode_only
,
3559 struct btrfs_map_token token
;
3561 btrfs_init_map_token(&token
);
3563 if (log_inode_only
) {
3564 /* set the generation to zero so the recover code
3565 * can tell the difference between an logging
3566 * just to say 'this inode exists' and a logging
3567 * to say 'update this inode with these values'
3569 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3570 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3572 btrfs_set_token_inode_generation(leaf
, item
,
3573 BTRFS_I(inode
)->generation
,
3575 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3578 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3579 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3580 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3581 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3583 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3584 inode
->i_atime
.tv_sec
, &token
);
3585 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3586 inode
->i_atime
.tv_nsec
, &token
);
3588 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3589 inode
->i_mtime
.tv_sec
, &token
);
3590 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3591 inode
->i_mtime
.tv_nsec
, &token
);
3593 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3594 inode
->i_ctime
.tv_sec
, &token
);
3595 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3596 inode
->i_ctime
.tv_nsec
, &token
);
3598 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3601 btrfs_set_token_inode_sequence(leaf
, item
,
3602 inode_peek_iversion(inode
), &token
);
3603 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3604 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3605 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3606 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3609 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3610 struct btrfs_root
*log
, struct btrfs_path
*path
,
3611 struct btrfs_inode
*inode
)
3613 struct btrfs_inode_item
*inode_item
;
3616 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3617 &inode
->location
, sizeof(*inode_item
));
3618 if (ret
&& ret
!= -EEXIST
)
3620 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3621 struct btrfs_inode_item
);
3622 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
3624 btrfs_release_path(path
);
3628 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3629 struct btrfs_inode
*inode
,
3630 struct btrfs_path
*dst_path
,
3631 struct btrfs_path
*src_path
, u64
*last_extent
,
3632 int start_slot
, int nr
, int inode_only
,
3635 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3636 unsigned long src_offset
;
3637 unsigned long dst_offset
;
3638 struct btrfs_root
*log
= inode
->root
->log_root
;
3639 struct btrfs_file_extent_item
*extent
;
3640 struct btrfs_inode_item
*inode_item
;
3641 struct extent_buffer
*src
= src_path
->nodes
[0];
3642 struct btrfs_key first_key
, last_key
, key
;
3644 struct btrfs_key
*ins_keys
;
3648 struct list_head ordered_sums
;
3649 int skip_csum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
3650 bool has_extents
= false;
3651 bool need_find_last_extent
= true;
3654 INIT_LIST_HEAD(&ordered_sums
);
3656 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3657 nr
* sizeof(u32
), GFP_NOFS
);
3661 first_key
.objectid
= (u64
)-1;
3663 ins_sizes
= (u32
*)ins_data
;
3664 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3666 for (i
= 0; i
< nr
; i
++) {
3667 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3668 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3670 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3671 ins_keys
, ins_sizes
, nr
);
3677 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3678 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3679 dst_path
->slots
[0]);
3681 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3684 last_key
= ins_keys
[i
];
3686 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3687 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3689 struct btrfs_inode_item
);
3690 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3692 inode_only
== LOG_INODE_EXISTS
,
3695 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3696 src_offset
, ins_sizes
[i
]);
3700 * We set need_find_last_extent here in case we know we were
3701 * processing other items and then walk into the first extent in
3702 * the inode. If we don't hit an extent then nothing changes,
3703 * we'll do the last search the next time around.
3705 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3707 if (first_key
.objectid
== (u64
)-1)
3708 first_key
= ins_keys
[i
];
3710 need_find_last_extent
= false;
3713 /* take a reference on file data extents so that truncates
3714 * or deletes of this inode don't have to relog the inode
3717 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3720 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3721 struct btrfs_file_extent_item
);
3723 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3726 found_type
= btrfs_file_extent_type(src
, extent
);
3727 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3729 ds
= btrfs_file_extent_disk_bytenr(src
,
3731 /* ds == 0 is a hole */
3735 dl
= btrfs_file_extent_disk_num_bytes(src
,
3737 cs
= btrfs_file_extent_offset(src
, extent
);
3738 cl
= btrfs_file_extent_num_bytes(src
,
3740 if (btrfs_file_extent_compression(src
,
3746 ret
= btrfs_lookup_csums_range(
3748 ds
+ cs
, ds
+ cs
+ cl
- 1,
3751 btrfs_release_path(dst_path
);
3759 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3760 btrfs_release_path(dst_path
);
3764 * we have to do this after the loop above to avoid changing the
3765 * log tree while trying to change the log tree.
3768 while (!list_empty(&ordered_sums
)) {
3769 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3770 struct btrfs_ordered_sum
,
3773 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3774 list_del(&sums
->list
);
3781 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3783 * We don't have any leafs between our current one and the one
3784 * we processed before that can have file extent items for our
3785 * inode (and have a generation number smaller than our current
3788 need_find_last_extent
= false;
3792 * Because we use btrfs_search_forward we could skip leaves that were
3793 * not modified and then assume *last_extent is valid when it really
3794 * isn't. So back up to the previous leaf and read the end of the last
3795 * extent before we go and fill in holes.
3797 if (need_find_last_extent
) {
3800 ret
= btrfs_prev_leaf(inode
->root
, src_path
);
3805 if (src_path
->slots
[0])
3806 src_path
->slots
[0]--;
3807 src
= src_path
->nodes
[0];
3808 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3809 if (key
.objectid
!= btrfs_ino(inode
) ||
3810 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3812 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3813 struct btrfs_file_extent_item
);
3814 if (btrfs_file_extent_type(src
, extent
) ==
3815 BTRFS_FILE_EXTENT_INLINE
) {
3816 len
= btrfs_file_extent_inline_len(src
,
3819 *last_extent
= ALIGN(key
.offset
+ len
,
3820 fs_info
->sectorsize
);
3822 len
= btrfs_file_extent_num_bytes(src
, extent
);
3823 *last_extent
= key
.offset
+ len
;
3827 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3828 * things could have happened
3830 * 1) A merge could have happened, so we could currently be on a leaf
3831 * that holds what we were copying in the first place.
3832 * 2) A split could have happened, and now not all of the items we want
3833 * are on the same leaf.
3835 * So we need to adjust how we search for holes, we need to drop the
3836 * path and re-search for the first extent key we found, and then walk
3837 * forward until we hit the last one we copied.
3839 if (need_find_last_extent
) {
3840 /* btrfs_prev_leaf could return 1 without releasing the path */
3841 btrfs_release_path(src_path
);
3842 ret
= btrfs_search_slot(NULL
, inode
->root
, &first_key
,
3847 src
= src_path
->nodes
[0];
3848 i
= src_path
->slots
[0];
3854 * Ok so here we need to go through and fill in any holes we may have
3855 * to make sure that holes are punched for those areas in case they had
3856 * extents previously.
3862 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3863 ret
= btrfs_next_leaf(inode
->root
, src_path
);
3867 src
= src_path
->nodes
[0];
3871 btrfs_item_key_to_cpu(src
, &key
, i
);
3872 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3874 if (key
.objectid
!= btrfs_ino(inode
) ||
3875 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3879 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3880 if (btrfs_file_extent_type(src
, extent
) ==
3881 BTRFS_FILE_EXTENT_INLINE
) {
3882 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3883 extent_end
= ALIGN(key
.offset
+ len
,
3884 fs_info
->sectorsize
);
3886 len
= btrfs_file_extent_num_bytes(src
, extent
);
3887 extent_end
= key
.offset
+ len
;
3891 if (*last_extent
== key
.offset
) {
3892 *last_extent
= extent_end
;
3895 offset
= *last_extent
;
3896 len
= key
.offset
- *last_extent
;
3897 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3898 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
3901 *last_extent
= extent_end
;
3904 * Need to let the callers know we dropped the path so they should
3907 if (!ret
&& need_find_last_extent
)
3912 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3914 struct extent_map
*em1
, *em2
;
3916 em1
= list_entry(a
, struct extent_map
, list
);
3917 em2
= list_entry(b
, struct extent_map
, list
);
3919 if (em1
->start
< em2
->start
)
3921 else if (em1
->start
> em2
->start
)
3926 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3927 struct inode
*inode
,
3928 struct btrfs_root
*root
,
3929 const struct extent_map
*em
,
3930 const struct list_head
*logged_list
,
3931 bool *ordered_io_error
)
3933 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3934 struct btrfs_ordered_extent
*ordered
;
3935 struct btrfs_root
*log
= root
->log_root
;
3936 u64 mod_start
= em
->mod_start
;
3937 u64 mod_len
= em
->mod_len
;
3938 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3941 LIST_HEAD(ordered_sums
);
3944 *ordered_io_error
= false;
3946 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3947 em
->block_start
== EXTENT_MAP_HOLE
)
3951 * Wait far any ordered extent that covers our extent map. If it
3952 * finishes without an error, first check and see if our csums are on
3953 * our outstanding ordered extents.
3955 list_for_each_entry(ordered
, logged_list
, log_list
) {
3956 struct btrfs_ordered_sum
*sum
;
3961 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3962 mod_start
+ mod_len
<= ordered
->file_offset
)
3965 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3966 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3967 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3968 const u64 start
= ordered
->file_offset
;
3969 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3971 WARN_ON(ordered
->inode
!= inode
);
3972 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3975 wait_event(ordered
->wait
,
3976 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3977 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3979 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3981 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3982 * i_mapping flags, so that the next fsync won't get
3983 * an outdated io error too.
3985 filemap_check_errors(inode
->i_mapping
);
3986 *ordered_io_error
= true;
3990 * We are going to copy all the csums on this ordered extent, so
3991 * go ahead and adjust mod_start and mod_len in case this
3992 * ordered extent has already been logged.
3994 if (ordered
->file_offset
> mod_start
) {
3995 if (ordered
->file_offset
+ ordered
->len
>=
3996 mod_start
+ mod_len
)
3997 mod_len
= ordered
->file_offset
- mod_start
;
3999 * If we have this case
4001 * |--------- logged extent ---------|
4002 * |----- ordered extent ----|
4004 * Just don't mess with mod_start and mod_len, we'll
4005 * just end up logging more csums than we need and it
4009 if (ordered
->file_offset
+ ordered
->len
<
4010 mod_start
+ mod_len
) {
4011 mod_len
= (mod_start
+ mod_len
) -
4012 (ordered
->file_offset
+ ordered
->len
);
4013 mod_start
= ordered
->file_offset
+
4024 * To keep us from looping for the above case of an ordered
4025 * extent that falls inside of the logged extent.
4027 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4031 list_for_each_entry(sum
, &ordered
->list
, list
) {
4032 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4038 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4041 if (em
->compress_type
) {
4043 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4045 csum_offset
= mod_start
- em
->start
;
4049 /* block start is already adjusted for the file extent offset. */
4050 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
,
4051 em
->block_start
+ csum_offset
,
4052 em
->block_start
+ csum_offset
+
4053 csum_len
- 1, &ordered_sums
, 0);
4057 while (!list_empty(&ordered_sums
)) {
4058 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4059 struct btrfs_ordered_sum
,
4062 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4063 list_del(&sums
->list
);
4070 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4071 struct btrfs_inode
*inode
, struct btrfs_root
*root
,
4072 const struct extent_map
*em
,
4073 struct btrfs_path
*path
,
4074 const struct list_head
*logged_list
,
4075 struct btrfs_log_ctx
*ctx
)
4077 struct btrfs_root
*log
= root
->log_root
;
4078 struct btrfs_file_extent_item
*fi
;
4079 struct extent_buffer
*leaf
;
4080 struct btrfs_map_token token
;
4081 struct btrfs_key key
;
4082 u64 extent_offset
= em
->start
- em
->orig_start
;
4085 int extent_inserted
= 0;
4086 bool ordered_io_err
= false;
4088 ret
= wait_ordered_extents(trans
, &inode
->vfs_inode
, root
, em
,
4089 logged_list
, &ordered_io_err
);
4093 if (ordered_io_err
) {
4098 btrfs_init_map_token(&token
);
4100 ret
= __btrfs_drop_extents(trans
, log
, &inode
->vfs_inode
, path
, em
->start
,
4101 em
->start
+ em
->len
, NULL
, 0, 1,
4102 sizeof(*fi
), &extent_inserted
);
4106 if (!extent_inserted
) {
4107 key
.objectid
= btrfs_ino(inode
);
4108 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4109 key
.offset
= em
->start
;
4111 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4116 leaf
= path
->nodes
[0];
4117 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4118 struct btrfs_file_extent_item
);
4120 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4122 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4123 btrfs_set_token_file_extent_type(leaf
, fi
,
4124 BTRFS_FILE_EXTENT_PREALLOC
,
4127 btrfs_set_token_file_extent_type(leaf
, fi
,
4128 BTRFS_FILE_EXTENT_REG
,
4131 block_len
= max(em
->block_len
, em
->orig_block_len
);
4132 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4133 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4136 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4138 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4139 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4141 extent_offset
, &token
);
4142 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4145 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4146 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4150 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4151 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4152 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4153 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4155 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4156 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4157 btrfs_mark_buffer_dirty(leaf
);
4159 btrfs_release_path(path
);
4164 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4165 struct btrfs_root
*root
,
4166 struct btrfs_inode
*inode
,
4167 struct btrfs_path
*path
,
4168 struct list_head
*logged_list
,
4169 struct btrfs_log_ctx
*ctx
,
4173 struct extent_map
*em
, *n
;
4174 struct list_head extents
;
4175 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4176 u64 logged_start
, logged_end
;
4181 INIT_LIST_HEAD(&extents
);
4183 down_write(&inode
->dio_sem
);
4184 write_lock(&tree
->lock
);
4185 test_gen
= root
->fs_info
->last_trans_committed
;
4186 logged_start
= start
;
4189 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4190 list_del_init(&em
->list
);
4192 * Just an arbitrary number, this can be really CPU intensive
4193 * once we start getting a lot of extents, and really once we
4194 * have a bunch of extents we just want to commit since it will
4197 if (++num
> 32768) {
4198 list_del_init(&tree
->modified_extents
);
4203 if (em
->generation
<= test_gen
)
4206 if (em
->start
< logged_start
)
4207 logged_start
= em
->start
;
4208 if ((em
->start
+ em
->len
- 1) > logged_end
)
4209 logged_end
= em
->start
+ em
->len
- 1;
4211 /* Need a ref to keep it from getting evicted from cache */
4212 refcount_inc(&em
->refs
);
4213 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4214 list_add_tail(&em
->list
, &extents
);
4218 list_sort(NULL
, &extents
, extent_cmp
);
4219 btrfs_get_logged_extents(inode
, logged_list
, logged_start
, logged_end
);
4221 * Some ordered extents started by fsync might have completed
4222 * before we could collect them into the list logged_list, which
4223 * means they're gone, not in our logged_list nor in the inode's
4224 * ordered tree. We want the application/user space to know an
4225 * error happened while attempting to persist file data so that
4226 * it can take proper action. If such error happened, we leave
4227 * without writing to the log tree and the fsync must report the
4228 * file data write error and not commit the current transaction.
4230 ret
= filemap_check_errors(inode
->vfs_inode
.i_mapping
);
4234 while (!list_empty(&extents
)) {
4235 em
= list_entry(extents
.next
, struct extent_map
, list
);
4237 list_del_init(&em
->list
);
4240 * If we had an error we just need to delete everybody from our
4244 clear_em_logging(tree
, em
);
4245 free_extent_map(em
);
4249 write_unlock(&tree
->lock
);
4251 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4253 write_lock(&tree
->lock
);
4254 clear_em_logging(tree
, em
);
4255 free_extent_map(em
);
4257 WARN_ON(!list_empty(&extents
));
4258 write_unlock(&tree
->lock
);
4259 up_write(&inode
->dio_sem
);
4261 btrfs_release_path(path
);
4265 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
4266 struct btrfs_path
*path
, u64
*size_ret
)
4268 struct btrfs_key key
;
4271 key
.objectid
= btrfs_ino(inode
);
4272 key
.type
= BTRFS_INODE_ITEM_KEY
;
4275 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4278 } else if (ret
> 0) {
4281 struct btrfs_inode_item
*item
;
4283 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4284 struct btrfs_inode_item
);
4285 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4288 btrfs_release_path(path
);
4293 * At the moment we always log all xattrs. This is to figure out at log replay
4294 * time which xattrs must have their deletion replayed. If a xattr is missing
4295 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4296 * because if a xattr is deleted, the inode is fsynced and a power failure
4297 * happens, causing the log to be replayed the next time the fs is mounted,
4298 * we want the xattr to not exist anymore (same behaviour as other filesystems
4299 * with a journal, ext3/4, xfs, f2fs, etc).
4301 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4302 struct btrfs_root
*root
,
4303 struct btrfs_inode
*inode
,
4304 struct btrfs_path
*path
,
4305 struct btrfs_path
*dst_path
)
4308 struct btrfs_key key
;
4309 const u64 ino
= btrfs_ino(inode
);
4314 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4317 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4322 int slot
= path
->slots
[0];
4323 struct extent_buffer
*leaf
= path
->nodes
[0];
4324 int nritems
= btrfs_header_nritems(leaf
);
4326 if (slot
>= nritems
) {
4328 u64 last_extent
= 0;
4330 ret
= copy_items(trans
, inode
, dst_path
, path
,
4331 &last_extent
, start_slot
,
4333 /* can't be 1, extent items aren't processed */
4339 ret
= btrfs_next_leaf(root
, path
);
4347 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4348 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4358 u64 last_extent
= 0;
4360 ret
= copy_items(trans
, inode
, dst_path
, path
,
4361 &last_extent
, start_slot
,
4363 /* can't be 1, extent items aren't processed */
4373 * If the no holes feature is enabled we need to make sure any hole between the
4374 * last extent and the i_size of our inode is explicitly marked in the log. This
4375 * is to make sure that doing something like:
4377 * 1) create file with 128Kb of data
4378 * 2) truncate file to 64Kb
4379 * 3) truncate file to 256Kb
4381 * 5) <crash/power failure>
4382 * 6) mount fs and trigger log replay
4384 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4385 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4386 * file correspond to a hole. The presence of explicit holes in a log tree is
4387 * what guarantees that log replay will remove/adjust file extent items in the
4390 * Here we do not need to care about holes between extents, that is already done
4391 * by copy_items(). We also only need to do this in the full sync path, where we
4392 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4393 * lookup the list of modified extent maps and if any represents a hole, we
4394 * insert a corresponding extent representing a hole in the log tree.
4396 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4397 struct btrfs_root
*root
,
4398 struct btrfs_inode
*inode
,
4399 struct btrfs_path
*path
)
4401 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4403 struct btrfs_key key
;
4406 struct extent_buffer
*leaf
;
4407 struct btrfs_root
*log
= root
->log_root
;
4408 const u64 ino
= btrfs_ino(inode
);
4409 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4411 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
))
4415 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4416 key
.offset
= (u64
)-1;
4418 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4423 ASSERT(path
->slots
[0] > 0);
4425 leaf
= path
->nodes
[0];
4426 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4428 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4429 /* inode does not have any extents */
4433 struct btrfs_file_extent_item
*extent
;
4437 * If there's an extent beyond i_size, an explicit hole was
4438 * already inserted by copy_items().
4440 if (key
.offset
>= i_size
)
4443 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4444 struct btrfs_file_extent_item
);
4446 if (btrfs_file_extent_type(leaf
, extent
) ==
4447 BTRFS_FILE_EXTENT_INLINE
) {
4448 len
= btrfs_file_extent_inline_len(leaf
,
4451 ASSERT(len
== i_size
||
4452 (len
== fs_info
->sectorsize
&&
4453 btrfs_file_extent_compression(leaf
, extent
) !=
4454 BTRFS_COMPRESS_NONE
));
4458 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4459 /* Last extent goes beyond i_size, no need to log a hole. */
4460 if (key
.offset
+ len
> i_size
)
4462 hole_start
= key
.offset
+ len
;
4463 hole_size
= i_size
- hole_start
;
4465 btrfs_release_path(path
);
4467 /* Last extent ends at i_size. */
4471 hole_size
= ALIGN(hole_size
, fs_info
->sectorsize
);
4472 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4473 hole_size
, 0, hole_size
, 0, 0, 0);
4478 * When we are logging a new inode X, check if it doesn't have a reference that
4479 * matches the reference from some other inode Y created in a past transaction
4480 * and that was renamed in the current transaction. If we don't do this, then at
4481 * log replay time we can lose inode Y (and all its files if it's a directory):
4484 * echo "hello world" > /mnt/x/foobar
4487 * mkdir /mnt/x # or touch /mnt/x
4488 * xfs_io -c fsync /mnt/x
4490 * mount fs, trigger log replay
4492 * After the log replay procedure, we would lose the first directory and all its
4493 * files (file foobar).
4494 * For the case where inode Y is not a directory we simply end up losing it:
4496 * echo "123" > /mnt/foo
4498 * mv /mnt/foo /mnt/bar
4499 * echo "abc" > /mnt/foo
4500 * xfs_io -c fsync /mnt/foo
4503 * We also need this for cases where a snapshot entry is replaced by some other
4504 * entry (file or directory) otherwise we end up with an unreplayable log due to
4505 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4506 * if it were a regular entry:
4509 * btrfs subvolume snapshot /mnt /mnt/x/snap
4510 * btrfs subvolume delete /mnt/x/snap
4513 * fsync /mnt/x or fsync some new file inside it
4516 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4517 * the same transaction.
4519 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4521 const struct btrfs_key
*key
,
4522 struct btrfs_inode
*inode
,
4526 struct btrfs_path
*search_path
;
4529 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4531 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4533 search_path
= btrfs_alloc_path();
4536 search_path
->search_commit_root
= 1;
4537 search_path
->skip_locking
= 1;
4539 while (cur_offset
< item_size
) {
4543 unsigned long name_ptr
;
4544 struct btrfs_dir_item
*di
;
4546 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4547 struct btrfs_inode_ref
*iref
;
4549 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4550 parent
= key
->offset
;
4551 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4552 name_ptr
= (unsigned long)(iref
+ 1);
4553 this_len
= sizeof(*iref
) + this_name_len
;
4555 struct btrfs_inode_extref
*extref
;
4557 extref
= (struct btrfs_inode_extref
*)(ptr
+
4559 parent
= btrfs_inode_extref_parent(eb
, extref
);
4560 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4561 name_ptr
= (unsigned long)&extref
->name
;
4562 this_len
= sizeof(*extref
) + this_name_len
;
4565 if (this_name_len
> name_len
) {
4568 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4573 name_len
= this_name_len
;
4577 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4578 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
4579 parent
, name
, this_name_len
, 0);
4580 if (di
&& !IS_ERR(di
)) {
4581 struct btrfs_key di_key
;
4583 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4585 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4587 *other_ino
= di_key
.objectid
;
4592 } else if (IS_ERR(di
)) {
4596 btrfs_release_path(search_path
);
4598 cur_offset
+= this_len
;
4602 btrfs_free_path(search_path
);
4607 /* log a single inode in the tree log.
4608 * At least one parent directory for this inode must exist in the tree
4609 * or be logged already.
4611 * Any items from this inode changed by the current transaction are copied
4612 * to the log tree. An extra reference is taken on any extents in this
4613 * file, allowing us to avoid a whole pile of corner cases around logging
4614 * blocks that have been removed from the tree.
4616 * See LOG_INODE_ALL and related defines for a description of what inode_only
4619 * This handles both files and directories.
4621 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4622 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
4626 struct btrfs_log_ctx
*ctx
)
4628 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4629 struct btrfs_path
*path
;
4630 struct btrfs_path
*dst_path
;
4631 struct btrfs_key min_key
;
4632 struct btrfs_key max_key
;
4633 struct btrfs_root
*log
= root
->log_root
;
4634 LIST_HEAD(logged_list
);
4635 u64 last_extent
= 0;
4639 int ins_start_slot
= 0;
4641 bool fast_search
= false;
4642 u64 ino
= btrfs_ino(inode
);
4643 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
4644 u64 logged_isize
= 0;
4645 bool need_log_inode_item
= true;
4647 path
= btrfs_alloc_path();
4650 dst_path
= btrfs_alloc_path();
4652 btrfs_free_path(path
);
4656 min_key
.objectid
= ino
;
4657 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4660 max_key
.objectid
= ino
;
4663 /* today the code can only do partial logging of directories */
4664 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4665 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4666 &inode
->runtime_flags
) &&
4667 inode_only
>= LOG_INODE_EXISTS
))
4668 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4670 max_key
.type
= (u8
)-1;
4671 max_key
.offset
= (u64
)-1;
4674 * Only run delayed items if we are a dir or a new file.
4675 * Otherwise commit the delayed inode only, which is needed in
4676 * order for the log replay code to mark inodes for link count
4677 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4679 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4680 inode
->generation
> fs_info
->last_trans_committed
)
4681 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4683 ret
= btrfs_commit_inode_delayed_inode(inode
);
4686 btrfs_free_path(path
);
4687 btrfs_free_path(dst_path
);
4691 if (inode_only
== LOG_OTHER_INODE
) {
4692 inode_only
= LOG_INODE_EXISTS
;
4693 mutex_lock_nested(&inode
->log_mutex
, SINGLE_DEPTH_NESTING
);
4695 mutex_lock(&inode
->log_mutex
);
4699 * a brute force approach to making sure we get the most uptodate
4700 * copies of everything.
4702 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
4703 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4705 if (inode_only
== LOG_INODE_EXISTS
)
4706 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4707 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4709 if (inode_only
== LOG_INODE_EXISTS
) {
4711 * Make sure the new inode item we write to the log has
4712 * the same isize as the current one (if it exists).
4713 * This is necessary to prevent data loss after log
4714 * replay, and also to prevent doing a wrong expanding
4715 * truncate - for e.g. create file, write 4K into offset
4716 * 0, fsync, write 4K into offset 4096, add hard link,
4717 * fsync some other file (to sync log), power fail - if
4718 * we use the inode's current i_size, after log replay
4719 * we get a 8Kb file, with the last 4Kb extent as a hole
4720 * (zeroes), as if an expanding truncate happened,
4721 * instead of getting a file of 4Kb only.
4723 err
= logged_inode_size(log
, inode
, path
, &logged_isize
);
4727 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4728 &inode
->runtime_flags
)) {
4729 if (inode_only
== LOG_INODE_EXISTS
) {
4730 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4731 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4734 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4735 &inode
->runtime_flags
);
4736 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4737 &inode
->runtime_flags
);
4739 ret
= btrfs_truncate_inode_items(trans
,
4740 log
, &inode
->vfs_inode
, 0, 0);
4745 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4746 &inode
->runtime_flags
) ||
4747 inode_only
== LOG_INODE_EXISTS
) {
4748 if (inode_only
== LOG_INODE_ALL
)
4750 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4751 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4754 if (inode_only
== LOG_INODE_ALL
)
4767 ret
= btrfs_search_forward(root
, &min_key
,
4768 path
, trans
->transid
);
4776 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4777 if (min_key
.objectid
!= ino
)
4779 if (min_key
.type
> max_key
.type
)
4782 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4783 need_log_inode_item
= false;
4785 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4786 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4787 inode
->generation
== trans
->transid
) {
4790 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4791 path
->slots
[0], &min_key
, inode
,
4796 } else if (ret
> 0 && ctx
&&
4797 other_ino
!= btrfs_ino(BTRFS_I(ctx
->inode
))) {
4798 struct btrfs_key inode_key
;
4799 struct inode
*other_inode
;
4805 ins_start_slot
= path
->slots
[0];
4807 ret
= copy_items(trans
, inode
, dst_path
, path
,
4808 &last_extent
, ins_start_slot
,
4816 btrfs_release_path(path
);
4817 inode_key
.objectid
= other_ino
;
4818 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4819 inode_key
.offset
= 0;
4820 other_inode
= btrfs_iget(fs_info
->sb
,
4824 * If the other inode that had a conflicting dir
4825 * entry was deleted in the current transaction,
4826 * we don't need to do more work nor fallback to
4827 * a transaction commit.
4829 if (IS_ERR(other_inode
) &&
4830 PTR_ERR(other_inode
) == -ENOENT
) {
4832 } else if (IS_ERR(other_inode
)) {
4833 err
= PTR_ERR(other_inode
);
4837 * We are safe logging the other inode without
4838 * acquiring its i_mutex as long as we log with
4839 * the LOG_INODE_EXISTS mode. We're safe against
4840 * concurrent renames of the other inode as well
4841 * because during a rename we pin the log and
4842 * update the log with the new name before we
4845 err
= btrfs_log_inode(trans
, root
,
4846 BTRFS_I(other_inode
),
4847 LOG_OTHER_INODE
, 0, LLONG_MAX
,
4857 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4858 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4861 ret
= copy_items(trans
, inode
, dst_path
, path
,
4862 &last_extent
, ins_start_slot
,
4863 ins_nr
, inode_only
, logged_isize
);
4870 btrfs_release_path(path
);
4876 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4879 } else if (!ins_nr
) {
4880 ins_start_slot
= path
->slots
[0];
4885 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4886 ins_start_slot
, ins_nr
, inode_only
,
4894 btrfs_release_path(path
);
4898 ins_start_slot
= path
->slots
[0];
4901 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4903 if (path
->slots
[0] < nritems
) {
4904 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4909 ret
= copy_items(trans
, inode
, dst_path
, path
,
4910 &last_extent
, ins_start_slot
,
4911 ins_nr
, inode_only
, logged_isize
);
4919 btrfs_release_path(path
);
4921 if (min_key
.offset
< (u64
)-1) {
4923 } else if (min_key
.type
< max_key
.type
) {
4931 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4932 ins_start_slot
, ins_nr
, inode_only
,
4942 btrfs_release_path(path
);
4943 btrfs_release_path(dst_path
);
4944 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4947 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4948 btrfs_release_path(path
);
4949 btrfs_release_path(dst_path
);
4950 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4955 btrfs_release_path(path
);
4956 btrfs_release_path(dst_path
);
4957 if (need_log_inode_item
) {
4958 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4963 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4964 &logged_list
, ctx
, start
, end
);
4969 } else if (inode_only
== LOG_INODE_ALL
) {
4970 struct extent_map
*em
, *n
;
4972 write_lock(&em_tree
->lock
);
4974 * We can't just remove every em if we're called for a ranged
4975 * fsync - that is, one that doesn't cover the whole possible
4976 * file range (0 to LLONG_MAX). This is because we can have
4977 * em's that fall outside the range we're logging and therefore
4978 * their ordered operations haven't completed yet
4979 * (btrfs_finish_ordered_io() not invoked yet). This means we
4980 * didn't get their respective file extent item in the fs/subvol
4981 * tree yet, and need to let the next fast fsync (one which
4982 * consults the list of modified extent maps) find the em so
4983 * that it logs a matching file extent item and waits for the
4984 * respective ordered operation to complete (if it's still
4987 * Removing every em outside the range we're logging would make
4988 * the next fast fsync not log their matching file extent items,
4989 * therefore making us lose data after a log replay.
4991 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4993 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4995 if (em
->mod_start
>= start
&& mod_end
<= end
)
4996 list_del_init(&em
->list
);
4998 write_unlock(&em_tree
->lock
);
5001 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5002 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
5010 spin_lock(&inode
->lock
);
5011 inode
->logged_trans
= trans
->transid
;
5012 inode
->last_log_commit
= inode
->last_sub_trans
;
5013 spin_unlock(&inode
->lock
);
5016 btrfs_put_logged_extents(&logged_list
);
5018 btrfs_submit_logged_extents(&logged_list
, log
);
5019 mutex_unlock(&inode
->log_mutex
);
5021 btrfs_free_path(path
);
5022 btrfs_free_path(dst_path
);
5027 * Check if we must fallback to a transaction commit when logging an inode.
5028 * This must be called after logging the inode and is used only in the context
5029 * when fsyncing an inode requires the need to log some other inode - in which
5030 * case we can't lock the i_mutex of each other inode we need to log as that
5031 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5032 * log inodes up or down in the hierarchy) or rename operations for example. So
5033 * we take the log_mutex of the inode after we have logged it and then check for
5034 * its last_unlink_trans value - this is safe because any task setting
5035 * last_unlink_trans must take the log_mutex and it must do this before it does
5036 * the actual unlink operation, so if we do this check before a concurrent task
5037 * sets last_unlink_trans it means we've logged a consistent version/state of
5038 * all the inode items, otherwise we are not sure and must do a transaction
5039 * commit (the concurrent task might have only updated last_unlink_trans before
5040 * we logged the inode or it might have also done the unlink).
5042 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5043 struct btrfs_inode
*inode
)
5045 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5048 mutex_lock(&inode
->log_mutex
);
5049 if (inode
->last_unlink_trans
> fs_info
->last_trans_committed
) {
5051 * Make sure any commits to the log are forced to be full
5054 btrfs_set_log_full_commit(fs_info
, trans
);
5057 mutex_unlock(&inode
->log_mutex
);
5063 * follow the dentry parent pointers up the chain and see if any
5064 * of the directories in it require a full commit before they can
5065 * be logged. Returns zero if nothing special needs to be done or 1 if
5066 * a full commit is required.
5068 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5069 struct btrfs_inode
*inode
,
5070 struct dentry
*parent
,
5071 struct super_block
*sb
,
5075 struct dentry
*old_parent
= NULL
;
5076 struct btrfs_inode
*orig_inode
= inode
;
5079 * for regular files, if its inode is already on disk, we don't
5080 * have to worry about the parents at all. This is because
5081 * we can use the last_unlink_trans field to record renames
5082 * and other fun in this file.
5084 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5085 inode
->generation
<= last_committed
&&
5086 inode
->last_unlink_trans
<= last_committed
)
5089 if (!S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5090 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5092 inode
= BTRFS_I(d_inode(parent
));
5097 * If we are logging a directory then we start with our inode,
5098 * not our parent's inode, so we need to skip setting the
5099 * logged_trans so that further down in the log code we don't
5100 * think this inode has already been logged.
5102 if (inode
!= orig_inode
)
5103 inode
->logged_trans
= trans
->transid
;
5106 if (btrfs_must_commit_transaction(trans
, inode
)) {
5111 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5114 if (IS_ROOT(parent
)) {
5115 inode
= BTRFS_I(d_inode(parent
));
5116 if (btrfs_must_commit_transaction(trans
, inode
))
5121 parent
= dget_parent(parent
);
5123 old_parent
= parent
;
5124 inode
= BTRFS_I(d_inode(parent
));
5132 struct btrfs_dir_list
{
5134 struct list_head list
;
5138 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5139 * details about the why it is needed.
5140 * This is a recursive operation - if an existing dentry corresponds to a
5141 * directory, that directory's new entries are logged too (same behaviour as
5142 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5143 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5144 * complains about the following circular lock dependency / possible deadlock:
5148 * lock(&type->i_mutex_dir_key#3/2);
5149 * lock(sb_internal#2);
5150 * lock(&type->i_mutex_dir_key#3/2);
5151 * lock(&sb->s_type->i_mutex_key#14);
5153 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5154 * sb_start_intwrite() in btrfs_start_transaction().
5155 * Not locking i_mutex of the inodes is still safe because:
5157 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5158 * that while logging the inode new references (names) are added or removed
5159 * from the inode, leaving the logged inode item with a link count that does
5160 * not match the number of logged inode reference items. This is fine because
5161 * at log replay time we compute the real number of links and correct the
5162 * link count in the inode item (see replay_one_buffer() and
5163 * link_to_fixup_dir());
5165 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5166 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5167 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5168 * has a size that doesn't match the sum of the lengths of all the logged
5169 * names. This does not result in a problem because if a dir_item key is
5170 * logged but its matching dir_index key is not logged, at log replay time we
5171 * don't use it to replay the respective name (see replay_one_name()). On the
5172 * other hand if only the dir_index key ends up being logged, the respective
5173 * name is added to the fs/subvol tree with both the dir_item and dir_index
5174 * keys created (see replay_one_name()).
5175 * The directory's inode item with a wrong i_size is not a problem as well,
5176 * since we don't use it at log replay time to set the i_size in the inode
5177 * item of the fs/subvol tree (see overwrite_item()).
5179 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5180 struct btrfs_root
*root
,
5181 struct btrfs_inode
*start_inode
,
5182 struct btrfs_log_ctx
*ctx
)
5184 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5185 struct btrfs_root
*log
= root
->log_root
;
5186 struct btrfs_path
*path
;
5187 LIST_HEAD(dir_list
);
5188 struct btrfs_dir_list
*dir_elem
;
5191 path
= btrfs_alloc_path();
5195 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5197 btrfs_free_path(path
);
5200 dir_elem
->ino
= btrfs_ino(start_inode
);
5201 list_add_tail(&dir_elem
->list
, &dir_list
);
5203 while (!list_empty(&dir_list
)) {
5204 struct extent_buffer
*leaf
;
5205 struct btrfs_key min_key
;
5209 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5212 goto next_dir_inode
;
5214 min_key
.objectid
= dir_elem
->ino
;
5215 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5218 btrfs_release_path(path
);
5219 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5221 goto next_dir_inode
;
5222 } else if (ret
> 0) {
5224 goto next_dir_inode
;
5228 leaf
= path
->nodes
[0];
5229 nritems
= btrfs_header_nritems(leaf
);
5230 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5231 struct btrfs_dir_item
*di
;
5232 struct btrfs_key di_key
;
5233 struct inode
*di_inode
;
5234 struct btrfs_dir_list
*new_dir_elem
;
5235 int log_mode
= LOG_INODE_EXISTS
;
5238 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5239 if (min_key
.objectid
!= dir_elem
->ino
||
5240 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5241 goto next_dir_inode
;
5243 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5244 type
= btrfs_dir_type(leaf
, di
);
5245 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5246 type
!= BTRFS_FT_DIR
)
5248 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5249 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5252 btrfs_release_path(path
);
5253 di_inode
= btrfs_iget(fs_info
->sb
, &di_key
, root
, NULL
);
5254 if (IS_ERR(di_inode
)) {
5255 ret
= PTR_ERR(di_inode
);
5256 goto next_dir_inode
;
5259 if (btrfs_inode_in_log(BTRFS_I(di_inode
), trans
->transid
)) {
5264 ctx
->log_new_dentries
= false;
5265 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5266 log_mode
= LOG_INODE_ALL
;
5267 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(di_inode
),
5268 log_mode
, 0, LLONG_MAX
, ctx
);
5270 btrfs_must_commit_transaction(trans
, BTRFS_I(di_inode
)))
5274 goto next_dir_inode
;
5275 if (ctx
->log_new_dentries
) {
5276 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5278 if (!new_dir_elem
) {
5280 goto next_dir_inode
;
5282 new_dir_elem
->ino
= di_key
.objectid
;
5283 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5288 ret
= btrfs_next_leaf(log
, path
);
5290 goto next_dir_inode
;
5291 } else if (ret
> 0) {
5293 goto next_dir_inode
;
5297 if (min_key
.offset
< (u64
)-1) {
5302 list_del(&dir_elem
->list
);
5306 btrfs_free_path(path
);
5310 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5311 struct btrfs_inode
*inode
,
5312 struct btrfs_log_ctx
*ctx
)
5314 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5316 struct btrfs_path
*path
;
5317 struct btrfs_key key
;
5318 struct btrfs_root
*root
= inode
->root
;
5319 const u64 ino
= btrfs_ino(inode
);
5321 path
= btrfs_alloc_path();
5324 path
->skip_locking
= 1;
5325 path
->search_commit_root
= 1;
5328 key
.type
= BTRFS_INODE_REF_KEY
;
5330 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5335 struct extent_buffer
*leaf
= path
->nodes
[0];
5336 int slot
= path
->slots
[0];
5341 if (slot
>= btrfs_header_nritems(leaf
)) {
5342 ret
= btrfs_next_leaf(root
, path
);
5350 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5351 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5352 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5355 item_size
= btrfs_item_size_nr(leaf
, slot
);
5356 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5357 while (cur_offset
< item_size
) {
5358 struct btrfs_key inode_key
;
5359 struct inode
*dir_inode
;
5361 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5362 inode_key
.offset
= 0;
5364 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5365 struct btrfs_inode_extref
*extref
;
5367 extref
= (struct btrfs_inode_extref
*)
5369 inode_key
.objectid
= btrfs_inode_extref_parent(
5371 cur_offset
+= sizeof(*extref
);
5372 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5375 inode_key
.objectid
= key
.offset
;
5376 cur_offset
= item_size
;
5379 dir_inode
= btrfs_iget(fs_info
->sb
, &inode_key
,
5381 /* If parent inode was deleted, skip it. */
5382 if (IS_ERR(dir_inode
))
5386 ctx
->log_new_dentries
= false;
5387 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(dir_inode
),
5388 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5390 btrfs_must_commit_transaction(trans
, BTRFS_I(dir_inode
)))
5392 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5393 ret
= log_new_dir_dentries(trans
, root
,
5394 BTRFS_I(dir_inode
), ctx
);
5403 btrfs_free_path(path
);
5408 * helper function around btrfs_log_inode to make sure newly created
5409 * parent directories also end up in the log. A minimal inode and backref
5410 * only logging is done of any parent directories that are older than
5411 * the last committed transaction
5413 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5414 struct btrfs_root
*root
,
5415 struct btrfs_inode
*inode
,
5416 struct dentry
*parent
,
5420 struct btrfs_log_ctx
*ctx
)
5422 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5423 struct super_block
*sb
;
5424 struct dentry
*old_parent
= NULL
;
5426 u64 last_committed
= fs_info
->last_trans_committed
;
5427 bool log_dentries
= false;
5428 struct btrfs_inode
*orig_inode
= inode
;
5430 sb
= inode
->vfs_inode
.i_sb
;
5432 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5438 * The prev transaction commit doesn't complete, we need do
5439 * full commit by ourselves.
5441 if (fs_info
->last_trans_log_full_commit
>
5442 fs_info
->last_trans_committed
) {
5447 if (root
!= inode
->root
|| btrfs_root_refs(&root
->root_item
) == 0) {
5452 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
, sb
,
5457 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5458 ret
= BTRFS_NO_LOG_SYNC
;
5462 ret
= start_log_trans(trans
, root
, ctx
);
5466 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5471 * for regular files, if its inode is already on disk, we don't
5472 * have to worry about the parents at all. This is because
5473 * we can use the last_unlink_trans field to record renames
5474 * and other fun in this file.
5476 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5477 inode
->generation
<= last_committed
&&
5478 inode
->last_unlink_trans
<= last_committed
) {
5483 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
&& ctx
->log_new_dentries
)
5484 log_dentries
= true;
5487 * On unlink we must make sure all our current and old parent directory
5488 * inodes are fully logged. This is to prevent leaving dangling
5489 * directory index entries in directories that were our parents but are
5490 * not anymore. Not doing this results in old parent directory being
5491 * impossible to delete after log replay (rmdir will always fail with
5492 * error -ENOTEMPTY).
5498 * ln testdir/foo testdir/bar
5500 * unlink testdir/bar
5501 * xfs_io -c fsync testdir/foo
5503 * mount fs, triggers log replay
5505 * If we don't log the parent directory (testdir), after log replay the
5506 * directory still has an entry pointing to the file inode using the bar
5507 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5508 * the file inode has a link count of 1.
5514 * ln foo testdir/foo2
5515 * ln foo testdir/foo3
5517 * unlink testdir/foo3
5518 * xfs_io -c fsync foo
5520 * mount fs, triggers log replay
5522 * Similar as the first example, after log replay the parent directory
5523 * testdir still has an entry pointing to the inode file with name foo3
5524 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5525 * and has a link count of 2.
5527 if (inode
->last_unlink_trans
> last_committed
) {
5528 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5534 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5537 inode
= BTRFS_I(d_inode(parent
));
5538 if (root
!= inode
->root
)
5541 if (inode
->generation
> last_committed
) {
5542 ret
= btrfs_log_inode(trans
, root
, inode
,
5543 LOG_INODE_EXISTS
, 0, LLONG_MAX
, ctx
);
5547 if (IS_ROOT(parent
))
5550 parent
= dget_parent(parent
);
5552 old_parent
= parent
;
5555 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5561 btrfs_set_log_full_commit(fs_info
, trans
);
5566 btrfs_remove_log_ctx(root
, ctx
);
5567 btrfs_end_log_trans(root
);
5573 * it is not safe to log dentry if the chunk root has added new
5574 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5575 * If this returns 1, you must commit the transaction to safely get your
5578 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5579 struct btrfs_root
*root
, struct dentry
*dentry
,
5582 struct btrfs_log_ctx
*ctx
)
5584 struct dentry
*parent
= dget_parent(dentry
);
5587 ret
= btrfs_log_inode_parent(trans
, root
, BTRFS_I(d_inode(dentry
)),
5588 parent
, start
, end
, LOG_INODE_ALL
, ctx
);
5595 * should be called during mount to recover any replay any log trees
5598 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5601 struct btrfs_path
*path
;
5602 struct btrfs_trans_handle
*trans
;
5603 struct btrfs_key key
;
5604 struct btrfs_key found_key
;
5605 struct btrfs_key tmp_key
;
5606 struct btrfs_root
*log
;
5607 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5608 struct walk_control wc
= {
5609 .process_func
= process_one_buffer
,
5613 path
= btrfs_alloc_path();
5617 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5619 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5620 if (IS_ERR(trans
)) {
5621 ret
= PTR_ERR(trans
);
5628 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5630 btrfs_handle_fs_error(fs_info
, ret
,
5631 "Failed to pin buffers while recovering log root tree.");
5636 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5637 key
.offset
= (u64
)-1;
5638 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5641 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5644 btrfs_handle_fs_error(fs_info
, ret
,
5645 "Couldn't find tree log root.");
5649 if (path
->slots
[0] == 0)
5653 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5655 btrfs_release_path(path
);
5656 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5659 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5662 btrfs_handle_fs_error(fs_info
, ret
,
5663 "Couldn't read tree log root.");
5667 tmp_key
.objectid
= found_key
.offset
;
5668 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5669 tmp_key
.offset
= (u64
)-1;
5671 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5672 if (IS_ERR(wc
.replay_dest
)) {
5673 ret
= PTR_ERR(wc
.replay_dest
);
5674 free_extent_buffer(log
->node
);
5675 free_extent_buffer(log
->commit_root
);
5677 btrfs_handle_fs_error(fs_info
, ret
,
5678 "Couldn't read target root for tree log recovery.");
5682 wc
.replay_dest
->log_root
= log
;
5683 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5684 ret
= walk_log_tree(trans
, log
, &wc
);
5686 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5687 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5691 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5692 struct btrfs_root
*root
= wc
.replay_dest
;
5694 btrfs_release_path(path
);
5697 * We have just replayed everything, and the highest
5698 * objectid of fs roots probably has changed in case
5699 * some inode_item's got replayed.
5701 * root->objectid_mutex is not acquired as log replay
5702 * could only happen during mount.
5704 ret
= btrfs_find_highest_objectid(root
,
5705 &root
->highest_objectid
);
5708 key
.offset
= found_key
.offset
- 1;
5709 wc
.replay_dest
->log_root
= NULL
;
5710 free_extent_buffer(log
->node
);
5711 free_extent_buffer(log
->commit_root
);
5717 if (found_key
.offset
== 0)
5720 btrfs_release_path(path
);
5722 /* step one is to pin it all, step two is to replay just inodes */
5725 wc
.process_func
= replay_one_buffer
;
5726 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5729 /* step three is to replay everything */
5730 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5735 btrfs_free_path(path
);
5737 /* step 4: commit the transaction, which also unpins the blocks */
5738 ret
= btrfs_commit_transaction(trans
);
5742 free_extent_buffer(log_root_tree
->node
);
5743 log_root_tree
->log_root
= NULL
;
5744 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5745 kfree(log_root_tree
);
5750 btrfs_end_transaction(wc
.trans
);
5751 btrfs_free_path(path
);
5756 * there are some corner cases where we want to force a full
5757 * commit instead of allowing a directory to be logged.
5759 * They revolve around files there were unlinked from the directory, and
5760 * this function updates the parent directory so that a full commit is
5761 * properly done if it is fsync'd later after the unlinks are done.
5763 * Must be called before the unlink operations (updates to the subvolume tree,
5764 * inodes, etc) are done.
5766 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5767 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
5771 * when we're logging a file, if it hasn't been renamed
5772 * or unlinked, and its inode is fully committed on disk,
5773 * we don't have to worry about walking up the directory chain
5774 * to log its parents.
5776 * So, we use the last_unlink_trans field to put this transid
5777 * into the file. When the file is logged we check it and
5778 * don't log the parents if the file is fully on disk.
5780 mutex_lock(&inode
->log_mutex
);
5781 inode
->last_unlink_trans
= trans
->transid
;
5782 mutex_unlock(&inode
->log_mutex
);
5785 * if this directory was already logged any new
5786 * names for this file/dir will get recorded
5789 if (dir
->logged_trans
== trans
->transid
)
5793 * if the inode we're about to unlink was logged,
5794 * the log will be properly updated for any new names
5796 if (inode
->logged_trans
== trans
->transid
)
5800 * when renaming files across directories, if the directory
5801 * there we're unlinking from gets fsync'd later on, there's
5802 * no way to find the destination directory later and fsync it
5803 * properly. So, we have to be conservative and force commits
5804 * so the new name gets discovered.
5809 /* we can safely do the unlink without any special recording */
5813 mutex_lock(&dir
->log_mutex
);
5814 dir
->last_unlink_trans
= trans
->transid
;
5815 mutex_unlock(&dir
->log_mutex
);
5819 * Make sure that if someone attempts to fsync the parent directory of a deleted
5820 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5821 * that after replaying the log tree of the parent directory's root we will not
5822 * see the snapshot anymore and at log replay time we will not see any log tree
5823 * corresponding to the deleted snapshot's root, which could lead to replaying
5824 * it after replaying the log tree of the parent directory (which would replay
5825 * the snapshot delete operation).
5827 * Must be called before the actual snapshot destroy operation (updates to the
5828 * parent root and tree of tree roots trees, etc) are done.
5830 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5831 struct btrfs_inode
*dir
)
5833 mutex_lock(&dir
->log_mutex
);
5834 dir
->last_unlink_trans
= trans
->transid
;
5835 mutex_unlock(&dir
->log_mutex
);
5839 * Call this after adding a new name for a file and it will properly
5840 * update the log to reflect the new name.
5842 * It will return zero if all goes well, and it will return 1 if a
5843 * full transaction commit is required.
5845 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5846 struct btrfs_inode
*inode
, struct btrfs_inode
*old_dir
,
5847 struct dentry
*parent
)
5849 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5850 struct btrfs_root
*root
= inode
->root
;
5853 * this will force the logging code to walk the dentry chain
5856 if (S_ISREG(inode
->vfs_inode
.i_mode
))
5857 inode
->last_unlink_trans
= trans
->transid
;
5860 * if this inode hasn't been logged and directory we're renaming it
5861 * from hasn't been logged, we don't need to log it
5863 if (inode
->logged_trans
<= fs_info
->last_trans_committed
&&
5864 (!old_dir
|| old_dir
->logged_trans
<= fs_info
->last_trans_committed
))
5867 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5868 LLONG_MAX
, LOG_INODE_EXISTS
, NULL
);