Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / btrfs / tree-log.c
blob4fd19b4d667557f8b45b1ec61ef48f79ebb5f1cf
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
24 #include "tree-log.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "hash.h"
30 #include "compression.h"
31 #include "qgroup.h"
32 #include "inode-map.h"
34 /* magic values for the inode_only field in btrfs_log_inode:
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
45 * directory trouble cases
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
52 * mkdir foo/some_dir
53 * normal commit
54 * rename foo/some_dir foo2/some_dir
55 * mkdir foo/some_dir
56 * fsync foo/some_dir/some_file
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
75 * mkdir f1/foo
76 * normal commit
77 * rm -rf f1/foo
78 * fsync(f1)
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
84 * ugly details.
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
101 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root, struct btrfs_inode *inode,
103 int inode_only,
104 const loff_t start,
105 const loff_t end,
106 struct btrfs_log_ctx *ctx);
107 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_path *path, u64 objectid);
110 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_root *log,
113 struct btrfs_path *path,
114 u64 dirid, int del_all);
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
144 static int start_log_trans(struct btrfs_trans_handle *trans,
145 struct btrfs_root *root,
146 struct btrfs_log_ctx *ctx)
148 struct btrfs_fs_info *fs_info = root->fs_info;
149 int ret = 0;
151 mutex_lock(&root->log_mutex);
153 if (root->log_root) {
154 if (btrfs_need_log_full_commit(fs_info, trans)) {
155 ret = -EAGAIN;
156 goto out;
159 if (!root->log_start_pid) {
160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
161 root->log_start_pid = current->pid;
162 } else if (root->log_start_pid != current->pid) {
163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 } else {
166 mutex_lock(&fs_info->tree_log_mutex);
167 if (!fs_info->log_root_tree)
168 ret = btrfs_init_log_root_tree(trans, fs_info);
169 mutex_unlock(&fs_info->tree_log_mutex);
170 if (ret)
171 goto out;
173 ret = btrfs_add_log_tree(trans, root);
174 if (ret)
175 goto out;
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 root->log_start_pid = current->pid;
181 atomic_inc(&root->log_batch);
182 atomic_inc(&root->log_writers);
183 if (ctx) {
184 int index = root->log_transid % 2;
185 list_add_tail(&ctx->list, &root->log_ctxs[index]);
186 ctx->log_transid = root->log_transid;
189 out:
190 mutex_unlock(&root->log_mutex);
191 return ret;
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
197 * in progress
199 static int join_running_log_trans(struct btrfs_root *root)
201 int ret = -ENOENT;
203 smp_mb();
204 if (!root->log_root)
205 return -ENOENT;
207 mutex_lock(&root->log_mutex);
208 if (root->log_root) {
209 ret = 0;
210 atomic_inc(&root->log_writers);
212 mutex_unlock(&root->log_mutex);
213 return ret;
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
221 int btrfs_pin_log_trans(struct btrfs_root *root)
223 int ret = -ENOENT;
225 mutex_lock(&root->log_mutex);
226 atomic_inc(&root->log_writers);
227 mutex_unlock(&root->log_mutex);
228 return ret;
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
235 void btrfs_end_log_trans(struct btrfs_root *root)
237 if (atomic_dec_and_test(&root->log_writers)) {
239 * Implicit memory barrier after atomic_dec_and_test
241 if (waitqueue_active(&root->log_writer_wait))
242 wake_up(&root->log_writer_wait);
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
253 struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
257 int free;
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
262 int write;
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
267 int wait;
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
272 int pin;
274 /* what stage of the replay code we're currently in */
275 int stage;
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen);
293 * process_func used to pin down extents, write them or wait on them
295 static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
297 struct walk_control *wc, u64 gen)
299 struct btrfs_fs_info *fs_info = log->fs_info;
300 int ret = 0;
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
312 if (wc->pin)
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 eb->len);
316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(fs_info, eb);
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
324 return ret;
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
347 struct btrfs_fs_info *fs_info = root->fs_info;
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 if (ret < 0)
366 return ret;
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
376 if (item_size == 0) {
377 btrfs_release_path(path);
378 return 0;
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
382 if (!dst_copy || !src_copy) {
383 btrfs_release_path(path);
384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
396 kfree(dst_copy);
397 kfree(src_copy);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
404 if (ret == 0) {
405 btrfs_release_path(path);
406 return 0;
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
416 u32 mode;
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
436 u32 mode;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
454 insert:
455 btrfs_release_path(path);
456 /* try to insert the key into the destination tree */
457 path->skip_release_on_error = 1;
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
460 path->skip_release_on_error = 0;
462 /* make sure any existing item is the correct size */
463 if (ret == -EEXIST || ret == -EOVERFLOW) {
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
467 if (found_size > item_size)
468 btrfs_truncate_item(fs_info, path, item_size, 1);
469 else if (found_size < item_size)
470 btrfs_extend_item(fs_info, path,
471 item_size - found_size);
472 } else if (ret) {
473 return ret;
475 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 path->slots[0]);
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
485 * as it goes
487 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 struct btrfs_inode_item *src_item;
489 struct btrfs_inode_item *dst_item;
491 src_item = (struct btrfs_inode_item *)src_ptr;
492 dst_item = (struct btrfs_inode_item *)dst_ptr;
494 if (btrfs_inode_generation(eb, src_item) == 0) {
495 struct extent_buffer *dst_eb = path->nodes[0];
496 const u64 ino_size = btrfs_inode_size(eb, src_item);
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
505 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
506 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 ino_size != 0) {
508 struct btrfs_map_token token;
510 btrfs_init_map_token(&token);
511 btrfs_set_token_inode_size(dst_eb, dst_item,
512 ino_size, &token);
514 goto no_copy;
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
544 no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
547 return 0;
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
557 struct btrfs_key key;
558 struct inode *inode;
560 key.objectid = objectid;
561 key.type = BTRFS_INODE_ITEM_KEY;
562 key.offset = 0;
563 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
564 if (IS_ERR(inode)) {
565 inode = NULL;
566 } else if (is_bad_inode(inode)) {
567 iput(inode);
568 inode = NULL;
570 return inode;
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
575 * on exit.
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
585 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 struct extent_buffer *eb, int slot,
589 struct btrfs_key *key)
591 struct btrfs_fs_info *fs_info = root->fs_info;
592 int found_type;
593 u64 extent_end;
594 u64 start = key->offset;
595 u64 nbytes = 0;
596 struct btrfs_file_extent_item *item;
597 struct inode *inode = NULL;
598 unsigned long size;
599 int ret = 0;
601 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 found_type = btrfs_file_extent_type(eb, item);
604 if (found_type == BTRFS_FILE_EXTENT_REG ||
605 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 nbytes = btrfs_file_extent_num_bytes(eb, item);
607 extent_end = start + nbytes;
610 * We don't add to the inodes nbytes if we are prealloc or a
611 * hole.
613 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
614 nbytes = 0;
615 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
616 size = btrfs_file_extent_inline_len(eb, slot, item);
617 nbytes = btrfs_file_extent_ram_bytes(eb, item);
618 extent_end = ALIGN(start + size,
619 fs_info->sectorsize);
620 } else {
621 ret = 0;
622 goto out;
625 inode = read_one_inode(root, key->objectid);
626 if (!inode) {
627 ret = -EIO;
628 goto out;
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
636 ret = btrfs_lookup_file_extent(trans, root, path,
637 btrfs_ino(BTRFS_I(inode)), start, 0);
639 if (ret == 0 &&
640 (found_type == BTRFS_FILE_EXTENT_REG ||
641 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
642 struct btrfs_file_extent_item cmp1;
643 struct btrfs_file_extent_item cmp2;
644 struct btrfs_file_extent_item *existing;
645 struct extent_buffer *leaf;
647 leaf = path->nodes[0];
648 existing = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
651 read_extent_buffer(eb, &cmp1, (unsigned long)item,
652 sizeof(cmp1));
653 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 sizeof(cmp2));
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
660 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
661 btrfs_release_path(path);
662 goto out;
665 btrfs_release_path(path);
667 /* drop any overlapping extents */
668 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
669 if (ret)
670 goto out;
672 if (found_type == BTRFS_FILE_EXTENT_REG ||
673 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
674 u64 offset;
675 unsigned long dest_offset;
676 struct btrfs_key ins;
678 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 btrfs_fs_incompat(fs_info, NO_HOLES))
680 goto update_inode;
682 ret = btrfs_insert_empty_item(trans, root, path, key,
683 sizeof(*item));
684 if (ret)
685 goto out;
686 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 path->slots[0]);
688 copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 (unsigned long)item, sizeof(*item));
691 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 ins.type = BTRFS_EXTENT_ITEM_KEY;
694 offset = key->offset - btrfs_file_extent_offset(eb, item);
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
704 ret = btrfs_qgroup_trace_extent(trans, fs_info,
705 btrfs_file_extent_disk_bytenr(eb, item),
706 btrfs_file_extent_disk_num_bytes(eb, item),
707 GFP_NOFS);
708 if (ret < 0)
709 goto out;
711 if (ins.objectid > 0) {
712 u64 csum_start;
713 u64 csum_end;
714 LIST_HEAD(ordered_sums);
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
719 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
720 ins.offset);
721 if (ret == 0) {
722 ret = btrfs_inc_extent_ref(trans, root,
723 ins.objectid, ins.offset,
724 0, root->root_key.objectid,
725 key->objectid, offset);
726 if (ret)
727 goto out;
728 } else {
730 * insert the extent pointer in the extent
731 * allocation tree
733 ret = btrfs_alloc_logged_file_extent(trans,
734 fs_info,
735 root->root_key.objectid,
736 key->objectid, offset, &ins);
737 if (ret)
738 goto out;
740 btrfs_release_path(path);
742 if (btrfs_file_extent_compression(eb, item)) {
743 csum_start = ins.objectid;
744 csum_end = csum_start + ins.offset;
745 } else {
746 csum_start = ins.objectid +
747 btrfs_file_extent_offset(eb, item);
748 csum_end = csum_start +
749 btrfs_file_extent_num_bytes(eb, item);
752 ret = btrfs_lookup_csums_range(root->log_root,
753 csum_start, csum_end - 1,
754 &ordered_sums, 0);
755 if (ret)
756 goto out;
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
781 * of the extent:
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
806 while (!list_empty(&ordered_sums)) {
807 struct btrfs_ordered_sum *sums;
808 sums = list_entry(ordered_sums.next,
809 struct btrfs_ordered_sum,
810 list);
811 if (!ret)
812 ret = btrfs_del_csums(trans, fs_info,
813 sums->bytenr,
814 sums->len);
815 if (!ret)
816 ret = btrfs_csum_file_blocks(trans,
817 fs_info->csum_root, sums);
818 list_del(&sums->list);
819 kfree(sums);
821 if (ret)
822 goto out;
823 } else {
824 btrfs_release_path(path);
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
829 if (ret)
830 goto out;
833 inode_add_bytes(inode, nbytes);
834 update_inode:
835 ret = btrfs_update_inode(trans, root, inode);
836 out:
837 if (inode)
838 iput(inode);
839 return ret;
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
848 * item
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
853 struct btrfs_inode *dir,
854 struct btrfs_dir_item *di)
856 struct btrfs_fs_info *fs_info = root->fs_info;
857 struct inode *inode;
858 char *name;
859 int name_len;
860 struct extent_buffer *leaf;
861 struct btrfs_key location;
862 int ret;
864 leaf = path->nodes[0];
866 btrfs_dir_item_key_to_cpu(leaf, di, &location);
867 name_len = btrfs_dir_name_len(leaf, di);
868 name = kmalloc(name_len, GFP_NOFS);
869 if (!name)
870 return -ENOMEM;
872 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
873 btrfs_release_path(path);
875 inode = read_one_inode(root, location.objectid);
876 if (!inode) {
877 ret = -EIO;
878 goto out;
881 ret = link_to_fixup_dir(trans, root, path, location.objectid);
882 if (ret)
883 goto out;
885 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
886 name_len);
887 if (ret)
888 goto out;
889 else
890 ret = btrfs_run_delayed_items(trans, fs_info);
891 out:
892 kfree(name);
893 iput(inode);
894 return ret;
898 * helper function to see if a given name and sequence number found
899 * in an inode back reference are already in a directory and correctly
900 * point to this inode
902 static noinline int inode_in_dir(struct btrfs_root *root,
903 struct btrfs_path *path,
904 u64 dirid, u64 objectid, u64 index,
905 const char *name, int name_len)
907 struct btrfs_dir_item *di;
908 struct btrfs_key location;
909 int match = 0;
911 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
912 index, name, name_len, 0);
913 if (di && !IS_ERR(di)) {
914 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
915 if (location.objectid != objectid)
916 goto out;
917 } else
918 goto out;
919 btrfs_release_path(path);
921 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
922 if (di && !IS_ERR(di)) {
923 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
924 if (location.objectid != objectid)
925 goto out;
926 } else
927 goto out;
928 match = 1;
929 out:
930 btrfs_release_path(path);
931 return match;
935 * helper function to check a log tree for a named back reference in
936 * an inode. This is used to decide if a back reference that is
937 * found in the subvolume conflicts with what we find in the log.
939 * inode backreferences may have multiple refs in a single item,
940 * during replay we process one reference at a time, and we don't
941 * want to delete valid links to a file from the subvolume if that
942 * link is also in the log.
944 static noinline int backref_in_log(struct btrfs_root *log,
945 struct btrfs_key *key,
946 u64 ref_objectid,
947 const char *name, int namelen)
949 struct btrfs_path *path;
950 struct btrfs_inode_ref *ref;
951 unsigned long ptr;
952 unsigned long ptr_end;
953 unsigned long name_ptr;
954 int found_name_len;
955 int item_size;
956 int ret;
957 int match = 0;
959 path = btrfs_alloc_path();
960 if (!path)
961 return -ENOMEM;
963 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
964 if (ret != 0)
965 goto out;
967 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
969 if (key->type == BTRFS_INODE_EXTREF_KEY) {
970 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
971 name, namelen, NULL))
972 match = 1;
974 goto out;
977 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
978 ptr_end = ptr + item_size;
979 while (ptr < ptr_end) {
980 ref = (struct btrfs_inode_ref *)ptr;
981 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
982 if (found_name_len == namelen) {
983 name_ptr = (unsigned long)(ref + 1);
984 ret = memcmp_extent_buffer(path->nodes[0], name,
985 name_ptr, namelen);
986 if (ret == 0) {
987 match = 1;
988 goto out;
991 ptr = (unsigned long)(ref + 1) + found_name_len;
993 out:
994 btrfs_free_path(path);
995 return match;
998 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
999 struct btrfs_root *root,
1000 struct btrfs_path *path,
1001 struct btrfs_root *log_root,
1002 struct btrfs_inode *dir,
1003 struct btrfs_inode *inode,
1004 u64 inode_objectid, u64 parent_objectid,
1005 u64 ref_index, char *name, int namelen,
1006 int *search_done)
1008 struct btrfs_fs_info *fs_info = root->fs_info;
1009 int ret;
1010 char *victim_name;
1011 int victim_name_len;
1012 struct extent_buffer *leaf;
1013 struct btrfs_dir_item *di;
1014 struct btrfs_key search_key;
1015 struct btrfs_inode_extref *extref;
1017 again:
1018 /* Search old style refs */
1019 search_key.objectid = inode_objectid;
1020 search_key.type = BTRFS_INODE_REF_KEY;
1021 search_key.offset = parent_objectid;
1022 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1023 if (ret == 0) {
1024 struct btrfs_inode_ref *victim_ref;
1025 unsigned long ptr;
1026 unsigned long ptr_end;
1028 leaf = path->nodes[0];
1030 /* are we trying to overwrite a back ref for the root directory
1031 * if so, just jump out, we're done
1033 if (search_key.objectid == search_key.offset)
1034 return 1;
1036 /* check all the names in this back reference to see
1037 * if they are in the log. if so, we allow them to stay
1038 * otherwise they must be unlinked as a conflict
1040 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1041 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1042 while (ptr < ptr_end) {
1043 victim_ref = (struct btrfs_inode_ref *)ptr;
1044 victim_name_len = btrfs_inode_ref_name_len(leaf,
1045 victim_ref);
1046 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1047 if (!victim_name)
1048 return -ENOMEM;
1050 read_extent_buffer(leaf, victim_name,
1051 (unsigned long)(victim_ref + 1),
1052 victim_name_len);
1054 if (!backref_in_log(log_root, &search_key,
1055 parent_objectid,
1056 victim_name,
1057 victim_name_len)) {
1058 inc_nlink(&inode->vfs_inode);
1059 btrfs_release_path(path);
1061 ret = btrfs_unlink_inode(trans, root, dir, inode,
1062 victim_name, victim_name_len);
1063 kfree(victim_name);
1064 if (ret)
1065 return ret;
1066 ret = btrfs_run_delayed_items(trans, fs_info);
1067 if (ret)
1068 return ret;
1069 *search_done = 1;
1070 goto again;
1072 kfree(victim_name);
1074 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1078 * NOTE: we have searched root tree and checked the
1079 * corresponding ref, it does not need to check again.
1081 *search_done = 1;
1083 btrfs_release_path(path);
1085 /* Same search but for extended refs */
1086 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1087 inode_objectid, parent_objectid, 0,
1089 if (!IS_ERR_OR_NULL(extref)) {
1090 u32 item_size;
1091 u32 cur_offset = 0;
1092 unsigned long base;
1093 struct inode *victim_parent;
1095 leaf = path->nodes[0];
1097 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1098 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1100 while (cur_offset < item_size) {
1101 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1103 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1105 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1106 goto next;
1108 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1109 if (!victim_name)
1110 return -ENOMEM;
1111 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1112 victim_name_len);
1114 search_key.objectid = inode_objectid;
1115 search_key.type = BTRFS_INODE_EXTREF_KEY;
1116 search_key.offset = btrfs_extref_hash(parent_objectid,
1117 victim_name,
1118 victim_name_len);
1119 ret = 0;
1120 if (!backref_in_log(log_root, &search_key,
1121 parent_objectid, victim_name,
1122 victim_name_len)) {
1123 ret = -ENOENT;
1124 victim_parent = read_one_inode(root,
1125 parent_objectid);
1126 if (victim_parent) {
1127 inc_nlink(&inode->vfs_inode);
1128 btrfs_release_path(path);
1130 ret = btrfs_unlink_inode(trans, root,
1131 BTRFS_I(victim_parent),
1132 inode,
1133 victim_name,
1134 victim_name_len);
1135 if (!ret)
1136 ret = btrfs_run_delayed_items(
1137 trans,
1138 fs_info);
1140 iput(victim_parent);
1141 kfree(victim_name);
1142 if (ret)
1143 return ret;
1144 *search_done = 1;
1145 goto again;
1147 kfree(victim_name);
1148 next:
1149 cur_offset += victim_name_len + sizeof(*extref);
1151 *search_done = 1;
1153 btrfs_release_path(path);
1155 /* look for a conflicting sequence number */
1156 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1157 ref_index, name, namelen, 0);
1158 if (di && !IS_ERR(di)) {
1159 ret = drop_one_dir_item(trans, root, path, dir, di);
1160 if (ret)
1161 return ret;
1163 btrfs_release_path(path);
1165 /* look for a conflicing name */
1166 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1167 name, namelen, 0);
1168 if (di && !IS_ERR(di)) {
1169 ret = drop_one_dir_item(trans, root, path, dir, di);
1170 if (ret)
1171 return ret;
1173 btrfs_release_path(path);
1175 return 0;
1178 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1179 u32 *namelen, char **name, u64 *index,
1180 u64 *parent_objectid)
1182 struct btrfs_inode_extref *extref;
1184 extref = (struct btrfs_inode_extref *)ref_ptr;
1186 *namelen = btrfs_inode_extref_name_len(eb, extref);
1187 *name = kmalloc(*namelen, GFP_NOFS);
1188 if (*name == NULL)
1189 return -ENOMEM;
1191 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1192 *namelen);
1194 *index = btrfs_inode_extref_index(eb, extref);
1195 if (parent_objectid)
1196 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1198 return 0;
1201 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 u32 *namelen, char **name, u64 *index)
1204 struct btrfs_inode_ref *ref;
1206 ref = (struct btrfs_inode_ref *)ref_ptr;
1208 *namelen = btrfs_inode_ref_name_len(eb, ref);
1209 *name = kmalloc(*namelen, GFP_NOFS);
1210 if (*name == NULL)
1211 return -ENOMEM;
1213 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1215 *index = btrfs_inode_ref_index(eb, ref);
1217 return 0;
1221 * replay one inode back reference item found in the log tree.
1222 * eb, slot and key refer to the buffer and key found in the log tree.
1223 * root is the destination we are replaying into, and path is for temp
1224 * use by this function. (it should be released on return).
1226 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1227 struct btrfs_root *root,
1228 struct btrfs_root *log,
1229 struct btrfs_path *path,
1230 struct extent_buffer *eb, int slot,
1231 struct btrfs_key *key)
1233 struct inode *dir = NULL;
1234 struct inode *inode = NULL;
1235 unsigned long ref_ptr;
1236 unsigned long ref_end;
1237 char *name = NULL;
1238 int namelen;
1239 int ret;
1240 int search_done = 0;
1241 int log_ref_ver = 0;
1242 u64 parent_objectid;
1243 u64 inode_objectid;
1244 u64 ref_index = 0;
1245 int ref_struct_size;
1247 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1248 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1250 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1251 struct btrfs_inode_extref *r;
1253 ref_struct_size = sizeof(struct btrfs_inode_extref);
1254 log_ref_ver = 1;
1255 r = (struct btrfs_inode_extref *)ref_ptr;
1256 parent_objectid = btrfs_inode_extref_parent(eb, r);
1257 } else {
1258 ref_struct_size = sizeof(struct btrfs_inode_ref);
1259 parent_objectid = key->offset;
1261 inode_objectid = key->objectid;
1264 * it is possible that we didn't log all the parent directories
1265 * for a given inode. If we don't find the dir, just don't
1266 * copy the back ref in. The link count fixup code will take
1267 * care of the rest
1269 dir = read_one_inode(root, parent_objectid);
1270 if (!dir) {
1271 ret = -ENOENT;
1272 goto out;
1275 inode = read_one_inode(root, inode_objectid);
1276 if (!inode) {
1277 ret = -EIO;
1278 goto out;
1281 while (ref_ptr < ref_end) {
1282 if (log_ref_ver) {
1283 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1284 &ref_index, &parent_objectid);
1286 * parent object can change from one array
1287 * item to another.
1289 if (!dir)
1290 dir = read_one_inode(root, parent_objectid);
1291 if (!dir) {
1292 ret = -ENOENT;
1293 goto out;
1295 } else {
1296 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1297 &ref_index);
1299 if (ret)
1300 goto out;
1302 /* if we already have a perfect match, we're done */
1303 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1304 btrfs_ino(BTRFS_I(inode)), ref_index,
1305 name, namelen)) {
1307 * look for a conflicting back reference in the
1308 * metadata. if we find one we have to unlink that name
1309 * of the file before we add our new link. Later on, we
1310 * overwrite any existing back reference, and we don't
1311 * want to create dangling pointers in the directory.
1314 if (!search_done) {
1315 ret = __add_inode_ref(trans, root, path, log,
1316 BTRFS_I(dir),
1317 BTRFS_I(inode),
1318 inode_objectid,
1319 parent_objectid,
1320 ref_index, name, namelen,
1321 &search_done);
1322 if (ret) {
1323 if (ret == 1)
1324 ret = 0;
1325 goto out;
1329 /* insert our name */
1330 ret = btrfs_add_link(trans, BTRFS_I(dir),
1331 BTRFS_I(inode),
1332 name, namelen, 0, ref_index);
1333 if (ret)
1334 goto out;
1336 btrfs_update_inode(trans, root, inode);
1339 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1340 kfree(name);
1341 name = NULL;
1342 if (log_ref_ver) {
1343 iput(dir);
1344 dir = NULL;
1348 /* finally write the back reference in the inode */
1349 ret = overwrite_item(trans, root, path, eb, slot, key);
1350 out:
1351 btrfs_release_path(path);
1352 kfree(name);
1353 iput(dir);
1354 iput(inode);
1355 return ret;
1358 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1359 struct btrfs_root *root, u64 ino)
1361 int ret;
1363 ret = btrfs_insert_orphan_item(trans, root, ino);
1364 if (ret == -EEXIST)
1365 ret = 0;
1367 return ret;
1370 static int count_inode_extrefs(struct btrfs_root *root,
1371 struct btrfs_inode *inode, struct btrfs_path *path)
1373 int ret = 0;
1374 int name_len;
1375 unsigned int nlink = 0;
1376 u32 item_size;
1377 u32 cur_offset = 0;
1378 u64 inode_objectid = btrfs_ino(inode);
1379 u64 offset = 0;
1380 unsigned long ptr;
1381 struct btrfs_inode_extref *extref;
1382 struct extent_buffer *leaf;
1384 while (1) {
1385 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1386 &extref, &offset);
1387 if (ret)
1388 break;
1390 leaf = path->nodes[0];
1391 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1392 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1393 cur_offset = 0;
1395 while (cur_offset < item_size) {
1396 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1397 name_len = btrfs_inode_extref_name_len(leaf, extref);
1399 nlink++;
1401 cur_offset += name_len + sizeof(*extref);
1404 offset++;
1405 btrfs_release_path(path);
1407 btrfs_release_path(path);
1409 if (ret < 0 && ret != -ENOENT)
1410 return ret;
1411 return nlink;
1414 static int count_inode_refs(struct btrfs_root *root,
1415 struct btrfs_inode *inode, struct btrfs_path *path)
1417 int ret;
1418 struct btrfs_key key;
1419 unsigned int nlink = 0;
1420 unsigned long ptr;
1421 unsigned long ptr_end;
1422 int name_len;
1423 u64 ino = btrfs_ino(inode);
1425 key.objectid = ino;
1426 key.type = BTRFS_INODE_REF_KEY;
1427 key.offset = (u64)-1;
1429 while (1) {
1430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1431 if (ret < 0)
1432 break;
1433 if (ret > 0) {
1434 if (path->slots[0] == 0)
1435 break;
1436 path->slots[0]--;
1438 process_slot:
1439 btrfs_item_key_to_cpu(path->nodes[0], &key,
1440 path->slots[0]);
1441 if (key.objectid != ino ||
1442 key.type != BTRFS_INODE_REF_KEY)
1443 break;
1444 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1445 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1446 path->slots[0]);
1447 while (ptr < ptr_end) {
1448 struct btrfs_inode_ref *ref;
1450 ref = (struct btrfs_inode_ref *)ptr;
1451 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1452 ref);
1453 ptr = (unsigned long)(ref + 1) + name_len;
1454 nlink++;
1457 if (key.offset == 0)
1458 break;
1459 if (path->slots[0] > 0) {
1460 path->slots[0]--;
1461 goto process_slot;
1463 key.offset--;
1464 btrfs_release_path(path);
1466 btrfs_release_path(path);
1468 return nlink;
1472 * There are a few corners where the link count of the file can't
1473 * be properly maintained during replay. So, instead of adding
1474 * lots of complexity to the log code, we just scan the backrefs
1475 * for any file that has been through replay.
1477 * The scan will update the link count on the inode to reflect the
1478 * number of back refs found. If it goes down to zero, the iput
1479 * will free the inode.
1481 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1482 struct btrfs_root *root,
1483 struct inode *inode)
1485 struct btrfs_path *path;
1486 int ret;
1487 u64 nlink = 0;
1488 u64 ino = btrfs_ino(BTRFS_I(inode));
1490 path = btrfs_alloc_path();
1491 if (!path)
1492 return -ENOMEM;
1494 ret = count_inode_refs(root, BTRFS_I(inode), path);
1495 if (ret < 0)
1496 goto out;
1498 nlink = ret;
1500 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1501 if (ret < 0)
1502 goto out;
1504 nlink += ret;
1506 ret = 0;
1508 if (nlink != inode->i_nlink) {
1509 set_nlink(inode, nlink);
1510 btrfs_update_inode(trans, root, inode);
1512 BTRFS_I(inode)->index_cnt = (u64)-1;
1514 if (inode->i_nlink == 0) {
1515 if (S_ISDIR(inode->i_mode)) {
1516 ret = replay_dir_deletes(trans, root, NULL, path,
1517 ino, 1);
1518 if (ret)
1519 goto out;
1521 ret = insert_orphan_item(trans, root, ino);
1524 out:
1525 btrfs_free_path(path);
1526 return ret;
1529 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root,
1531 struct btrfs_path *path)
1533 int ret;
1534 struct btrfs_key key;
1535 struct inode *inode;
1537 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1538 key.type = BTRFS_ORPHAN_ITEM_KEY;
1539 key.offset = (u64)-1;
1540 while (1) {
1541 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1542 if (ret < 0)
1543 break;
1545 if (ret == 1) {
1546 if (path->slots[0] == 0)
1547 break;
1548 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1552 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1553 key.type != BTRFS_ORPHAN_ITEM_KEY)
1554 break;
1556 ret = btrfs_del_item(trans, root, path);
1557 if (ret)
1558 goto out;
1560 btrfs_release_path(path);
1561 inode = read_one_inode(root, key.offset);
1562 if (!inode)
1563 return -EIO;
1565 ret = fixup_inode_link_count(trans, root, inode);
1566 iput(inode);
1567 if (ret)
1568 goto out;
1571 * fixup on a directory may create new entries,
1572 * make sure we always look for the highset possible
1573 * offset
1575 key.offset = (u64)-1;
1577 ret = 0;
1578 out:
1579 btrfs_release_path(path);
1580 return ret;
1585 * record a given inode in the fixup dir so we can check its link
1586 * count when replay is done. The link count is incremented here
1587 * so the inode won't go away until we check it
1589 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1590 struct btrfs_root *root,
1591 struct btrfs_path *path,
1592 u64 objectid)
1594 struct btrfs_key key;
1595 int ret = 0;
1596 struct inode *inode;
1598 inode = read_one_inode(root, objectid);
1599 if (!inode)
1600 return -EIO;
1602 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1603 key.type = BTRFS_ORPHAN_ITEM_KEY;
1604 key.offset = objectid;
1606 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1608 btrfs_release_path(path);
1609 if (ret == 0) {
1610 if (!inode->i_nlink)
1611 set_nlink(inode, 1);
1612 else
1613 inc_nlink(inode);
1614 ret = btrfs_update_inode(trans, root, inode);
1615 } else if (ret == -EEXIST) {
1616 ret = 0;
1617 } else {
1618 BUG(); /* Logic Error */
1620 iput(inode);
1622 return ret;
1626 * when replaying the log for a directory, we only insert names
1627 * for inodes that actually exist. This means an fsync on a directory
1628 * does not implicitly fsync all the new files in it
1630 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1631 struct btrfs_root *root,
1632 u64 dirid, u64 index,
1633 char *name, int name_len,
1634 struct btrfs_key *location)
1636 struct inode *inode;
1637 struct inode *dir;
1638 int ret;
1640 inode = read_one_inode(root, location->objectid);
1641 if (!inode)
1642 return -ENOENT;
1644 dir = read_one_inode(root, dirid);
1645 if (!dir) {
1646 iput(inode);
1647 return -EIO;
1650 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1651 name_len, 1, index);
1653 /* FIXME, put inode into FIXUP list */
1655 iput(inode);
1656 iput(dir);
1657 return ret;
1661 * Return true if an inode reference exists in the log for the given name,
1662 * inode and parent inode.
1664 static bool name_in_log_ref(struct btrfs_root *log_root,
1665 const char *name, const int name_len,
1666 const u64 dirid, const u64 ino)
1668 struct btrfs_key search_key;
1670 search_key.objectid = ino;
1671 search_key.type = BTRFS_INODE_REF_KEY;
1672 search_key.offset = dirid;
1673 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1674 return true;
1676 search_key.type = BTRFS_INODE_EXTREF_KEY;
1677 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1678 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1679 return true;
1681 return false;
1685 * take a single entry in a log directory item and replay it into
1686 * the subvolume.
1688 * if a conflicting item exists in the subdirectory already,
1689 * the inode it points to is unlinked and put into the link count
1690 * fix up tree.
1692 * If a name from the log points to a file or directory that does
1693 * not exist in the FS, it is skipped. fsyncs on directories
1694 * do not force down inodes inside that directory, just changes to the
1695 * names or unlinks in a directory.
1697 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1698 * non-existing inode) and 1 if the name was replayed.
1700 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1701 struct btrfs_root *root,
1702 struct btrfs_path *path,
1703 struct extent_buffer *eb,
1704 struct btrfs_dir_item *di,
1705 struct btrfs_key *key)
1707 char *name;
1708 int name_len;
1709 struct btrfs_dir_item *dst_di;
1710 struct btrfs_key found_key;
1711 struct btrfs_key log_key;
1712 struct inode *dir;
1713 u8 log_type;
1714 int exists;
1715 int ret = 0;
1716 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1717 bool name_added = false;
1719 dir = read_one_inode(root, key->objectid);
1720 if (!dir)
1721 return -EIO;
1723 name_len = btrfs_dir_name_len(eb, di);
1724 name = kmalloc(name_len, GFP_NOFS);
1725 if (!name) {
1726 ret = -ENOMEM;
1727 goto out;
1730 log_type = btrfs_dir_type(eb, di);
1731 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1732 name_len);
1734 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1735 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1736 if (exists == 0)
1737 exists = 1;
1738 else
1739 exists = 0;
1740 btrfs_release_path(path);
1742 if (key->type == BTRFS_DIR_ITEM_KEY) {
1743 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1744 name, name_len, 1);
1745 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1746 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1747 key->objectid,
1748 key->offset, name,
1749 name_len, 1);
1750 } else {
1751 /* Corruption */
1752 ret = -EINVAL;
1753 goto out;
1755 if (IS_ERR_OR_NULL(dst_di)) {
1756 /* we need a sequence number to insert, so we only
1757 * do inserts for the BTRFS_DIR_INDEX_KEY types
1759 if (key->type != BTRFS_DIR_INDEX_KEY)
1760 goto out;
1761 goto insert;
1764 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1765 /* the existing item matches the logged item */
1766 if (found_key.objectid == log_key.objectid &&
1767 found_key.type == log_key.type &&
1768 found_key.offset == log_key.offset &&
1769 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1770 update_size = false;
1771 goto out;
1775 * don't drop the conflicting directory entry if the inode
1776 * for the new entry doesn't exist
1778 if (!exists)
1779 goto out;
1781 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1782 if (ret)
1783 goto out;
1785 if (key->type == BTRFS_DIR_INDEX_KEY)
1786 goto insert;
1787 out:
1788 btrfs_release_path(path);
1789 if (!ret && update_size) {
1790 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1791 ret = btrfs_update_inode(trans, root, dir);
1793 kfree(name);
1794 iput(dir);
1795 if (!ret && name_added)
1796 ret = 1;
1797 return ret;
1799 insert:
1800 if (name_in_log_ref(root->log_root, name, name_len,
1801 key->objectid, log_key.objectid)) {
1802 /* The dentry will be added later. */
1803 ret = 0;
1804 update_size = false;
1805 goto out;
1807 btrfs_release_path(path);
1808 ret = insert_one_name(trans, root, key->objectid, key->offset,
1809 name, name_len, &log_key);
1810 if (ret && ret != -ENOENT && ret != -EEXIST)
1811 goto out;
1812 if (!ret)
1813 name_added = true;
1814 update_size = false;
1815 ret = 0;
1816 goto out;
1820 * find all the names in a directory item and reconcile them into
1821 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1822 * one name in a directory item, but the same code gets used for
1823 * both directory index types
1825 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1826 struct btrfs_root *root,
1827 struct btrfs_path *path,
1828 struct extent_buffer *eb, int slot,
1829 struct btrfs_key *key)
1831 int ret = 0;
1832 u32 item_size = btrfs_item_size_nr(eb, slot);
1833 struct btrfs_dir_item *di;
1834 int name_len;
1835 unsigned long ptr;
1836 unsigned long ptr_end;
1837 struct btrfs_path *fixup_path = NULL;
1839 ptr = btrfs_item_ptr_offset(eb, slot);
1840 ptr_end = ptr + item_size;
1841 while (ptr < ptr_end) {
1842 di = (struct btrfs_dir_item *)ptr;
1843 name_len = btrfs_dir_name_len(eb, di);
1844 ret = replay_one_name(trans, root, path, eb, di, key);
1845 if (ret < 0)
1846 break;
1847 ptr = (unsigned long)(di + 1);
1848 ptr += name_len;
1851 * If this entry refers to a non-directory (directories can not
1852 * have a link count > 1) and it was added in the transaction
1853 * that was not committed, make sure we fixup the link count of
1854 * the inode it the entry points to. Otherwise something like
1855 * the following would result in a directory pointing to an
1856 * inode with a wrong link that does not account for this dir
1857 * entry:
1859 * mkdir testdir
1860 * touch testdir/foo
1861 * touch testdir/bar
1862 * sync
1864 * ln testdir/bar testdir/bar_link
1865 * ln testdir/foo testdir/foo_link
1866 * xfs_io -c "fsync" testdir/bar
1868 * <power failure>
1870 * mount fs, log replay happens
1872 * File foo would remain with a link count of 1 when it has two
1873 * entries pointing to it in the directory testdir. This would
1874 * make it impossible to ever delete the parent directory has
1875 * it would result in stale dentries that can never be deleted.
1877 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1878 struct btrfs_key di_key;
1880 if (!fixup_path) {
1881 fixup_path = btrfs_alloc_path();
1882 if (!fixup_path) {
1883 ret = -ENOMEM;
1884 break;
1888 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1889 ret = link_to_fixup_dir(trans, root, fixup_path,
1890 di_key.objectid);
1891 if (ret)
1892 break;
1894 ret = 0;
1896 btrfs_free_path(fixup_path);
1897 return ret;
1901 * directory replay has two parts. There are the standard directory
1902 * items in the log copied from the subvolume, and range items
1903 * created in the log while the subvolume was logged.
1905 * The range items tell us which parts of the key space the log
1906 * is authoritative for. During replay, if a key in the subvolume
1907 * directory is in a logged range item, but not actually in the log
1908 * that means it was deleted from the directory before the fsync
1909 * and should be removed.
1911 static noinline int find_dir_range(struct btrfs_root *root,
1912 struct btrfs_path *path,
1913 u64 dirid, int key_type,
1914 u64 *start_ret, u64 *end_ret)
1916 struct btrfs_key key;
1917 u64 found_end;
1918 struct btrfs_dir_log_item *item;
1919 int ret;
1920 int nritems;
1922 if (*start_ret == (u64)-1)
1923 return 1;
1925 key.objectid = dirid;
1926 key.type = key_type;
1927 key.offset = *start_ret;
1929 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1930 if (ret < 0)
1931 goto out;
1932 if (ret > 0) {
1933 if (path->slots[0] == 0)
1934 goto out;
1935 path->slots[0]--;
1937 if (ret != 0)
1938 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1940 if (key.type != key_type || key.objectid != dirid) {
1941 ret = 1;
1942 goto next;
1944 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1945 struct btrfs_dir_log_item);
1946 found_end = btrfs_dir_log_end(path->nodes[0], item);
1948 if (*start_ret >= key.offset && *start_ret <= found_end) {
1949 ret = 0;
1950 *start_ret = key.offset;
1951 *end_ret = found_end;
1952 goto out;
1954 ret = 1;
1955 next:
1956 /* check the next slot in the tree to see if it is a valid item */
1957 nritems = btrfs_header_nritems(path->nodes[0]);
1958 path->slots[0]++;
1959 if (path->slots[0] >= nritems) {
1960 ret = btrfs_next_leaf(root, path);
1961 if (ret)
1962 goto out;
1965 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1967 if (key.type != key_type || key.objectid != dirid) {
1968 ret = 1;
1969 goto out;
1971 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1972 struct btrfs_dir_log_item);
1973 found_end = btrfs_dir_log_end(path->nodes[0], item);
1974 *start_ret = key.offset;
1975 *end_ret = found_end;
1976 ret = 0;
1977 out:
1978 btrfs_release_path(path);
1979 return ret;
1983 * this looks for a given directory item in the log. If the directory
1984 * item is not in the log, the item is removed and the inode it points
1985 * to is unlinked
1987 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1988 struct btrfs_root *root,
1989 struct btrfs_root *log,
1990 struct btrfs_path *path,
1991 struct btrfs_path *log_path,
1992 struct inode *dir,
1993 struct btrfs_key *dir_key)
1995 struct btrfs_fs_info *fs_info = root->fs_info;
1996 int ret;
1997 struct extent_buffer *eb;
1998 int slot;
1999 u32 item_size;
2000 struct btrfs_dir_item *di;
2001 struct btrfs_dir_item *log_di;
2002 int name_len;
2003 unsigned long ptr;
2004 unsigned long ptr_end;
2005 char *name;
2006 struct inode *inode;
2007 struct btrfs_key location;
2009 again:
2010 eb = path->nodes[0];
2011 slot = path->slots[0];
2012 item_size = btrfs_item_size_nr(eb, slot);
2013 ptr = btrfs_item_ptr_offset(eb, slot);
2014 ptr_end = ptr + item_size;
2015 while (ptr < ptr_end) {
2016 di = (struct btrfs_dir_item *)ptr;
2017 name_len = btrfs_dir_name_len(eb, di);
2018 name = kmalloc(name_len, GFP_NOFS);
2019 if (!name) {
2020 ret = -ENOMEM;
2021 goto out;
2023 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2024 name_len);
2025 log_di = NULL;
2026 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2027 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2028 dir_key->objectid,
2029 name, name_len, 0);
2030 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2031 log_di = btrfs_lookup_dir_index_item(trans, log,
2032 log_path,
2033 dir_key->objectid,
2034 dir_key->offset,
2035 name, name_len, 0);
2037 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2038 btrfs_dir_item_key_to_cpu(eb, di, &location);
2039 btrfs_release_path(path);
2040 btrfs_release_path(log_path);
2041 inode = read_one_inode(root, location.objectid);
2042 if (!inode) {
2043 kfree(name);
2044 return -EIO;
2047 ret = link_to_fixup_dir(trans, root,
2048 path, location.objectid);
2049 if (ret) {
2050 kfree(name);
2051 iput(inode);
2052 goto out;
2055 inc_nlink(inode);
2056 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2057 BTRFS_I(inode), name, name_len);
2058 if (!ret)
2059 ret = btrfs_run_delayed_items(trans, fs_info);
2060 kfree(name);
2061 iput(inode);
2062 if (ret)
2063 goto out;
2065 /* there might still be more names under this key
2066 * check and repeat if required
2068 ret = btrfs_search_slot(NULL, root, dir_key, path,
2069 0, 0);
2070 if (ret == 0)
2071 goto again;
2072 ret = 0;
2073 goto out;
2074 } else if (IS_ERR(log_di)) {
2075 kfree(name);
2076 return PTR_ERR(log_di);
2078 btrfs_release_path(log_path);
2079 kfree(name);
2081 ptr = (unsigned long)(di + 1);
2082 ptr += name_len;
2084 ret = 0;
2085 out:
2086 btrfs_release_path(path);
2087 btrfs_release_path(log_path);
2088 return ret;
2091 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2092 struct btrfs_root *root,
2093 struct btrfs_root *log,
2094 struct btrfs_path *path,
2095 const u64 ino)
2097 struct btrfs_key search_key;
2098 struct btrfs_path *log_path;
2099 int i;
2100 int nritems;
2101 int ret;
2103 log_path = btrfs_alloc_path();
2104 if (!log_path)
2105 return -ENOMEM;
2107 search_key.objectid = ino;
2108 search_key.type = BTRFS_XATTR_ITEM_KEY;
2109 search_key.offset = 0;
2110 again:
2111 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2112 if (ret < 0)
2113 goto out;
2114 process_leaf:
2115 nritems = btrfs_header_nritems(path->nodes[0]);
2116 for (i = path->slots[0]; i < nritems; i++) {
2117 struct btrfs_key key;
2118 struct btrfs_dir_item *di;
2119 struct btrfs_dir_item *log_di;
2120 u32 total_size;
2121 u32 cur;
2123 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2124 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2125 ret = 0;
2126 goto out;
2129 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2130 total_size = btrfs_item_size_nr(path->nodes[0], i);
2131 cur = 0;
2132 while (cur < total_size) {
2133 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2134 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2135 u32 this_len = sizeof(*di) + name_len + data_len;
2136 char *name;
2138 name = kmalloc(name_len, GFP_NOFS);
2139 if (!name) {
2140 ret = -ENOMEM;
2141 goto out;
2143 read_extent_buffer(path->nodes[0], name,
2144 (unsigned long)(di + 1), name_len);
2146 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2147 name, name_len, 0);
2148 btrfs_release_path(log_path);
2149 if (!log_di) {
2150 /* Doesn't exist in log tree, so delete it. */
2151 btrfs_release_path(path);
2152 di = btrfs_lookup_xattr(trans, root, path, ino,
2153 name, name_len, -1);
2154 kfree(name);
2155 if (IS_ERR(di)) {
2156 ret = PTR_ERR(di);
2157 goto out;
2159 ASSERT(di);
2160 ret = btrfs_delete_one_dir_name(trans, root,
2161 path, di);
2162 if (ret)
2163 goto out;
2164 btrfs_release_path(path);
2165 search_key = key;
2166 goto again;
2168 kfree(name);
2169 if (IS_ERR(log_di)) {
2170 ret = PTR_ERR(log_di);
2171 goto out;
2173 cur += this_len;
2174 di = (struct btrfs_dir_item *)((char *)di + this_len);
2177 ret = btrfs_next_leaf(root, path);
2178 if (ret > 0)
2179 ret = 0;
2180 else if (ret == 0)
2181 goto process_leaf;
2182 out:
2183 btrfs_free_path(log_path);
2184 btrfs_release_path(path);
2185 return ret;
2190 * deletion replay happens before we copy any new directory items
2191 * out of the log or out of backreferences from inodes. It
2192 * scans the log to find ranges of keys that log is authoritative for,
2193 * and then scans the directory to find items in those ranges that are
2194 * not present in the log.
2196 * Anything we don't find in the log is unlinked and removed from the
2197 * directory.
2199 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct btrfs_root *log,
2202 struct btrfs_path *path,
2203 u64 dirid, int del_all)
2205 u64 range_start;
2206 u64 range_end;
2207 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2208 int ret = 0;
2209 struct btrfs_key dir_key;
2210 struct btrfs_key found_key;
2211 struct btrfs_path *log_path;
2212 struct inode *dir;
2214 dir_key.objectid = dirid;
2215 dir_key.type = BTRFS_DIR_ITEM_KEY;
2216 log_path = btrfs_alloc_path();
2217 if (!log_path)
2218 return -ENOMEM;
2220 dir = read_one_inode(root, dirid);
2221 /* it isn't an error if the inode isn't there, that can happen
2222 * because we replay the deletes before we copy in the inode item
2223 * from the log
2225 if (!dir) {
2226 btrfs_free_path(log_path);
2227 return 0;
2229 again:
2230 range_start = 0;
2231 range_end = 0;
2232 while (1) {
2233 if (del_all)
2234 range_end = (u64)-1;
2235 else {
2236 ret = find_dir_range(log, path, dirid, key_type,
2237 &range_start, &range_end);
2238 if (ret != 0)
2239 break;
2242 dir_key.offset = range_start;
2243 while (1) {
2244 int nritems;
2245 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2246 0, 0);
2247 if (ret < 0)
2248 goto out;
2250 nritems = btrfs_header_nritems(path->nodes[0]);
2251 if (path->slots[0] >= nritems) {
2252 ret = btrfs_next_leaf(root, path);
2253 if (ret)
2254 break;
2256 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2257 path->slots[0]);
2258 if (found_key.objectid != dirid ||
2259 found_key.type != dir_key.type)
2260 goto next_type;
2262 if (found_key.offset > range_end)
2263 break;
2265 ret = check_item_in_log(trans, root, log, path,
2266 log_path, dir,
2267 &found_key);
2268 if (ret)
2269 goto out;
2270 if (found_key.offset == (u64)-1)
2271 break;
2272 dir_key.offset = found_key.offset + 1;
2274 btrfs_release_path(path);
2275 if (range_end == (u64)-1)
2276 break;
2277 range_start = range_end + 1;
2280 next_type:
2281 ret = 0;
2282 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2283 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2284 dir_key.type = BTRFS_DIR_INDEX_KEY;
2285 btrfs_release_path(path);
2286 goto again;
2288 out:
2289 btrfs_release_path(path);
2290 btrfs_free_path(log_path);
2291 iput(dir);
2292 return ret;
2296 * the process_func used to replay items from the log tree. This
2297 * gets called in two different stages. The first stage just looks
2298 * for inodes and makes sure they are all copied into the subvolume.
2300 * The second stage copies all the other item types from the log into
2301 * the subvolume. The two stage approach is slower, but gets rid of
2302 * lots of complexity around inodes referencing other inodes that exist
2303 * only in the log (references come from either directory items or inode
2304 * back refs).
2306 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2307 struct walk_control *wc, u64 gen)
2309 int nritems;
2310 struct btrfs_path *path;
2311 struct btrfs_root *root = wc->replay_dest;
2312 struct btrfs_key key;
2313 int level;
2314 int i;
2315 int ret;
2317 ret = btrfs_read_buffer(eb, gen);
2318 if (ret)
2319 return ret;
2321 level = btrfs_header_level(eb);
2323 if (level != 0)
2324 return 0;
2326 path = btrfs_alloc_path();
2327 if (!path)
2328 return -ENOMEM;
2330 nritems = btrfs_header_nritems(eb);
2331 for (i = 0; i < nritems; i++) {
2332 btrfs_item_key_to_cpu(eb, &key, i);
2334 /* inode keys are done during the first stage */
2335 if (key.type == BTRFS_INODE_ITEM_KEY &&
2336 wc->stage == LOG_WALK_REPLAY_INODES) {
2337 struct btrfs_inode_item *inode_item;
2338 u32 mode;
2340 inode_item = btrfs_item_ptr(eb, i,
2341 struct btrfs_inode_item);
2342 ret = replay_xattr_deletes(wc->trans, root, log,
2343 path, key.objectid);
2344 if (ret)
2345 break;
2346 mode = btrfs_inode_mode(eb, inode_item);
2347 if (S_ISDIR(mode)) {
2348 ret = replay_dir_deletes(wc->trans,
2349 root, log, path, key.objectid, 0);
2350 if (ret)
2351 break;
2353 ret = overwrite_item(wc->trans, root, path,
2354 eb, i, &key);
2355 if (ret)
2356 break;
2358 /* for regular files, make sure corresponding
2359 * orphan item exist. extents past the new EOF
2360 * will be truncated later by orphan cleanup.
2362 if (S_ISREG(mode)) {
2363 ret = insert_orphan_item(wc->trans, root,
2364 key.objectid);
2365 if (ret)
2366 break;
2369 ret = link_to_fixup_dir(wc->trans, root,
2370 path, key.objectid);
2371 if (ret)
2372 break;
2375 if (key.type == BTRFS_DIR_INDEX_KEY &&
2376 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2377 ret = replay_one_dir_item(wc->trans, root, path,
2378 eb, i, &key);
2379 if (ret)
2380 break;
2383 if (wc->stage < LOG_WALK_REPLAY_ALL)
2384 continue;
2386 /* these keys are simply copied */
2387 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2388 ret = overwrite_item(wc->trans, root, path,
2389 eb, i, &key);
2390 if (ret)
2391 break;
2392 } else if (key.type == BTRFS_INODE_REF_KEY ||
2393 key.type == BTRFS_INODE_EXTREF_KEY) {
2394 ret = add_inode_ref(wc->trans, root, log, path,
2395 eb, i, &key);
2396 if (ret && ret != -ENOENT)
2397 break;
2398 ret = 0;
2399 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2400 ret = replay_one_extent(wc->trans, root, path,
2401 eb, i, &key);
2402 if (ret)
2403 break;
2404 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2405 ret = replay_one_dir_item(wc->trans, root, path,
2406 eb, i, &key);
2407 if (ret)
2408 break;
2411 btrfs_free_path(path);
2412 return ret;
2415 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2416 struct btrfs_root *root,
2417 struct btrfs_path *path, int *level,
2418 struct walk_control *wc)
2420 struct btrfs_fs_info *fs_info = root->fs_info;
2421 u64 root_owner;
2422 u64 bytenr;
2423 u64 ptr_gen;
2424 struct extent_buffer *next;
2425 struct extent_buffer *cur;
2426 struct extent_buffer *parent;
2427 u32 blocksize;
2428 int ret = 0;
2430 WARN_ON(*level < 0);
2431 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2433 while (*level > 0) {
2434 WARN_ON(*level < 0);
2435 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2436 cur = path->nodes[*level];
2438 WARN_ON(btrfs_header_level(cur) != *level);
2440 if (path->slots[*level] >=
2441 btrfs_header_nritems(cur))
2442 break;
2444 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2445 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2446 blocksize = fs_info->nodesize;
2448 parent = path->nodes[*level];
2449 root_owner = btrfs_header_owner(parent);
2451 next = btrfs_find_create_tree_block(fs_info, bytenr);
2452 if (IS_ERR(next))
2453 return PTR_ERR(next);
2455 if (*level == 1) {
2456 ret = wc->process_func(root, next, wc, ptr_gen);
2457 if (ret) {
2458 free_extent_buffer(next);
2459 return ret;
2462 path->slots[*level]++;
2463 if (wc->free) {
2464 ret = btrfs_read_buffer(next, ptr_gen);
2465 if (ret) {
2466 free_extent_buffer(next);
2467 return ret;
2470 if (trans) {
2471 btrfs_tree_lock(next);
2472 btrfs_set_lock_blocking(next);
2473 clean_tree_block(fs_info, next);
2474 btrfs_wait_tree_block_writeback(next);
2475 btrfs_tree_unlock(next);
2476 } else {
2477 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2478 clear_extent_buffer_dirty(next);
2481 WARN_ON(root_owner !=
2482 BTRFS_TREE_LOG_OBJECTID);
2483 ret = btrfs_free_and_pin_reserved_extent(
2484 fs_info, bytenr,
2485 blocksize);
2486 if (ret) {
2487 free_extent_buffer(next);
2488 return ret;
2491 free_extent_buffer(next);
2492 continue;
2494 ret = btrfs_read_buffer(next, ptr_gen);
2495 if (ret) {
2496 free_extent_buffer(next);
2497 return ret;
2500 WARN_ON(*level <= 0);
2501 if (path->nodes[*level-1])
2502 free_extent_buffer(path->nodes[*level-1]);
2503 path->nodes[*level-1] = next;
2504 *level = btrfs_header_level(next);
2505 path->slots[*level] = 0;
2506 cond_resched();
2508 WARN_ON(*level < 0);
2509 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2511 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2513 cond_resched();
2514 return 0;
2517 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2518 struct btrfs_root *root,
2519 struct btrfs_path *path, int *level,
2520 struct walk_control *wc)
2522 struct btrfs_fs_info *fs_info = root->fs_info;
2523 u64 root_owner;
2524 int i;
2525 int slot;
2526 int ret;
2528 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2529 slot = path->slots[i];
2530 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2531 path->slots[i]++;
2532 *level = i;
2533 WARN_ON(*level == 0);
2534 return 0;
2535 } else {
2536 struct extent_buffer *parent;
2537 if (path->nodes[*level] == root->node)
2538 parent = path->nodes[*level];
2539 else
2540 parent = path->nodes[*level + 1];
2542 root_owner = btrfs_header_owner(parent);
2543 ret = wc->process_func(root, path->nodes[*level], wc,
2544 btrfs_header_generation(path->nodes[*level]));
2545 if (ret)
2546 return ret;
2548 if (wc->free) {
2549 struct extent_buffer *next;
2551 next = path->nodes[*level];
2553 if (trans) {
2554 btrfs_tree_lock(next);
2555 btrfs_set_lock_blocking(next);
2556 clean_tree_block(fs_info, next);
2557 btrfs_wait_tree_block_writeback(next);
2558 btrfs_tree_unlock(next);
2559 } else {
2560 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2561 clear_extent_buffer_dirty(next);
2564 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2565 ret = btrfs_free_and_pin_reserved_extent(
2566 fs_info,
2567 path->nodes[*level]->start,
2568 path->nodes[*level]->len);
2569 if (ret)
2570 return ret;
2572 free_extent_buffer(path->nodes[*level]);
2573 path->nodes[*level] = NULL;
2574 *level = i + 1;
2577 return 1;
2581 * drop the reference count on the tree rooted at 'snap'. This traverses
2582 * the tree freeing any blocks that have a ref count of zero after being
2583 * decremented.
2585 static int walk_log_tree(struct btrfs_trans_handle *trans,
2586 struct btrfs_root *log, struct walk_control *wc)
2588 struct btrfs_fs_info *fs_info = log->fs_info;
2589 int ret = 0;
2590 int wret;
2591 int level;
2592 struct btrfs_path *path;
2593 int orig_level;
2595 path = btrfs_alloc_path();
2596 if (!path)
2597 return -ENOMEM;
2599 level = btrfs_header_level(log->node);
2600 orig_level = level;
2601 path->nodes[level] = log->node;
2602 extent_buffer_get(log->node);
2603 path->slots[level] = 0;
2605 while (1) {
2606 wret = walk_down_log_tree(trans, log, path, &level, wc);
2607 if (wret > 0)
2608 break;
2609 if (wret < 0) {
2610 ret = wret;
2611 goto out;
2614 wret = walk_up_log_tree(trans, log, path, &level, wc);
2615 if (wret > 0)
2616 break;
2617 if (wret < 0) {
2618 ret = wret;
2619 goto out;
2623 /* was the root node processed? if not, catch it here */
2624 if (path->nodes[orig_level]) {
2625 ret = wc->process_func(log, path->nodes[orig_level], wc,
2626 btrfs_header_generation(path->nodes[orig_level]));
2627 if (ret)
2628 goto out;
2629 if (wc->free) {
2630 struct extent_buffer *next;
2632 next = path->nodes[orig_level];
2634 if (trans) {
2635 btrfs_tree_lock(next);
2636 btrfs_set_lock_blocking(next);
2637 clean_tree_block(fs_info, next);
2638 btrfs_wait_tree_block_writeback(next);
2639 btrfs_tree_unlock(next);
2640 } else {
2641 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2642 clear_extent_buffer_dirty(next);
2645 WARN_ON(log->root_key.objectid !=
2646 BTRFS_TREE_LOG_OBJECTID);
2647 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2648 next->start, next->len);
2649 if (ret)
2650 goto out;
2654 out:
2655 btrfs_free_path(path);
2656 return ret;
2660 * helper function to update the item for a given subvolumes log root
2661 * in the tree of log roots
2663 static int update_log_root(struct btrfs_trans_handle *trans,
2664 struct btrfs_root *log)
2666 struct btrfs_fs_info *fs_info = log->fs_info;
2667 int ret;
2669 if (log->log_transid == 1) {
2670 /* insert root item on the first sync */
2671 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2672 &log->root_key, &log->root_item);
2673 } else {
2674 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2675 &log->root_key, &log->root_item);
2677 return ret;
2680 static void wait_log_commit(struct btrfs_root *root, int transid)
2682 DEFINE_WAIT(wait);
2683 int index = transid % 2;
2686 * we only allow two pending log transactions at a time,
2687 * so we know that if ours is more than 2 older than the
2688 * current transaction, we're done
2690 for (;;) {
2691 prepare_to_wait(&root->log_commit_wait[index],
2692 &wait, TASK_UNINTERRUPTIBLE);
2694 if (!(root->log_transid_committed < transid &&
2695 atomic_read(&root->log_commit[index])))
2696 break;
2698 mutex_unlock(&root->log_mutex);
2699 schedule();
2700 mutex_lock(&root->log_mutex);
2702 finish_wait(&root->log_commit_wait[index], &wait);
2705 static void wait_for_writer(struct btrfs_root *root)
2707 DEFINE_WAIT(wait);
2709 for (;;) {
2710 prepare_to_wait(&root->log_writer_wait, &wait,
2711 TASK_UNINTERRUPTIBLE);
2712 if (!atomic_read(&root->log_writers))
2713 break;
2715 mutex_unlock(&root->log_mutex);
2716 schedule();
2717 mutex_lock(&root->log_mutex);
2719 finish_wait(&root->log_writer_wait, &wait);
2722 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2723 struct btrfs_log_ctx *ctx)
2725 if (!ctx)
2726 return;
2728 mutex_lock(&root->log_mutex);
2729 list_del_init(&ctx->list);
2730 mutex_unlock(&root->log_mutex);
2734 * Invoked in log mutex context, or be sure there is no other task which
2735 * can access the list.
2737 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2738 int index, int error)
2740 struct btrfs_log_ctx *ctx;
2741 struct btrfs_log_ctx *safe;
2743 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2744 list_del_init(&ctx->list);
2745 ctx->log_ret = error;
2748 INIT_LIST_HEAD(&root->log_ctxs[index]);
2752 * btrfs_sync_log does sends a given tree log down to the disk and
2753 * updates the super blocks to record it. When this call is done,
2754 * you know that any inodes previously logged are safely on disk only
2755 * if it returns 0.
2757 * Any other return value means you need to call btrfs_commit_transaction.
2758 * Some of the edge cases for fsyncing directories that have had unlinks
2759 * or renames done in the past mean that sometimes the only safe
2760 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2761 * that has happened.
2763 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2766 int index1;
2767 int index2;
2768 int mark;
2769 int ret;
2770 struct btrfs_fs_info *fs_info = root->fs_info;
2771 struct btrfs_root *log = root->log_root;
2772 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2773 int log_transid = 0;
2774 struct btrfs_log_ctx root_log_ctx;
2775 struct blk_plug plug;
2777 mutex_lock(&root->log_mutex);
2778 log_transid = ctx->log_transid;
2779 if (root->log_transid_committed >= log_transid) {
2780 mutex_unlock(&root->log_mutex);
2781 return ctx->log_ret;
2784 index1 = log_transid % 2;
2785 if (atomic_read(&root->log_commit[index1])) {
2786 wait_log_commit(root, log_transid);
2787 mutex_unlock(&root->log_mutex);
2788 return ctx->log_ret;
2790 ASSERT(log_transid == root->log_transid);
2791 atomic_set(&root->log_commit[index1], 1);
2793 /* wait for previous tree log sync to complete */
2794 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2795 wait_log_commit(root, log_transid - 1);
2797 while (1) {
2798 int batch = atomic_read(&root->log_batch);
2799 /* when we're on an ssd, just kick the log commit out */
2800 if (!btrfs_test_opt(fs_info, SSD) &&
2801 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2802 mutex_unlock(&root->log_mutex);
2803 schedule_timeout_uninterruptible(1);
2804 mutex_lock(&root->log_mutex);
2806 wait_for_writer(root);
2807 if (batch == atomic_read(&root->log_batch))
2808 break;
2811 /* bail out if we need to do a full commit */
2812 if (btrfs_need_log_full_commit(fs_info, trans)) {
2813 ret = -EAGAIN;
2814 btrfs_free_logged_extents(log, log_transid);
2815 mutex_unlock(&root->log_mutex);
2816 goto out;
2819 if (log_transid % 2 == 0)
2820 mark = EXTENT_DIRTY;
2821 else
2822 mark = EXTENT_NEW;
2824 /* we start IO on all the marked extents here, but we don't actually
2825 * wait for them until later.
2827 blk_start_plug(&plug);
2828 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2829 if (ret) {
2830 blk_finish_plug(&plug);
2831 btrfs_abort_transaction(trans, ret);
2832 btrfs_free_logged_extents(log, log_transid);
2833 btrfs_set_log_full_commit(fs_info, trans);
2834 mutex_unlock(&root->log_mutex);
2835 goto out;
2838 btrfs_set_root_node(&log->root_item, log->node);
2840 root->log_transid++;
2841 log->log_transid = root->log_transid;
2842 root->log_start_pid = 0;
2844 * IO has been started, blocks of the log tree have WRITTEN flag set
2845 * in their headers. new modifications of the log will be written to
2846 * new positions. so it's safe to allow log writers to go in.
2848 mutex_unlock(&root->log_mutex);
2850 btrfs_init_log_ctx(&root_log_ctx, NULL);
2852 mutex_lock(&log_root_tree->log_mutex);
2853 atomic_inc(&log_root_tree->log_batch);
2854 atomic_inc(&log_root_tree->log_writers);
2856 index2 = log_root_tree->log_transid % 2;
2857 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2858 root_log_ctx.log_transid = log_root_tree->log_transid;
2860 mutex_unlock(&log_root_tree->log_mutex);
2862 ret = update_log_root(trans, log);
2864 mutex_lock(&log_root_tree->log_mutex);
2865 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2867 * Implicit memory barrier after atomic_dec_and_test
2869 if (waitqueue_active(&log_root_tree->log_writer_wait))
2870 wake_up(&log_root_tree->log_writer_wait);
2873 if (ret) {
2874 if (!list_empty(&root_log_ctx.list))
2875 list_del_init(&root_log_ctx.list);
2877 blk_finish_plug(&plug);
2878 btrfs_set_log_full_commit(fs_info, trans);
2880 if (ret != -ENOSPC) {
2881 btrfs_abort_transaction(trans, ret);
2882 mutex_unlock(&log_root_tree->log_mutex);
2883 goto out;
2885 btrfs_wait_tree_log_extents(log, mark);
2886 btrfs_free_logged_extents(log, log_transid);
2887 mutex_unlock(&log_root_tree->log_mutex);
2888 ret = -EAGAIN;
2889 goto out;
2892 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2893 blk_finish_plug(&plug);
2894 list_del_init(&root_log_ctx.list);
2895 mutex_unlock(&log_root_tree->log_mutex);
2896 ret = root_log_ctx.log_ret;
2897 goto out;
2900 index2 = root_log_ctx.log_transid % 2;
2901 if (atomic_read(&log_root_tree->log_commit[index2])) {
2902 blk_finish_plug(&plug);
2903 ret = btrfs_wait_tree_log_extents(log, mark);
2904 btrfs_wait_logged_extents(trans, log, log_transid);
2905 wait_log_commit(log_root_tree,
2906 root_log_ctx.log_transid);
2907 mutex_unlock(&log_root_tree->log_mutex);
2908 if (!ret)
2909 ret = root_log_ctx.log_ret;
2910 goto out;
2912 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2913 atomic_set(&log_root_tree->log_commit[index2], 1);
2915 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2916 wait_log_commit(log_root_tree,
2917 root_log_ctx.log_transid - 1);
2920 wait_for_writer(log_root_tree);
2923 * now that we've moved on to the tree of log tree roots,
2924 * check the full commit flag again
2926 if (btrfs_need_log_full_commit(fs_info, trans)) {
2927 blk_finish_plug(&plug);
2928 btrfs_wait_tree_log_extents(log, mark);
2929 btrfs_free_logged_extents(log, log_transid);
2930 mutex_unlock(&log_root_tree->log_mutex);
2931 ret = -EAGAIN;
2932 goto out_wake_log_root;
2935 ret = btrfs_write_marked_extents(fs_info,
2936 &log_root_tree->dirty_log_pages,
2937 EXTENT_DIRTY | EXTENT_NEW);
2938 blk_finish_plug(&plug);
2939 if (ret) {
2940 btrfs_set_log_full_commit(fs_info, trans);
2941 btrfs_abort_transaction(trans, ret);
2942 btrfs_free_logged_extents(log, log_transid);
2943 mutex_unlock(&log_root_tree->log_mutex);
2944 goto out_wake_log_root;
2946 ret = btrfs_wait_tree_log_extents(log, mark);
2947 if (!ret)
2948 ret = btrfs_wait_tree_log_extents(log_root_tree,
2949 EXTENT_NEW | EXTENT_DIRTY);
2950 if (ret) {
2951 btrfs_set_log_full_commit(fs_info, trans);
2952 btrfs_free_logged_extents(log, log_transid);
2953 mutex_unlock(&log_root_tree->log_mutex);
2954 goto out_wake_log_root;
2956 btrfs_wait_logged_extents(trans, log, log_transid);
2958 btrfs_set_super_log_root(fs_info->super_for_commit,
2959 log_root_tree->node->start);
2960 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2961 btrfs_header_level(log_root_tree->node));
2963 log_root_tree->log_transid++;
2964 mutex_unlock(&log_root_tree->log_mutex);
2967 * nobody else is going to jump in and write the the ctree
2968 * super here because the log_commit atomic below is protecting
2969 * us. We must be called with a transaction handle pinning
2970 * the running transaction open, so a full commit can't hop
2971 * in and cause problems either.
2973 ret = write_all_supers(fs_info, 1);
2974 if (ret) {
2975 btrfs_set_log_full_commit(fs_info, trans);
2976 btrfs_abort_transaction(trans, ret);
2977 goto out_wake_log_root;
2980 mutex_lock(&root->log_mutex);
2981 if (root->last_log_commit < log_transid)
2982 root->last_log_commit = log_transid;
2983 mutex_unlock(&root->log_mutex);
2985 out_wake_log_root:
2986 mutex_lock(&log_root_tree->log_mutex);
2987 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2989 log_root_tree->log_transid_committed++;
2990 atomic_set(&log_root_tree->log_commit[index2], 0);
2991 mutex_unlock(&log_root_tree->log_mutex);
2994 * The barrier before waitqueue_active is implied by mutex_unlock
2996 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2997 wake_up(&log_root_tree->log_commit_wait[index2]);
2998 out:
2999 mutex_lock(&root->log_mutex);
3000 btrfs_remove_all_log_ctxs(root, index1, ret);
3001 root->log_transid_committed++;
3002 atomic_set(&root->log_commit[index1], 0);
3003 mutex_unlock(&root->log_mutex);
3006 * The barrier before waitqueue_active is implied by mutex_unlock
3008 if (waitqueue_active(&root->log_commit_wait[index1]))
3009 wake_up(&root->log_commit_wait[index1]);
3010 return ret;
3013 static void free_log_tree(struct btrfs_trans_handle *trans,
3014 struct btrfs_root *log)
3016 int ret;
3017 u64 start;
3018 u64 end;
3019 struct walk_control wc = {
3020 .free = 1,
3021 .process_func = process_one_buffer
3024 ret = walk_log_tree(trans, log, &wc);
3025 /* I don't think this can happen but just in case */
3026 if (ret)
3027 btrfs_abort_transaction(trans, ret);
3029 while (1) {
3030 ret = find_first_extent_bit(&log->dirty_log_pages,
3031 0, &start, &end,
3032 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3033 NULL);
3034 if (ret)
3035 break;
3037 clear_extent_bits(&log->dirty_log_pages, start, end,
3038 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3042 * We may have short-circuited the log tree with the full commit logic
3043 * and left ordered extents on our list, so clear these out to keep us
3044 * from leaking inodes and memory.
3046 btrfs_free_logged_extents(log, 0);
3047 btrfs_free_logged_extents(log, 1);
3049 free_extent_buffer(log->node);
3050 kfree(log);
3054 * free all the extents used by the tree log. This should be called
3055 * at commit time of the full transaction
3057 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3059 if (root->log_root) {
3060 free_log_tree(trans, root->log_root);
3061 root->log_root = NULL;
3063 return 0;
3066 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3067 struct btrfs_fs_info *fs_info)
3069 if (fs_info->log_root_tree) {
3070 free_log_tree(trans, fs_info->log_root_tree);
3071 fs_info->log_root_tree = NULL;
3073 return 0;
3077 * If both a file and directory are logged, and unlinks or renames are
3078 * mixed in, we have a few interesting corners:
3080 * create file X in dir Y
3081 * link file X to X.link in dir Y
3082 * fsync file X
3083 * unlink file X but leave X.link
3084 * fsync dir Y
3086 * After a crash we would expect only X.link to exist. But file X
3087 * didn't get fsync'd again so the log has back refs for X and X.link.
3089 * We solve this by removing directory entries and inode backrefs from the
3090 * log when a file that was logged in the current transaction is
3091 * unlinked. Any later fsync will include the updated log entries, and
3092 * we'll be able to reconstruct the proper directory items from backrefs.
3094 * This optimizations allows us to avoid relogging the entire inode
3095 * or the entire directory.
3097 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3098 struct btrfs_root *root,
3099 const char *name, int name_len,
3100 struct btrfs_inode *dir, u64 index)
3102 struct btrfs_root *log;
3103 struct btrfs_dir_item *di;
3104 struct btrfs_path *path;
3105 int ret;
3106 int err = 0;
3107 int bytes_del = 0;
3108 u64 dir_ino = btrfs_ino(dir);
3110 if (dir->logged_trans < trans->transid)
3111 return 0;
3113 ret = join_running_log_trans(root);
3114 if (ret)
3115 return 0;
3117 mutex_lock(&dir->log_mutex);
3119 log = root->log_root;
3120 path = btrfs_alloc_path();
3121 if (!path) {
3122 err = -ENOMEM;
3123 goto out_unlock;
3126 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3127 name, name_len, -1);
3128 if (IS_ERR(di)) {
3129 err = PTR_ERR(di);
3130 goto fail;
3132 if (di) {
3133 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3134 bytes_del += name_len;
3135 if (ret) {
3136 err = ret;
3137 goto fail;
3140 btrfs_release_path(path);
3141 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3142 index, name, name_len, -1);
3143 if (IS_ERR(di)) {
3144 err = PTR_ERR(di);
3145 goto fail;
3147 if (di) {
3148 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3149 bytes_del += name_len;
3150 if (ret) {
3151 err = ret;
3152 goto fail;
3156 /* update the directory size in the log to reflect the names
3157 * we have removed
3159 if (bytes_del) {
3160 struct btrfs_key key;
3162 key.objectid = dir_ino;
3163 key.offset = 0;
3164 key.type = BTRFS_INODE_ITEM_KEY;
3165 btrfs_release_path(path);
3167 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3168 if (ret < 0) {
3169 err = ret;
3170 goto fail;
3172 if (ret == 0) {
3173 struct btrfs_inode_item *item;
3174 u64 i_size;
3176 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3177 struct btrfs_inode_item);
3178 i_size = btrfs_inode_size(path->nodes[0], item);
3179 if (i_size > bytes_del)
3180 i_size -= bytes_del;
3181 else
3182 i_size = 0;
3183 btrfs_set_inode_size(path->nodes[0], item, i_size);
3184 btrfs_mark_buffer_dirty(path->nodes[0]);
3185 } else
3186 ret = 0;
3187 btrfs_release_path(path);
3189 fail:
3190 btrfs_free_path(path);
3191 out_unlock:
3192 mutex_unlock(&dir->log_mutex);
3193 if (ret == -ENOSPC) {
3194 btrfs_set_log_full_commit(root->fs_info, trans);
3195 ret = 0;
3196 } else if (ret < 0)
3197 btrfs_abort_transaction(trans, ret);
3199 btrfs_end_log_trans(root);
3201 return err;
3204 /* see comments for btrfs_del_dir_entries_in_log */
3205 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3206 struct btrfs_root *root,
3207 const char *name, int name_len,
3208 struct btrfs_inode *inode, u64 dirid)
3210 struct btrfs_fs_info *fs_info = root->fs_info;
3211 struct btrfs_root *log;
3212 u64 index;
3213 int ret;
3215 if (inode->logged_trans < trans->transid)
3216 return 0;
3218 ret = join_running_log_trans(root);
3219 if (ret)
3220 return 0;
3221 log = root->log_root;
3222 mutex_lock(&inode->log_mutex);
3224 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3225 dirid, &index);
3226 mutex_unlock(&inode->log_mutex);
3227 if (ret == -ENOSPC) {
3228 btrfs_set_log_full_commit(fs_info, trans);
3229 ret = 0;
3230 } else if (ret < 0 && ret != -ENOENT)
3231 btrfs_abort_transaction(trans, ret);
3232 btrfs_end_log_trans(root);
3234 return ret;
3238 * creates a range item in the log for 'dirid'. first_offset and
3239 * last_offset tell us which parts of the key space the log should
3240 * be considered authoritative for.
3242 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3243 struct btrfs_root *log,
3244 struct btrfs_path *path,
3245 int key_type, u64 dirid,
3246 u64 first_offset, u64 last_offset)
3248 int ret;
3249 struct btrfs_key key;
3250 struct btrfs_dir_log_item *item;
3252 key.objectid = dirid;
3253 key.offset = first_offset;
3254 if (key_type == BTRFS_DIR_ITEM_KEY)
3255 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3256 else
3257 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3258 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3259 if (ret)
3260 return ret;
3262 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 struct btrfs_dir_log_item);
3264 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3265 btrfs_mark_buffer_dirty(path->nodes[0]);
3266 btrfs_release_path(path);
3267 return 0;
3271 * log all the items included in the current transaction for a given
3272 * directory. This also creates the range items in the log tree required
3273 * to replay anything deleted before the fsync
3275 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *root, struct btrfs_inode *inode,
3277 struct btrfs_path *path,
3278 struct btrfs_path *dst_path, int key_type,
3279 struct btrfs_log_ctx *ctx,
3280 u64 min_offset, u64 *last_offset_ret)
3282 struct btrfs_key min_key;
3283 struct btrfs_root *log = root->log_root;
3284 struct extent_buffer *src;
3285 int err = 0;
3286 int ret;
3287 int i;
3288 int nritems;
3289 u64 first_offset = min_offset;
3290 u64 last_offset = (u64)-1;
3291 u64 ino = btrfs_ino(inode);
3293 log = root->log_root;
3295 min_key.objectid = ino;
3296 min_key.type = key_type;
3297 min_key.offset = min_offset;
3299 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3302 * we didn't find anything from this transaction, see if there
3303 * is anything at all
3305 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3306 min_key.objectid = ino;
3307 min_key.type = key_type;
3308 min_key.offset = (u64)-1;
3309 btrfs_release_path(path);
3310 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3311 if (ret < 0) {
3312 btrfs_release_path(path);
3313 return ret;
3315 ret = btrfs_previous_item(root, path, ino, key_type);
3317 /* if ret == 0 there are items for this type,
3318 * create a range to tell us the last key of this type.
3319 * otherwise, there are no items in this directory after
3320 * *min_offset, and we create a range to indicate that.
3322 if (ret == 0) {
3323 struct btrfs_key tmp;
3324 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3325 path->slots[0]);
3326 if (key_type == tmp.type)
3327 first_offset = max(min_offset, tmp.offset) + 1;
3329 goto done;
3332 /* go backward to find any previous key */
3333 ret = btrfs_previous_item(root, path, ino, key_type);
3334 if (ret == 0) {
3335 struct btrfs_key tmp;
3336 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3337 if (key_type == tmp.type) {
3338 first_offset = tmp.offset;
3339 ret = overwrite_item(trans, log, dst_path,
3340 path->nodes[0], path->slots[0],
3341 &tmp);
3342 if (ret) {
3343 err = ret;
3344 goto done;
3348 btrfs_release_path(path);
3350 /* find the first key from this transaction again */
3351 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3352 if (WARN_ON(ret != 0))
3353 goto done;
3356 * we have a block from this transaction, log every item in it
3357 * from our directory
3359 while (1) {
3360 struct btrfs_key tmp;
3361 src = path->nodes[0];
3362 nritems = btrfs_header_nritems(src);
3363 for (i = path->slots[0]; i < nritems; i++) {
3364 struct btrfs_dir_item *di;
3366 btrfs_item_key_to_cpu(src, &min_key, i);
3368 if (min_key.objectid != ino || min_key.type != key_type)
3369 goto done;
3370 ret = overwrite_item(trans, log, dst_path, src, i,
3371 &min_key);
3372 if (ret) {
3373 err = ret;
3374 goto done;
3378 * We must make sure that when we log a directory entry,
3379 * the corresponding inode, after log replay, has a
3380 * matching link count. For example:
3382 * touch foo
3383 * mkdir mydir
3384 * sync
3385 * ln foo mydir/bar
3386 * xfs_io -c "fsync" mydir
3387 * <crash>
3388 * <mount fs and log replay>
3390 * Would result in a fsync log that when replayed, our
3391 * file inode would have a link count of 1, but we get
3392 * two directory entries pointing to the same inode.
3393 * After removing one of the names, it would not be
3394 * possible to remove the other name, which resulted
3395 * always in stale file handle errors, and would not
3396 * be possible to rmdir the parent directory, since
3397 * its i_size could never decrement to the value
3398 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3400 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3401 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3402 if (ctx &&
3403 (btrfs_dir_transid(src, di) == trans->transid ||
3404 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3405 tmp.type != BTRFS_ROOT_ITEM_KEY)
3406 ctx->log_new_dentries = true;
3408 path->slots[0] = nritems;
3411 * look ahead to the next item and see if it is also
3412 * from this directory and from this transaction
3414 ret = btrfs_next_leaf(root, path);
3415 if (ret == 1) {
3416 last_offset = (u64)-1;
3417 goto done;
3419 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3420 if (tmp.objectid != ino || tmp.type != key_type) {
3421 last_offset = (u64)-1;
3422 goto done;
3424 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3425 ret = overwrite_item(trans, log, dst_path,
3426 path->nodes[0], path->slots[0],
3427 &tmp);
3428 if (ret)
3429 err = ret;
3430 else
3431 last_offset = tmp.offset;
3432 goto done;
3435 done:
3436 btrfs_release_path(path);
3437 btrfs_release_path(dst_path);
3439 if (err == 0) {
3440 *last_offset_ret = last_offset;
3442 * insert the log range keys to indicate where the log
3443 * is valid
3445 ret = insert_dir_log_key(trans, log, path, key_type,
3446 ino, first_offset, last_offset);
3447 if (ret)
3448 err = ret;
3450 return err;
3454 * logging directories is very similar to logging inodes, We find all the items
3455 * from the current transaction and write them to the log.
3457 * The recovery code scans the directory in the subvolume, and if it finds a
3458 * key in the range logged that is not present in the log tree, then it means
3459 * that dir entry was unlinked during the transaction.
3461 * In order for that scan to work, we must include one key smaller than
3462 * the smallest logged by this transaction and one key larger than the largest
3463 * key logged by this transaction.
3465 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3466 struct btrfs_root *root, struct btrfs_inode *inode,
3467 struct btrfs_path *path,
3468 struct btrfs_path *dst_path,
3469 struct btrfs_log_ctx *ctx)
3471 u64 min_key;
3472 u64 max_key;
3473 int ret;
3474 int key_type = BTRFS_DIR_ITEM_KEY;
3476 again:
3477 min_key = 0;
3478 max_key = 0;
3479 while (1) {
3480 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3481 ctx, min_key, &max_key);
3482 if (ret)
3483 return ret;
3484 if (max_key == (u64)-1)
3485 break;
3486 min_key = max_key + 1;
3489 if (key_type == BTRFS_DIR_ITEM_KEY) {
3490 key_type = BTRFS_DIR_INDEX_KEY;
3491 goto again;
3493 return 0;
3497 * a helper function to drop items from the log before we relog an
3498 * inode. max_key_type indicates the highest item type to remove.
3499 * This cannot be run for file data extents because it does not
3500 * free the extents they point to.
3502 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 u64 objectid, int max_key_type)
3507 int ret;
3508 struct btrfs_key key;
3509 struct btrfs_key found_key;
3510 int start_slot;
3512 key.objectid = objectid;
3513 key.type = max_key_type;
3514 key.offset = (u64)-1;
3516 while (1) {
3517 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3518 BUG_ON(ret == 0); /* Logic error */
3519 if (ret < 0)
3520 break;
3522 if (path->slots[0] == 0)
3523 break;
3525 path->slots[0]--;
3526 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3527 path->slots[0]);
3529 if (found_key.objectid != objectid)
3530 break;
3532 found_key.offset = 0;
3533 found_key.type = 0;
3534 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3535 &start_slot);
3537 ret = btrfs_del_items(trans, log, path, start_slot,
3538 path->slots[0] - start_slot + 1);
3540 * If start slot isn't 0 then we don't need to re-search, we've
3541 * found the last guy with the objectid in this tree.
3543 if (ret || start_slot != 0)
3544 break;
3545 btrfs_release_path(path);
3547 btrfs_release_path(path);
3548 if (ret > 0)
3549 ret = 0;
3550 return ret;
3553 static void fill_inode_item(struct btrfs_trans_handle *trans,
3554 struct extent_buffer *leaf,
3555 struct btrfs_inode_item *item,
3556 struct inode *inode, int log_inode_only,
3557 u64 logged_isize)
3559 struct btrfs_map_token token;
3561 btrfs_init_map_token(&token);
3563 if (log_inode_only) {
3564 /* set the generation to zero so the recover code
3565 * can tell the difference between an logging
3566 * just to say 'this inode exists' and a logging
3567 * to say 'update this inode with these values'
3569 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3570 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3571 } else {
3572 btrfs_set_token_inode_generation(leaf, item,
3573 BTRFS_I(inode)->generation,
3574 &token);
3575 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3578 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3579 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3580 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3581 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3583 btrfs_set_token_timespec_sec(leaf, &item->atime,
3584 inode->i_atime.tv_sec, &token);
3585 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3586 inode->i_atime.tv_nsec, &token);
3588 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3589 inode->i_mtime.tv_sec, &token);
3590 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3591 inode->i_mtime.tv_nsec, &token);
3593 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3594 inode->i_ctime.tv_sec, &token);
3595 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3596 inode->i_ctime.tv_nsec, &token);
3598 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3599 &token);
3601 btrfs_set_token_inode_sequence(leaf, item,
3602 inode_peek_iversion(inode), &token);
3603 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3604 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3605 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3606 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3609 static int log_inode_item(struct btrfs_trans_handle *trans,
3610 struct btrfs_root *log, struct btrfs_path *path,
3611 struct btrfs_inode *inode)
3613 struct btrfs_inode_item *inode_item;
3614 int ret;
3616 ret = btrfs_insert_empty_item(trans, log, path,
3617 &inode->location, sizeof(*inode_item));
3618 if (ret && ret != -EEXIST)
3619 return ret;
3620 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3621 struct btrfs_inode_item);
3622 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3623 0, 0);
3624 btrfs_release_path(path);
3625 return 0;
3628 static noinline int copy_items(struct btrfs_trans_handle *trans,
3629 struct btrfs_inode *inode,
3630 struct btrfs_path *dst_path,
3631 struct btrfs_path *src_path, u64 *last_extent,
3632 int start_slot, int nr, int inode_only,
3633 u64 logged_isize)
3635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3636 unsigned long src_offset;
3637 unsigned long dst_offset;
3638 struct btrfs_root *log = inode->root->log_root;
3639 struct btrfs_file_extent_item *extent;
3640 struct btrfs_inode_item *inode_item;
3641 struct extent_buffer *src = src_path->nodes[0];
3642 struct btrfs_key first_key, last_key, key;
3643 int ret;
3644 struct btrfs_key *ins_keys;
3645 u32 *ins_sizes;
3646 char *ins_data;
3647 int i;
3648 struct list_head ordered_sums;
3649 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3650 bool has_extents = false;
3651 bool need_find_last_extent = true;
3652 bool done = false;
3654 INIT_LIST_HEAD(&ordered_sums);
3656 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3657 nr * sizeof(u32), GFP_NOFS);
3658 if (!ins_data)
3659 return -ENOMEM;
3661 first_key.objectid = (u64)-1;
3663 ins_sizes = (u32 *)ins_data;
3664 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3666 for (i = 0; i < nr; i++) {
3667 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3668 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3670 ret = btrfs_insert_empty_items(trans, log, dst_path,
3671 ins_keys, ins_sizes, nr);
3672 if (ret) {
3673 kfree(ins_data);
3674 return ret;
3677 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3678 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3679 dst_path->slots[0]);
3681 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3683 if (i == nr - 1)
3684 last_key = ins_keys[i];
3686 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3687 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3688 dst_path->slots[0],
3689 struct btrfs_inode_item);
3690 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3691 &inode->vfs_inode,
3692 inode_only == LOG_INODE_EXISTS,
3693 logged_isize);
3694 } else {
3695 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3696 src_offset, ins_sizes[i]);
3700 * We set need_find_last_extent here in case we know we were
3701 * processing other items and then walk into the first extent in
3702 * the inode. If we don't hit an extent then nothing changes,
3703 * we'll do the last search the next time around.
3705 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3706 has_extents = true;
3707 if (first_key.objectid == (u64)-1)
3708 first_key = ins_keys[i];
3709 } else {
3710 need_find_last_extent = false;
3713 /* take a reference on file data extents so that truncates
3714 * or deletes of this inode don't have to relog the inode
3715 * again
3717 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3718 !skip_csum) {
3719 int found_type;
3720 extent = btrfs_item_ptr(src, start_slot + i,
3721 struct btrfs_file_extent_item);
3723 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3724 continue;
3726 found_type = btrfs_file_extent_type(src, extent);
3727 if (found_type == BTRFS_FILE_EXTENT_REG) {
3728 u64 ds, dl, cs, cl;
3729 ds = btrfs_file_extent_disk_bytenr(src,
3730 extent);
3731 /* ds == 0 is a hole */
3732 if (ds == 0)
3733 continue;
3735 dl = btrfs_file_extent_disk_num_bytes(src,
3736 extent);
3737 cs = btrfs_file_extent_offset(src, extent);
3738 cl = btrfs_file_extent_num_bytes(src,
3739 extent);
3740 if (btrfs_file_extent_compression(src,
3741 extent)) {
3742 cs = 0;
3743 cl = dl;
3746 ret = btrfs_lookup_csums_range(
3747 fs_info->csum_root,
3748 ds + cs, ds + cs + cl - 1,
3749 &ordered_sums, 0);
3750 if (ret) {
3751 btrfs_release_path(dst_path);
3752 kfree(ins_data);
3753 return ret;
3759 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3760 btrfs_release_path(dst_path);
3761 kfree(ins_data);
3764 * we have to do this after the loop above to avoid changing the
3765 * log tree while trying to change the log tree.
3767 ret = 0;
3768 while (!list_empty(&ordered_sums)) {
3769 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3770 struct btrfs_ordered_sum,
3771 list);
3772 if (!ret)
3773 ret = btrfs_csum_file_blocks(trans, log, sums);
3774 list_del(&sums->list);
3775 kfree(sums);
3778 if (!has_extents)
3779 return ret;
3781 if (need_find_last_extent && *last_extent == first_key.offset) {
3783 * We don't have any leafs between our current one and the one
3784 * we processed before that can have file extent items for our
3785 * inode (and have a generation number smaller than our current
3786 * transaction id).
3788 need_find_last_extent = false;
3792 * Because we use btrfs_search_forward we could skip leaves that were
3793 * not modified and then assume *last_extent is valid when it really
3794 * isn't. So back up to the previous leaf and read the end of the last
3795 * extent before we go and fill in holes.
3797 if (need_find_last_extent) {
3798 u64 len;
3800 ret = btrfs_prev_leaf(inode->root, src_path);
3801 if (ret < 0)
3802 return ret;
3803 if (ret)
3804 goto fill_holes;
3805 if (src_path->slots[0])
3806 src_path->slots[0]--;
3807 src = src_path->nodes[0];
3808 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3809 if (key.objectid != btrfs_ino(inode) ||
3810 key.type != BTRFS_EXTENT_DATA_KEY)
3811 goto fill_holes;
3812 extent = btrfs_item_ptr(src, src_path->slots[0],
3813 struct btrfs_file_extent_item);
3814 if (btrfs_file_extent_type(src, extent) ==
3815 BTRFS_FILE_EXTENT_INLINE) {
3816 len = btrfs_file_extent_inline_len(src,
3817 src_path->slots[0],
3818 extent);
3819 *last_extent = ALIGN(key.offset + len,
3820 fs_info->sectorsize);
3821 } else {
3822 len = btrfs_file_extent_num_bytes(src, extent);
3823 *last_extent = key.offset + len;
3826 fill_holes:
3827 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3828 * things could have happened
3830 * 1) A merge could have happened, so we could currently be on a leaf
3831 * that holds what we were copying in the first place.
3832 * 2) A split could have happened, and now not all of the items we want
3833 * are on the same leaf.
3835 * So we need to adjust how we search for holes, we need to drop the
3836 * path and re-search for the first extent key we found, and then walk
3837 * forward until we hit the last one we copied.
3839 if (need_find_last_extent) {
3840 /* btrfs_prev_leaf could return 1 without releasing the path */
3841 btrfs_release_path(src_path);
3842 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3843 src_path, 0, 0);
3844 if (ret < 0)
3845 return ret;
3846 ASSERT(ret == 0);
3847 src = src_path->nodes[0];
3848 i = src_path->slots[0];
3849 } else {
3850 i = start_slot;
3854 * Ok so here we need to go through and fill in any holes we may have
3855 * to make sure that holes are punched for those areas in case they had
3856 * extents previously.
3858 while (!done) {
3859 u64 offset, len;
3860 u64 extent_end;
3862 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3863 ret = btrfs_next_leaf(inode->root, src_path);
3864 if (ret < 0)
3865 return ret;
3866 ASSERT(ret == 0);
3867 src = src_path->nodes[0];
3868 i = 0;
3871 btrfs_item_key_to_cpu(src, &key, i);
3872 if (!btrfs_comp_cpu_keys(&key, &last_key))
3873 done = true;
3874 if (key.objectid != btrfs_ino(inode) ||
3875 key.type != BTRFS_EXTENT_DATA_KEY) {
3876 i++;
3877 continue;
3879 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3880 if (btrfs_file_extent_type(src, extent) ==
3881 BTRFS_FILE_EXTENT_INLINE) {
3882 len = btrfs_file_extent_inline_len(src, i, extent);
3883 extent_end = ALIGN(key.offset + len,
3884 fs_info->sectorsize);
3885 } else {
3886 len = btrfs_file_extent_num_bytes(src, extent);
3887 extent_end = key.offset + len;
3889 i++;
3891 if (*last_extent == key.offset) {
3892 *last_extent = extent_end;
3893 continue;
3895 offset = *last_extent;
3896 len = key.offset - *last_extent;
3897 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3898 offset, 0, 0, len, 0, len, 0, 0, 0);
3899 if (ret)
3900 break;
3901 *last_extent = extent_end;
3904 * Need to let the callers know we dropped the path so they should
3905 * re-search.
3907 if (!ret && need_find_last_extent)
3908 ret = 1;
3909 return ret;
3912 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3914 struct extent_map *em1, *em2;
3916 em1 = list_entry(a, struct extent_map, list);
3917 em2 = list_entry(b, struct extent_map, list);
3919 if (em1->start < em2->start)
3920 return -1;
3921 else if (em1->start > em2->start)
3922 return 1;
3923 return 0;
3926 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3927 struct inode *inode,
3928 struct btrfs_root *root,
3929 const struct extent_map *em,
3930 const struct list_head *logged_list,
3931 bool *ordered_io_error)
3933 struct btrfs_fs_info *fs_info = root->fs_info;
3934 struct btrfs_ordered_extent *ordered;
3935 struct btrfs_root *log = root->log_root;
3936 u64 mod_start = em->mod_start;
3937 u64 mod_len = em->mod_len;
3938 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3939 u64 csum_offset;
3940 u64 csum_len;
3941 LIST_HEAD(ordered_sums);
3942 int ret = 0;
3944 *ordered_io_error = false;
3946 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3947 em->block_start == EXTENT_MAP_HOLE)
3948 return 0;
3951 * Wait far any ordered extent that covers our extent map. If it
3952 * finishes without an error, first check and see if our csums are on
3953 * our outstanding ordered extents.
3955 list_for_each_entry(ordered, logged_list, log_list) {
3956 struct btrfs_ordered_sum *sum;
3958 if (!mod_len)
3959 break;
3961 if (ordered->file_offset + ordered->len <= mod_start ||
3962 mod_start + mod_len <= ordered->file_offset)
3963 continue;
3965 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3966 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3967 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3968 const u64 start = ordered->file_offset;
3969 const u64 end = ordered->file_offset + ordered->len - 1;
3971 WARN_ON(ordered->inode != inode);
3972 filemap_fdatawrite_range(inode->i_mapping, start, end);
3975 wait_event(ordered->wait,
3976 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3977 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3979 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3981 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3982 * i_mapping flags, so that the next fsync won't get
3983 * an outdated io error too.
3985 filemap_check_errors(inode->i_mapping);
3986 *ordered_io_error = true;
3987 break;
3990 * We are going to copy all the csums on this ordered extent, so
3991 * go ahead and adjust mod_start and mod_len in case this
3992 * ordered extent has already been logged.
3994 if (ordered->file_offset > mod_start) {
3995 if (ordered->file_offset + ordered->len >=
3996 mod_start + mod_len)
3997 mod_len = ordered->file_offset - mod_start;
3999 * If we have this case
4001 * |--------- logged extent ---------|
4002 * |----- ordered extent ----|
4004 * Just don't mess with mod_start and mod_len, we'll
4005 * just end up logging more csums than we need and it
4006 * will be ok.
4008 } else {
4009 if (ordered->file_offset + ordered->len <
4010 mod_start + mod_len) {
4011 mod_len = (mod_start + mod_len) -
4012 (ordered->file_offset + ordered->len);
4013 mod_start = ordered->file_offset +
4014 ordered->len;
4015 } else {
4016 mod_len = 0;
4020 if (skip_csum)
4021 continue;
4024 * To keep us from looping for the above case of an ordered
4025 * extent that falls inside of the logged extent.
4027 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4028 &ordered->flags))
4029 continue;
4031 list_for_each_entry(sum, &ordered->list, list) {
4032 ret = btrfs_csum_file_blocks(trans, log, sum);
4033 if (ret)
4034 break;
4038 if (*ordered_io_error || !mod_len || ret || skip_csum)
4039 return ret;
4041 if (em->compress_type) {
4042 csum_offset = 0;
4043 csum_len = max(em->block_len, em->orig_block_len);
4044 } else {
4045 csum_offset = mod_start - em->start;
4046 csum_len = mod_len;
4049 /* block start is already adjusted for the file extent offset. */
4050 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4051 em->block_start + csum_offset,
4052 em->block_start + csum_offset +
4053 csum_len - 1, &ordered_sums, 0);
4054 if (ret)
4055 return ret;
4057 while (!list_empty(&ordered_sums)) {
4058 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4059 struct btrfs_ordered_sum,
4060 list);
4061 if (!ret)
4062 ret = btrfs_csum_file_blocks(trans, log, sums);
4063 list_del(&sums->list);
4064 kfree(sums);
4067 return ret;
4070 static int log_one_extent(struct btrfs_trans_handle *trans,
4071 struct btrfs_inode *inode, struct btrfs_root *root,
4072 const struct extent_map *em,
4073 struct btrfs_path *path,
4074 const struct list_head *logged_list,
4075 struct btrfs_log_ctx *ctx)
4077 struct btrfs_root *log = root->log_root;
4078 struct btrfs_file_extent_item *fi;
4079 struct extent_buffer *leaf;
4080 struct btrfs_map_token token;
4081 struct btrfs_key key;
4082 u64 extent_offset = em->start - em->orig_start;
4083 u64 block_len;
4084 int ret;
4085 int extent_inserted = 0;
4086 bool ordered_io_err = false;
4088 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4089 logged_list, &ordered_io_err);
4090 if (ret)
4091 return ret;
4093 if (ordered_io_err) {
4094 ctx->io_err = -EIO;
4095 return ctx->io_err;
4098 btrfs_init_map_token(&token);
4100 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4101 em->start + em->len, NULL, 0, 1,
4102 sizeof(*fi), &extent_inserted);
4103 if (ret)
4104 return ret;
4106 if (!extent_inserted) {
4107 key.objectid = btrfs_ino(inode);
4108 key.type = BTRFS_EXTENT_DATA_KEY;
4109 key.offset = em->start;
4111 ret = btrfs_insert_empty_item(trans, log, path, &key,
4112 sizeof(*fi));
4113 if (ret)
4114 return ret;
4116 leaf = path->nodes[0];
4117 fi = btrfs_item_ptr(leaf, path->slots[0],
4118 struct btrfs_file_extent_item);
4120 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4121 &token);
4122 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4123 btrfs_set_token_file_extent_type(leaf, fi,
4124 BTRFS_FILE_EXTENT_PREALLOC,
4125 &token);
4126 else
4127 btrfs_set_token_file_extent_type(leaf, fi,
4128 BTRFS_FILE_EXTENT_REG,
4129 &token);
4131 block_len = max(em->block_len, em->orig_block_len);
4132 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4133 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4134 em->block_start,
4135 &token);
4136 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4137 &token);
4138 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4139 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4140 em->block_start -
4141 extent_offset, &token);
4142 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4143 &token);
4144 } else {
4145 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4146 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4147 &token);
4150 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4151 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4152 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4153 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4154 &token);
4155 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4156 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4157 btrfs_mark_buffer_dirty(leaf);
4159 btrfs_release_path(path);
4161 return ret;
4164 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4165 struct btrfs_root *root,
4166 struct btrfs_inode *inode,
4167 struct btrfs_path *path,
4168 struct list_head *logged_list,
4169 struct btrfs_log_ctx *ctx,
4170 const u64 start,
4171 const u64 end)
4173 struct extent_map *em, *n;
4174 struct list_head extents;
4175 struct extent_map_tree *tree = &inode->extent_tree;
4176 u64 logged_start, logged_end;
4177 u64 test_gen;
4178 int ret = 0;
4179 int num = 0;
4181 INIT_LIST_HEAD(&extents);
4183 down_write(&inode->dio_sem);
4184 write_lock(&tree->lock);
4185 test_gen = root->fs_info->last_trans_committed;
4186 logged_start = start;
4187 logged_end = end;
4189 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4190 list_del_init(&em->list);
4192 * Just an arbitrary number, this can be really CPU intensive
4193 * once we start getting a lot of extents, and really once we
4194 * have a bunch of extents we just want to commit since it will
4195 * be faster.
4197 if (++num > 32768) {
4198 list_del_init(&tree->modified_extents);
4199 ret = -EFBIG;
4200 goto process;
4203 if (em->generation <= test_gen)
4204 continue;
4206 if (em->start < logged_start)
4207 logged_start = em->start;
4208 if ((em->start + em->len - 1) > logged_end)
4209 logged_end = em->start + em->len - 1;
4211 /* Need a ref to keep it from getting evicted from cache */
4212 refcount_inc(&em->refs);
4213 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4214 list_add_tail(&em->list, &extents);
4215 num++;
4218 list_sort(NULL, &extents, extent_cmp);
4219 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4221 * Some ordered extents started by fsync might have completed
4222 * before we could collect them into the list logged_list, which
4223 * means they're gone, not in our logged_list nor in the inode's
4224 * ordered tree. We want the application/user space to know an
4225 * error happened while attempting to persist file data so that
4226 * it can take proper action. If such error happened, we leave
4227 * without writing to the log tree and the fsync must report the
4228 * file data write error and not commit the current transaction.
4230 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4231 if (ret)
4232 ctx->io_err = ret;
4233 process:
4234 while (!list_empty(&extents)) {
4235 em = list_entry(extents.next, struct extent_map, list);
4237 list_del_init(&em->list);
4240 * If we had an error we just need to delete everybody from our
4241 * private list.
4243 if (ret) {
4244 clear_em_logging(tree, em);
4245 free_extent_map(em);
4246 continue;
4249 write_unlock(&tree->lock);
4251 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4252 ctx);
4253 write_lock(&tree->lock);
4254 clear_em_logging(tree, em);
4255 free_extent_map(em);
4257 WARN_ON(!list_empty(&extents));
4258 write_unlock(&tree->lock);
4259 up_write(&inode->dio_sem);
4261 btrfs_release_path(path);
4262 return ret;
4265 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4266 struct btrfs_path *path, u64 *size_ret)
4268 struct btrfs_key key;
4269 int ret;
4271 key.objectid = btrfs_ino(inode);
4272 key.type = BTRFS_INODE_ITEM_KEY;
4273 key.offset = 0;
4275 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4276 if (ret < 0) {
4277 return ret;
4278 } else if (ret > 0) {
4279 *size_ret = 0;
4280 } else {
4281 struct btrfs_inode_item *item;
4283 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4284 struct btrfs_inode_item);
4285 *size_ret = btrfs_inode_size(path->nodes[0], item);
4288 btrfs_release_path(path);
4289 return 0;
4293 * At the moment we always log all xattrs. This is to figure out at log replay
4294 * time which xattrs must have their deletion replayed. If a xattr is missing
4295 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4296 * because if a xattr is deleted, the inode is fsynced and a power failure
4297 * happens, causing the log to be replayed the next time the fs is mounted,
4298 * we want the xattr to not exist anymore (same behaviour as other filesystems
4299 * with a journal, ext3/4, xfs, f2fs, etc).
4301 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4302 struct btrfs_root *root,
4303 struct btrfs_inode *inode,
4304 struct btrfs_path *path,
4305 struct btrfs_path *dst_path)
4307 int ret;
4308 struct btrfs_key key;
4309 const u64 ino = btrfs_ino(inode);
4310 int ins_nr = 0;
4311 int start_slot = 0;
4313 key.objectid = ino;
4314 key.type = BTRFS_XATTR_ITEM_KEY;
4315 key.offset = 0;
4317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4318 if (ret < 0)
4319 return ret;
4321 while (true) {
4322 int slot = path->slots[0];
4323 struct extent_buffer *leaf = path->nodes[0];
4324 int nritems = btrfs_header_nritems(leaf);
4326 if (slot >= nritems) {
4327 if (ins_nr > 0) {
4328 u64 last_extent = 0;
4330 ret = copy_items(trans, inode, dst_path, path,
4331 &last_extent, start_slot,
4332 ins_nr, 1, 0);
4333 /* can't be 1, extent items aren't processed */
4334 ASSERT(ret <= 0);
4335 if (ret < 0)
4336 return ret;
4337 ins_nr = 0;
4339 ret = btrfs_next_leaf(root, path);
4340 if (ret < 0)
4341 return ret;
4342 else if (ret > 0)
4343 break;
4344 continue;
4347 btrfs_item_key_to_cpu(leaf, &key, slot);
4348 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4349 break;
4351 if (ins_nr == 0)
4352 start_slot = slot;
4353 ins_nr++;
4354 path->slots[0]++;
4355 cond_resched();
4357 if (ins_nr > 0) {
4358 u64 last_extent = 0;
4360 ret = copy_items(trans, inode, dst_path, path,
4361 &last_extent, start_slot,
4362 ins_nr, 1, 0);
4363 /* can't be 1, extent items aren't processed */
4364 ASSERT(ret <= 0);
4365 if (ret < 0)
4366 return ret;
4369 return 0;
4373 * If the no holes feature is enabled we need to make sure any hole between the
4374 * last extent and the i_size of our inode is explicitly marked in the log. This
4375 * is to make sure that doing something like:
4377 * 1) create file with 128Kb of data
4378 * 2) truncate file to 64Kb
4379 * 3) truncate file to 256Kb
4380 * 4) fsync file
4381 * 5) <crash/power failure>
4382 * 6) mount fs and trigger log replay
4384 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4385 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4386 * file correspond to a hole. The presence of explicit holes in a log tree is
4387 * what guarantees that log replay will remove/adjust file extent items in the
4388 * fs/subvol tree.
4390 * Here we do not need to care about holes between extents, that is already done
4391 * by copy_items(). We also only need to do this in the full sync path, where we
4392 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4393 * lookup the list of modified extent maps and if any represents a hole, we
4394 * insert a corresponding extent representing a hole in the log tree.
4396 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4397 struct btrfs_root *root,
4398 struct btrfs_inode *inode,
4399 struct btrfs_path *path)
4401 struct btrfs_fs_info *fs_info = root->fs_info;
4402 int ret;
4403 struct btrfs_key key;
4404 u64 hole_start;
4405 u64 hole_size;
4406 struct extent_buffer *leaf;
4407 struct btrfs_root *log = root->log_root;
4408 const u64 ino = btrfs_ino(inode);
4409 const u64 i_size = i_size_read(&inode->vfs_inode);
4411 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4412 return 0;
4414 key.objectid = ino;
4415 key.type = BTRFS_EXTENT_DATA_KEY;
4416 key.offset = (u64)-1;
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 ASSERT(ret != 0);
4420 if (ret < 0)
4421 return ret;
4423 ASSERT(path->slots[0] > 0);
4424 path->slots[0]--;
4425 leaf = path->nodes[0];
4426 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4428 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4429 /* inode does not have any extents */
4430 hole_start = 0;
4431 hole_size = i_size;
4432 } else {
4433 struct btrfs_file_extent_item *extent;
4434 u64 len;
4437 * If there's an extent beyond i_size, an explicit hole was
4438 * already inserted by copy_items().
4440 if (key.offset >= i_size)
4441 return 0;
4443 extent = btrfs_item_ptr(leaf, path->slots[0],
4444 struct btrfs_file_extent_item);
4446 if (btrfs_file_extent_type(leaf, extent) ==
4447 BTRFS_FILE_EXTENT_INLINE) {
4448 len = btrfs_file_extent_inline_len(leaf,
4449 path->slots[0],
4450 extent);
4451 ASSERT(len == i_size ||
4452 (len == fs_info->sectorsize &&
4453 btrfs_file_extent_compression(leaf, extent) !=
4454 BTRFS_COMPRESS_NONE));
4455 return 0;
4458 len = btrfs_file_extent_num_bytes(leaf, extent);
4459 /* Last extent goes beyond i_size, no need to log a hole. */
4460 if (key.offset + len > i_size)
4461 return 0;
4462 hole_start = key.offset + len;
4463 hole_size = i_size - hole_start;
4465 btrfs_release_path(path);
4467 /* Last extent ends at i_size. */
4468 if (hole_size == 0)
4469 return 0;
4471 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4472 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4473 hole_size, 0, hole_size, 0, 0, 0);
4474 return ret;
4478 * When we are logging a new inode X, check if it doesn't have a reference that
4479 * matches the reference from some other inode Y created in a past transaction
4480 * and that was renamed in the current transaction. If we don't do this, then at
4481 * log replay time we can lose inode Y (and all its files if it's a directory):
4483 * mkdir /mnt/x
4484 * echo "hello world" > /mnt/x/foobar
4485 * sync
4486 * mv /mnt/x /mnt/y
4487 * mkdir /mnt/x # or touch /mnt/x
4488 * xfs_io -c fsync /mnt/x
4489 * <power fail>
4490 * mount fs, trigger log replay
4492 * After the log replay procedure, we would lose the first directory and all its
4493 * files (file foobar).
4494 * For the case where inode Y is not a directory we simply end up losing it:
4496 * echo "123" > /mnt/foo
4497 * sync
4498 * mv /mnt/foo /mnt/bar
4499 * echo "abc" > /mnt/foo
4500 * xfs_io -c fsync /mnt/foo
4501 * <power fail>
4503 * We also need this for cases where a snapshot entry is replaced by some other
4504 * entry (file or directory) otherwise we end up with an unreplayable log due to
4505 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4506 * if it were a regular entry:
4508 * mkdir /mnt/x
4509 * btrfs subvolume snapshot /mnt /mnt/x/snap
4510 * btrfs subvolume delete /mnt/x/snap
4511 * rmdir /mnt/x
4512 * mkdir /mnt/x
4513 * fsync /mnt/x or fsync some new file inside it
4514 * <power fail>
4516 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4517 * the same transaction.
4519 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4520 const int slot,
4521 const struct btrfs_key *key,
4522 struct btrfs_inode *inode,
4523 u64 *other_ino)
4525 int ret;
4526 struct btrfs_path *search_path;
4527 char *name = NULL;
4528 u32 name_len = 0;
4529 u32 item_size = btrfs_item_size_nr(eb, slot);
4530 u32 cur_offset = 0;
4531 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4533 search_path = btrfs_alloc_path();
4534 if (!search_path)
4535 return -ENOMEM;
4536 search_path->search_commit_root = 1;
4537 search_path->skip_locking = 1;
4539 while (cur_offset < item_size) {
4540 u64 parent;
4541 u32 this_name_len;
4542 u32 this_len;
4543 unsigned long name_ptr;
4544 struct btrfs_dir_item *di;
4546 if (key->type == BTRFS_INODE_REF_KEY) {
4547 struct btrfs_inode_ref *iref;
4549 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4550 parent = key->offset;
4551 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4552 name_ptr = (unsigned long)(iref + 1);
4553 this_len = sizeof(*iref) + this_name_len;
4554 } else {
4555 struct btrfs_inode_extref *extref;
4557 extref = (struct btrfs_inode_extref *)(ptr +
4558 cur_offset);
4559 parent = btrfs_inode_extref_parent(eb, extref);
4560 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4561 name_ptr = (unsigned long)&extref->name;
4562 this_len = sizeof(*extref) + this_name_len;
4565 if (this_name_len > name_len) {
4566 char *new_name;
4568 new_name = krealloc(name, this_name_len, GFP_NOFS);
4569 if (!new_name) {
4570 ret = -ENOMEM;
4571 goto out;
4573 name_len = this_name_len;
4574 name = new_name;
4577 read_extent_buffer(eb, name, name_ptr, this_name_len);
4578 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4579 parent, name, this_name_len, 0);
4580 if (di && !IS_ERR(di)) {
4581 struct btrfs_key di_key;
4583 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4584 di, &di_key);
4585 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4586 ret = 1;
4587 *other_ino = di_key.objectid;
4588 } else {
4589 ret = -EAGAIN;
4591 goto out;
4592 } else if (IS_ERR(di)) {
4593 ret = PTR_ERR(di);
4594 goto out;
4596 btrfs_release_path(search_path);
4598 cur_offset += this_len;
4600 ret = 0;
4601 out:
4602 btrfs_free_path(search_path);
4603 kfree(name);
4604 return ret;
4607 /* log a single inode in the tree log.
4608 * At least one parent directory for this inode must exist in the tree
4609 * or be logged already.
4611 * Any items from this inode changed by the current transaction are copied
4612 * to the log tree. An extra reference is taken on any extents in this
4613 * file, allowing us to avoid a whole pile of corner cases around logging
4614 * blocks that have been removed from the tree.
4616 * See LOG_INODE_ALL and related defines for a description of what inode_only
4617 * does.
4619 * This handles both files and directories.
4621 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4622 struct btrfs_root *root, struct btrfs_inode *inode,
4623 int inode_only,
4624 const loff_t start,
4625 const loff_t end,
4626 struct btrfs_log_ctx *ctx)
4628 struct btrfs_fs_info *fs_info = root->fs_info;
4629 struct btrfs_path *path;
4630 struct btrfs_path *dst_path;
4631 struct btrfs_key min_key;
4632 struct btrfs_key max_key;
4633 struct btrfs_root *log = root->log_root;
4634 LIST_HEAD(logged_list);
4635 u64 last_extent = 0;
4636 int err = 0;
4637 int ret;
4638 int nritems;
4639 int ins_start_slot = 0;
4640 int ins_nr;
4641 bool fast_search = false;
4642 u64 ino = btrfs_ino(inode);
4643 struct extent_map_tree *em_tree = &inode->extent_tree;
4644 u64 logged_isize = 0;
4645 bool need_log_inode_item = true;
4647 path = btrfs_alloc_path();
4648 if (!path)
4649 return -ENOMEM;
4650 dst_path = btrfs_alloc_path();
4651 if (!dst_path) {
4652 btrfs_free_path(path);
4653 return -ENOMEM;
4656 min_key.objectid = ino;
4657 min_key.type = BTRFS_INODE_ITEM_KEY;
4658 min_key.offset = 0;
4660 max_key.objectid = ino;
4663 /* today the code can only do partial logging of directories */
4664 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4665 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4666 &inode->runtime_flags) &&
4667 inode_only >= LOG_INODE_EXISTS))
4668 max_key.type = BTRFS_XATTR_ITEM_KEY;
4669 else
4670 max_key.type = (u8)-1;
4671 max_key.offset = (u64)-1;
4674 * Only run delayed items if we are a dir or a new file.
4675 * Otherwise commit the delayed inode only, which is needed in
4676 * order for the log replay code to mark inodes for link count
4677 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4679 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4680 inode->generation > fs_info->last_trans_committed)
4681 ret = btrfs_commit_inode_delayed_items(trans, inode);
4682 else
4683 ret = btrfs_commit_inode_delayed_inode(inode);
4685 if (ret) {
4686 btrfs_free_path(path);
4687 btrfs_free_path(dst_path);
4688 return ret;
4691 if (inode_only == LOG_OTHER_INODE) {
4692 inode_only = LOG_INODE_EXISTS;
4693 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4694 } else {
4695 mutex_lock(&inode->log_mutex);
4699 * a brute force approach to making sure we get the most uptodate
4700 * copies of everything.
4702 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4703 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4705 if (inode_only == LOG_INODE_EXISTS)
4706 max_key_type = BTRFS_XATTR_ITEM_KEY;
4707 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4708 } else {
4709 if (inode_only == LOG_INODE_EXISTS) {
4711 * Make sure the new inode item we write to the log has
4712 * the same isize as the current one (if it exists).
4713 * This is necessary to prevent data loss after log
4714 * replay, and also to prevent doing a wrong expanding
4715 * truncate - for e.g. create file, write 4K into offset
4716 * 0, fsync, write 4K into offset 4096, add hard link,
4717 * fsync some other file (to sync log), power fail - if
4718 * we use the inode's current i_size, after log replay
4719 * we get a 8Kb file, with the last 4Kb extent as a hole
4720 * (zeroes), as if an expanding truncate happened,
4721 * instead of getting a file of 4Kb only.
4723 err = logged_inode_size(log, inode, path, &logged_isize);
4724 if (err)
4725 goto out_unlock;
4727 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4728 &inode->runtime_flags)) {
4729 if (inode_only == LOG_INODE_EXISTS) {
4730 max_key.type = BTRFS_XATTR_ITEM_KEY;
4731 ret = drop_objectid_items(trans, log, path, ino,
4732 max_key.type);
4733 } else {
4734 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4735 &inode->runtime_flags);
4736 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4737 &inode->runtime_flags);
4738 while(1) {
4739 ret = btrfs_truncate_inode_items(trans,
4740 log, &inode->vfs_inode, 0, 0);
4741 if (ret != -EAGAIN)
4742 break;
4745 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4746 &inode->runtime_flags) ||
4747 inode_only == LOG_INODE_EXISTS) {
4748 if (inode_only == LOG_INODE_ALL)
4749 fast_search = true;
4750 max_key.type = BTRFS_XATTR_ITEM_KEY;
4751 ret = drop_objectid_items(trans, log, path, ino,
4752 max_key.type);
4753 } else {
4754 if (inode_only == LOG_INODE_ALL)
4755 fast_search = true;
4756 goto log_extents;
4760 if (ret) {
4761 err = ret;
4762 goto out_unlock;
4765 while (1) {
4766 ins_nr = 0;
4767 ret = btrfs_search_forward(root, &min_key,
4768 path, trans->transid);
4769 if (ret < 0) {
4770 err = ret;
4771 goto out_unlock;
4773 if (ret != 0)
4774 break;
4775 again:
4776 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4777 if (min_key.objectid != ino)
4778 break;
4779 if (min_key.type > max_key.type)
4780 break;
4782 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4783 need_log_inode_item = false;
4785 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4786 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4787 inode->generation == trans->transid) {
4788 u64 other_ino = 0;
4790 ret = btrfs_check_ref_name_override(path->nodes[0],
4791 path->slots[0], &min_key, inode,
4792 &other_ino);
4793 if (ret < 0) {
4794 err = ret;
4795 goto out_unlock;
4796 } else if (ret > 0 && ctx &&
4797 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4798 struct btrfs_key inode_key;
4799 struct inode *other_inode;
4801 if (ins_nr > 0) {
4802 ins_nr++;
4803 } else {
4804 ins_nr = 1;
4805 ins_start_slot = path->slots[0];
4807 ret = copy_items(trans, inode, dst_path, path,
4808 &last_extent, ins_start_slot,
4809 ins_nr, inode_only,
4810 logged_isize);
4811 if (ret < 0) {
4812 err = ret;
4813 goto out_unlock;
4815 ins_nr = 0;
4816 btrfs_release_path(path);
4817 inode_key.objectid = other_ino;
4818 inode_key.type = BTRFS_INODE_ITEM_KEY;
4819 inode_key.offset = 0;
4820 other_inode = btrfs_iget(fs_info->sb,
4821 &inode_key, root,
4822 NULL);
4824 * If the other inode that had a conflicting dir
4825 * entry was deleted in the current transaction,
4826 * we don't need to do more work nor fallback to
4827 * a transaction commit.
4829 if (IS_ERR(other_inode) &&
4830 PTR_ERR(other_inode) == -ENOENT) {
4831 goto next_key;
4832 } else if (IS_ERR(other_inode)) {
4833 err = PTR_ERR(other_inode);
4834 goto out_unlock;
4837 * We are safe logging the other inode without
4838 * acquiring its i_mutex as long as we log with
4839 * the LOG_INODE_EXISTS mode. We're safe against
4840 * concurrent renames of the other inode as well
4841 * because during a rename we pin the log and
4842 * update the log with the new name before we
4843 * unpin it.
4845 err = btrfs_log_inode(trans, root,
4846 BTRFS_I(other_inode),
4847 LOG_OTHER_INODE, 0, LLONG_MAX,
4848 ctx);
4849 iput(other_inode);
4850 if (err)
4851 goto out_unlock;
4852 else
4853 goto next_key;
4857 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4858 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4859 if (ins_nr == 0)
4860 goto next_slot;
4861 ret = copy_items(trans, inode, dst_path, path,
4862 &last_extent, ins_start_slot,
4863 ins_nr, inode_only, logged_isize);
4864 if (ret < 0) {
4865 err = ret;
4866 goto out_unlock;
4868 ins_nr = 0;
4869 if (ret) {
4870 btrfs_release_path(path);
4871 continue;
4873 goto next_slot;
4876 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4877 ins_nr++;
4878 goto next_slot;
4879 } else if (!ins_nr) {
4880 ins_start_slot = path->slots[0];
4881 ins_nr = 1;
4882 goto next_slot;
4885 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4886 ins_start_slot, ins_nr, inode_only,
4887 logged_isize);
4888 if (ret < 0) {
4889 err = ret;
4890 goto out_unlock;
4892 if (ret) {
4893 ins_nr = 0;
4894 btrfs_release_path(path);
4895 continue;
4897 ins_nr = 1;
4898 ins_start_slot = path->slots[0];
4899 next_slot:
4901 nritems = btrfs_header_nritems(path->nodes[0]);
4902 path->slots[0]++;
4903 if (path->slots[0] < nritems) {
4904 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4905 path->slots[0]);
4906 goto again;
4908 if (ins_nr) {
4909 ret = copy_items(trans, inode, dst_path, path,
4910 &last_extent, ins_start_slot,
4911 ins_nr, inode_only, logged_isize);
4912 if (ret < 0) {
4913 err = ret;
4914 goto out_unlock;
4916 ret = 0;
4917 ins_nr = 0;
4919 btrfs_release_path(path);
4920 next_key:
4921 if (min_key.offset < (u64)-1) {
4922 min_key.offset++;
4923 } else if (min_key.type < max_key.type) {
4924 min_key.type++;
4925 min_key.offset = 0;
4926 } else {
4927 break;
4930 if (ins_nr) {
4931 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4932 ins_start_slot, ins_nr, inode_only,
4933 logged_isize);
4934 if (ret < 0) {
4935 err = ret;
4936 goto out_unlock;
4938 ret = 0;
4939 ins_nr = 0;
4942 btrfs_release_path(path);
4943 btrfs_release_path(dst_path);
4944 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4945 if (err)
4946 goto out_unlock;
4947 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4948 btrfs_release_path(path);
4949 btrfs_release_path(dst_path);
4950 err = btrfs_log_trailing_hole(trans, root, inode, path);
4951 if (err)
4952 goto out_unlock;
4954 log_extents:
4955 btrfs_release_path(path);
4956 btrfs_release_path(dst_path);
4957 if (need_log_inode_item) {
4958 err = log_inode_item(trans, log, dst_path, inode);
4959 if (err)
4960 goto out_unlock;
4962 if (fast_search) {
4963 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4964 &logged_list, ctx, start, end);
4965 if (ret) {
4966 err = ret;
4967 goto out_unlock;
4969 } else if (inode_only == LOG_INODE_ALL) {
4970 struct extent_map *em, *n;
4972 write_lock(&em_tree->lock);
4974 * We can't just remove every em if we're called for a ranged
4975 * fsync - that is, one that doesn't cover the whole possible
4976 * file range (0 to LLONG_MAX). This is because we can have
4977 * em's that fall outside the range we're logging and therefore
4978 * their ordered operations haven't completed yet
4979 * (btrfs_finish_ordered_io() not invoked yet). This means we
4980 * didn't get their respective file extent item in the fs/subvol
4981 * tree yet, and need to let the next fast fsync (one which
4982 * consults the list of modified extent maps) find the em so
4983 * that it logs a matching file extent item and waits for the
4984 * respective ordered operation to complete (if it's still
4985 * running).
4987 * Removing every em outside the range we're logging would make
4988 * the next fast fsync not log their matching file extent items,
4989 * therefore making us lose data after a log replay.
4991 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4992 list) {
4993 const u64 mod_end = em->mod_start + em->mod_len - 1;
4995 if (em->mod_start >= start && mod_end <= end)
4996 list_del_init(&em->list);
4998 write_unlock(&em_tree->lock);
5001 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5002 ret = log_directory_changes(trans, root, inode, path, dst_path,
5003 ctx);
5004 if (ret) {
5005 err = ret;
5006 goto out_unlock;
5010 spin_lock(&inode->lock);
5011 inode->logged_trans = trans->transid;
5012 inode->last_log_commit = inode->last_sub_trans;
5013 spin_unlock(&inode->lock);
5014 out_unlock:
5015 if (unlikely(err))
5016 btrfs_put_logged_extents(&logged_list);
5017 else
5018 btrfs_submit_logged_extents(&logged_list, log);
5019 mutex_unlock(&inode->log_mutex);
5021 btrfs_free_path(path);
5022 btrfs_free_path(dst_path);
5023 return err;
5027 * Check if we must fallback to a transaction commit when logging an inode.
5028 * This must be called after logging the inode and is used only in the context
5029 * when fsyncing an inode requires the need to log some other inode - in which
5030 * case we can't lock the i_mutex of each other inode we need to log as that
5031 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5032 * log inodes up or down in the hierarchy) or rename operations for example. So
5033 * we take the log_mutex of the inode after we have logged it and then check for
5034 * its last_unlink_trans value - this is safe because any task setting
5035 * last_unlink_trans must take the log_mutex and it must do this before it does
5036 * the actual unlink operation, so if we do this check before a concurrent task
5037 * sets last_unlink_trans it means we've logged a consistent version/state of
5038 * all the inode items, otherwise we are not sure and must do a transaction
5039 * commit (the concurrent task might have only updated last_unlink_trans before
5040 * we logged the inode or it might have also done the unlink).
5042 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5043 struct btrfs_inode *inode)
5045 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5046 bool ret = false;
5048 mutex_lock(&inode->log_mutex);
5049 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5051 * Make sure any commits to the log are forced to be full
5052 * commits.
5054 btrfs_set_log_full_commit(fs_info, trans);
5055 ret = true;
5057 mutex_unlock(&inode->log_mutex);
5059 return ret;
5063 * follow the dentry parent pointers up the chain and see if any
5064 * of the directories in it require a full commit before they can
5065 * be logged. Returns zero if nothing special needs to be done or 1 if
5066 * a full commit is required.
5068 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5069 struct btrfs_inode *inode,
5070 struct dentry *parent,
5071 struct super_block *sb,
5072 u64 last_committed)
5074 int ret = 0;
5075 struct dentry *old_parent = NULL;
5076 struct btrfs_inode *orig_inode = inode;
5079 * for regular files, if its inode is already on disk, we don't
5080 * have to worry about the parents at all. This is because
5081 * we can use the last_unlink_trans field to record renames
5082 * and other fun in this file.
5084 if (S_ISREG(inode->vfs_inode.i_mode) &&
5085 inode->generation <= last_committed &&
5086 inode->last_unlink_trans <= last_committed)
5087 goto out;
5089 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5090 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5091 goto out;
5092 inode = BTRFS_I(d_inode(parent));
5095 while (1) {
5097 * If we are logging a directory then we start with our inode,
5098 * not our parent's inode, so we need to skip setting the
5099 * logged_trans so that further down in the log code we don't
5100 * think this inode has already been logged.
5102 if (inode != orig_inode)
5103 inode->logged_trans = trans->transid;
5104 smp_mb();
5106 if (btrfs_must_commit_transaction(trans, inode)) {
5107 ret = 1;
5108 break;
5111 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5112 break;
5114 if (IS_ROOT(parent)) {
5115 inode = BTRFS_I(d_inode(parent));
5116 if (btrfs_must_commit_transaction(trans, inode))
5117 ret = 1;
5118 break;
5121 parent = dget_parent(parent);
5122 dput(old_parent);
5123 old_parent = parent;
5124 inode = BTRFS_I(d_inode(parent));
5127 dput(old_parent);
5128 out:
5129 return ret;
5132 struct btrfs_dir_list {
5133 u64 ino;
5134 struct list_head list;
5138 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5139 * details about the why it is needed.
5140 * This is a recursive operation - if an existing dentry corresponds to a
5141 * directory, that directory's new entries are logged too (same behaviour as
5142 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5143 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5144 * complains about the following circular lock dependency / possible deadlock:
5146 * CPU0 CPU1
5147 * ---- ----
5148 * lock(&type->i_mutex_dir_key#3/2);
5149 * lock(sb_internal#2);
5150 * lock(&type->i_mutex_dir_key#3/2);
5151 * lock(&sb->s_type->i_mutex_key#14);
5153 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5154 * sb_start_intwrite() in btrfs_start_transaction().
5155 * Not locking i_mutex of the inodes is still safe because:
5157 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5158 * that while logging the inode new references (names) are added or removed
5159 * from the inode, leaving the logged inode item with a link count that does
5160 * not match the number of logged inode reference items. This is fine because
5161 * at log replay time we compute the real number of links and correct the
5162 * link count in the inode item (see replay_one_buffer() and
5163 * link_to_fixup_dir());
5165 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5166 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5167 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5168 * has a size that doesn't match the sum of the lengths of all the logged
5169 * names. This does not result in a problem because if a dir_item key is
5170 * logged but its matching dir_index key is not logged, at log replay time we
5171 * don't use it to replay the respective name (see replay_one_name()). On the
5172 * other hand if only the dir_index key ends up being logged, the respective
5173 * name is added to the fs/subvol tree with both the dir_item and dir_index
5174 * keys created (see replay_one_name()).
5175 * The directory's inode item with a wrong i_size is not a problem as well,
5176 * since we don't use it at log replay time to set the i_size in the inode
5177 * item of the fs/subvol tree (see overwrite_item()).
5179 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5180 struct btrfs_root *root,
5181 struct btrfs_inode *start_inode,
5182 struct btrfs_log_ctx *ctx)
5184 struct btrfs_fs_info *fs_info = root->fs_info;
5185 struct btrfs_root *log = root->log_root;
5186 struct btrfs_path *path;
5187 LIST_HEAD(dir_list);
5188 struct btrfs_dir_list *dir_elem;
5189 int ret = 0;
5191 path = btrfs_alloc_path();
5192 if (!path)
5193 return -ENOMEM;
5195 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5196 if (!dir_elem) {
5197 btrfs_free_path(path);
5198 return -ENOMEM;
5200 dir_elem->ino = btrfs_ino(start_inode);
5201 list_add_tail(&dir_elem->list, &dir_list);
5203 while (!list_empty(&dir_list)) {
5204 struct extent_buffer *leaf;
5205 struct btrfs_key min_key;
5206 int nritems;
5207 int i;
5209 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5210 list);
5211 if (ret)
5212 goto next_dir_inode;
5214 min_key.objectid = dir_elem->ino;
5215 min_key.type = BTRFS_DIR_ITEM_KEY;
5216 min_key.offset = 0;
5217 again:
5218 btrfs_release_path(path);
5219 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5220 if (ret < 0) {
5221 goto next_dir_inode;
5222 } else if (ret > 0) {
5223 ret = 0;
5224 goto next_dir_inode;
5227 process_leaf:
5228 leaf = path->nodes[0];
5229 nritems = btrfs_header_nritems(leaf);
5230 for (i = path->slots[0]; i < nritems; i++) {
5231 struct btrfs_dir_item *di;
5232 struct btrfs_key di_key;
5233 struct inode *di_inode;
5234 struct btrfs_dir_list *new_dir_elem;
5235 int log_mode = LOG_INODE_EXISTS;
5236 int type;
5238 btrfs_item_key_to_cpu(leaf, &min_key, i);
5239 if (min_key.objectid != dir_elem->ino ||
5240 min_key.type != BTRFS_DIR_ITEM_KEY)
5241 goto next_dir_inode;
5243 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5244 type = btrfs_dir_type(leaf, di);
5245 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5246 type != BTRFS_FT_DIR)
5247 continue;
5248 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5249 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5250 continue;
5252 btrfs_release_path(path);
5253 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5254 if (IS_ERR(di_inode)) {
5255 ret = PTR_ERR(di_inode);
5256 goto next_dir_inode;
5259 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5260 iput(di_inode);
5261 break;
5264 ctx->log_new_dentries = false;
5265 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5266 log_mode = LOG_INODE_ALL;
5267 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5268 log_mode, 0, LLONG_MAX, ctx);
5269 if (!ret &&
5270 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5271 ret = 1;
5272 iput(di_inode);
5273 if (ret)
5274 goto next_dir_inode;
5275 if (ctx->log_new_dentries) {
5276 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5277 GFP_NOFS);
5278 if (!new_dir_elem) {
5279 ret = -ENOMEM;
5280 goto next_dir_inode;
5282 new_dir_elem->ino = di_key.objectid;
5283 list_add_tail(&new_dir_elem->list, &dir_list);
5285 break;
5287 if (i == nritems) {
5288 ret = btrfs_next_leaf(log, path);
5289 if (ret < 0) {
5290 goto next_dir_inode;
5291 } else if (ret > 0) {
5292 ret = 0;
5293 goto next_dir_inode;
5295 goto process_leaf;
5297 if (min_key.offset < (u64)-1) {
5298 min_key.offset++;
5299 goto again;
5301 next_dir_inode:
5302 list_del(&dir_elem->list);
5303 kfree(dir_elem);
5306 btrfs_free_path(path);
5307 return ret;
5310 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5311 struct btrfs_inode *inode,
5312 struct btrfs_log_ctx *ctx)
5314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5315 int ret;
5316 struct btrfs_path *path;
5317 struct btrfs_key key;
5318 struct btrfs_root *root = inode->root;
5319 const u64 ino = btrfs_ino(inode);
5321 path = btrfs_alloc_path();
5322 if (!path)
5323 return -ENOMEM;
5324 path->skip_locking = 1;
5325 path->search_commit_root = 1;
5327 key.objectid = ino;
5328 key.type = BTRFS_INODE_REF_KEY;
5329 key.offset = 0;
5330 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5331 if (ret < 0)
5332 goto out;
5334 while (true) {
5335 struct extent_buffer *leaf = path->nodes[0];
5336 int slot = path->slots[0];
5337 u32 cur_offset = 0;
5338 u32 item_size;
5339 unsigned long ptr;
5341 if (slot >= btrfs_header_nritems(leaf)) {
5342 ret = btrfs_next_leaf(root, path);
5343 if (ret < 0)
5344 goto out;
5345 else if (ret > 0)
5346 break;
5347 continue;
5350 btrfs_item_key_to_cpu(leaf, &key, slot);
5351 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5352 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5353 break;
5355 item_size = btrfs_item_size_nr(leaf, slot);
5356 ptr = btrfs_item_ptr_offset(leaf, slot);
5357 while (cur_offset < item_size) {
5358 struct btrfs_key inode_key;
5359 struct inode *dir_inode;
5361 inode_key.type = BTRFS_INODE_ITEM_KEY;
5362 inode_key.offset = 0;
5364 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5365 struct btrfs_inode_extref *extref;
5367 extref = (struct btrfs_inode_extref *)
5368 (ptr + cur_offset);
5369 inode_key.objectid = btrfs_inode_extref_parent(
5370 leaf, extref);
5371 cur_offset += sizeof(*extref);
5372 cur_offset += btrfs_inode_extref_name_len(leaf,
5373 extref);
5374 } else {
5375 inode_key.objectid = key.offset;
5376 cur_offset = item_size;
5379 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5380 root, NULL);
5381 /* If parent inode was deleted, skip it. */
5382 if (IS_ERR(dir_inode))
5383 continue;
5385 if (ctx)
5386 ctx->log_new_dentries = false;
5387 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5388 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5389 if (!ret &&
5390 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5391 ret = 1;
5392 if (!ret && ctx && ctx->log_new_dentries)
5393 ret = log_new_dir_dentries(trans, root,
5394 BTRFS_I(dir_inode), ctx);
5395 iput(dir_inode);
5396 if (ret)
5397 goto out;
5399 path->slots[0]++;
5401 ret = 0;
5402 out:
5403 btrfs_free_path(path);
5404 return ret;
5408 * helper function around btrfs_log_inode to make sure newly created
5409 * parent directories also end up in the log. A minimal inode and backref
5410 * only logging is done of any parent directories that are older than
5411 * the last committed transaction
5413 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5414 struct btrfs_root *root,
5415 struct btrfs_inode *inode,
5416 struct dentry *parent,
5417 const loff_t start,
5418 const loff_t end,
5419 int inode_only,
5420 struct btrfs_log_ctx *ctx)
5422 struct btrfs_fs_info *fs_info = root->fs_info;
5423 struct super_block *sb;
5424 struct dentry *old_parent = NULL;
5425 int ret = 0;
5426 u64 last_committed = fs_info->last_trans_committed;
5427 bool log_dentries = false;
5428 struct btrfs_inode *orig_inode = inode;
5430 sb = inode->vfs_inode.i_sb;
5432 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5433 ret = 1;
5434 goto end_no_trans;
5438 * The prev transaction commit doesn't complete, we need do
5439 * full commit by ourselves.
5441 if (fs_info->last_trans_log_full_commit >
5442 fs_info->last_trans_committed) {
5443 ret = 1;
5444 goto end_no_trans;
5447 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5448 ret = 1;
5449 goto end_no_trans;
5452 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5453 last_committed);
5454 if (ret)
5455 goto end_no_trans;
5457 if (btrfs_inode_in_log(inode, trans->transid)) {
5458 ret = BTRFS_NO_LOG_SYNC;
5459 goto end_no_trans;
5462 ret = start_log_trans(trans, root, ctx);
5463 if (ret)
5464 goto end_no_trans;
5466 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5467 if (ret)
5468 goto end_trans;
5471 * for regular files, if its inode is already on disk, we don't
5472 * have to worry about the parents at all. This is because
5473 * we can use the last_unlink_trans field to record renames
5474 * and other fun in this file.
5476 if (S_ISREG(inode->vfs_inode.i_mode) &&
5477 inode->generation <= last_committed &&
5478 inode->last_unlink_trans <= last_committed) {
5479 ret = 0;
5480 goto end_trans;
5483 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5484 log_dentries = true;
5487 * On unlink we must make sure all our current and old parent directory
5488 * inodes are fully logged. This is to prevent leaving dangling
5489 * directory index entries in directories that were our parents but are
5490 * not anymore. Not doing this results in old parent directory being
5491 * impossible to delete after log replay (rmdir will always fail with
5492 * error -ENOTEMPTY).
5494 * Example 1:
5496 * mkdir testdir
5497 * touch testdir/foo
5498 * ln testdir/foo testdir/bar
5499 * sync
5500 * unlink testdir/bar
5501 * xfs_io -c fsync testdir/foo
5502 * <power failure>
5503 * mount fs, triggers log replay
5505 * If we don't log the parent directory (testdir), after log replay the
5506 * directory still has an entry pointing to the file inode using the bar
5507 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5508 * the file inode has a link count of 1.
5510 * Example 2:
5512 * mkdir testdir
5513 * touch foo
5514 * ln foo testdir/foo2
5515 * ln foo testdir/foo3
5516 * sync
5517 * unlink testdir/foo3
5518 * xfs_io -c fsync foo
5519 * <power failure>
5520 * mount fs, triggers log replay
5522 * Similar as the first example, after log replay the parent directory
5523 * testdir still has an entry pointing to the inode file with name foo3
5524 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5525 * and has a link count of 2.
5527 if (inode->last_unlink_trans > last_committed) {
5528 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5529 if (ret)
5530 goto end_trans;
5533 while (1) {
5534 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5535 break;
5537 inode = BTRFS_I(d_inode(parent));
5538 if (root != inode->root)
5539 break;
5541 if (inode->generation > last_committed) {
5542 ret = btrfs_log_inode(trans, root, inode,
5543 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5544 if (ret)
5545 goto end_trans;
5547 if (IS_ROOT(parent))
5548 break;
5550 parent = dget_parent(parent);
5551 dput(old_parent);
5552 old_parent = parent;
5554 if (log_dentries)
5555 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5556 else
5557 ret = 0;
5558 end_trans:
5559 dput(old_parent);
5560 if (ret < 0) {
5561 btrfs_set_log_full_commit(fs_info, trans);
5562 ret = 1;
5565 if (ret)
5566 btrfs_remove_log_ctx(root, ctx);
5567 btrfs_end_log_trans(root);
5568 end_no_trans:
5569 return ret;
5573 * it is not safe to log dentry if the chunk root has added new
5574 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5575 * If this returns 1, you must commit the transaction to safely get your
5576 * data on disk.
5578 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5579 struct btrfs_root *root, struct dentry *dentry,
5580 const loff_t start,
5581 const loff_t end,
5582 struct btrfs_log_ctx *ctx)
5584 struct dentry *parent = dget_parent(dentry);
5585 int ret;
5587 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5588 parent, start, end, LOG_INODE_ALL, ctx);
5589 dput(parent);
5591 return ret;
5595 * should be called during mount to recover any replay any log trees
5596 * from the FS
5598 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5600 int ret;
5601 struct btrfs_path *path;
5602 struct btrfs_trans_handle *trans;
5603 struct btrfs_key key;
5604 struct btrfs_key found_key;
5605 struct btrfs_key tmp_key;
5606 struct btrfs_root *log;
5607 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5608 struct walk_control wc = {
5609 .process_func = process_one_buffer,
5610 .stage = 0,
5613 path = btrfs_alloc_path();
5614 if (!path)
5615 return -ENOMEM;
5617 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5619 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5620 if (IS_ERR(trans)) {
5621 ret = PTR_ERR(trans);
5622 goto error;
5625 wc.trans = trans;
5626 wc.pin = 1;
5628 ret = walk_log_tree(trans, log_root_tree, &wc);
5629 if (ret) {
5630 btrfs_handle_fs_error(fs_info, ret,
5631 "Failed to pin buffers while recovering log root tree.");
5632 goto error;
5635 again:
5636 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5637 key.offset = (u64)-1;
5638 key.type = BTRFS_ROOT_ITEM_KEY;
5640 while (1) {
5641 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5643 if (ret < 0) {
5644 btrfs_handle_fs_error(fs_info, ret,
5645 "Couldn't find tree log root.");
5646 goto error;
5648 if (ret > 0) {
5649 if (path->slots[0] == 0)
5650 break;
5651 path->slots[0]--;
5653 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5654 path->slots[0]);
5655 btrfs_release_path(path);
5656 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5657 break;
5659 log = btrfs_read_fs_root(log_root_tree, &found_key);
5660 if (IS_ERR(log)) {
5661 ret = PTR_ERR(log);
5662 btrfs_handle_fs_error(fs_info, ret,
5663 "Couldn't read tree log root.");
5664 goto error;
5667 tmp_key.objectid = found_key.offset;
5668 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5669 tmp_key.offset = (u64)-1;
5671 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5672 if (IS_ERR(wc.replay_dest)) {
5673 ret = PTR_ERR(wc.replay_dest);
5674 free_extent_buffer(log->node);
5675 free_extent_buffer(log->commit_root);
5676 kfree(log);
5677 btrfs_handle_fs_error(fs_info, ret,
5678 "Couldn't read target root for tree log recovery.");
5679 goto error;
5682 wc.replay_dest->log_root = log;
5683 btrfs_record_root_in_trans(trans, wc.replay_dest);
5684 ret = walk_log_tree(trans, log, &wc);
5686 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5687 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5688 path);
5691 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5692 struct btrfs_root *root = wc.replay_dest;
5694 btrfs_release_path(path);
5697 * We have just replayed everything, and the highest
5698 * objectid of fs roots probably has changed in case
5699 * some inode_item's got replayed.
5701 * root->objectid_mutex is not acquired as log replay
5702 * could only happen during mount.
5704 ret = btrfs_find_highest_objectid(root,
5705 &root->highest_objectid);
5708 key.offset = found_key.offset - 1;
5709 wc.replay_dest->log_root = NULL;
5710 free_extent_buffer(log->node);
5711 free_extent_buffer(log->commit_root);
5712 kfree(log);
5714 if (ret)
5715 goto error;
5717 if (found_key.offset == 0)
5718 break;
5720 btrfs_release_path(path);
5722 /* step one is to pin it all, step two is to replay just inodes */
5723 if (wc.pin) {
5724 wc.pin = 0;
5725 wc.process_func = replay_one_buffer;
5726 wc.stage = LOG_WALK_REPLAY_INODES;
5727 goto again;
5729 /* step three is to replay everything */
5730 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5731 wc.stage++;
5732 goto again;
5735 btrfs_free_path(path);
5737 /* step 4: commit the transaction, which also unpins the blocks */
5738 ret = btrfs_commit_transaction(trans);
5739 if (ret)
5740 return ret;
5742 free_extent_buffer(log_root_tree->node);
5743 log_root_tree->log_root = NULL;
5744 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5745 kfree(log_root_tree);
5747 return 0;
5748 error:
5749 if (wc.trans)
5750 btrfs_end_transaction(wc.trans);
5751 btrfs_free_path(path);
5752 return ret;
5756 * there are some corner cases where we want to force a full
5757 * commit instead of allowing a directory to be logged.
5759 * They revolve around files there were unlinked from the directory, and
5760 * this function updates the parent directory so that a full commit is
5761 * properly done if it is fsync'd later after the unlinks are done.
5763 * Must be called before the unlink operations (updates to the subvolume tree,
5764 * inodes, etc) are done.
5766 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5767 struct btrfs_inode *dir, struct btrfs_inode *inode,
5768 int for_rename)
5771 * when we're logging a file, if it hasn't been renamed
5772 * or unlinked, and its inode is fully committed on disk,
5773 * we don't have to worry about walking up the directory chain
5774 * to log its parents.
5776 * So, we use the last_unlink_trans field to put this transid
5777 * into the file. When the file is logged we check it and
5778 * don't log the parents if the file is fully on disk.
5780 mutex_lock(&inode->log_mutex);
5781 inode->last_unlink_trans = trans->transid;
5782 mutex_unlock(&inode->log_mutex);
5785 * if this directory was already logged any new
5786 * names for this file/dir will get recorded
5788 smp_mb();
5789 if (dir->logged_trans == trans->transid)
5790 return;
5793 * if the inode we're about to unlink was logged,
5794 * the log will be properly updated for any new names
5796 if (inode->logged_trans == trans->transid)
5797 return;
5800 * when renaming files across directories, if the directory
5801 * there we're unlinking from gets fsync'd later on, there's
5802 * no way to find the destination directory later and fsync it
5803 * properly. So, we have to be conservative and force commits
5804 * so the new name gets discovered.
5806 if (for_rename)
5807 goto record;
5809 /* we can safely do the unlink without any special recording */
5810 return;
5812 record:
5813 mutex_lock(&dir->log_mutex);
5814 dir->last_unlink_trans = trans->transid;
5815 mutex_unlock(&dir->log_mutex);
5819 * Make sure that if someone attempts to fsync the parent directory of a deleted
5820 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5821 * that after replaying the log tree of the parent directory's root we will not
5822 * see the snapshot anymore and at log replay time we will not see any log tree
5823 * corresponding to the deleted snapshot's root, which could lead to replaying
5824 * it after replaying the log tree of the parent directory (which would replay
5825 * the snapshot delete operation).
5827 * Must be called before the actual snapshot destroy operation (updates to the
5828 * parent root and tree of tree roots trees, etc) are done.
5830 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5831 struct btrfs_inode *dir)
5833 mutex_lock(&dir->log_mutex);
5834 dir->last_unlink_trans = trans->transid;
5835 mutex_unlock(&dir->log_mutex);
5839 * Call this after adding a new name for a file and it will properly
5840 * update the log to reflect the new name.
5842 * It will return zero if all goes well, and it will return 1 if a
5843 * full transaction commit is required.
5845 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5846 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5847 struct dentry *parent)
5849 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5850 struct btrfs_root *root = inode->root;
5853 * this will force the logging code to walk the dentry chain
5854 * up for the file
5856 if (S_ISREG(inode->vfs_inode.i_mode))
5857 inode->last_unlink_trans = trans->transid;
5860 * if this inode hasn't been logged and directory we're renaming it
5861 * from hasn't been logged, we don't need to log it
5863 if (inode->logged_trans <= fs_info->last_trans_committed &&
5864 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5865 return 0;
5867 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5868 LLONG_MAX, LOG_INODE_EXISTS, NULL);