2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_fs_info
*fs_info
);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
139 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
142 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
143 enum btrfs_map_op op
,
144 u64 logical
, u64
*length
,
145 struct btrfs_bio
**bbio_ret
,
146 int mirror_num
, int need_raid_map
);
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
161 * the mutex can be very coarse and can cover long-running operations
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
166 * global::fs_devs - add, remove, updates to the global list
168 * does not protect: manipulation of the fs_devices::devices list!
170 * btrfs_device::name - renames (write side), read is RCU
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
176 * simple list traversal with read-only actions can be done with RCU protection
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
213 DEFINE_MUTEX(uuid_mutex
);
214 static LIST_HEAD(fs_uuids
);
215 struct list_head
*btrfs_get_fs_uuids(void)
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
228 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
230 struct btrfs_fs_devices
*fs_devs
;
232 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
234 return ERR_PTR(-ENOMEM
);
236 mutex_init(&fs_devs
->device_list_mutex
);
238 INIT_LIST_HEAD(&fs_devs
->devices
);
239 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
240 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
241 INIT_LIST_HEAD(&fs_devs
->list
);
243 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
248 static void free_device(struct btrfs_device
*device
)
250 rcu_string_free(device
->name
);
251 bio_put(device
->flush_bio
);
255 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
257 struct btrfs_device
*device
;
258 WARN_ON(fs_devices
->opened
);
259 while (!list_empty(&fs_devices
->devices
)) {
260 device
= list_entry(fs_devices
->devices
.next
,
261 struct btrfs_device
, dev_list
);
262 list_del(&device
->dev_list
);
268 static void btrfs_kobject_uevent(struct block_device
*bdev
,
269 enum kobject_action action
)
273 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
277 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
278 &disk_to_dev(bdev
->bd_disk
)->kobj
);
281 void btrfs_cleanup_fs_uuids(void)
283 struct btrfs_fs_devices
*fs_devices
;
285 while (!list_empty(&fs_uuids
)) {
286 fs_devices
= list_entry(fs_uuids
.next
,
287 struct btrfs_fs_devices
, list
);
288 list_del(&fs_devices
->list
);
289 free_fs_devices(fs_devices
);
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
298 static struct btrfs_device
*__alloc_device(void)
300 struct btrfs_device
*dev
;
302 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
304 return ERR_PTR(-ENOMEM
);
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
310 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
311 if (!dev
->flush_bio
) {
313 return ERR_PTR(-ENOMEM
);
316 INIT_LIST_HEAD(&dev
->dev_list
);
317 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
318 INIT_LIST_HEAD(&dev
->resized_list
);
320 spin_lock_init(&dev
->io_lock
);
322 atomic_set(&dev
->reada_in_flight
, 0);
323 atomic_set(&dev
->dev_stats_ccnt
, 0);
324 btrfs_device_data_ordered_init(dev
);
325 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
326 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
332 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
335 * If devid and uuid are both specified, the match must be exact, otherwise
336 * only devid is used.
338 static struct btrfs_device
*find_device(struct btrfs_fs_devices
*fs_devices
,
339 u64 devid
, const u8
*uuid
)
341 struct list_head
*head
= &fs_devices
->devices
;
342 struct btrfs_device
*dev
;
344 list_for_each_entry(dev
, head
, dev_list
) {
345 if (dev
->devid
== devid
&&
346 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
353 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
355 struct btrfs_fs_devices
*fs_devices
;
357 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
358 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
365 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
366 int flush
, struct block_device
**bdev
,
367 struct buffer_head
**bh
)
371 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
374 ret
= PTR_ERR(*bdev
);
379 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
380 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
382 blkdev_put(*bdev
, flags
);
385 invalidate_bdev(*bdev
);
386 *bh
= btrfs_read_dev_super(*bdev
);
389 blkdev_put(*bdev
, flags
);
401 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
402 struct bio
*head
, struct bio
*tail
)
405 struct bio
*old_head
;
407 old_head
= pending_bios
->head
;
408 pending_bios
->head
= head
;
409 if (pending_bios
->tail
)
410 tail
->bi_next
= old_head
;
412 pending_bios
->tail
= tail
;
416 * we try to collect pending bios for a device so we don't get a large
417 * number of procs sending bios down to the same device. This greatly
418 * improves the schedulers ability to collect and merge the bios.
420 * But, it also turns into a long list of bios to process and that is sure
421 * to eventually make the worker thread block. The solution here is to
422 * make some progress and then put this work struct back at the end of
423 * the list if the block device is congested. This way, multiple devices
424 * can make progress from a single worker thread.
426 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
428 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
430 struct backing_dev_info
*bdi
;
431 struct btrfs_pending_bios
*pending_bios
;
435 unsigned long num_run
;
436 unsigned long batch_run
= 0;
437 unsigned long last_waited
= 0;
439 int sync_pending
= 0;
440 struct blk_plug plug
;
443 * this function runs all the bios we've collected for
444 * a particular device. We don't want to wander off to
445 * another device without first sending all of these down.
446 * So, setup a plug here and finish it off before we return
448 blk_start_plug(&plug
);
450 bdi
= device
->bdev
->bd_bdi
;
453 spin_lock(&device
->io_lock
);
458 /* take all the bios off the list at once and process them
459 * later on (without the lock held). But, remember the
460 * tail and other pointers so the bios can be properly reinserted
461 * into the list if we hit congestion
463 if (!force_reg
&& device
->pending_sync_bios
.head
) {
464 pending_bios
= &device
->pending_sync_bios
;
467 pending_bios
= &device
->pending_bios
;
471 pending
= pending_bios
->head
;
472 tail
= pending_bios
->tail
;
473 WARN_ON(pending
&& !tail
);
476 * if pending was null this time around, no bios need processing
477 * at all and we can stop. Otherwise it'll loop back up again
478 * and do an additional check so no bios are missed.
480 * device->running_pending is used to synchronize with the
483 if (device
->pending_sync_bios
.head
== NULL
&&
484 device
->pending_bios
.head
== NULL
) {
486 device
->running_pending
= 0;
489 device
->running_pending
= 1;
492 pending_bios
->head
= NULL
;
493 pending_bios
->tail
= NULL
;
495 spin_unlock(&device
->io_lock
);
500 /* we want to work on both lists, but do more bios on the
501 * sync list than the regular list
504 pending_bios
!= &device
->pending_sync_bios
&&
505 device
->pending_sync_bios
.head
) ||
506 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
507 device
->pending_bios
.head
)) {
508 spin_lock(&device
->io_lock
);
509 requeue_list(pending_bios
, pending
, tail
);
514 pending
= pending
->bi_next
;
517 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
520 * if we're doing the sync list, record that our
521 * plug has some sync requests on it
523 * If we're doing the regular list and there are
524 * sync requests sitting around, unplug before
527 if (pending_bios
== &device
->pending_sync_bios
) {
529 } else if (sync_pending
) {
530 blk_finish_plug(&plug
);
531 blk_start_plug(&plug
);
535 btrfsic_submit_bio(cur
);
542 * we made progress, there is more work to do and the bdi
543 * is now congested. Back off and let other work structs
546 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
547 fs_info
->fs_devices
->open_devices
> 1) {
548 struct io_context
*ioc
;
550 ioc
= current
->io_context
;
553 * the main goal here is that we don't want to
554 * block if we're going to be able to submit
555 * more requests without blocking.
557 * This code does two great things, it pokes into
558 * the elevator code from a filesystem _and_
559 * it makes assumptions about how batching works.
561 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
562 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
564 ioc
->last_waited
== last_waited
)) {
566 * we want to go through our batch of
567 * requests and stop. So, we copy out
568 * the ioc->last_waited time and test
569 * against it before looping
571 last_waited
= ioc
->last_waited
;
575 spin_lock(&device
->io_lock
);
576 requeue_list(pending_bios
, pending
, tail
);
577 device
->running_pending
= 1;
579 spin_unlock(&device
->io_lock
);
580 btrfs_queue_work(fs_info
->submit_workers
,
590 spin_lock(&device
->io_lock
);
591 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
593 spin_unlock(&device
->io_lock
);
596 blk_finish_plug(&plug
);
599 static void pending_bios_fn(struct btrfs_work
*work
)
601 struct btrfs_device
*device
;
603 device
= container_of(work
, struct btrfs_device
, work
);
604 run_scheduled_bios(device
);
608 * Search and remove all stale (devices which are not mounted) devices.
609 * When both inputs are NULL, it will search and release all stale devices.
610 * path: Optional. When provided will it release all unmounted devices
611 * matching this path only.
612 * skip_dev: Optional. Will skip this device when searching for the stale
615 static void btrfs_free_stale_devices(const char *path
,
616 struct btrfs_device
*skip_dev
)
618 struct btrfs_fs_devices
*fs_devs
, *tmp_fs_devs
;
619 struct btrfs_device
*dev
, *tmp_dev
;
621 list_for_each_entry_safe(fs_devs
, tmp_fs_devs
, &fs_uuids
, list
) {
626 list_for_each_entry_safe(dev
, tmp_dev
,
627 &fs_devs
->devices
, dev_list
) {
630 if (skip_dev
&& skip_dev
== dev
)
632 if (path
&& !dev
->name
)
637 not_found
= strcmp(rcu_str_deref(dev
->name
),
643 /* delete the stale device */
644 if (fs_devs
->num_devices
== 1) {
645 btrfs_sysfs_remove_fsid(fs_devs
);
646 list_del(&fs_devs
->list
);
647 free_fs_devices(fs_devs
);
650 fs_devs
->num_devices
--;
651 list_del(&dev
->dev_list
);
658 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
659 struct btrfs_device
*device
, fmode_t flags
,
662 struct request_queue
*q
;
663 struct block_device
*bdev
;
664 struct buffer_head
*bh
;
665 struct btrfs_super_block
*disk_super
;
674 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
679 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
680 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
681 if (devid
!= device
->devid
)
684 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
687 device
->generation
= btrfs_super_generation(disk_super
);
689 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
690 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
691 fs_devices
->seeding
= 1;
693 if (bdev_read_only(bdev
))
694 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
696 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
699 q
= bdev_get_queue(bdev
);
700 if (!blk_queue_nonrot(q
))
701 fs_devices
->rotating
= 1;
704 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
705 device
->mode
= flags
;
707 fs_devices
->open_devices
++;
708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
709 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
710 fs_devices
->rw_devices
++;
711 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
719 blkdev_put(bdev
, flags
);
725 * Add new device to list of registered devices
728 * device pointer which was just added or updated when successful
729 * error pointer when failed
731 static noinline
struct btrfs_device
*device_list_add(const char *path
,
732 struct btrfs_super_block
*disk_super
)
734 struct btrfs_device
*device
;
735 struct btrfs_fs_devices
*fs_devices
;
736 struct rcu_string
*name
;
737 u64 found_transid
= btrfs_super_generation(disk_super
);
738 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
740 fs_devices
= find_fsid(disk_super
->fsid
);
742 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
743 if (IS_ERR(fs_devices
))
744 return ERR_CAST(fs_devices
);
746 list_add(&fs_devices
->list
, &fs_uuids
);
750 device
= find_device(fs_devices
, devid
,
751 disk_super
->dev_item
.uuid
);
755 if (fs_devices
->opened
)
756 return ERR_PTR(-EBUSY
);
758 device
= btrfs_alloc_device(NULL
, &devid
,
759 disk_super
->dev_item
.uuid
);
760 if (IS_ERR(device
)) {
761 /* we can safely leave the fs_devices entry around */
765 name
= rcu_string_strdup(path
, GFP_NOFS
);
768 return ERR_PTR(-ENOMEM
);
770 rcu_assign_pointer(device
->name
, name
);
772 mutex_lock(&fs_devices
->device_list_mutex
);
773 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
774 fs_devices
->num_devices
++;
775 mutex_unlock(&fs_devices
->device_list_mutex
);
777 device
->fs_devices
= fs_devices
;
778 btrfs_free_stale_devices(path
, device
);
780 if (disk_super
->label
[0])
781 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
782 disk_super
->label
, devid
, found_transid
, path
);
784 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
785 disk_super
->fsid
, devid
, found_transid
, path
);
787 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
789 * When FS is already mounted.
790 * 1. If you are here and if the device->name is NULL that
791 * means this device was missing at time of FS mount.
792 * 2. If you are here and if the device->name is different
793 * from 'path' that means either
794 * a. The same device disappeared and reappeared with
796 * b. The missing-disk-which-was-replaced, has
799 * We must allow 1 and 2a above. But 2b would be a spurious
802 * Further in case of 1 and 2a above, the disk at 'path'
803 * would have missed some transaction when it was away and
804 * in case of 2a the stale bdev has to be updated as well.
805 * 2b must not be allowed at all time.
809 * For now, we do allow update to btrfs_fs_device through the
810 * btrfs dev scan cli after FS has been mounted. We're still
811 * tracking a problem where systems fail mount by subvolume id
812 * when we reject replacement on a mounted FS.
814 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
816 * That is if the FS is _not_ mounted and if you
817 * are here, that means there is more than one
818 * disk with same uuid and devid.We keep the one
819 * with larger generation number or the last-in if
820 * generation are equal.
822 return ERR_PTR(-EEXIST
);
825 name
= rcu_string_strdup(path
, GFP_NOFS
);
827 return ERR_PTR(-ENOMEM
);
828 rcu_string_free(device
->name
);
829 rcu_assign_pointer(device
->name
, name
);
830 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
831 fs_devices
->missing_devices
--;
832 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
837 * Unmount does not free the btrfs_device struct but would zero
838 * generation along with most of the other members. So just update
839 * it back. We need it to pick the disk with largest generation
842 if (!fs_devices
->opened
)
843 device
->generation
= found_transid
;
845 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
850 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
852 struct btrfs_fs_devices
*fs_devices
;
853 struct btrfs_device
*device
;
854 struct btrfs_device
*orig_dev
;
856 fs_devices
= alloc_fs_devices(orig
->fsid
);
857 if (IS_ERR(fs_devices
))
860 mutex_lock(&orig
->device_list_mutex
);
861 fs_devices
->total_devices
= orig
->total_devices
;
863 /* We have held the volume lock, it is safe to get the devices. */
864 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
865 struct rcu_string
*name
;
867 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
873 * This is ok to do without rcu read locked because we hold the
874 * uuid mutex so nothing we touch in here is going to disappear.
876 if (orig_dev
->name
) {
877 name
= rcu_string_strdup(orig_dev
->name
->str
,
883 rcu_assign_pointer(device
->name
, name
);
886 list_add(&device
->dev_list
, &fs_devices
->devices
);
887 device
->fs_devices
= fs_devices
;
888 fs_devices
->num_devices
++;
890 mutex_unlock(&orig
->device_list_mutex
);
893 mutex_unlock(&orig
->device_list_mutex
);
894 free_fs_devices(fs_devices
);
895 return ERR_PTR(-ENOMEM
);
898 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
900 struct btrfs_device
*device
, *next
;
901 struct btrfs_device
*latest_dev
= NULL
;
903 mutex_lock(&uuid_mutex
);
905 /* This is the initialized path, it is safe to release the devices. */
906 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
907 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
908 &device
->dev_state
)) {
909 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
910 &device
->dev_state
) &&
912 device
->generation
> latest_dev
->generation
)) {
918 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
920 * In the first step, keep the device which has
921 * the correct fsid and the devid that is used
922 * for the dev_replace procedure.
923 * In the second step, the dev_replace state is
924 * read from the device tree and it is known
925 * whether the procedure is really active or
926 * not, which means whether this device is
927 * used or whether it should be removed.
929 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
930 &device
->dev_state
)) {
935 blkdev_put(device
->bdev
, device
->mode
);
937 fs_devices
->open_devices
--;
939 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
940 list_del_init(&device
->dev_alloc_list
);
941 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
942 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
944 fs_devices
->rw_devices
--;
946 list_del_init(&device
->dev_list
);
947 fs_devices
->num_devices
--;
951 if (fs_devices
->seed
) {
952 fs_devices
= fs_devices
->seed
;
956 fs_devices
->latest_bdev
= latest_dev
->bdev
;
958 mutex_unlock(&uuid_mutex
);
961 static void free_device_rcu(struct rcu_head
*head
)
963 struct btrfs_device
*device
;
965 device
= container_of(head
, struct btrfs_device
, rcu
);
969 static void btrfs_close_bdev(struct btrfs_device
*device
)
974 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
975 sync_blockdev(device
->bdev
);
976 invalidate_bdev(device
->bdev
);
979 blkdev_put(device
->bdev
, device
->mode
);
982 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
984 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
985 struct btrfs_device
*new_device
;
986 struct rcu_string
*name
;
989 fs_devices
->open_devices
--;
991 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
992 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
993 list_del_init(&device
->dev_alloc_list
);
994 fs_devices
->rw_devices
--;
997 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
998 fs_devices
->missing_devices
--;
1000 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1002 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1004 /* Safe because we are under uuid_mutex */
1006 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1007 BUG_ON(!name
); /* -ENOMEM */
1008 rcu_assign_pointer(new_device
->name
, name
);
1011 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1012 new_device
->fs_devices
= device
->fs_devices
;
1015 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1017 struct btrfs_device
*device
, *tmp
;
1018 struct list_head pending_put
;
1020 INIT_LIST_HEAD(&pending_put
);
1022 if (--fs_devices
->opened
> 0)
1025 mutex_lock(&fs_devices
->device_list_mutex
);
1026 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1027 btrfs_prepare_close_one_device(device
);
1028 list_add(&device
->dev_list
, &pending_put
);
1030 mutex_unlock(&fs_devices
->device_list_mutex
);
1033 * btrfs_show_devname() is using the device_list_mutex,
1034 * sometimes call to blkdev_put() leads vfs calling
1035 * into this func. So do put outside of device_list_mutex,
1038 while (!list_empty(&pending_put
)) {
1039 device
= list_first_entry(&pending_put
,
1040 struct btrfs_device
, dev_list
);
1041 list_del(&device
->dev_list
);
1042 btrfs_close_bdev(device
);
1043 call_rcu(&device
->rcu
, free_device_rcu
);
1046 WARN_ON(fs_devices
->open_devices
);
1047 WARN_ON(fs_devices
->rw_devices
);
1048 fs_devices
->opened
= 0;
1049 fs_devices
->seeding
= 0;
1054 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1056 struct btrfs_fs_devices
*seed_devices
= NULL
;
1059 mutex_lock(&uuid_mutex
);
1060 ret
= __btrfs_close_devices(fs_devices
);
1061 if (!fs_devices
->opened
) {
1062 seed_devices
= fs_devices
->seed
;
1063 fs_devices
->seed
= NULL
;
1065 mutex_unlock(&uuid_mutex
);
1067 while (seed_devices
) {
1068 fs_devices
= seed_devices
;
1069 seed_devices
= fs_devices
->seed
;
1070 __btrfs_close_devices(fs_devices
);
1071 free_fs_devices(fs_devices
);
1076 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1077 fmode_t flags
, void *holder
)
1079 struct list_head
*head
= &fs_devices
->devices
;
1080 struct btrfs_device
*device
;
1081 struct btrfs_device
*latest_dev
= NULL
;
1084 flags
|= FMODE_EXCL
;
1086 list_for_each_entry(device
, head
, dev_list
) {
1087 /* Just open everything we can; ignore failures here */
1088 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1092 device
->generation
> latest_dev
->generation
)
1093 latest_dev
= device
;
1095 if (fs_devices
->open_devices
== 0) {
1099 fs_devices
->opened
= 1;
1100 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1101 fs_devices
->total_rw_bytes
= 0;
1106 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1107 fmode_t flags
, void *holder
)
1111 mutex_lock(&uuid_mutex
);
1112 if (fs_devices
->opened
) {
1113 fs_devices
->opened
++;
1116 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1118 mutex_unlock(&uuid_mutex
);
1122 static void btrfs_release_disk_super(struct page
*page
)
1128 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1130 struct btrfs_super_block
**disk_super
)
1135 /* make sure our super fits in the device */
1136 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1139 /* make sure our super fits in the page */
1140 if (sizeof(**disk_super
) > PAGE_SIZE
)
1143 /* make sure our super doesn't straddle pages on disk */
1144 index
= bytenr
>> PAGE_SHIFT
;
1145 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1148 /* pull in the page with our super */
1149 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1152 if (IS_ERR_OR_NULL(*page
))
1157 /* align our pointer to the offset of the super block */
1158 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1160 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1161 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1162 btrfs_release_disk_super(*page
);
1166 if ((*disk_super
)->label
[0] &&
1167 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1168 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1174 * Look for a btrfs signature on a device. This may be called out of the mount path
1175 * and we are not allowed to call set_blocksize during the scan. The superblock
1176 * is read via pagecache
1178 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1179 struct btrfs_fs_devices
**fs_devices_ret
)
1181 struct btrfs_super_block
*disk_super
;
1182 struct btrfs_device
*device
;
1183 struct block_device
*bdev
;
1189 * we would like to check all the supers, but that would make
1190 * a btrfs mount succeed after a mkfs from a different FS.
1191 * So, we need to add a special mount option to scan for
1192 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1194 bytenr
= btrfs_sb_offset(0);
1195 flags
|= FMODE_EXCL
;
1196 mutex_lock(&uuid_mutex
);
1198 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1200 ret
= PTR_ERR(bdev
);
1204 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
)) {
1206 goto error_bdev_put
;
1209 device
= device_list_add(path
, disk_super
);
1211 ret
= PTR_ERR(device
);
1213 *fs_devices_ret
= device
->fs_devices
;
1215 btrfs_release_disk_super(page
);
1218 blkdev_put(bdev
, flags
);
1220 mutex_unlock(&uuid_mutex
);
1224 /* helper to account the used device space in the range */
1225 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1226 u64 end
, u64
*length
)
1228 struct btrfs_key key
;
1229 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1230 struct btrfs_dev_extent
*dev_extent
;
1231 struct btrfs_path
*path
;
1235 struct extent_buffer
*l
;
1239 if (start
>= device
->total_bytes
||
1240 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1243 path
= btrfs_alloc_path();
1246 path
->reada
= READA_FORWARD
;
1248 key
.objectid
= device
->devid
;
1250 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1252 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1256 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1263 slot
= path
->slots
[0];
1264 if (slot
>= btrfs_header_nritems(l
)) {
1265 ret
= btrfs_next_leaf(root
, path
);
1273 btrfs_item_key_to_cpu(l
, &key
, slot
);
1275 if (key
.objectid
< device
->devid
)
1278 if (key
.objectid
> device
->devid
)
1281 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1284 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1285 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1287 if (key
.offset
<= start
&& extent_end
> end
) {
1288 *length
= end
- start
+ 1;
1290 } else if (key
.offset
<= start
&& extent_end
> start
)
1291 *length
+= extent_end
- start
;
1292 else if (key
.offset
> start
&& extent_end
<= end
)
1293 *length
+= extent_end
- key
.offset
;
1294 else if (key
.offset
> start
&& key
.offset
<= end
) {
1295 *length
+= end
- key
.offset
+ 1;
1297 } else if (key
.offset
> end
)
1305 btrfs_free_path(path
);
1309 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1310 struct btrfs_device
*device
,
1311 u64
*start
, u64 len
)
1313 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1314 struct extent_map
*em
;
1315 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1317 u64 physical_start
= *start
;
1320 search_list
= &transaction
->pending_chunks
;
1322 list_for_each_entry(em
, search_list
, list
) {
1323 struct map_lookup
*map
;
1326 map
= em
->map_lookup
;
1327 for (i
= 0; i
< map
->num_stripes
; i
++) {
1330 if (map
->stripes
[i
].dev
!= device
)
1332 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1333 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1337 * Make sure that while processing the pinned list we do
1338 * not override our *start with a lower value, because
1339 * we can have pinned chunks that fall within this
1340 * device hole and that have lower physical addresses
1341 * than the pending chunks we processed before. If we
1342 * do not take this special care we can end up getting
1343 * 2 pending chunks that start at the same physical
1344 * device offsets because the end offset of a pinned
1345 * chunk can be equal to the start offset of some
1348 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1355 if (search_list
!= &fs_info
->pinned_chunks
) {
1356 search_list
= &fs_info
->pinned_chunks
;
1365 * find_free_dev_extent_start - find free space in the specified device
1366 * @device: the device which we search the free space in
1367 * @num_bytes: the size of the free space that we need
1368 * @search_start: the position from which to begin the search
1369 * @start: store the start of the free space.
1370 * @len: the size of the free space. that we find, or the size
1371 * of the max free space if we don't find suitable free space
1373 * this uses a pretty simple search, the expectation is that it is
1374 * called very infrequently and that a given device has a small number
1377 * @start is used to store the start of the free space if we find. But if we
1378 * don't find suitable free space, it will be used to store the start position
1379 * of the max free space.
1381 * @len is used to store the size of the free space that we find.
1382 * But if we don't find suitable free space, it is used to store the size of
1383 * the max free space.
1385 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1386 struct btrfs_device
*device
, u64 num_bytes
,
1387 u64 search_start
, u64
*start
, u64
*len
)
1389 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1390 struct btrfs_root
*root
= fs_info
->dev_root
;
1391 struct btrfs_key key
;
1392 struct btrfs_dev_extent
*dev_extent
;
1393 struct btrfs_path
*path
;
1398 u64 search_end
= device
->total_bytes
;
1401 struct extent_buffer
*l
;
1404 * We don't want to overwrite the superblock on the drive nor any area
1405 * used by the boot loader (grub for example), so we make sure to start
1406 * at an offset of at least 1MB.
1408 search_start
= max_t(u64
, search_start
, SZ_1M
);
1410 path
= btrfs_alloc_path();
1414 max_hole_start
= search_start
;
1418 if (search_start
>= search_end
||
1419 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1424 path
->reada
= READA_FORWARD
;
1425 path
->search_commit_root
= 1;
1426 path
->skip_locking
= 1;
1428 key
.objectid
= device
->devid
;
1429 key
.offset
= search_start
;
1430 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1432 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1436 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1443 slot
= path
->slots
[0];
1444 if (slot
>= btrfs_header_nritems(l
)) {
1445 ret
= btrfs_next_leaf(root
, path
);
1453 btrfs_item_key_to_cpu(l
, &key
, slot
);
1455 if (key
.objectid
< device
->devid
)
1458 if (key
.objectid
> device
->devid
)
1461 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1464 if (key
.offset
> search_start
) {
1465 hole_size
= key
.offset
- search_start
;
1468 * Have to check before we set max_hole_start, otherwise
1469 * we could end up sending back this offset anyway.
1471 if (contains_pending_extent(transaction
, device
,
1474 if (key
.offset
>= search_start
) {
1475 hole_size
= key
.offset
- search_start
;
1482 if (hole_size
> max_hole_size
) {
1483 max_hole_start
= search_start
;
1484 max_hole_size
= hole_size
;
1488 * If this free space is greater than which we need,
1489 * it must be the max free space that we have found
1490 * until now, so max_hole_start must point to the start
1491 * of this free space and the length of this free space
1492 * is stored in max_hole_size. Thus, we return
1493 * max_hole_start and max_hole_size and go back to the
1496 if (hole_size
>= num_bytes
) {
1502 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1503 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1505 if (extent_end
> search_start
)
1506 search_start
= extent_end
;
1513 * At this point, search_start should be the end of
1514 * allocated dev extents, and when shrinking the device,
1515 * search_end may be smaller than search_start.
1517 if (search_end
> search_start
) {
1518 hole_size
= search_end
- search_start
;
1520 if (contains_pending_extent(transaction
, device
, &search_start
,
1522 btrfs_release_path(path
);
1526 if (hole_size
> max_hole_size
) {
1527 max_hole_start
= search_start
;
1528 max_hole_size
= hole_size
;
1533 if (max_hole_size
< num_bytes
)
1539 btrfs_free_path(path
);
1540 *start
= max_hole_start
;
1542 *len
= max_hole_size
;
1546 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1547 struct btrfs_device
*device
, u64 num_bytes
,
1548 u64
*start
, u64
*len
)
1550 /* FIXME use last free of some kind */
1551 return find_free_dev_extent_start(trans
->transaction
, device
,
1552 num_bytes
, 0, start
, len
);
1555 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1556 struct btrfs_device
*device
,
1557 u64 start
, u64
*dev_extent_len
)
1559 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1560 struct btrfs_root
*root
= fs_info
->dev_root
;
1562 struct btrfs_path
*path
;
1563 struct btrfs_key key
;
1564 struct btrfs_key found_key
;
1565 struct extent_buffer
*leaf
= NULL
;
1566 struct btrfs_dev_extent
*extent
= NULL
;
1568 path
= btrfs_alloc_path();
1572 key
.objectid
= device
->devid
;
1574 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1576 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1578 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1579 BTRFS_DEV_EXTENT_KEY
);
1582 leaf
= path
->nodes
[0];
1583 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1584 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1585 struct btrfs_dev_extent
);
1586 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1587 btrfs_dev_extent_length(leaf
, extent
) < start
);
1589 btrfs_release_path(path
);
1591 } else if (ret
== 0) {
1592 leaf
= path
->nodes
[0];
1593 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1594 struct btrfs_dev_extent
);
1596 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1600 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1602 ret
= btrfs_del_item(trans
, root
, path
);
1604 btrfs_handle_fs_error(fs_info
, ret
,
1605 "Failed to remove dev extent item");
1607 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1610 btrfs_free_path(path
);
1614 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1615 struct btrfs_device
*device
,
1616 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1619 struct btrfs_path
*path
;
1620 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1621 struct btrfs_root
*root
= fs_info
->dev_root
;
1622 struct btrfs_dev_extent
*extent
;
1623 struct extent_buffer
*leaf
;
1624 struct btrfs_key key
;
1626 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1627 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1628 path
= btrfs_alloc_path();
1632 key
.objectid
= device
->devid
;
1634 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1635 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1640 leaf
= path
->nodes
[0];
1641 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1642 struct btrfs_dev_extent
);
1643 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1644 BTRFS_CHUNK_TREE_OBJECTID
);
1645 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1646 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1647 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1649 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1650 btrfs_mark_buffer_dirty(leaf
);
1652 btrfs_free_path(path
);
1656 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1658 struct extent_map_tree
*em_tree
;
1659 struct extent_map
*em
;
1663 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1664 read_lock(&em_tree
->lock
);
1665 n
= rb_last(&em_tree
->map
);
1667 em
= rb_entry(n
, struct extent_map
, rb_node
);
1668 ret
= em
->start
+ em
->len
;
1670 read_unlock(&em_tree
->lock
);
1675 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1679 struct btrfs_key key
;
1680 struct btrfs_key found_key
;
1681 struct btrfs_path
*path
;
1683 path
= btrfs_alloc_path();
1687 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1688 key
.type
= BTRFS_DEV_ITEM_KEY
;
1689 key
.offset
= (u64
)-1;
1691 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1695 BUG_ON(ret
== 0); /* Corruption */
1697 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1698 BTRFS_DEV_ITEMS_OBJECTID
,
1699 BTRFS_DEV_ITEM_KEY
);
1703 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1705 *devid_ret
= found_key
.offset
+ 1;
1709 btrfs_free_path(path
);
1714 * the device information is stored in the chunk root
1715 * the btrfs_device struct should be fully filled in
1717 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1718 struct btrfs_fs_info
*fs_info
,
1719 struct btrfs_device
*device
)
1721 struct btrfs_root
*root
= fs_info
->chunk_root
;
1723 struct btrfs_path
*path
;
1724 struct btrfs_dev_item
*dev_item
;
1725 struct extent_buffer
*leaf
;
1726 struct btrfs_key key
;
1729 path
= btrfs_alloc_path();
1733 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1734 key
.type
= BTRFS_DEV_ITEM_KEY
;
1735 key
.offset
= device
->devid
;
1737 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1742 leaf
= path
->nodes
[0];
1743 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1745 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1746 btrfs_set_device_generation(leaf
, dev_item
, 0);
1747 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1748 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1749 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1750 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1751 btrfs_set_device_total_bytes(leaf
, dev_item
,
1752 btrfs_device_get_disk_total_bytes(device
));
1753 btrfs_set_device_bytes_used(leaf
, dev_item
,
1754 btrfs_device_get_bytes_used(device
));
1755 btrfs_set_device_group(leaf
, dev_item
, 0);
1756 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1757 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1758 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1760 ptr
= btrfs_device_uuid(dev_item
);
1761 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1762 ptr
= btrfs_device_fsid(dev_item
);
1763 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_FSID_SIZE
);
1764 btrfs_mark_buffer_dirty(leaf
);
1768 btrfs_free_path(path
);
1773 * Function to update ctime/mtime for a given device path.
1774 * Mainly used for ctime/mtime based probe like libblkid.
1776 static void update_dev_time(const char *path_name
)
1780 filp
= filp_open(path_name
, O_RDWR
, 0);
1783 file_update_time(filp
);
1784 filp_close(filp
, NULL
);
1787 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1788 struct btrfs_device
*device
)
1790 struct btrfs_root
*root
= fs_info
->chunk_root
;
1792 struct btrfs_path
*path
;
1793 struct btrfs_key key
;
1794 struct btrfs_trans_handle
*trans
;
1796 path
= btrfs_alloc_path();
1800 trans
= btrfs_start_transaction(root
, 0);
1801 if (IS_ERR(trans
)) {
1802 btrfs_free_path(path
);
1803 return PTR_ERR(trans
);
1805 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1806 key
.type
= BTRFS_DEV_ITEM_KEY
;
1807 key
.offset
= device
->devid
;
1809 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1813 btrfs_abort_transaction(trans
, ret
);
1814 btrfs_end_transaction(trans
);
1818 ret
= btrfs_del_item(trans
, root
, path
);
1820 btrfs_abort_transaction(trans
, ret
);
1821 btrfs_end_transaction(trans
);
1825 btrfs_free_path(path
);
1827 ret
= btrfs_commit_transaction(trans
);
1832 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1833 * filesystem. It's up to the caller to adjust that number regarding eg. device
1836 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1844 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1846 all_avail
= fs_info
->avail_data_alloc_bits
|
1847 fs_info
->avail_system_alloc_bits
|
1848 fs_info
->avail_metadata_alloc_bits
;
1849 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1851 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1852 if (!(all_avail
& btrfs_raid_group
[i
]))
1855 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1856 int ret
= btrfs_raid_mindev_error
[i
];
1866 static struct btrfs_device
* btrfs_find_next_active_device(
1867 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1869 struct btrfs_device
*next_device
;
1871 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1872 if (next_device
!= device
&&
1873 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1874 && next_device
->bdev
)
1882 * Helper function to check if the given device is part of s_bdev / latest_bdev
1883 * and replace it with the provided or the next active device, in the context
1884 * where this function called, there should be always be another device (or
1885 * this_dev) which is active.
1887 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1888 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1890 struct btrfs_device
*next_device
;
1893 next_device
= this_dev
;
1895 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1897 ASSERT(next_device
);
1899 if (fs_info
->sb
->s_bdev
&&
1900 (fs_info
->sb
->s_bdev
== device
->bdev
))
1901 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1903 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1904 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1907 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1910 struct btrfs_device
*device
;
1911 struct btrfs_fs_devices
*cur_devices
;
1915 mutex_lock(&fs_info
->volume_mutex
);
1916 mutex_lock(&uuid_mutex
);
1918 num_devices
= fs_info
->fs_devices
->num_devices
;
1919 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1920 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1921 WARN_ON(num_devices
< 1);
1924 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1926 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1930 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1935 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1936 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1940 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1941 fs_info
->fs_devices
->rw_devices
== 1) {
1942 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1946 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1947 mutex_lock(&fs_info
->chunk_mutex
);
1948 list_del_init(&device
->dev_alloc_list
);
1949 device
->fs_devices
->rw_devices
--;
1950 mutex_unlock(&fs_info
->chunk_mutex
);
1953 mutex_unlock(&uuid_mutex
);
1954 ret
= btrfs_shrink_device(device
, 0);
1955 mutex_lock(&uuid_mutex
);
1960 * TODO: the superblock still includes this device in its num_devices
1961 * counter although write_all_supers() is not locked out. This
1962 * could give a filesystem state which requires a degraded mount.
1964 ret
= btrfs_rm_dev_item(fs_info
, device
);
1968 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
1969 btrfs_scrub_cancel_dev(fs_info
, device
);
1972 * the device list mutex makes sure that we don't change
1973 * the device list while someone else is writing out all
1974 * the device supers. Whoever is writing all supers, should
1975 * lock the device list mutex before getting the number of
1976 * devices in the super block (super_copy). Conversely,
1977 * whoever updates the number of devices in the super block
1978 * (super_copy) should hold the device list mutex.
1981 cur_devices
= device
->fs_devices
;
1982 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1983 list_del_rcu(&device
->dev_list
);
1985 device
->fs_devices
->num_devices
--;
1986 device
->fs_devices
->total_devices
--;
1988 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1989 device
->fs_devices
->missing_devices
--;
1991 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
1994 device
->fs_devices
->open_devices
--;
1995 /* remove sysfs entry */
1996 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
1999 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2000 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2001 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2004 * at this point, the device is zero sized and detached from
2005 * the devices list. All that's left is to zero out the old
2006 * supers and free the device.
2008 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2009 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2011 btrfs_close_bdev(device
);
2012 call_rcu(&device
->rcu
, free_device_rcu
);
2014 if (cur_devices
->open_devices
== 0) {
2015 struct btrfs_fs_devices
*fs_devices
;
2016 fs_devices
= fs_info
->fs_devices
;
2017 while (fs_devices
) {
2018 if (fs_devices
->seed
== cur_devices
) {
2019 fs_devices
->seed
= cur_devices
->seed
;
2022 fs_devices
= fs_devices
->seed
;
2024 cur_devices
->seed
= NULL
;
2025 __btrfs_close_devices(cur_devices
);
2026 free_fs_devices(cur_devices
);
2030 mutex_unlock(&uuid_mutex
);
2031 mutex_unlock(&fs_info
->volume_mutex
);
2035 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2036 mutex_lock(&fs_info
->chunk_mutex
);
2037 list_add(&device
->dev_alloc_list
,
2038 &fs_info
->fs_devices
->alloc_list
);
2039 device
->fs_devices
->rw_devices
++;
2040 mutex_unlock(&fs_info
->chunk_mutex
);
2045 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
2046 struct btrfs_device
*srcdev
)
2048 struct btrfs_fs_devices
*fs_devices
;
2050 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2053 * in case of fs with no seed, srcdev->fs_devices will point
2054 * to fs_devices of fs_info. However when the dev being replaced is
2055 * a seed dev it will point to the seed's local fs_devices. In short
2056 * srcdev will have its correct fs_devices in both the cases.
2058 fs_devices
= srcdev
->fs_devices
;
2060 list_del_rcu(&srcdev
->dev_list
);
2061 list_del(&srcdev
->dev_alloc_list
);
2062 fs_devices
->num_devices
--;
2063 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2064 fs_devices
->missing_devices
--;
2066 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2067 fs_devices
->rw_devices
--;
2070 fs_devices
->open_devices
--;
2073 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2074 struct btrfs_device
*srcdev
)
2076 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2079 /* zero out the old super if it is writable */
2080 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2083 btrfs_close_bdev(srcdev
);
2084 call_rcu(&srcdev
->rcu
, free_device_rcu
);
2086 /* if this is no devs we rather delete the fs_devices */
2087 if (!fs_devices
->num_devices
) {
2088 struct btrfs_fs_devices
*tmp_fs_devices
;
2091 * On a mounted FS, num_devices can't be zero unless it's a
2092 * seed. In case of a seed device being replaced, the replace
2093 * target added to the sprout FS, so there will be no more
2094 * device left under the seed FS.
2096 ASSERT(fs_devices
->seeding
);
2098 tmp_fs_devices
= fs_info
->fs_devices
;
2099 while (tmp_fs_devices
) {
2100 if (tmp_fs_devices
->seed
== fs_devices
) {
2101 tmp_fs_devices
->seed
= fs_devices
->seed
;
2104 tmp_fs_devices
= tmp_fs_devices
->seed
;
2106 fs_devices
->seed
= NULL
;
2107 __btrfs_close_devices(fs_devices
);
2108 free_fs_devices(fs_devices
);
2112 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2113 struct btrfs_device
*tgtdev
)
2115 mutex_lock(&uuid_mutex
);
2117 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2119 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2122 fs_info
->fs_devices
->open_devices
--;
2124 fs_info
->fs_devices
->num_devices
--;
2126 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2128 list_del_rcu(&tgtdev
->dev_list
);
2130 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2131 mutex_unlock(&uuid_mutex
);
2134 * The update_dev_time() with in btrfs_scratch_superblocks()
2135 * may lead to a call to btrfs_show_devname() which will try
2136 * to hold device_list_mutex. And here this device
2137 * is already out of device list, so we don't have to hold
2138 * the device_list_mutex lock.
2140 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2142 btrfs_close_bdev(tgtdev
);
2143 call_rcu(&tgtdev
->rcu
, free_device_rcu
);
2146 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2147 const char *device_path
,
2148 struct btrfs_device
**device
)
2151 struct btrfs_super_block
*disk_super
;
2154 struct block_device
*bdev
;
2155 struct buffer_head
*bh
;
2158 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2159 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2162 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2163 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2164 dev_uuid
= disk_super
->dev_item
.uuid
;
2165 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2169 blkdev_put(bdev
, FMODE_READ
);
2173 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2174 const char *device_path
,
2175 struct btrfs_device
**device
)
2178 if (strcmp(device_path
, "missing") == 0) {
2179 struct list_head
*devices
;
2180 struct btrfs_device
*tmp
;
2182 devices
= &fs_info
->fs_devices
->devices
;
2184 * It is safe to read the devices since the volume_mutex
2185 * is held by the caller.
2187 list_for_each_entry(tmp
, devices
, dev_list
) {
2188 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2189 &tmp
->dev_state
) && !tmp
->bdev
) {
2196 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2200 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2205 * Lookup a device given by device id, or the path if the id is 0.
2207 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2208 const char *devpath
,
2209 struct btrfs_device
**device
)
2215 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2219 if (!devpath
|| !devpath
[0])
2222 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2229 * does all the dirty work required for changing file system's UUID.
2231 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2233 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2234 struct btrfs_fs_devices
*old_devices
;
2235 struct btrfs_fs_devices
*seed_devices
;
2236 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2237 struct btrfs_device
*device
;
2240 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2241 if (!fs_devices
->seeding
)
2244 seed_devices
= alloc_fs_devices(NULL
);
2245 if (IS_ERR(seed_devices
))
2246 return PTR_ERR(seed_devices
);
2248 old_devices
= clone_fs_devices(fs_devices
);
2249 if (IS_ERR(old_devices
)) {
2250 kfree(seed_devices
);
2251 return PTR_ERR(old_devices
);
2254 list_add(&old_devices
->list
, &fs_uuids
);
2256 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2257 seed_devices
->opened
= 1;
2258 INIT_LIST_HEAD(&seed_devices
->devices
);
2259 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2260 mutex_init(&seed_devices
->device_list_mutex
);
2262 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2263 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2265 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2266 device
->fs_devices
= seed_devices
;
2268 mutex_lock(&fs_info
->chunk_mutex
);
2269 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2270 mutex_unlock(&fs_info
->chunk_mutex
);
2272 fs_devices
->seeding
= 0;
2273 fs_devices
->num_devices
= 0;
2274 fs_devices
->open_devices
= 0;
2275 fs_devices
->missing_devices
= 0;
2276 fs_devices
->rotating
= 0;
2277 fs_devices
->seed
= seed_devices
;
2279 generate_random_uuid(fs_devices
->fsid
);
2280 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2281 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2282 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2284 super_flags
= btrfs_super_flags(disk_super
) &
2285 ~BTRFS_SUPER_FLAG_SEEDING
;
2286 btrfs_set_super_flags(disk_super
, super_flags
);
2292 * Store the expected generation for seed devices in device items.
2294 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2295 struct btrfs_fs_info
*fs_info
)
2297 struct btrfs_root
*root
= fs_info
->chunk_root
;
2298 struct btrfs_path
*path
;
2299 struct extent_buffer
*leaf
;
2300 struct btrfs_dev_item
*dev_item
;
2301 struct btrfs_device
*device
;
2302 struct btrfs_key key
;
2303 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2304 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2308 path
= btrfs_alloc_path();
2312 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2314 key
.type
= BTRFS_DEV_ITEM_KEY
;
2317 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2321 leaf
= path
->nodes
[0];
2323 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2324 ret
= btrfs_next_leaf(root
, path
);
2329 leaf
= path
->nodes
[0];
2330 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2331 btrfs_release_path(path
);
2335 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2336 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2337 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2340 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2341 struct btrfs_dev_item
);
2342 devid
= btrfs_device_id(leaf
, dev_item
);
2343 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2345 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2347 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2348 BUG_ON(!device
); /* Logic error */
2350 if (device
->fs_devices
->seeding
) {
2351 btrfs_set_device_generation(leaf
, dev_item
,
2352 device
->generation
);
2353 btrfs_mark_buffer_dirty(leaf
);
2361 btrfs_free_path(path
);
2365 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2367 struct btrfs_root
*root
= fs_info
->dev_root
;
2368 struct request_queue
*q
;
2369 struct btrfs_trans_handle
*trans
;
2370 struct btrfs_device
*device
;
2371 struct block_device
*bdev
;
2372 struct list_head
*devices
;
2373 struct super_block
*sb
= fs_info
->sb
;
2374 struct rcu_string
*name
;
2376 int seeding_dev
= 0;
2378 bool unlocked
= false;
2380 if (sb_rdonly(sb
) && !fs_info
->fs_devices
->seeding
)
2383 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2384 fs_info
->bdev_holder
);
2386 return PTR_ERR(bdev
);
2388 if (fs_info
->fs_devices
->seeding
) {
2390 down_write(&sb
->s_umount
);
2391 mutex_lock(&uuid_mutex
);
2394 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2396 devices
= &fs_info
->fs_devices
->devices
;
2398 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2399 list_for_each_entry(device
, devices
, dev_list
) {
2400 if (device
->bdev
== bdev
) {
2403 &fs_info
->fs_devices
->device_list_mutex
);
2407 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2409 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2410 if (IS_ERR(device
)) {
2411 /* we can safely leave the fs_devices entry around */
2412 ret
= PTR_ERR(device
);
2416 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2419 goto error_free_device
;
2421 rcu_assign_pointer(device
->name
, name
);
2423 trans
= btrfs_start_transaction(root
, 0);
2424 if (IS_ERR(trans
)) {
2425 ret
= PTR_ERR(trans
);
2426 goto error_free_device
;
2429 q
= bdev_get_queue(bdev
);
2430 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2431 device
->generation
= trans
->transid
;
2432 device
->io_width
= fs_info
->sectorsize
;
2433 device
->io_align
= fs_info
->sectorsize
;
2434 device
->sector_size
= fs_info
->sectorsize
;
2435 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2436 fs_info
->sectorsize
);
2437 device
->disk_total_bytes
= device
->total_bytes
;
2438 device
->commit_total_bytes
= device
->total_bytes
;
2439 device
->fs_info
= fs_info
;
2440 device
->bdev
= bdev
;
2441 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2442 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2443 device
->mode
= FMODE_EXCL
;
2444 device
->dev_stats_valid
= 1;
2445 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2448 sb
->s_flags
&= ~SB_RDONLY
;
2449 ret
= btrfs_prepare_sprout(fs_info
);
2451 btrfs_abort_transaction(trans
, ret
);
2456 device
->fs_devices
= fs_info
->fs_devices
;
2458 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2459 mutex_lock(&fs_info
->chunk_mutex
);
2460 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2461 list_add(&device
->dev_alloc_list
,
2462 &fs_info
->fs_devices
->alloc_list
);
2463 fs_info
->fs_devices
->num_devices
++;
2464 fs_info
->fs_devices
->open_devices
++;
2465 fs_info
->fs_devices
->rw_devices
++;
2466 fs_info
->fs_devices
->total_devices
++;
2467 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2469 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2471 if (!blk_queue_nonrot(q
))
2472 fs_info
->fs_devices
->rotating
= 1;
2474 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2475 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2476 round_down(tmp
+ device
->total_bytes
, fs_info
->sectorsize
));
2478 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2479 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2481 /* add sysfs device entry */
2482 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2485 * we've got more storage, clear any full flags on the space
2488 btrfs_clear_space_info_full(fs_info
);
2490 mutex_unlock(&fs_info
->chunk_mutex
);
2491 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2494 mutex_lock(&fs_info
->chunk_mutex
);
2495 ret
= init_first_rw_device(trans
, fs_info
);
2496 mutex_unlock(&fs_info
->chunk_mutex
);
2498 btrfs_abort_transaction(trans
, ret
);
2503 ret
= btrfs_add_dev_item(trans
, fs_info
, device
);
2505 btrfs_abort_transaction(trans
, ret
);
2510 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2512 ret
= btrfs_finish_sprout(trans
, fs_info
);
2514 btrfs_abort_transaction(trans
, ret
);
2518 /* Sprouting would change fsid of the mounted root,
2519 * so rename the fsid on the sysfs
2521 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2523 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2525 "sysfs: failed to create fsid for sprout");
2528 ret
= btrfs_commit_transaction(trans
);
2531 mutex_unlock(&uuid_mutex
);
2532 up_write(&sb
->s_umount
);
2535 if (ret
) /* transaction commit */
2538 ret
= btrfs_relocate_sys_chunks(fs_info
);
2540 btrfs_handle_fs_error(fs_info
, ret
,
2541 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2542 trans
= btrfs_attach_transaction(root
);
2543 if (IS_ERR(trans
)) {
2544 if (PTR_ERR(trans
) == -ENOENT
)
2546 ret
= PTR_ERR(trans
);
2550 ret
= btrfs_commit_transaction(trans
);
2553 /* Update ctime/mtime for libblkid */
2554 update_dev_time(device_path
);
2558 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2561 sb
->s_flags
|= SB_RDONLY
;
2563 btrfs_end_transaction(trans
);
2565 free_device(device
);
2567 blkdev_put(bdev
, FMODE_EXCL
);
2568 if (seeding_dev
&& !unlocked
) {
2569 mutex_unlock(&uuid_mutex
);
2570 up_write(&sb
->s_umount
);
2575 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2576 const char *device_path
,
2577 struct btrfs_device
*srcdev
,
2578 struct btrfs_device
**device_out
)
2580 struct btrfs_device
*device
;
2581 struct block_device
*bdev
;
2582 struct list_head
*devices
;
2583 struct rcu_string
*name
;
2584 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2588 if (fs_info
->fs_devices
->seeding
) {
2589 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2593 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2594 fs_info
->bdev_holder
);
2596 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2597 return PTR_ERR(bdev
);
2600 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2602 devices
= &fs_info
->fs_devices
->devices
;
2603 list_for_each_entry(device
, devices
, dev_list
) {
2604 if (device
->bdev
== bdev
) {
2606 "target device is in the filesystem!");
2613 if (i_size_read(bdev
->bd_inode
) <
2614 btrfs_device_get_total_bytes(srcdev
)) {
2616 "target device is smaller than source device!");
2622 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2623 if (IS_ERR(device
)) {
2624 ret
= PTR_ERR(device
);
2628 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2630 free_device(device
);
2634 rcu_assign_pointer(device
->name
, name
);
2636 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2637 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2638 device
->generation
= 0;
2639 device
->io_width
= fs_info
->sectorsize
;
2640 device
->io_align
= fs_info
->sectorsize
;
2641 device
->sector_size
= fs_info
->sectorsize
;
2642 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2643 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2644 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2645 ASSERT(list_empty(&srcdev
->resized_list
));
2646 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2647 device
->commit_bytes_used
= device
->bytes_used
;
2648 device
->fs_info
= fs_info
;
2649 device
->bdev
= bdev
;
2650 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2651 set_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2652 device
->mode
= FMODE_EXCL
;
2653 device
->dev_stats_valid
= 1;
2654 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2655 device
->fs_devices
= fs_info
->fs_devices
;
2656 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2657 fs_info
->fs_devices
->num_devices
++;
2658 fs_info
->fs_devices
->open_devices
++;
2659 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2661 *device_out
= device
;
2665 blkdev_put(bdev
, FMODE_EXCL
);
2669 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2670 struct btrfs_device
*tgtdev
)
2672 u32 sectorsize
= fs_info
->sectorsize
;
2674 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2675 tgtdev
->io_width
= sectorsize
;
2676 tgtdev
->io_align
= sectorsize
;
2677 tgtdev
->sector_size
= sectorsize
;
2678 tgtdev
->fs_info
= fs_info
;
2679 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &tgtdev
->dev_state
);
2682 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2683 struct btrfs_device
*device
)
2686 struct btrfs_path
*path
;
2687 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2688 struct btrfs_dev_item
*dev_item
;
2689 struct extent_buffer
*leaf
;
2690 struct btrfs_key key
;
2692 path
= btrfs_alloc_path();
2696 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2697 key
.type
= BTRFS_DEV_ITEM_KEY
;
2698 key
.offset
= device
->devid
;
2700 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2709 leaf
= path
->nodes
[0];
2710 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2712 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2713 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2714 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2715 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2716 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2717 btrfs_set_device_total_bytes(leaf
, dev_item
,
2718 btrfs_device_get_disk_total_bytes(device
));
2719 btrfs_set_device_bytes_used(leaf
, dev_item
,
2720 btrfs_device_get_bytes_used(device
));
2721 btrfs_mark_buffer_dirty(leaf
);
2724 btrfs_free_path(path
);
2728 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2729 struct btrfs_device
*device
, u64 new_size
)
2731 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2732 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2733 struct btrfs_fs_devices
*fs_devices
;
2737 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2740 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2742 mutex_lock(&fs_info
->chunk_mutex
);
2743 old_total
= btrfs_super_total_bytes(super_copy
);
2744 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2746 if (new_size
<= device
->total_bytes
||
2747 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2748 mutex_unlock(&fs_info
->chunk_mutex
);
2752 fs_devices
= fs_info
->fs_devices
;
2754 btrfs_set_super_total_bytes(super_copy
,
2755 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2756 device
->fs_devices
->total_rw_bytes
+= diff
;
2758 btrfs_device_set_total_bytes(device
, new_size
);
2759 btrfs_device_set_disk_total_bytes(device
, new_size
);
2760 btrfs_clear_space_info_full(device
->fs_info
);
2761 if (list_empty(&device
->resized_list
))
2762 list_add_tail(&device
->resized_list
,
2763 &fs_devices
->resized_devices
);
2764 mutex_unlock(&fs_info
->chunk_mutex
);
2766 return btrfs_update_device(trans
, device
);
2769 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2770 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2772 struct btrfs_root
*root
= fs_info
->chunk_root
;
2774 struct btrfs_path
*path
;
2775 struct btrfs_key key
;
2777 path
= btrfs_alloc_path();
2781 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2782 key
.offset
= chunk_offset
;
2783 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2785 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2788 else if (ret
> 0) { /* Logic error or corruption */
2789 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2790 "Failed lookup while freeing chunk.");
2795 ret
= btrfs_del_item(trans
, root
, path
);
2797 btrfs_handle_fs_error(fs_info
, ret
,
2798 "Failed to delete chunk item.");
2800 btrfs_free_path(path
);
2804 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2806 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2807 struct btrfs_disk_key
*disk_key
;
2808 struct btrfs_chunk
*chunk
;
2815 struct btrfs_key key
;
2817 mutex_lock(&fs_info
->chunk_mutex
);
2818 array_size
= btrfs_super_sys_array_size(super_copy
);
2820 ptr
= super_copy
->sys_chunk_array
;
2823 while (cur
< array_size
) {
2824 disk_key
= (struct btrfs_disk_key
*)ptr
;
2825 btrfs_disk_key_to_cpu(&key
, disk_key
);
2827 len
= sizeof(*disk_key
);
2829 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2830 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2831 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2832 len
+= btrfs_chunk_item_size(num_stripes
);
2837 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2838 key
.offset
== chunk_offset
) {
2839 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2841 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2847 mutex_unlock(&fs_info
->chunk_mutex
);
2851 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2852 u64 logical
, u64 length
)
2854 struct extent_map_tree
*em_tree
;
2855 struct extent_map
*em
;
2857 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2858 read_lock(&em_tree
->lock
);
2859 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2860 read_unlock(&em_tree
->lock
);
2863 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2865 return ERR_PTR(-EINVAL
);
2868 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2870 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2871 logical
, length
, em
->start
, em
->start
+ em
->len
);
2872 free_extent_map(em
);
2873 return ERR_PTR(-EINVAL
);
2876 /* callers are responsible for dropping em's ref. */
2880 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2881 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2883 struct extent_map
*em
;
2884 struct map_lookup
*map
;
2885 u64 dev_extent_len
= 0;
2887 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2889 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2892 * This is a logic error, but we don't want to just rely on the
2893 * user having built with ASSERT enabled, so if ASSERT doesn't
2894 * do anything we still error out.
2899 map
= em
->map_lookup
;
2900 mutex_lock(&fs_info
->chunk_mutex
);
2901 check_system_chunk(trans
, fs_info
, map
->type
);
2902 mutex_unlock(&fs_info
->chunk_mutex
);
2905 * Take the device list mutex to prevent races with the final phase of
2906 * a device replace operation that replaces the device object associated
2907 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2909 mutex_lock(&fs_devices
->device_list_mutex
);
2910 for (i
= 0; i
< map
->num_stripes
; i
++) {
2911 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2912 ret
= btrfs_free_dev_extent(trans
, device
,
2913 map
->stripes
[i
].physical
,
2916 mutex_unlock(&fs_devices
->device_list_mutex
);
2917 btrfs_abort_transaction(trans
, ret
);
2921 if (device
->bytes_used
> 0) {
2922 mutex_lock(&fs_info
->chunk_mutex
);
2923 btrfs_device_set_bytes_used(device
,
2924 device
->bytes_used
- dev_extent_len
);
2925 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2926 btrfs_clear_space_info_full(fs_info
);
2927 mutex_unlock(&fs_info
->chunk_mutex
);
2930 if (map
->stripes
[i
].dev
) {
2931 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2933 mutex_unlock(&fs_devices
->device_list_mutex
);
2934 btrfs_abort_transaction(trans
, ret
);
2939 mutex_unlock(&fs_devices
->device_list_mutex
);
2941 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_offset
);
2943 btrfs_abort_transaction(trans
, ret
);
2947 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2949 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2950 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2952 btrfs_abort_transaction(trans
, ret
);
2957 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2959 btrfs_abort_transaction(trans
, ret
);
2965 free_extent_map(em
);
2969 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2971 struct btrfs_root
*root
= fs_info
->chunk_root
;
2972 struct btrfs_trans_handle
*trans
;
2976 * Prevent races with automatic removal of unused block groups.
2977 * After we relocate and before we remove the chunk with offset
2978 * chunk_offset, automatic removal of the block group can kick in,
2979 * resulting in a failure when calling btrfs_remove_chunk() below.
2981 * Make sure to acquire this mutex before doing a tree search (dev
2982 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2983 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2984 * we release the path used to search the chunk/dev tree and before
2985 * the current task acquires this mutex and calls us.
2987 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
2989 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2993 /* step one, relocate all the extents inside this chunk */
2994 btrfs_scrub_pause(fs_info
);
2995 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2996 btrfs_scrub_continue(fs_info
);
3000 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
3002 if (IS_ERR(trans
)) {
3003 ret
= PTR_ERR(trans
);
3004 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
3009 * step two, delete the device extents and the
3010 * chunk tree entries
3012 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
3013 btrfs_end_transaction(trans
);
3017 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
3019 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3020 struct btrfs_path
*path
;
3021 struct extent_buffer
*leaf
;
3022 struct btrfs_chunk
*chunk
;
3023 struct btrfs_key key
;
3024 struct btrfs_key found_key
;
3026 bool retried
= false;
3030 path
= btrfs_alloc_path();
3035 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3036 key
.offset
= (u64
)-1;
3037 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3040 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3041 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3043 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3046 BUG_ON(ret
== 0); /* Corruption */
3048 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3051 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3057 leaf
= path
->nodes
[0];
3058 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3060 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3061 struct btrfs_chunk
);
3062 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3063 btrfs_release_path(path
);
3065 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3066 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3072 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3074 if (found_key
.offset
== 0)
3076 key
.offset
= found_key
.offset
- 1;
3079 if (failed
&& !retried
) {
3083 } else if (WARN_ON(failed
&& retried
)) {
3087 btrfs_free_path(path
);
3092 * return 1 : allocate a data chunk successfully,
3093 * return <0: errors during allocating a data chunk,
3094 * return 0 : no need to allocate a data chunk.
3096 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3099 struct btrfs_block_group_cache
*cache
;
3103 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3105 chunk_type
= cache
->flags
;
3106 btrfs_put_block_group(cache
);
3108 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
) {
3109 spin_lock(&fs_info
->data_sinfo
->lock
);
3110 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3111 spin_unlock(&fs_info
->data_sinfo
->lock
);
3114 struct btrfs_trans_handle
*trans
;
3117 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3119 return PTR_ERR(trans
);
3121 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3122 BTRFS_BLOCK_GROUP_DATA
);
3123 btrfs_end_transaction(trans
);
3133 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3134 struct btrfs_balance_control
*bctl
)
3136 struct btrfs_root
*root
= fs_info
->tree_root
;
3137 struct btrfs_trans_handle
*trans
;
3138 struct btrfs_balance_item
*item
;
3139 struct btrfs_disk_balance_args disk_bargs
;
3140 struct btrfs_path
*path
;
3141 struct extent_buffer
*leaf
;
3142 struct btrfs_key key
;
3145 path
= btrfs_alloc_path();
3149 trans
= btrfs_start_transaction(root
, 0);
3150 if (IS_ERR(trans
)) {
3151 btrfs_free_path(path
);
3152 return PTR_ERR(trans
);
3155 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3156 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3159 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3164 leaf
= path
->nodes
[0];
3165 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3167 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3169 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3170 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3171 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3172 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3173 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3174 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3176 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3178 btrfs_mark_buffer_dirty(leaf
);
3180 btrfs_free_path(path
);
3181 err
= btrfs_commit_transaction(trans
);
3187 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3189 struct btrfs_root
*root
= fs_info
->tree_root
;
3190 struct btrfs_trans_handle
*trans
;
3191 struct btrfs_path
*path
;
3192 struct btrfs_key key
;
3195 path
= btrfs_alloc_path();
3199 trans
= btrfs_start_transaction(root
, 0);
3200 if (IS_ERR(trans
)) {
3201 btrfs_free_path(path
);
3202 return PTR_ERR(trans
);
3205 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3206 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3209 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3217 ret
= btrfs_del_item(trans
, root
, path
);
3219 btrfs_free_path(path
);
3220 err
= btrfs_commit_transaction(trans
);
3227 * This is a heuristic used to reduce the number of chunks balanced on
3228 * resume after balance was interrupted.
3230 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3233 * Turn on soft mode for chunk types that were being converted.
3235 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3236 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3237 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3238 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3239 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3240 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3243 * Turn on usage filter if is not already used. The idea is
3244 * that chunks that we have already balanced should be
3245 * reasonably full. Don't do it for chunks that are being
3246 * converted - that will keep us from relocating unconverted
3247 * (albeit full) chunks.
3249 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3250 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3251 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3252 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3253 bctl
->data
.usage
= 90;
3255 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3256 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3257 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3258 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3259 bctl
->sys
.usage
= 90;
3261 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3262 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3263 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3264 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3265 bctl
->meta
.usage
= 90;
3270 * Should be called with both balance and volume mutexes held to
3271 * serialize other volume operations (add_dev/rm_dev/resize) with
3272 * restriper. Same goes for unset_balance_control.
3274 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3276 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3278 BUG_ON(fs_info
->balance_ctl
);
3280 spin_lock(&fs_info
->balance_lock
);
3281 fs_info
->balance_ctl
= bctl
;
3282 spin_unlock(&fs_info
->balance_lock
);
3285 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3287 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3289 BUG_ON(!fs_info
->balance_ctl
);
3291 spin_lock(&fs_info
->balance_lock
);
3292 fs_info
->balance_ctl
= NULL
;
3293 spin_unlock(&fs_info
->balance_lock
);
3299 * Balance filters. Return 1 if chunk should be filtered out
3300 * (should not be balanced).
3302 static int chunk_profiles_filter(u64 chunk_type
,
3303 struct btrfs_balance_args
*bargs
)
3305 chunk_type
= chunk_to_extended(chunk_type
) &
3306 BTRFS_EXTENDED_PROFILE_MASK
;
3308 if (bargs
->profiles
& chunk_type
)
3314 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3315 struct btrfs_balance_args
*bargs
)
3317 struct btrfs_block_group_cache
*cache
;
3319 u64 user_thresh_min
;
3320 u64 user_thresh_max
;
3323 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3324 chunk_used
= btrfs_block_group_used(&cache
->item
);
3326 if (bargs
->usage_min
== 0)
3327 user_thresh_min
= 0;
3329 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3332 if (bargs
->usage_max
== 0)
3333 user_thresh_max
= 1;
3334 else if (bargs
->usage_max
> 100)
3335 user_thresh_max
= cache
->key
.offset
;
3337 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3340 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3343 btrfs_put_block_group(cache
);
3347 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3348 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3350 struct btrfs_block_group_cache
*cache
;
3351 u64 chunk_used
, user_thresh
;
3354 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3355 chunk_used
= btrfs_block_group_used(&cache
->item
);
3357 if (bargs
->usage_min
== 0)
3359 else if (bargs
->usage
> 100)
3360 user_thresh
= cache
->key
.offset
;
3362 user_thresh
= div_factor_fine(cache
->key
.offset
,
3365 if (chunk_used
< user_thresh
)
3368 btrfs_put_block_group(cache
);
3372 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3373 struct btrfs_chunk
*chunk
,
3374 struct btrfs_balance_args
*bargs
)
3376 struct btrfs_stripe
*stripe
;
3377 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3380 for (i
= 0; i
< num_stripes
; i
++) {
3381 stripe
= btrfs_stripe_nr(chunk
, i
);
3382 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3389 /* [pstart, pend) */
3390 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3391 struct btrfs_chunk
*chunk
,
3392 struct btrfs_balance_args
*bargs
)
3394 struct btrfs_stripe
*stripe
;
3395 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3401 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3404 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3405 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3406 factor
= num_stripes
/ 2;
3407 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3408 factor
= num_stripes
- 1;
3409 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3410 factor
= num_stripes
- 2;
3412 factor
= num_stripes
;
3415 for (i
= 0; i
< num_stripes
; i
++) {
3416 stripe
= btrfs_stripe_nr(chunk
, i
);
3417 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3420 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3421 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3422 stripe_length
= div_u64(stripe_length
, factor
);
3424 if (stripe_offset
< bargs
->pend
&&
3425 stripe_offset
+ stripe_length
> bargs
->pstart
)
3432 /* [vstart, vend) */
3433 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3434 struct btrfs_chunk
*chunk
,
3436 struct btrfs_balance_args
*bargs
)
3438 if (chunk_offset
< bargs
->vend
&&
3439 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3440 /* at least part of the chunk is inside this vrange */
3446 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3447 struct btrfs_chunk
*chunk
,
3448 struct btrfs_balance_args
*bargs
)
3450 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3452 if (bargs
->stripes_min
<= num_stripes
3453 && num_stripes
<= bargs
->stripes_max
)
3459 static int chunk_soft_convert_filter(u64 chunk_type
,
3460 struct btrfs_balance_args
*bargs
)
3462 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3465 chunk_type
= chunk_to_extended(chunk_type
) &
3466 BTRFS_EXTENDED_PROFILE_MASK
;
3468 if (bargs
->target
== chunk_type
)
3474 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3475 struct extent_buffer
*leaf
,
3476 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3478 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3479 struct btrfs_balance_args
*bargs
= NULL
;
3480 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3483 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3484 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3488 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3489 bargs
= &bctl
->data
;
3490 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3492 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3493 bargs
= &bctl
->meta
;
3495 /* profiles filter */
3496 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3497 chunk_profiles_filter(chunk_type
, bargs
)) {
3502 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3503 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3505 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3506 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3511 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3512 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3516 /* drange filter, makes sense only with devid filter */
3517 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3518 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3523 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3524 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3528 /* stripes filter */
3529 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3530 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3534 /* soft profile changing mode */
3535 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3536 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3541 * limited by count, must be the last filter
3543 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3544 if (bargs
->limit
== 0)
3548 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3550 * Same logic as the 'limit' filter; the minimum cannot be
3551 * determined here because we do not have the global information
3552 * about the count of all chunks that satisfy the filters.
3554 if (bargs
->limit_max
== 0)
3563 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3565 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3566 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3567 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3568 struct list_head
*devices
;
3569 struct btrfs_device
*device
;
3573 struct btrfs_chunk
*chunk
;
3574 struct btrfs_path
*path
= NULL
;
3575 struct btrfs_key key
;
3576 struct btrfs_key found_key
;
3577 struct btrfs_trans_handle
*trans
;
3578 struct extent_buffer
*leaf
;
3581 int enospc_errors
= 0;
3582 bool counting
= true;
3583 /* The single value limit and min/max limits use the same bytes in the */
3584 u64 limit_data
= bctl
->data
.limit
;
3585 u64 limit_meta
= bctl
->meta
.limit
;
3586 u64 limit_sys
= bctl
->sys
.limit
;
3590 int chunk_reserved
= 0;
3592 /* step one make some room on all the devices */
3593 devices
= &fs_info
->fs_devices
->devices
;
3594 list_for_each_entry(device
, devices
, dev_list
) {
3595 old_size
= btrfs_device_get_total_bytes(device
);
3596 size_to_free
= div_factor(old_size
, 1);
3597 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3598 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) ||
3599 btrfs_device_get_total_bytes(device
) -
3600 btrfs_device_get_bytes_used(device
) > size_to_free
||
3601 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
3604 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3608 /* btrfs_shrink_device never returns ret > 0 */
3613 trans
= btrfs_start_transaction(dev_root
, 0);
3614 if (IS_ERR(trans
)) {
3615 ret
= PTR_ERR(trans
);
3616 btrfs_info_in_rcu(fs_info
,
3617 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3618 rcu_str_deref(device
->name
), ret
,
3619 old_size
, old_size
- size_to_free
);
3623 ret
= btrfs_grow_device(trans
, device
, old_size
);
3625 btrfs_end_transaction(trans
);
3626 /* btrfs_grow_device never returns ret > 0 */
3628 btrfs_info_in_rcu(fs_info
,
3629 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3630 rcu_str_deref(device
->name
), ret
,
3631 old_size
, old_size
- size_to_free
);
3635 btrfs_end_transaction(trans
);
3638 /* step two, relocate all the chunks */
3639 path
= btrfs_alloc_path();
3645 /* zero out stat counters */
3646 spin_lock(&fs_info
->balance_lock
);
3647 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3648 spin_unlock(&fs_info
->balance_lock
);
3652 * The single value limit and min/max limits use the same bytes
3655 bctl
->data
.limit
= limit_data
;
3656 bctl
->meta
.limit
= limit_meta
;
3657 bctl
->sys
.limit
= limit_sys
;
3659 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3660 key
.offset
= (u64
)-1;
3661 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3664 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3665 atomic_read(&fs_info
->balance_cancel_req
)) {
3670 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3671 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3673 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3678 * this shouldn't happen, it means the last relocate
3682 BUG(); /* FIXME break ? */
3684 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3685 BTRFS_CHUNK_ITEM_KEY
);
3687 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3692 leaf
= path
->nodes
[0];
3693 slot
= path
->slots
[0];
3694 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3696 if (found_key
.objectid
!= key
.objectid
) {
3697 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3701 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3702 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3705 spin_lock(&fs_info
->balance_lock
);
3706 bctl
->stat
.considered
++;
3707 spin_unlock(&fs_info
->balance_lock
);
3710 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3713 btrfs_release_path(path
);
3715 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3720 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3721 spin_lock(&fs_info
->balance_lock
);
3722 bctl
->stat
.expected
++;
3723 spin_unlock(&fs_info
->balance_lock
);
3725 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3727 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3729 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3736 * Apply limit_min filter, no need to check if the LIMITS
3737 * filter is used, limit_min is 0 by default
3739 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3740 count_data
< bctl
->data
.limit_min
)
3741 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3742 count_meta
< bctl
->meta
.limit_min
)
3743 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3744 count_sys
< bctl
->sys
.limit_min
)) {
3745 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3749 if (!chunk_reserved
) {
3751 * We may be relocating the only data chunk we have,
3752 * which could potentially end up with losing data's
3753 * raid profile, so lets allocate an empty one in
3756 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3759 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3761 } else if (ret
== 1) {
3766 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3767 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3768 if (ret
&& ret
!= -ENOSPC
)
3770 if (ret
== -ENOSPC
) {
3773 spin_lock(&fs_info
->balance_lock
);
3774 bctl
->stat
.completed
++;
3775 spin_unlock(&fs_info
->balance_lock
);
3778 if (found_key
.offset
== 0)
3780 key
.offset
= found_key
.offset
- 1;
3784 btrfs_release_path(path
);
3789 btrfs_free_path(path
);
3790 if (enospc_errors
) {
3791 btrfs_info(fs_info
, "%d enospc errors during balance",
3801 * alloc_profile_is_valid - see if a given profile is valid and reduced
3802 * @flags: profile to validate
3803 * @extended: if true @flags is treated as an extended profile
3805 static int alloc_profile_is_valid(u64 flags
, int extended
)
3807 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3808 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3810 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3812 /* 1) check that all other bits are zeroed */
3816 /* 2) see if profile is reduced */
3818 return !extended
; /* "0" is valid for usual profiles */
3820 /* true if exactly one bit set */
3821 return (flags
& (flags
- 1)) == 0;
3824 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3826 /* cancel requested || normal exit path */
3827 return atomic_read(&fs_info
->balance_cancel_req
) ||
3828 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3829 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3832 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3836 unset_balance_control(fs_info
);
3837 ret
= del_balance_item(fs_info
);
3839 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3841 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3844 /* Non-zero return value signifies invalidity */
3845 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3848 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3849 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3850 (bctl_arg
->target
& ~allowed
)));
3854 * Should be called with both balance and volume mutexes held
3856 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3857 struct btrfs_ioctl_balance_args
*bargs
)
3859 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3860 u64 meta_target
, data_target
;
3867 if (btrfs_fs_closing(fs_info
) ||
3868 atomic_read(&fs_info
->balance_pause_req
) ||
3869 atomic_read(&fs_info
->balance_cancel_req
)) {
3874 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3875 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3879 * In case of mixed groups both data and meta should be picked,
3880 * and identical options should be given for both of them.
3882 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3883 if (mixed
&& (bctl
->flags
& allowed
)) {
3884 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3885 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3886 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3888 "with mixed groups data and metadata balance options must be the same");
3894 num_devices
= fs_info
->fs_devices
->num_devices
;
3895 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3896 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3897 BUG_ON(num_devices
< 1);
3900 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3901 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3902 if (num_devices
> 1)
3903 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3904 if (num_devices
> 2)
3905 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3906 if (num_devices
> 3)
3907 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3908 BTRFS_BLOCK_GROUP_RAID6
);
3909 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3911 "unable to start balance with target data profile %llu",
3916 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3918 "unable to start balance with target metadata profile %llu",
3923 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3925 "unable to start balance with target system profile %llu",
3931 /* allow to reduce meta or sys integrity only if force set */
3932 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3933 BTRFS_BLOCK_GROUP_RAID10
|
3934 BTRFS_BLOCK_GROUP_RAID5
|
3935 BTRFS_BLOCK_GROUP_RAID6
;
3937 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3939 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3940 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3941 !(bctl
->sys
.target
& allowed
)) ||
3942 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3943 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3944 !(bctl
->meta
.target
& allowed
))) {
3945 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3947 "force reducing metadata integrity");
3950 "balance will reduce metadata integrity, use force if you want this");
3955 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3957 /* if we're not converting, the target field is uninitialized */
3958 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3959 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3960 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3961 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3962 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3963 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3965 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3966 meta_target
, data_target
);
3969 ret
= insert_balance_item(fs_info
, bctl
);
3970 if (ret
&& ret
!= -EEXIST
)
3973 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3974 BUG_ON(ret
== -EEXIST
);
3975 set_balance_control(bctl
);
3977 BUG_ON(ret
!= -EEXIST
);
3978 spin_lock(&fs_info
->balance_lock
);
3979 update_balance_args(bctl
);
3980 spin_unlock(&fs_info
->balance_lock
);
3983 atomic_inc(&fs_info
->balance_running
);
3984 mutex_unlock(&fs_info
->balance_mutex
);
3986 ret
= __btrfs_balance(fs_info
);
3988 mutex_lock(&fs_info
->balance_mutex
);
3989 atomic_dec(&fs_info
->balance_running
);
3992 memset(bargs
, 0, sizeof(*bargs
));
3993 update_ioctl_balance_args(fs_info
, 0, bargs
);
3996 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3997 balance_need_close(fs_info
)) {
3998 __cancel_balance(fs_info
);
4001 wake_up(&fs_info
->balance_wait_q
);
4005 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
4006 __cancel_balance(fs_info
);
4009 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4014 static int balance_kthread(void *data
)
4016 struct btrfs_fs_info
*fs_info
= data
;
4019 mutex_lock(&fs_info
->volume_mutex
);
4020 mutex_lock(&fs_info
->balance_mutex
);
4022 if (fs_info
->balance_ctl
) {
4023 btrfs_info(fs_info
, "continuing balance");
4024 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
4027 mutex_unlock(&fs_info
->balance_mutex
);
4028 mutex_unlock(&fs_info
->volume_mutex
);
4033 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4035 struct task_struct
*tsk
;
4037 spin_lock(&fs_info
->balance_lock
);
4038 if (!fs_info
->balance_ctl
) {
4039 spin_unlock(&fs_info
->balance_lock
);
4042 spin_unlock(&fs_info
->balance_lock
);
4044 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4045 btrfs_info(fs_info
, "force skipping balance");
4049 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4050 return PTR_ERR_OR_ZERO(tsk
);
4053 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4055 struct btrfs_balance_control
*bctl
;
4056 struct btrfs_balance_item
*item
;
4057 struct btrfs_disk_balance_args disk_bargs
;
4058 struct btrfs_path
*path
;
4059 struct extent_buffer
*leaf
;
4060 struct btrfs_key key
;
4063 path
= btrfs_alloc_path();
4067 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4068 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4071 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4074 if (ret
> 0) { /* ret = -ENOENT; */
4079 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4085 leaf
= path
->nodes
[0];
4086 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4088 bctl
->fs_info
= fs_info
;
4089 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4090 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4092 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4093 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4094 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4095 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4096 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4097 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4099 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4101 mutex_lock(&fs_info
->volume_mutex
);
4102 mutex_lock(&fs_info
->balance_mutex
);
4104 set_balance_control(bctl
);
4106 mutex_unlock(&fs_info
->balance_mutex
);
4107 mutex_unlock(&fs_info
->volume_mutex
);
4109 btrfs_free_path(path
);
4113 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4117 mutex_lock(&fs_info
->balance_mutex
);
4118 if (!fs_info
->balance_ctl
) {
4119 mutex_unlock(&fs_info
->balance_mutex
);
4123 if (atomic_read(&fs_info
->balance_running
)) {
4124 atomic_inc(&fs_info
->balance_pause_req
);
4125 mutex_unlock(&fs_info
->balance_mutex
);
4127 wait_event(fs_info
->balance_wait_q
,
4128 atomic_read(&fs_info
->balance_running
) == 0);
4130 mutex_lock(&fs_info
->balance_mutex
);
4131 /* we are good with balance_ctl ripped off from under us */
4132 BUG_ON(atomic_read(&fs_info
->balance_running
));
4133 atomic_dec(&fs_info
->balance_pause_req
);
4138 mutex_unlock(&fs_info
->balance_mutex
);
4142 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4144 if (sb_rdonly(fs_info
->sb
))
4147 mutex_lock(&fs_info
->balance_mutex
);
4148 if (!fs_info
->balance_ctl
) {
4149 mutex_unlock(&fs_info
->balance_mutex
);
4153 atomic_inc(&fs_info
->balance_cancel_req
);
4155 * if we are running just wait and return, balance item is
4156 * deleted in btrfs_balance in this case
4158 if (atomic_read(&fs_info
->balance_running
)) {
4159 mutex_unlock(&fs_info
->balance_mutex
);
4160 wait_event(fs_info
->balance_wait_q
,
4161 atomic_read(&fs_info
->balance_running
) == 0);
4162 mutex_lock(&fs_info
->balance_mutex
);
4164 /* __cancel_balance needs volume_mutex */
4165 mutex_unlock(&fs_info
->balance_mutex
);
4166 mutex_lock(&fs_info
->volume_mutex
);
4167 mutex_lock(&fs_info
->balance_mutex
);
4169 if (fs_info
->balance_ctl
)
4170 __cancel_balance(fs_info
);
4172 mutex_unlock(&fs_info
->volume_mutex
);
4175 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4176 atomic_dec(&fs_info
->balance_cancel_req
);
4177 mutex_unlock(&fs_info
->balance_mutex
);
4181 static int btrfs_uuid_scan_kthread(void *data
)
4183 struct btrfs_fs_info
*fs_info
= data
;
4184 struct btrfs_root
*root
= fs_info
->tree_root
;
4185 struct btrfs_key key
;
4186 struct btrfs_path
*path
= NULL
;
4188 struct extent_buffer
*eb
;
4190 struct btrfs_root_item root_item
;
4192 struct btrfs_trans_handle
*trans
= NULL
;
4194 path
= btrfs_alloc_path();
4201 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4205 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4212 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4213 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4214 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4215 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4218 eb
= path
->nodes
[0];
4219 slot
= path
->slots
[0];
4220 item_size
= btrfs_item_size_nr(eb
, slot
);
4221 if (item_size
< sizeof(root_item
))
4224 read_extent_buffer(eb
, &root_item
,
4225 btrfs_item_ptr_offset(eb
, slot
),
4226 (int)sizeof(root_item
));
4227 if (btrfs_root_refs(&root_item
) == 0)
4230 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4231 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4235 btrfs_release_path(path
);
4237 * 1 - subvol uuid item
4238 * 1 - received_subvol uuid item
4240 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4241 if (IS_ERR(trans
)) {
4242 ret
= PTR_ERR(trans
);
4250 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4251 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4253 BTRFS_UUID_KEY_SUBVOL
,
4256 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4262 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4263 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4264 root_item
.received_uuid
,
4265 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4268 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4276 ret
= btrfs_end_transaction(trans
);
4282 btrfs_release_path(path
);
4283 if (key
.offset
< (u64
)-1) {
4285 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4287 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4288 } else if (key
.objectid
< (u64
)-1) {
4290 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4299 btrfs_free_path(path
);
4300 if (trans
&& !IS_ERR(trans
))
4301 btrfs_end_transaction(trans
);
4303 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4305 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4306 up(&fs_info
->uuid_tree_rescan_sem
);
4311 * Callback for btrfs_uuid_tree_iterate().
4313 * 0 check succeeded, the entry is not outdated.
4314 * < 0 if an error occurred.
4315 * > 0 if the check failed, which means the caller shall remove the entry.
4317 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4318 u8
*uuid
, u8 type
, u64 subid
)
4320 struct btrfs_key key
;
4322 struct btrfs_root
*subvol_root
;
4324 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4325 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4328 key
.objectid
= subid
;
4329 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4330 key
.offset
= (u64
)-1;
4331 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4332 if (IS_ERR(subvol_root
)) {
4333 ret
= PTR_ERR(subvol_root
);
4340 case BTRFS_UUID_KEY_SUBVOL
:
4341 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4344 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4345 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4355 static int btrfs_uuid_rescan_kthread(void *data
)
4357 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4361 * 1st step is to iterate through the existing UUID tree and
4362 * to delete all entries that contain outdated data.
4363 * 2nd step is to add all missing entries to the UUID tree.
4365 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4367 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4368 up(&fs_info
->uuid_tree_rescan_sem
);
4371 return btrfs_uuid_scan_kthread(data
);
4374 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4376 struct btrfs_trans_handle
*trans
;
4377 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4378 struct btrfs_root
*uuid_root
;
4379 struct task_struct
*task
;
4386 trans
= btrfs_start_transaction(tree_root
, 2);
4388 return PTR_ERR(trans
);
4390 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4391 BTRFS_UUID_TREE_OBJECTID
);
4392 if (IS_ERR(uuid_root
)) {
4393 ret
= PTR_ERR(uuid_root
);
4394 btrfs_abort_transaction(trans
, ret
);
4395 btrfs_end_transaction(trans
);
4399 fs_info
->uuid_root
= uuid_root
;
4401 ret
= btrfs_commit_transaction(trans
);
4405 down(&fs_info
->uuid_tree_rescan_sem
);
4406 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4408 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4409 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4410 up(&fs_info
->uuid_tree_rescan_sem
);
4411 return PTR_ERR(task
);
4417 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4419 struct task_struct
*task
;
4421 down(&fs_info
->uuid_tree_rescan_sem
);
4422 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4424 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4425 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4426 up(&fs_info
->uuid_tree_rescan_sem
);
4427 return PTR_ERR(task
);
4434 * shrinking a device means finding all of the device extents past
4435 * the new size, and then following the back refs to the chunks.
4436 * The chunk relocation code actually frees the device extent
4438 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4440 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4441 struct btrfs_root
*root
= fs_info
->dev_root
;
4442 struct btrfs_trans_handle
*trans
;
4443 struct btrfs_dev_extent
*dev_extent
= NULL
;
4444 struct btrfs_path
*path
;
4450 bool retried
= false;
4451 bool checked_pending_chunks
= false;
4452 struct extent_buffer
*l
;
4453 struct btrfs_key key
;
4454 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4455 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4456 u64 old_size
= btrfs_device_get_total_bytes(device
);
4459 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4460 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4462 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4465 path
= btrfs_alloc_path();
4469 path
->reada
= READA_FORWARD
;
4471 mutex_lock(&fs_info
->chunk_mutex
);
4473 btrfs_device_set_total_bytes(device
, new_size
);
4474 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4475 device
->fs_devices
->total_rw_bytes
-= diff
;
4476 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4478 mutex_unlock(&fs_info
->chunk_mutex
);
4481 key
.objectid
= device
->devid
;
4482 key
.offset
= (u64
)-1;
4483 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4486 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4487 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4489 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4493 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4495 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4500 btrfs_release_path(path
);
4505 slot
= path
->slots
[0];
4506 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4508 if (key
.objectid
!= device
->devid
) {
4509 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4510 btrfs_release_path(path
);
4514 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4515 length
= btrfs_dev_extent_length(l
, dev_extent
);
4517 if (key
.offset
+ length
<= new_size
) {
4518 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4519 btrfs_release_path(path
);
4523 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4524 btrfs_release_path(path
);
4527 * We may be relocating the only data chunk we have,
4528 * which could potentially end up with losing data's
4529 * raid profile, so lets allocate an empty one in
4532 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4534 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4538 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4539 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4540 if (ret
&& ret
!= -ENOSPC
)
4544 } while (key
.offset
-- > 0);
4546 if (failed
&& !retried
) {
4550 } else if (failed
&& retried
) {
4555 /* Shrinking succeeded, else we would be at "done". */
4556 trans
= btrfs_start_transaction(root
, 0);
4557 if (IS_ERR(trans
)) {
4558 ret
= PTR_ERR(trans
);
4562 mutex_lock(&fs_info
->chunk_mutex
);
4565 * We checked in the above loop all device extents that were already in
4566 * the device tree. However before we have updated the device's
4567 * total_bytes to the new size, we might have had chunk allocations that
4568 * have not complete yet (new block groups attached to transaction
4569 * handles), and therefore their device extents were not yet in the
4570 * device tree and we missed them in the loop above. So if we have any
4571 * pending chunk using a device extent that overlaps the device range
4572 * that we can not use anymore, commit the current transaction and
4573 * repeat the search on the device tree - this way we guarantee we will
4574 * not have chunks using device extents that end beyond 'new_size'.
4576 if (!checked_pending_chunks
) {
4577 u64 start
= new_size
;
4578 u64 len
= old_size
- new_size
;
4580 if (contains_pending_extent(trans
->transaction
, device
,
4582 mutex_unlock(&fs_info
->chunk_mutex
);
4583 checked_pending_chunks
= true;
4586 ret
= btrfs_commit_transaction(trans
);
4593 btrfs_device_set_disk_total_bytes(device
, new_size
);
4594 if (list_empty(&device
->resized_list
))
4595 list_add_tail(&device
->resized_list
,
4596 &fs_info
->fs_devices
->resized_devices
);
4598 WARN_ON(diff
> old_total
);
4599 btrfs_set_super_total_bytes(super_copy
,
4600 round_down(old_total
- diff
, fs_info
->sectorsize
));
4601 mutex_unlock(&fs_info
->chunk_mutex
);
4603 /* Now btrfs_update_device() will change the on-disk size. */
4604 ret
= btrfs_update_device(trans
, device
);
4605 btrfs_end_transaction(trans
);
4607 btrfs_free_path(path
);
4609 mutex_lock(&fs_info
->chunk_mutex
);
4610 btrfs_device_set_total_bytes(device
, old_size
);
4611 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4612 device
->fs_devices
->total_rw_bytes
+= diff
;
4613 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4614 mutex_unlock(&fs_info
->chunk_mutex
);
4619 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4620 struct btrfs_key
*key
,
4621 struct btrfs_chunk
*chunk
, int item_size
)
4623 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4624 struct btrfs_disk_key disk_key
;
4628 mutex_lock(&fs_info
->chunk_mutex
);
4629 array_size
= btrfs_super_sys_array_size(super_copy
);
4630 if (array_size
+ item_size
+ sizeof(disk_key
)
4631 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4632 mutex_unlock(&fs_info
->chunk_mutex
);
4636 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4637 btrfs_cpu_key_to_disk(&disk_key
, key
);
4638 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4639 ptr
+= sizeof(disk_key
);
4640 memcpy(ptr
, chunk
, item_size
);
4641 item_size
+= sizeof(disk_key
);
4642 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4643 mutex_unlock(&fs_info
->chunk_mutex
);
4649 * sort the devices in descending order by max_avail, total_avail
4651 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4653 const struct btrfs_device_info
*di_a
= a
;
4654 const struct btrfs_device_info
*di_b
= b
;
4656 if (di_a
->max_avail
> di_b
->max_avail
)
4658 if (di_a
->max_avail
< di_b
->max_avail
)
4660 if (di_a
->total_avail
> di_b
->total_avail
)
4662 if (di_a
->total_avail
< di_b
->total_avail
)
4667 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4669 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4672 btrfs_set_fs_incompat(info
, RAID56
);
4675 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4676 - sizeof(struct btrfs_chunk)) \
4677 / sizeof(struct btrfs_stripe) + 1)
4679 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4680 - 2 * sizeof(struct btrfs_disk_key) \
4681 - 2 * sizeof(struct btrfs_chunk)) \
4682 / sizeof(struct btrfs_stripe) + 1)
4684 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4685 u64 start
, u64 type
)
4687 struct btrfs_fs_info
*info
= trans
->fs_info
;
4688 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4689 struct btrfs_device
*device
;
4690 struct map_lookup
*map
= NULL
;
4691 struct extent_map_tree
*em_tree
;
4692 struct extent_map
*em
;
4693 struct btrfs_device_info
*devices_info
= NULL
;
4695 int num_stripes
; /* total number of stripes to allocate */
4696 int data_stripes
; /* number of stripes that count for
4698 int sub_stripes
; /* sub_stripes info for map */
4699 int dev_stripes
; /* stripes per dev */
4700 int devs_max
; /* max devs to use */
4701 int devs_min
; /* min devs needed */
4702 int devs_increment
; /* ndevs has to be a multiple of this */
4703 int ncopies
; /* how many copies to data has */
4705 u64 max_stripe_size
;
4714 BUG_ON(!alloc_profile_is_valid(type
, 0));
4716 if (list_empty(&fs_devices
->alloc_list
))
4719 index
= __get_raid_index(type
);
4721 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4722 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4723 devs_max
= btrfs_raid_array
[index
].devs_max
;
4724 devs_min
= btrfs_raid_array
[index
].devs_min
;
4725 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4726 ncopies
= btrfs_raid_array
[index
].ncopies
;
4728 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4729 max_stripe_size
= SZ_1G
;
4730 max_chunk_size
= 10 * max_stripe_size
;
4732 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4733 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4734 /* for larger filesystems, use larger metadata chunks */
4735 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4736 max_stripe_size
= SZ_1G
;
4738 max_stripe_size
= SZ_256M
;
4739 max_chunk_size
= max_stripe_size
;
4741 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4742 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4743 max_stripe_size
= SZ_32M
;
4744 max_chunk_size
= 2 * max_stripe_size
;
4746 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4748 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4753 /* we don't want a chunk larger than 10% of writeable space */
4754 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4757 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4763 * in the first pass through the devices list, we gather information
4764 * about the available holes on each device.
4767 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4771 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4773 "BTRFS: read-only device in alloc_list\n");
4777 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4778 &device
->dev_state
) ||
4779 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4782 if (device
->total_bytes
> device
->bytes_used
)
4783 total_avail
= device
->total_bytes
- device
->bytes_used
;
4787 /* If there is no space on this device, skip it. */
4788 if (total_avail
== 0)
4791 ret
= find_free_dev_extent(trans
, device
,
4792 max_stripe_size
* dev_stripes
,
4793 &dev_offset
, &max_avail
);
4794 if (ret
&& ret
!= -ENOSPC
)
4798 max_avail
= max_stripe_size
* dev_stripes
;
4800 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4803 if (ndevs
== fs_devices
->rw_devices
) {
4804 WARN(1, "%s: found more than %llu devices\n",
4805 __func__
, fs_devices
->rw_devices
);
4808 devices_info
[ndevs
].dev_offset
= dev_offset
;
4809 devices_info
[ndevs
].max_avail
= max_avail
;
4810 devices_info
[ndevs
].total_avail
= total_avail
;
4811 devices_info
[ndevs
].dev
= device
;
4816 * now sort the devices by hole size / available space
4818 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4819 btrfs_cmp_device_info
, NULL
);
4821 /* round down to number of usable stripes */
4822 ndevs
= round_down(ndevs
, devs_increment
);
4824 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4829 ndevs
= min(ndevs
, devs_max
);
4832 * the primary goal is to maximize the number of stripes, so use as many
4833 * devices as possible, even if the stripes are not maximum sized.
4835 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4836 num_stripes
= ndevs
* dev_stripes
;
4839 * this will have to be fixed for RAID1 and RAID10 over
4842 data_stripes
= num_stripes
/ ncopies
;
4844 if (type
& BTRFS_BLOCK_GROUP_RAID5
)
4845 data_stripes
= num_stripes
- 1;
4847 if (type
& BTRFS_BLOCK_GROUP_RAID6
)
4848 data_stripes
= num_stripes
- 2;
4851 * Use the number of data stripes to figure out how big this chunk
4852 * is really going to be in terms of logical address space,
4853 * and compare that answer with the max chunk size
4855 if (stripe_size
* data_stripes
> max_chunk_size
) {
4856 u64 mask
= (1ULL << 24) - 1;
4858 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4860 /* bump the answer up to a 16MB boundary */
4861 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4863 /* but don't go higher than the limits we found
4864 * while searching for free extents
4866 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4867 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4870 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4872 /* align to BTRFS_STRIPE_LEN */
4873 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4875 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4880 map
->num_stripes
= num_stripes
;
4882 for (i
= 0; i
< ndevs
; ++i
) {
4883 for (j
= 0; j
< dev_stripes
; ++j
) {
4884 int s
= i
* dev_stripes
+ j
;
4885 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4886 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4890 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4891 map
->io_align
= BTRFS_STRIPE_LEN
;
4892 map
->io_width
= BTRFS_STRIPE_LEN
;
4894 map
->sub_stripes
= sub_stripes
;
4896 num_bytes
= stripe_size
* data_stripes
;
4898 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4900 em
= alloc_extent_map();
4906 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4907 em
->map_lookup
= map
;
4909 em
->len
= num_bytes
;
4910 em
->block_start
= 0;
4911 em
->block_len
= em
->len
;
4912 em
->orig_block_len
= stripe_size
;
4914 em_tree
= &info
->mapping_tree
.map_tree
;
4915 write_lock(&em_tree
->lock
);
4916 ret
= add_extent_mapping(em_tree
, em
, 0);
4918 write_unlock(&em_tree
->lock
);
4919 free_extent_map(em
);
4923 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4924 refcount_inc(&em
->refs
);
4925 write_unlock(&em_tree
->lock
);
4927 ret
= btrfs_make_block_group(trans
, info
, 0, type
, start
, num_bytes
);
4929 goto error_del_extent
;
4931 for (i
= 0; i
< map
->num_stripes
; i
++) {
4932 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4933 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4936 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
4938 free_extent_map(em
);
4939 check_raid56_incompat_flag(info
, type
);
4941 kfree(devices_info
);
4945 write_lock(&em_tree
->lock
);
4946 remove_extent_mapping(em_tree
, em
);
4947 write_unlock(&em_tree
->lock
);
4949 /* One for our allocation */
4950 free_extent_map(em
);
4951 /* One for the tree reference */
4952 free_extent_map(em
);
4953 /* One for the pending_chunks list reference */
4954 free_extent_map(em
);
4956 kfree(devices_info
);
4960 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4961 struct btrfs_fs_info
*fs_info
,
4962 u64 chunk_offset
, u64 chunk_size
)
4964 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4965 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4966 struct btrfs_key key
;
4967 struct btrfs_device
*device
;
4968 struct btrfs_chunk
*chunk
;
4969 struct btrfs_stripe
*stripe
;
4970 struct extent_map
*em
;
4971 struct map_lookup
*map
;
4978 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4982 map
= em
->map_lookup
;
4983 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4984 stripe_size
= em
->orig_block_len
;
4986 chunk
= kzalloc(item_size
, GFP_NOFS
);
4993 * Take the device list mutex to prevent races with the final phase of
4994 * a device replace operation that replaces the device object associated
4995 * with the map's stripes, because the device object's id can change
4996 * at any time during that final phase of the device replace operation
4997 * (dev-replace.c:btrfs_dev_replace_finishing()).
4999 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5000 for (i
= 0; i
< map
->num_stripes
; i
++) {
5001 device
= map
->stripes
[i
].dev
;
5002 dev_offset
= map
->stripes
[i
].physical
;
5004 ret
= btrfs_update_device(trans
, device
);
5007 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5008 dev_offset
, stripe_size
);
5013 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5017 stripe
= &chunk
->stripe
;
5018 for (i
= 0; i
< map
->num_stripes
; i
++) {
5019 device
= map
->stripes
[i
].dev
;
5020 dev_offset
= map
->stripes
[i
].physical
;
5022 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5023 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5024 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5027 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5029 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5030 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5031 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5032 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5033 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5034 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5035 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5036 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5037 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5039 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5040 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5041 key
.offset
= chunk_offset
;
5043 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5044 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5046 * TODO: Cleanup of inserted chunk root in case of
5049 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5054 free_extent_map(em
);
5059 * Chunk allocation falls into two parts. The first part does works
5060 * that make the new allocated chunk useable, but not do any operation
5061 * that modifies the chunk tree. The second part does the works that
5062 * require modifying the chunk tree. This division is important for the
5063 * bootstrap process of adding storage to a seed btrfs.
5065 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5066 struct btrfs_fs_info
*fs_info
, u64 type
)
5070 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
5071 chunk_offset
= find_next_chunk(fs_info
);
5072 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5075 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5076 struct btrfs_fs_info
*fs_info
)
5079 u64 sys_chunk_offset
;
5083 chunk_offset
= find_next_chunk(fs_info
);
5084 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5085 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5089 sys_chunk_offset
= find_next_chunk(fs_info
);
5090 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5091 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5095 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5099 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5100 BTRFS_BLOCK_GROUP_RAID10
|
5101 BTRFS_BLOCK_GROUP_RAID5
|
5102 BTRFS_BLOCK_GROUP_DUP
)) {
5104 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5113 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5115 struct extent_map
*em
;
5116 struct map_lookup
*map
;
5121 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5125 map
= em
->map_lookup
;
5126 for (i
= 0; i
< map
->num_stripes
; i
++) {
5127 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5128 &map
->stripes
[i
].dev
->dev_state
)) {
5132 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5133 &map
->stripes
[i
].dev
->dev_state
)) {
5140 * If the number of missing devices is larger than max errors,
5141 * we can not write the data into that chunk successfully, so
5144 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5147 free_extent_map(em
);
5151 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5153 extent_map_tree_init(&tree
->map_tree
);
5156 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5158 struct extent_map
*em
;
5161 write_lock(&tree
->map_tree
.lock
);
5162 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5164 remove_extent_mapping(&tree
->map_tree
, em
);
5165 write_unlock(&tree
->map_tree
.lock
);
5169 free_extent_map(em
);
5170 /* once for the tree */
5171 free_extent_map(em
);
5175 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5177 struct extent_map
*em
;
5178 struct map_lookup
*map
;
5181 em
= get_chunk_map(fs_info
, logical
, len
);
5184 * We could return errors for these cases, but that could get
5185 * ugly and we'd probably do the same thing which is just not do
5186 * anything else and exit, so return 1 so the callers don't try
5187 * to use other copies.
5191 map
= em
->map_lookup
;
5192 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5193 ret
= map
->num_stripes
;
5194 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5195 ret
= map
->sub_stripes
;
5196 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5198 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5200 * There could be two corrupted data stripes, we need
5201 * to loop retry in order to rebuild the correct data.
5203 * Fail a stripe at a time on every retry except the
5204 * stripe under reconstruction.
5206 ret
= map
->num_stripes
;
5209 free_extent_map(em
);
5211 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5212 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5213 fs_info
->dev_replace
.tgtdev
)
5215 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5220 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5223 struct extent_map
*em
;
5224 struct map_lookup
*map
;
5225 unsigned long len
= fs_info
->sectorsize
;
5227 em
= get_chunk_map(fs_info
, logical
, len
);
5229 if (!WARN_ON(IS_ERR(em
))) {
5230 map
= em
->map_lookup
;
5231 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5232 len
= map
->stripe_len
* nr_data_stripes(map
);
5233 free_extent_map(em
);
5238 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5240 struct extent_map
*em
;
5241 struct map_lookup
*map
;
5244 em
= get_chunk_map(fs_info
, logical
, len
);
5246 if(!WARN_ON(IS_ERR(em
))) {
5247 map
= em
->map_lookup
;
5248 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5250 free_extent_map(em
);
5255 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5256 struct map_lookup
*map
, int first
, int num
,
5257 int optimal
, int dev_replace_is_ongoing
)
5261 struct btrfs_device
*srcdev
;
5263 if (dev_replace_is_ongoing
&&
5264 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5265 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5266 srcdev
= fs_info
->dev_replace
.srcdev
;
5271 * try to avoid the drive that is the source drive for a
5272 * dev-replace procedure, only choose it if no other non-missing
5273 * mirror is available
5275 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5276 if (map
->stripes
[optimal
].dev
->bdev
&&
5277 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5279 for (i
= first
; i
< first
+ num
; i
++) {
5280 if (map
->stripes
[i
].dev
->bdev
&&
5281 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5286 /* we couldn't find one that doesn't fail. Just return something
5287 * and the io error handling code will clean up eventually
5292 static inline int parity_smaller(u64 a
, u64 b
)
5297 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5298 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5300 struct btrfs_bio_stripe s
;
5307 for (i
= 0; i
< num_stripes
- 1; i
++) {
5308 if (parity_smaller(bbio
->raid_map
[i
],
5309 bbio
->raid_map
[i
+1])) {
5310 s
= bbio
->stripes
[i
];
5311 l
= bbio
->raid_map
[i
];
5312 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5313 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5314 bbio
->stripes
[i
+1] = s
;
5315 bbio
->raid_map
[i
+1] = l
;
5323 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5325 struct btrfs_bio
*bbio
= kzalloc(
5326 /* the size of the btrfs_bio */
5327 sizeof(struct btrfs_bio
) +
5328 /* plus the variable array for the stripes */
5329 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5330 /* plus the variable array for the tgt dev */
5331 sizeof(int) * (real_stripes
) +
5333 * plus the raid_map, which includes both the tgt dev
5336 sizeof(u64
) * (total_stripes
),
5337 GFP_NOFS
|__GFP_NOFAIL
);
5339 atomic_set(&bbio
->error
, 0);
5340 refcount_set(&bbio
->refs
, 1);
5345 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5347 WARN_ON(!refcount_read(&bbio
->refs
));
5348 refcount_inc(&bbio
->refs
);
5351 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5355 if (refcount_dec_and_test(&bbio
->refs
))
5359 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5361 * Please note that, discard won't be sent to target device of device
5364 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5365 u64 logical
, u64 length
,
5366 struct btrfs_bio
**bbio_ret
)
5368 struct extent_map
*em
;
5369 struct map_lookup
*map
;
5370 struct btrfs_bio
*bbio
;
5374 u64 stripe_end_offset
;
5381 u32 sub_stripes
= 0;
5382 u64 stripes_per_dev
= 0;
5383 u32 remaining_stripes
= 0;
5384 u32 last_stripe
= 0;
5388 /* discard always return a bbio */
5391 em
= get_chunk_map(fs_info
, logical
, length
);
5395 map
= em
->map_lookup
;
5396 /* we don't discard raid56 yet */
5397 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5402 offset
= logical
- em
->start
;
5403 length
= min_t(u64
, em
->len
- offset
, length
);
5405 stripe_len
= map
->stripe_len
;
5407 * stripe_nr counts the total number of stripes we have to stride
5408 * to get to this block
5410 stripe_nr
= div64_u64(offset
, stripe_len
);
5412 /* stripe_offset is the offset of this block in its stripe */
5413 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5415 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5416 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5417 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5418 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5421 * after this, stripe_nr is the number of stripes on this
5422 * device we have to walk to find the data, and stripe_index is
5423 * the number of our device in the stripe array
5427 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5428 BTRFS_BLOCK_GROUP_RAID10
)) {
5429 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5432 sub_stripes
= map
->sub_stripes
;
5434 factor
= map
->num_stripes
/ sub_stripes
;
5435 num_stripes
= min_t(u64
, map
->num_stripes
,
5436 sub_stripes
* stripe_cnt
);
5437 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5438 stripe_index
*= sub_stripes
;
5439 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5440 &remaining_stripes
);
5441 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5442 last_stripe
*= sub_stripes
;
5443 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5444 BTRFS_BLOCK_GROUP_DUP
)) {
5445 num_stripes
= map
->num_stripes
;
5447 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5451 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5457 for (i
= 0; i
< num_stripes
; i
++) {
5458 bbio
->stripes
[i
].physical
=
5459 map
->stripes
[stripe_index
].physical
+
5460 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5461 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5463 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5464 BTRFS_BLOCK_GROUP_RAID10
)) {
5465 bbio
->stripes
[i
].length
= stripes_per_dev
*
5468 if (i
/ sub_stripes
< remaining_stripes
)
5469 bbio
->stripes
[i
].length
+=
5473 * Special for the first stripe and
5476 * |-------|...|-------|
5480 if (i
< sub_stripes
)
5481 bbio
->stripes
[i
].length
-=
5484 if (stripe_index
>= last_stripe
&&
5485 stripe_index
<= (last_stripe
+
5487 bbio
->stripes
[i
].length
-=
5490 if (i
== sub_stripes
- 1)
5493 bbio
->stripes
[i
].length
= length
;
5497 if (stripe_index
== map
->num_stripes
) {
5504 bbio
->map_type
= map
->type
;
5505 bbio
->num_stripes
= num_stripes
;
5507 free_extent_map(em
);
5512 * In dev-replace case, for repair case (that's the only case where the mirror
5513 * is selected explicitly when calling btrfs_map_block), blocks left of the
5514 * left cursor can also be read from the target drive.
5516 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5518 * For READ, it also needs to be supported using the same mirror number.
5520 * If the requested block is not left of the left cursor, EIO is returned. This
5521 * can happen because btrfs_num_copies() returns one more in the dev-replace
5524 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5525 u64 logical
, u64 length
,
5526 u64 srcdev_devid
, int *mirror_num
,
5529 struct btrfs_bio
*bbio
= NULL
;
5531 int index_srcdev
= 0;
5533 u64 physical_of_found
= 0;
5537 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5538 logical
, &length
, &bbio
, 0, 0);
5540 ASSERT(bbio
== NULL
);
5544 num_stripes
= bbio
->num_stripes
;
5545 if (*mirror_num
> num_stripes
) {
5547 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5548 * that means that the requested area is not left of the left
5551 btrfs_put_bbio(bbio
);
5556 * process the rest of the function using the mirror_num of the source
5557 * drive. Therefore look it up first. At the end, patch the device
5558 * pointer to the one of the target drive.
5560 for (i
= 0; i
< num_stripes
; i
++) {
5561 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5565 * In case of DUP, in order to keep it simple, only add the
5566 * mirror with the lowest physical address
5569 physical_of_found
<= bbio
->stripes
[i
].physical
)
5574 physical_of_found
= bbio
->stripes
[i
].physical
;
5577 btrfs_put_bbio(bbio
);
5583 *mirror_num
= index_srcdev
+ 1;
5584 *physical
= physical_of_found
;
5588 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5589 struct btrfs_bio
**bbio_ret
,
5590 struct btrfs_dev_replace
*dev_replace
,
5591 int *num_stripes_ret
, int *max_errors_ret
)
5593 struct btrfs_bio
*bbio
= *bbio_ret
;
5594 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5595 int tgtdev_indexes
= 0;
5596 int num_stripes
= *num_stripes_ret
;
5597 int max_errors
= *max_errors_ret
;
5600 if (op
== BTRFS_MAP_WRITE
) {
5601 int index_where_to_add
;
5604 * duplicate the write operations while the dev replace
5605 * procedure is running. Since the copying of the old disk to
5606 * the new disk takes place at run time while the filesystem is
5607 * mounted writable, the regular write operations to the old
5608 * disk have to be duplicated to go to the new disk as well.
5610 * Note that device->missing is handled by the caller, and that
5611 * the write to the old disk is already set up in the stripes
5614 index_where_to_add
= num_stripes
;
5615 for (i
= 0; i
< num_stripes
; i
++) {
5616 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5617 /* write to new disk, too */
5618 struct btrfs_bio_stripe
*new =
5619 bbio
->stripes
+ index_where_to_add
;
5620 struct btrfs_bio_stripe
*old
=
5623 new->physical
= old
->physical
;
5624 new->length
= old
->length
;
5625 new->dev
= dev_replace
->tgtdev
;
5626 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5627 index_where_to_add
++;
5632 num_stripes
= index_where_to_add
;
5633 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5634 int index_srcdev
= 0;
5636 u64 physical_of_found
= 0;
5639 * During the dev-replace procedure, the target drive can also
5640 * be used to read data in case it is needed to repair a corrupt
5641 * block elsewhere. This is possible if the requested area is
5642 * left of the left cursor. In this area, the target drive is a
5643 * full copy of the source drive.
5645 for (i
= 0; i
< num_stripes
; i
++) {
5646 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5648 * In case of DUP, in order to keep it simple,
5649 * only add the mirror with the lowest physical
5653 physical_of_found
<=
5654 bbio
->stripes
[i
].physical
)
5658 physical_of_found
= bbio
->stripes
[i
].physical
;
5662 struct btrfs_bio_stripe
*tgtdev_stripe
=
5663 bbio
->stripes
+ num_stripes
;
5665 tgtdev_stripe
->physical
= physical_of_found
;
5666 tgtdev_stripe
->length
=
5667 bbio
->stripes
[index_srcdev
].length
;
5668 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5669 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5676 *num_stripes_ret
= num_stripes
;
5677 *max_errors_ret
= max_errors
;
5678 bbio
->num_tgtdevs
= tgtdev_indexes
;
5682 static bool need_full_stripe(enum btrfs_map_op op
)
5684 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5687 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5688 enum btrfs_map_op op
,
5689 u64 logical
, u64
*length
,
5690 struct btrfs_bio
**bbio_ret
,
5691 int mirror_num
, int need_raid_map
)
5693 struct extent_map
*em
;
5694 struct map_lookup
*map
;
5704 int tgtdev_indexes
= 0;
5705 struct btrfs_bio
*bbio
= NULL
;
5706 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5707 int dev_replace_is_ongoing
= 0;
5708 int num_alloc_stripes
;
5709 int patch_the_first_stripe_for_dev_replace
= 0;
5710 u64 physical_to_patch_in_first_stripe
= 0;
5711 u64 raid56_full_stripe_start
= (u64
)-1;
5713 if (op
== BTRFS_MAP_DISCARD
)
5714 return __btrfs_map_block_for_discard(fs_info
, logical
,
5717 em
= get_chunk_map(fs_info
, logical
, *length
);
5721 map
= em
->map_lookup
;
5722 offset
= logical
- em
->start
;
5724 stripe_len
= map
->stripe_len
;
5727 * stripe_nr counts the total number of stripes we have to stride
5728 * to get to this block
5730 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5732 stripe_offset
= stripe_nr
* stripe_len
;
5733 if (offset
< stripe_offset
) {
5735 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5736 stripe_offset
, offset
, em
->start
, logical
,
5738 free_extent_map(em
);
5742 /* stripe_offset is the offset of this block in its stripe*/
5743 stripe_offset
= offset
- stripe_offset
;
5745 /* if we're here for raid56, we need to know the stripe aligned start */
5746 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5747 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5748 raid56_full_stripe_start
= offset
;
5750 /* allow a write of a full stripe, but make sure we don't
5751 * allow straddling of stripes
5753 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5755 raid56_full_stripe_start
*= full_stripe_len
;
5758 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5760 /* For writes to RAID[56], allow a full stripeset across all disks.
5761 For other RAID types and for RAID[56] reads, just allow a single
5762 stripe (on a single disk). */
5763 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5764 (op
== BTRFS_MAP_WRITE
)) {
5765 max_len
= stripe_len
* nr_data_stripes(map
) -
5766 (offset
- raid56_full_stripe_start
);
5768 /* we limit the length of each bio to what fits in a stripe */
5769 max_len
= stripe_len
- stripe_offset
;
5771 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5773 *length
= em
->len
- offset
;
5776 /* This is for when we're called from btrfs_merge_bio_hook() and all
5777 it cares about is the length */
5781 btrfs_dev_replace_lock(dev_replace
, 0);
5782 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5783 if (!dev_replace_is_ongoing
)
5784 btrfs_dev_replace_unlock(dev_replace
, 0);
5786 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5788 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5789 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5790 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5791 dev_replace
->srcdev
->devid
,
5793 &physical_to_patch_in_first_stripe
);
5797 patch_the_first_stripe_for_dev_replace
= 1;
5798 } else if (mirror_num
> map
->num_stripes
) {
5804 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5805 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5807 if (!need_full_stripe(op
))
5809 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5810 if (need_full_stripe(op
))
5811 num_stripes
= map
->num_stripes
;
5812 else if (mirror_num
)
5813 stripe_index
= mirror_num
- 1;
5815 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5817 current
->pid
% map
->num_stripes
,
5818 dev_replace_is_ongoing
);
5819 mirror_num
= stripe_index
+ 1;
5822 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5823 if (need_full_stripe(op
)) {
5824 num_stripes
= map
->num_stripes
;
5825 } else if (mirror_num
) {
5826 stripe_index
= mirror_num
- 1;
5831 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5832 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5834 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5835 stripe_index
*= map
->sub_stripes
;
5837 if (need_full_stripe(op
))
5838 num_stripes
= map
->sub_stripes
;
5839 else if (mirror_num
)
5840 stripe_index
+= mirror_num
- 1;
5842 int old_stripe_index
= stripe_index
;
5843 stripe_index
= find_live_mirror(fs_info
, map
,
5845 map
->sub_stripes
, stripe_index
+
5846 current
->pid
% map
->sub_stripes
,
5847 dev_replace_is_ongoing
);
5848 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5851 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5852 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
5853 /* push stripe_nr back to the start of the full stripe */
5854 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5855 stripe_len
* nr_data_stripes(map
));
5857 /* RAID[56] write or recovery. Return all stripes */
5858 num_stripes
= map
->num_stripes
;
5859 max_errors
= nr_parity_stripes(map
);
5861 *length
= map
->stripe_len
;
5866 * Mirror #0 or #1 means the original data block.
5867 * Mirror #2 is RAID5 parity block.
5868 * Mirror #3 is RAID6 Q block.
5870 stripe_nr
= div_u64_rem(stripe_nr
,
5871 nr_data_stripes(map
), &stripe_index
);
5873 stripe_index
= nr_data_stripes(map
) +
5876 /* We distribute the parity blocks across stripes */
5877 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5879 if (!need_full_stripe(op
) && mirror_num
<= 1)
5884 * after this, stripe_nr is the number of stripes on this
5885 * device we have to walk to find the data, and stripe_index is
5886 * the number of our device in the stripe array
5888 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5890 mirror_num
= stripe_index
+ 1;
5892 if (stripe_index
>= map
->num_stripes
) {
5894 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5895 stripe_index
, map
->num_stripes
);
5900 num_alloc_stripes
= num_stripes
;
5901 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5902 if (op
== BTRFS_MAP_WRITE
)
5903 num_alloc_stripes
<<= 1;
5904 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5905 num_alloc_stripes
++;
5906 tgtdev_indexes
= num_stripes
;
5909 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5914 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5915 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5917 /* build raid_map */
5918 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5919 (need_full_stripe(op
) || mirror_num
> 1)) {
5923 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5924 sizeof(struct btrfs_bio_stripe
) *
5926 sizeof(int) * tgtdev_indexes
);
5928 /* Work out the disk rotation on this stripe-set */
5929 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5931 /* Fill in the logical address of each stripe */
5932 tmp
= stripe_nr
* nr_data_stripes(map
);
5933 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5934 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5935 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5937 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5938 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5939 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5944 for (i
= 0; i
< num_stripes
; i
++) {
5945 bbio
->stripes
[i
].physical
=
5946 map
->stripes
[stripe_index
].physical
+
5948 stripe_nr
* map
->stripe_len
;
5949 bbio
->stripes
[i
].dev
=
5950 map
->stripes
[stripe_index
].dev
;
5954 if (need_full_stripe(op
))
5955 max_errors
= btrfs_chunk_max_errors(map
);
5958 sort_parity_stripes(bbio
, num_stripes
);
5960 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5961 need_full_stripe(op
)) {
5962 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5967 bbio
->map_type
= map
->type
;
5968 bbio
->num_stripes
= num_stripes
;
5969 bbio
->max_errors
= max_errors
;
5970 bbio
->mirror_num
= mirror_num
;
5973 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5974 * mirror_num == num_stripes + 1 && dev_replace target drive is
5975 * available as a mirror
5977 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5978 WARN_ON(num_stripes
> 1);
5979 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5980 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5981 bbio
->mirror_num
= map
->num_stripes
+ 1;
5984 if (dev_replace_is_ongoing
) {
5985 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5986 btrfs_dev_replace_unlock(dev_replace
, 0);
5988 free_extent_map(em
);
5992 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5993 u64 logical
, u64
*length
,
5994 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5996 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
6000 /* For Scrub/replace */
6001 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6002 u64 logical
, u64
*length
,
6003 struct btrfs_bio
**bbio_ret
)
6005 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6008 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
6009 u64 chunk_start
, u64 physical
, u64 devid
,
6010 u64
**logical
, int *naddrs
, int *stripe_len
)
6012 struct extent_map
*em
;
6013 struct map_lookup
*map
;
6021 em
= get_chunk_map(fs_info
, chunk_start
, 1);
6025 map
= em
->map_lookup
;
6027 rmap_len
= map
->stripe_len
;
6029 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
6030 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
6031 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
6032 length
= div_u64(length
, map
->num_stripes
);
6033 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6034 length
= div_u64(length
, nr_data_stripes(map
));
6035 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6038 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6039 BUG_ON(!buf
); /* -ENOMEM */
6041 for (i
= 0; i
< map
->num_stripes
; i
++) {
6042 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
6044 if (map
->stripes
[i
].physical
> physical
||
6045 map
->stripes
[i
].physical
+ length
<= physical
)
6048 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6049 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6051 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6052 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6053 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6054 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6055 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6056 } /* else if RAID[56], multiply by nr_data_stripes().
6057 * Alternatively, just use rmap_len below instead of
6058 * map->stripe_len */
6060 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6061 WARN_ON(nr
>= map
->num_stripes
);
6062 for (j
= 0; j
< nr
; j
++) {
6063 if (buf
[j
] == bytenr
)
6067 WARN_ON(nr
>= map
->num_stripes
);
6074 *stripe_len
= rmap_len
;
6076 free_extent_map(em
);
6080 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6082 bio
->bi_private
= bbio
->private;
6083 bio
->bi_end_io
= bbio
->end_io
;
6086 btrfs_put_bbio(bbio
);
6089 static void btrfs_end_bio(struct bio
*bio
)
6091 struct btrfs_bio
*bbio
= bio
->bi_private
;
6092 int is_orig_bio
= 0;
6094 if (bio
->bi_status
) {
6095 atomic_inc(&bbio
->error
);
6096 if (bio
->bi_status
== BLK_STS_IOERR
||
6097 bio
->bi_status
== BLK_STS_TARGET
) {
6098 unsigned int stripe_index
=
6099 btrfs_io_bio(bio
)->stripe_index
;
6100 struct btrfs_device
*dev
;
6102 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6103 dev
= bbio
->stripes
[stripe_index
].dev
;
6105 if (bio_op(bio
) == REQ_OP_WRITE
)
6106 btrfs_dev_stat_inc_and_print(dev
,
6107 BTRFS_DEV_STAT_WRITE_ERRS
);
6109 btrfs_dev_stat_inc_and_print(dev
,
6110 BTRFS_DEV_STAT_READ_ERRS
);
6111 if (bio
->bi_opf
& REQ_PREFLUSH
)
6112 btrfs_dev_stat_inc_and_print(dev
,
6113 BTRFS_DEV_STAT_FLUSH_ERRS
);
6118 if (bio
== bbio
->orig_bio
)
6121 btrfs_bio_counter_dec(bbio
->fs_info
);
6123 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6126 bio
= bbio
->orig_bio
;
6129 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6130 /* only send an error to the higher layers if it is
6131 * beyond the tolerance of the btrfs bio
6133 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6134 bio
->bi_status
= BLK_STS_IOERR
;
6137 * this bio is actually up to date, we didn't
6138 * go over the max number of errors
6140 bio
->bi_status
= BLK_STS_OK
;
6143 btrfs_end_bbio(bbio
, bio
);
6144 } else if (!is_orig_bio
) {
6150 * see run_scheduled_bios for a description of why bios are collected for
6153 * This will add one bio to the pending list for a device and make sure
6154 * the work struct is scheduled.
6156 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6159 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6160 int should_queue
= 1;
6161 struct btrfs_pending_bios
*pending_bios
;
6163 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
) ||
6169 /* don't bother with additional async steps for reads, right now */
6170 if (bio_op(bio
) == REQ_OP_READ
) {
6171 btrfsic_submit_bio(bio
);
6175 WARN_ON(bio
->bi_next
);
6176 bio
->bi_next
= NULL
;
6178 spin_lock(&device
->io_lock
);
6179 if (op_is_sync(bio
->bi_opf
))
6180 pending_bios
= &device
->pending_sync_bios
;
6182 pending_bios
= &device
->pending_bios
;
6184 if (pending_bios
->tail
)
6185 pending_bios
->tail
->bi_next
= bio
;
6187 pending_bios
->tail
= bio
;
6188 if (!pending_bios
->head
)
6189 pending_bios
->head
= bio
;
6190 if (device
->running_pending
)
6193 spin_unlock(&device
->io_lock
);
6196 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6199 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6200 u64 physical
, int dev_nr
, int async
)
6202 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6203 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6205 bio
->bi_private
= bbio
;
6206 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6207 bio
->bi_end_io
= btrfs_end_bio
;
6208 bio
->bi_iter
.bi_sector
= physical
>> 9;
6211 struct rcu_string
*name
;
6214 name
= rcu_dereference(dev
->name
);
6215 btrfs_debug(fs_info
,
6216 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6217 bio_op(bio
), bio
->bi_opf
,
6218 (u64
)bio
->bi_iter
.bi_sector
,
6219 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6220 bio
->bi_iter
.bi_size
);
6224 bio_set_dev(bio
, dev
->bdev
);
6226 btrfs_bio_counter_inc_noblocked(fs_info
);
6229 btrfs_schedule_bio(dev
, bio
);
6231 btrfsic_submit_bio(bio
);
6234 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6236 atomic_inc(&bbio
->error
);
6237 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6238 /* Should be the original bio. */
6239 WARN_ON(bio
!= bbio
->orig_bio
);
6241 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6242 bio
->bi_iter
.bi_sector
= logical
>> 9;
6243 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6244 bio
->bi_status
= BLK_STS_IOERR
;
6246 bio
->bi_status
= BLK_STS_OK
;
6247 btrfs_end_bbio(bbio
, bio
);
6251 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6252 int mirror_num
, int async_submit
)
6254 struct btrfs_device
*dev
;
6255 struct bio
*first_bio
= bio
;
6256 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6262 struct btrfs_bio
*bbio
= NULL
;
6264 length
= bio
->bi_iter
.bi_size
;
6265 map_length
= length
;
6267 btrfs_bio_counter_inc_blocked(fs_info
);
6268 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6269 &map_length
, &bbio
, mirror_num
, 1);
6271 btrfs_bio_counter_dec(fs_info
);
6272 return errno_to_blk_status(ret
);
6275 total_devs
= bbio
->num_stripes
;
6276 bbio
->orig_bio
= first_bio
;
6277 bbio
->private = first_bio
->bi_private
;
6278 bbio
->end_io
= first_bio
->bi_end_io
;
6279 bbio
->fs_info
= fs_info
;
6280 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6282 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6283 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6284 /* In this case, map_length has been set to the length of
6285 a single stripe; not the whole write */
6286 if (bio_op(bio
) == REQ_OP_WRITE
) {
6287 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6290 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6291 map_length
, mirror_num
, 1);
6294 btrfs_bio_counter_dec(fs_info
);
6295 return errno_to_blk_status(ret
);
6298 if (map_length
< length
) {
6300 "mapping failed logical %llu bio len %llu len %llu",
6301 logical
, length
, map_length
);
6305 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6306 dev
= bbio
->stripes
[dev_nr
].dev
;
6307 if (!dev
|| !dev
->bdev
||
6308 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6309 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6310 bbio_error(bbio
, first_bio
, logical
);
6314 if (dev_nr
< total_devs
- 1)
6315 bio
= btrfs_bio_clone(first_bio
);
6319 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6320 dev_nr
, async_submit
);
6322 btrfs_bio_counter_dec(fs_info
);
6326 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6329 struct btrfs_device
*device
;
6330 struct btrfs_fs_devices
*cur_devices
;
6332 cur_devices
= fs_info
->fs_devices
;
6333 while (cur_devices
) {
6335 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
)) {
6336 device
= find_device(cur_devices
, devid
, uuid
);
6340 cur_devices
= cur_devices
->seed
;
6345 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6346 u64 devid
, u8
*dev_uuid
)
6348 struct btrfs_device
*device
;
6350 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6354 list_add(&device
->dev_list
, &fs_devices
->devices
);
6355 device
->fs_devices
= fs_devices
;
6356 fs_devices
->num_devices
++;
6358 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6359 fs_devices
->missing_devices
++;
6365 * btrfs_alloc_device - allocate struct btrfs_device
6366 * @fs_info: used only for generating a new devid, can be NULL if
6367 * devid is provided (i.e. @devid != NULL).
6368 * @devid: a pointer to devid for this device. If NULL a new devid
6370 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6373 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6374 * on error. Returned struct is not linked onto any lists and must be
6375 * destroyed with free_device.
6377 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6381 struct btrfs_device
*dev
;
6384 if (WARN_ON(!devid
&& !fs_info
))
6385 return ERR_PTR(-EINVAL
);
6387 dev
= __alloc_device();
6396 ret
= find_next_devid(fs_info
, &tmp
);
6399 return ERR_PTR(ret
);
6405 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6407 generate_random_uuid(dev
->uuid
);
6409 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6410 pending_bios_fn
, NULL
, NULL
);
6415 /* Return -EIO if any error, otherwise return 0. */
6416 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6417 struct extent_buffer
*leaf
,
6418 struct btrfs_chunk
*chunk
, u64 logical
)
6426 length
= btrfs_chunk_length(leaf
, chunk
);
6427 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6428 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6429 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6430 type
= btrfs_chunk_type(leaf
, chunk
);
6433 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6437 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6438 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6441 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6442 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6443 btrfs_chunk_sector_size(leaf
, chunk
));
6446 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6447 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6450 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6451 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6455 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6457 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6458 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6459 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6460 btrfs_chunk_type(leaf
, chunk
));
6463 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6464 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6465 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6466 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6467 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6468 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6469 num_stripes
!= 1)) {
6471 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6472 num_stripes
, sub_stripes
,
6473 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6480 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6481 u64 devid
, u8
*uuid
, bool error
)
6484 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6487 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6491 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6492 struct extent_buffer
*leaf
,
6493 struct btrfs_chunk
*chunk
)
6495 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6496 struct map_lookup
*map
;
6497 struct extent_map
*em
;
6501 u8 uuid
[BTRFS_UUID_SIZE
];
6506 logical
= key
->offset
;
6507 length
= btrfs_chunk_length(leaf
, chunk
);
6508 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6510 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6514 read_lock(&map_tree
->map_tree
.lock
);
6515 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6516 read_unlock(&map_tree
->map_tree
.lock
);
6518 /* already mapped? */
6519 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6520 free_extent_map(em
);
6523 free_extent_map(em
);
6526 em
= alloc_extent_map();
6529 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6531 free_extent_map(em
);
6535 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6536 em
->map_lookup
= map
;
6537 em
->start
= logical
;
6540 em
->block_start
= 0;
6541 em
->block_len
= em
->len
;
6543 map
->num_stripes
= num_stripes
;
6544 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6545 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6546 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6547 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6548 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6549 for (i
= 0; i
< num_stripes
; i
++) {
6550 map
->stripes
[i
].physical
=
6551 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6552 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6553 read_extent_buffer(leaf
, uuid
, (unsigned long)
6554 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6556 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6558 if (!map
->stripes
[i
].dev
&&
6559 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6560 free_extent_map(em
);
6561 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6564 if (!map
->stripes
[i
].dev
) {
6565 map
->stripes
[i
].dev
=
6566 add_missing_dev(fs_info
->fs_devices
, devid
,
6568 if (IS_ERR(map
->stripes
[i
].dev
)) {
6569 free_extent_map(em
);
6571 "failed to init missing dev %llu: %ld",
6572 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6573 return PTR_ERR(map
->stripes
[i
].dev
);
6575 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6577 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6578 &(map
->stripes
[i
].dev
->dev_state
));
6582 write_lock(&map_tree
->map_tree
.lock
);
6583 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6584 write_unlock(&map_tree
->map_tree
.lock
);
6585 BUG_ON(ret
); /* Tree corruption */
6586 free_extent_map(em
);
6591 static void fill_device_from_item(struct extent_buffer
*leaf
,
6592 struct btrfs_dev_item
*dev_item
,
6593 struct btrfs_device
*device
)
6597 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6598 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6599 device
->total_bytes
= device
->disk_total_bytes
;
6600 device
->commit_total_bytes
= device
->disk_total_bytes
;
6601 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6602 device
->commit_bytes_used
= device
->bytes_used
;
6603 device
->type
= btrfs_device_type(leaf
, dev_item
);
6604 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6605 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6606 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6607 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6608 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6610 ptr
= btrfs_device_uuid(dev_item
);
6611 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6614 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6617 struct btrfs_fs_devices
*fs_devices
;
6620 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6623 fs_devices
= fs_info
->fs_devices
->seed
;
6624 while (fs_devices
) {
6625 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6628 fs_devices
= fs_devices
->seed
;
6631 fs_devices
= find_fsid(fsid
);
6633 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6634 return ERR_PTR(-ENOENT
);
6636 fs_devices
= alloc_fs_devices(fsid
);
6637 if (IS_ERR(fs_devices
))
6640 fs_devices
->seeding
= 1;
6641 fs_devices
->opened
= 1;
6645 fs_devices
= clone_fs_devices(fs_devices
);
6646 if (IS_ERR(fs_devices
))
6649 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6650 fs_info
->bdev_holder
);
6652 free_fs_devices(fs_devices
);
6653 fs_devices
= ERR_PTR(ret
);
6657 if (!fs_devices
->seeding
) {
6658 __btrfs_close_devices(fs_devices
);
6659 free_fs_devices(fs_devices
);
6660 fs_devices
= ERR_PTR(-EINVAL
);
6664 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6665 fs_info
->fs_devices
->seed
= fs_devices
;
6670 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6671 struct extent_buffer
*leaf
,
6672 struct btrfs_dev_item
*dev_item
)
6674 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6675 struct btrfs_device
*device
;
6678 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6679 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6681 devid
= btrfs_device_id(leaf
, dev_item
);
6682 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6684 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6687 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
)) {
6688 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6689 if (IS_ERR(fs_devices
))
6690 return PTR_ERR(fs_devices
);
6693 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6695 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6696 btrfs_report_missing_device(fs_info
, devid
,
6701 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6702 if (IS_ERR(device
)) {
6704 "failed to add missing dev %llu: %ld",
6705 devid
, PTR_ERR(device
));
6706 return PTR_ERR(device
);
6708 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6710 if (!device
->bdev
) {
6711 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6712 btrfs_report_missing_device(fs_info
,
6713 devid
, dev_uuid
, true);
6716 btrfs_report_missing_device(fs_info
, devid
,
6720 if (!device
->bdev
&&
6721 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6723 * this happens when a device that was properly setup
6724 * in the device info lists suddenly goes bad.
6725 * device->bdev is NULL, and so we have to set
6726 * device->missing to one here
6728 device
->fs_devices
->missing_devices
++;
6729 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6732 /* Move the device to its own fs_devices */
6733 if (device
->fs_devices
!= fs_devices
) {
6734 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6735 &device
->dev_state
));
6737 list_move(&device
->dev_list
, &fs_devices
->devices
);
6738 device
->fs_devices
->num_devices
--;
6739 fs_devices
->num_devices
++;
6741 device
->fs_devices
->missing_devices
--;
6742 fs_devices
->missing_devices
++;
6744 device
->fs_devices
= fs_devices
;
6748 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6749 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6750 if (device
->generation
!=
6751 btrfs_device_generation(leaf
, dev_item
))
6755 fill_device_from_item(leaf
, dev_item
, device
);
6756 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6757 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6758 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6759 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6760 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6761 &fs_info
->free_chunk_space
);
6767 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6769 struct btrfs_root
*root
= fs_info
->tree_root
;
6770 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6771 struct extent_buffer
*sb
;
6772 struct btrfs_disk_key
*disk_key
;
6773 struct btrfs_chunk
*chunk
;
6775 unsigned long sb_array_offset
;
6782 struct btrfs_key key
;
6784 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6786 * This will create extent buffer of nodesize, superblock size is
6787 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6788 * overallocate but we can keep it as-is, only the first page is used.
6790 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6793 set_extent_buffer_uptodate(sb
);
6794 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6796 * The sb extent buffer is artificial and just used to read the system array.
6797 * set_extent_buffer_uptodate() call does not properly mark all it's
6798 * pages up-to-date when the page is larger: extent does not cover the
6799 * whole page and consequently check_page_uptodate does not find all
6800 * the page's extents up-to-date (the hole beyond sb),
6801 * write_extent_buffer then triggers a WARN_ON.
6803 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6804 * but sb spans only this function. Add an explicit SetPageUptodate call
6805 * to silence the warning eg. on PowerPC 64.
6807 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6808 SetPageUptodate(sb
->pages
[0]);
6810 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6811 array_size
= btrfs_super_sys_array_size(super_copy
);
6813 array_ptr
= super_copy
->sys_chunk_array
;
6814 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6817 while (cur_offset
< array_size
) {
6818 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6819 len
= sizeof(*disk_key
);
6820 if (cur_offset
+ len
> array_size
)
6821 goto out_short_read
;
6823 btrfs_disk_key_to_cpu(&key
, disk_key
);
6826 sb_array_offset
+= len
;
6829 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6830 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6832 * At least one btrfs_chunk with one stripe must be
6833 * present, exact stripe count check comes afterwards
6835 len
= btrfs_chunk_item_size(1);
6836 if (cur_offset
+ len
> array_size
)
6837 goto out_short_read
;
6839 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6842 "invalid number of stripes %u in sys_array at offset %u",
6843 num_stripes
, cur_offset
);
6848 type
= btrfs_chunk_type(sb
, chunk
);
6849 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6851 "invalid chunk type %llu in sys_array at offset %u",
6857 len
= btrfs_chunk_item_size(num_stripes
);
6858 if (cur_offset
+ len
> array_size
)
6859 goto out_short_read
;
6861 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6866 "unexpected item type %u in sys_array at offset %u",
6867 (u32
)key
.type
, cur_offset
);
6872 sb_array_offset
+= len
;
6875 clear_extent_buffer_uptodate(sb
);
6876 free_extent_buffer_stale(sb
);
6880 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6882 clear_extent_buffer_uptodate(sb
);
6883 free_extent_buffer_stale(sb
);
6888 * Check if all chunks in the fs are OK for read-write degraded mount
6890 * If the @failing_dev is specified, it's accounted as missing.
6892 * Return true if all chunks meet the minimal RW mount requirements.
6893 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6895 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
6896 struct btrfs_device
*failing_dev
)
6898 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6899 struct extent_map
*em
;
6903 read_lock(&map_tree
->map_tree
.lock
);
6904 em
= lookup_extent_mapping(&map_tree
->map_tree
, 0, (u64
)-1);
6905 read_unlock(&map_tree
->map_tree
.lock
);
6906 /* No chunk at all? Return false anyway */
6912 struct map_lookup
*map
;
6917 map
= em
->map_lookup
;
6919 btrfs_get_num_tolerated_disk_barrier_failures(
6921 for (i
= 0; i
< map
->num_stripes
; i
++) {
6922 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6924 if (!dev
|| !dev
->bdev
||
6925 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
6926 dev
->last_flush_error
)
6928 else if (failing_dev
&& failing_dev
== dev
)
6931 if (missing
> max_tolerated
) {
6934 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6935 em
->start
, missing
, max_tolerated
);
6936 free_extent_map(em
);
6940 next_start
= extent_map_end(em
);
6941 free_extent_map(em
);
6943 read_lock(&map_tree
->map_tree
.lock
);
6944 em
= lookup_extent_mapping(&map_tree
->map_tree
, next_start
,
6945 (u64
)(-1) - next_start
);
6946 read_unlock(&map_tree
->map_tree
.lock
);
6952 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6954 struct btrfs_root
*root
= fs_info
->chunk_root
;
6955 struct btrfs_path
*path
;
6956 struct extent_buffer
*leaf
;
6957 struct btrfs_key key
;
6958 struct btrfs_key found_key
;
6963 path
= btrfs_alloc_path();
6967 mutex_lock(&uuid_mutex
);
6968 mutex_lock(&fs_info
->chunk_mutex
);
6971 * Read all device items, and then all the chunk items. All
6972 * device items are found before any chunk item (their object id
6973 * is smaller than the lowest possible object id for a chunk
6974 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6976 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6979 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6983 leaf
= path
->nodes
[0];
6984 slot
= path
->slots
[0];
6985 if (slot
>= btrfs_header_nritems(leaf
)) {
6986 ret
= btrfs_next_leaf(root
, path
);
6993 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6994 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6995 struct btrfs_dev_item
*dev_item
;
6996 dev_item
= btrfs_item_ptr(leaf
, slot
,
6997 struct btrfs_dev_item
);
6998 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
7002 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7003 struct btrfs_chunk
*chunk
;
7004 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7005 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
7013 * After loading chunk tree, we've got all device information,
7014 * do another round of validation checks.
7016 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7018 "super_num_devices %llu mismatch with num_devices %llu found here",
7019 btrfs_super_num_devices(fs_info
->super_copy
),
7024 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7025 fs_info
->fs_devices
->total_rw_bytes
) {
7027 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7028 btrfs_super_total_bytes(fs_info
->super_copy
),
7029 fs_info
->fs_devices
->total_rw_bytes
);
7035 mutex_unlock(&fs_info
->chunk_mutex
);
7036 mutex_unlock(&uuid_mutex
);
7038 btrfs_free_path(path
);
7042 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7044 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7045 struct btrfs_device
*device
;
7047 while (fs_devices
) {
7048 mutex_lock(&fs_devices
->device_list_mutex
);
7049 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7050 device
->fs_info
= fs_info
;
7051 mutex_unlock(&fs_devices
->device_list_mutex
);
7053 fs_devices
= fs_devices
->seed
;
7057 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7061 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7062 btrfs_dev_stat_reset(dev
, i
);
7065 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7067 struct btrfs_key key
;
7068 struct btrfs_key found_key
;
7069 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7070 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7071 struct extent_buffer
*eb
;
7074 struct btrfs_device
*device
;
7075 struct btrfs_path
*path
= NULL
;
7078 path
= btrfs_alloc_path();
7084 mutex_lock(&fs_devices
->device_list_mutex
);
7085 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7087 struct btrfs_dev_stats_item
*ptr
;
7089 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7090 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7091 key
.offset
= device
->devid
;
7092 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7094 __btrfs_reset_dev_stats(device
);
7095 device
->dev_stats_valid
= 1;
7096 btrfs_release_path(path
);
7099 slot
= path
->slots
[0];
7100 eb
= path
->nodes
[0];
7101 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7102 item_size
= btrfs_item_size_nr(eb
, slot
);
7104 ptr
= btrfs_item_ptr(eb
, slot
,
7105 struct btrfs_dev_stats_item
);
7107 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7108 if (item_size
>= (1 + i
) * sizeof(__le64
))
7109 btrfs_dev_stat_set(device
, i
,
7110 btrfs_dev_stats_value(eb
, ptr
, i
));
7112 btrfs_dev_stat_reset(device
, i
);
7115 device
->dev_stats_valid
= 1;
7116 btrfs_dev_stat_print_on_load(device
);
7117 btrfs_release_path(path
);
7119 mutex_unlock(&fs_devices
->device_list_mutex
);
7122 btrfs_free_path(path
);
7123 return ret
< 0 ? ret
: 0;
7126 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7127 struct btrfs_fs_info
*fs_info
,
7128 struct btrfs_device
*device
)
7130 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7131 struct btrfs_path
*path
;
7132 struct btrfs_key key
;
7133 struct extent_buffer
*eb
;
7134 struct btrfs_dev_stats_item
*ptr
;
7138 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7139 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7140 key
.offset
= device
->devid
;
7142 path
= btrfs_alloc_path();
7145 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7147 btrfs_warn_in_rcu(fs_info
,
7148 "error %d while searching for dev_stats item for device %s",
7149 ret
, rcu_str_deref(device
->name
));
7154 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7155 /* need to delete old one and insert a new one */
7156 ret
= btrfs_del_item(trans
, dev_root
, path
);
7158 btrfs_warn_in_rcu(fs_info
,
7159 "delete too small dev_stats item for device %s failed %d",
7160 rcu_str_deref(device
->name
), ret
);
7167 /* need to insert a new item */
7168 btrfs_release_path(path
);
7169 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7170 &key
, sizeof(*ptr
));
7172 btrfs_warn_in_rcu(fs_info
,
7173 "insert dev_stats item for device %s failed %d",
7174 rcu_str_deref(device
->name
), ret
);
7179 eb
= path
->nodes
[0];
7180 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7181 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7182 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7183 btrfs_dev_stat_read(device
, i
));
7184 btrfs_mark_buffer_dirty(eb
);
7187 btrfs_free_path(path
);
7192 * called from commit_transaction. Writes all changed device stats to disk.
7194 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7195 struct btrfs_fs_info
*fs_info
)
7197 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7198 struct btrfs_device
*device
;
7202 mutex_lock(&fs_devices
->device_list_mutex
);
7203 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7204 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7205 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7210 * There is a LOAD-LOAD control dependency between the value of
7211 * dev_stats_ccnt and updating the on-disk values which requires
7212 * reading the in-memory counters. Such control dependencies
7213 * require explicit read memory barriers.
7215 * This memory barriers pairs with smp_mb__before_atomic in
7216 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7217 * barrier implied by atomic_xchg in
7218 * btrfs_dev_stats_read_and_reset
7222 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7224 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7226 mutex_unlock(&fs_devices
->device_list_mutex
);
7231 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7233 btrfs_dev_stat_inc(dev
, index
);
7234 btrfs_dev_stat_print_on_error(dev
);
7237 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7239 if (!dev
->dev_stats_valid
)
7241 btrfs_err_rl_in_rcu(dev
->fs_info
,
7242 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7243 rcu_str_deref(dev
->name
),
7244 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7245 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7246 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7247 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7248 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7251 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7255 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7256 if (btrfs_dev_stat_read(dev
, i
) != 0)
7258 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7259 return; /* all values == 0, suppress message */
7261 btrfs_info_in_rcu(dev
->fs_info
,
7262 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7263 rcu_str_deref(dev
->name
),
7264 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7265 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7266 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7267 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7268 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7271 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7272 struct btrfs_ioctl_get_dev_stats
*stats
)
7274 struct btrfs_device
*dev
;
7275 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7278 mutex_lock(&fs_devices
->device_list_mutex
);
7279 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7280 mutex_unlock(&fs_devices
->device_list_mutex
);
7283 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7285 } else if (!dev
->dev_stats_valid
) {
7286 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7288 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7289 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7290 if (stats
->nr_items
> i
)
7292 btrfs_dev_stat_read_and_reset(dev
, i
);
7294 btrfs_dev_stat_reset(dev
, i
);
7297 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7298 if (stats
->nr_items
> i
)
7299 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7301 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7302 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7306 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7308 struct buffer_head
*bh
;
7309 struct btrfs_super_block
*disk_super
;
7315 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7318 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7321 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7323 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7324 set_buffer_dirty(bh
);
7325 sync_dirty_buffer(bh
);
7329 /* Notify udev that device has changed */
7330 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7332 /* Update ctime/mtime for device path for libblkid */
7333 update_dev_time(device_path
);
7337 * Update the size of all devices, which is used for writing out the
7340 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7342 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7343 struct btrfs_device
*curr
, *next
;
7345 if (list_empty(&fs_devices
->resized_devices
))
7348 mutex_lock(&fs_devices
->device_list_mutex
);
7349 mutex_lock(&fs_info
->chunk_mutex
);
7350 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7352 list_del_init(&curr
->resized_list
);
7353 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7355 mutex_unlock(&fs_info
->chunk_mutex
);
7356 mutex_unlock(&fs_devices
->device_list_mutex
);
7359 /* Must be invoked during the transaction commit */
7360 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7361 struct btrfs_transaction
*transaction
)
7363 struct extent_map
*em
;
7364 struct map_lookup
*map
;
7365 struct btrfs_device
*dev
;
7368 if (list_empty(&transaction
->pending_chunks
))
7371 /* In order to kick the device replace finish process */
7372 mutex_lock(&fs_info
->chunk_mutex
);
7373 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7374 map
= em
->map_lookup
;
7376 for (i
= 0; i
< map
->num_stripes
; i
++) {
7377 dev
= map
->stripes
[i
].dev
;
7378 dev
->commit_bytes_used
= dev
->bytes_used
;
7381 mutex_unlock(&fs_info
->chunk_mutex
);
7384 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7386 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7387 while (fs_devices
) {
7388 fs_devices
->fs_info
= fs_info
;
7389 fs_devices
= fs_devices
->seed
;
7393 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7395 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7396 while (fs_devices
) {
7397 fs_devices
->fs_info
= NULL
;
7398 fs_devices
= fs_devices
->seed
;