Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / dcache.c
blob7c38f39958bc371d0324197968a732d68da927d8
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
51 * dentry->d_sb->s_dentry_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dentry->d_sb->s_dentry_lru_lock
67 * dcache_hash_bucket lock
68 * s_roots lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 EXPORT_SYMBOL(rename_lock);
88 static struct kmem_cache *dentry_cache __read_mostly;
90 const struct qstr empty_name = QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name);
92 const struct qstr slash_name = QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name);
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
104 static unsigned int d_hash_shift __read_mostly;
106 static struct hlist_bl_head *dentry_hashtable __read_mostly;
108 static inline struct hlist_bl_head *d_hash(unsigned int hash)
110 return dentry_hashtable + (hash >> d_hash_shift);
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
129 static DEFINE_PER_CPU(long, nr_dentry);
130 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
146 static long get_nr_dentry(void)
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
155 static long get_nr_dentry_unused(void)
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
165 size_t *lenp, loff_t *ppos)
167 dentry_stat.nr_dentry = get_nr_dentry();
168 dentry_stat.nr_unused = get_nr_dentry_unused();
169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
171 #endif
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 #include <asm/word-at-a-time.h>
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 unsigned long a,b,mask;
193 for (;;) {
194 a = read_word_at_a_time(cs);
195 b = load_unaligned_zeropad(ct);
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
206 mask = bytemask_from_count(tcount);
207 return unlikely(!!((a ^ b) & mask));
210 #else
212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
224 #endif
226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
229 * Be careful about RCU walk racing with rename:
230 * use 'READ_ONCE' to fetch the name pointer.
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
246 return dentry_string_cmp(cs, ct, tcount);
249 struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
257 static inline struct external_name *external_name(struct dentry *dentry)
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
262 static void __d_free(struct rcu_head *head)
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266 kmem_cache_free(dentry_cache, dentry);
269 static void __d_free_external(struct rcu_head *head)
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272 kfree(external_name(dentry));
273 kmem_cache_free(dentry_cache, dentry);
276 static inline int dname_external(const struct dentry *dentry)
278 return dentry->d_name.name != dentry->d_iname;
281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
295 EXPORT_SYMBOL(take_dentry_name_snapshot);
297 void release_dentry_name_snapshot(struct name_snapshot *name)
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
306 EXPORT_SYMBOL(release_dentry_name_snapshot);
308 static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
312 unsigned flags;
314 dentry->d_inode = inode;
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
321 static inline void __d_clear_type_and_inode(struct dentry *dentry)
323 unsigned flags = READ_ONCE(dentry->d_flags);
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
327 dentry->d_inode = NULL;
330 static void dentry_free(struct dentry *dentry)
332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
353 __releases(dentry->d_inode->i_lock)
355 struct inode *inode = dentry->d_inode;
356 bool hashed = !d_unhashed(dentry);
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
360 __d_clear_type_and_inode(dentry);
361 hlist_del_init(&dentry->d_u.d_alias);
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
364 spin_unlock(&dentry->d_lock);
365 spin_unlock(&inode->i_lock);
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry *dentry)
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 static void d_lru_del(struct dentry *dentry)
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 static void d_shrink_del(struct dentry *dentry)
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
413 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
432 list_lru_isolate(lru, &dentry->d_lru);
435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
440 list_lru_isolate_move(lru, &dentry->d_lru, list);
444 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 static void dentry_lru_add(struct dentry *dentry)
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 d_lru_add(dentry);
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 static void ___d_drop(struct dentry *dentry)
473 if (!d_unhashed(dentry)) {
474 struct hlist_bl_head *b;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_root, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry)))
481 b = &dentry->d_sb->s_roots;
482 else
483 b = d_hash(dentry->d_name.hash);
485 hlist_bl_lock(b);
486 __hlist_bl_del(&dentry->d_hash);
487 hlist_bl_unlock(b);
488 /* After this call, in-progress rcu-walk path lookup will fail. */
489 write_seqcount_invalidate(&dentry->d_seq);
493 void __d_drop(struct dentry *dentry)
495 ___d_drop(dentry);
496 dentry->d_hash.pprev = NULL;
498 EXPORT_SYMBOL(__d_drop);
500 void d_drop(struct dentry *dentry)
502 spin_lock(&dentry->d_lock);
503 __d_drop(dentry);
504 spin_unlock(&dentry->d_lock);
506 EXPORT_SYMBOL(d_drop);
508 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
510 struct dentry *next;
512 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 * attached to the dentry tree
515 dentry->d_flags |= DCACHE_DENTRY_KILLED;
516 if (unlikely(list_empty(&dentry->d_child)))
517 return;
518 __list_del_entry(&dentry->d_child);
520 * Cursors can move around the list of children. While we'd been
521 * a normal list member, it didn't matter - ->d_child.next would've
522 * been updated. However, from now on it won't be and for the
523 * things like d_walk() it might end up with a nasty surprise.
524 * Normally d_walk() doesn't care about cursors moving around -
525 * ->d_lock on parent prevents that and since a cursor has no children
526 * of its own, we get through it without ever unlocking the parent.
527 * There is one exception, though - if we ascend from a child that
528 * gets killed as soon as we unlock it, the next sibling is found
529 * using the value left in its ->d_child.next. And if _that_
530 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 * before d_walk() regains parent->d_lock, we'll end up skipping
532 * everything the cursor had been moved past.
534 * Solution: make sure that the pointer left behind in ->d_child.next
535 * points to something that won't be moving around. I.e. skip the
536 * cursors.
538 while (dentry->d_child.next != &parent->d_subdirs) {
539 next = list_entry(dentry->d_child.next, struct dentry, d_child);
540 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
541 break;
542 dentry->d_child.next = next->d_child.next;
546 static void __dentry_kill(struct dentry *dentry)
548 struct dentry *parent = NULL;
549 bool can_free = true;
550 if (!IS_ROOT(dentry))
551 parent = dentry->d_parent;
554 * The dentry is now unrecoverably dead to the world.
556 lockref_mark_dead(&dentry->d_lockref);
559 * inform the fs via d_prune that this dentry is about to be
560 * unhashed and destroyed.
562 if (dentry->d_flags & DCACHE_OP_PRUNE)
563 dentry->d_op->d_prune(dentry);
565 if (dentry->d_flags & DCACHE_LRU_LIST) {
566 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
567 d_lru_del(dentry);
569 /* if it was on the hash then remove it */
570 __d_drop(dentry);
571 dentry_unlist(dentry, parent);
572 if (parent)
573 spin_unlock(&parent->d_lock);
574 if (dentry->d_inode)
575 dentry_unlink_inode(dentry);
576 else
577 spin_unlock(&dentry->d_lock);
578 this_cpu_dec(nr_dentry);
579 if (dentry->d_op && dentry->d_op->d_release)
580 dentry->d_op->d_release(dentry);
582 spin_lock(&dentry->d_lock);
583 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
584 dentry->d_flags |= DCACHE_MAY_FREE;
585 can_free = false;
587 spin_unlock(&dentry->d_lock);
588 if (likely(can_free))
589 dentry_free(dentry);
593 * Finish off a dentry we've decided to kill.
594 * dentry->d_lock must be held, returns with it unlocked.
595 * If ref is non-zero, then decrement the refcount too.
596 * Returns dentry requiring refcount drop, or NULL if we're done.
598 static struct dentry *dentry_kill(struct dentry *dentry)
599 __releases(dentry->d_lock)
601 struct inode *inode = dentry->d_inode;
602 struct dentry *parent = NULL;
604 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
605 goto failed;
607 if (!IS_ROOT(dentry)) {
608 parent = dentry->d_parent;
609 if (unlikely(!spin_trylock(&parent->d_lock))) {
610 if (inode)
611 spin_unlock(&inode->i_lock);
612 goto failed;
616 __dentry_kill(dentry);
617 return parent;
619 failed:
620 spin_unlock(&dentry->d_lock);
621 return dentry; /* try again with same dentry */
624 static inline struct dentry *lock_parent(struct dentry *dentry)
626 struct dentry *parent = dentry->d_parent;
627 if (IS_ROOT(dentry))
628 return NULL;
629 if (unlikely(dentry->d_lockref.count < 0))
630 return NULL;
631 if (likely(spin_trylock(&parent->d_lock)))
632 return parent;
633 rcu_read_lock();
634 spin_unlock(&dentry->d_lock);
635 again:
636 parent = READ_ONCE(dentry->d_parent);
637 spin_lock(&parent->d_lock);
639 * We can't blindly lock dentry until we are sure
640 * that we won't violate the locking order.
641 * Any changes of dentry->d_parent must have
642 * been done with parent->d_lock held, so
643 * spin_lock() above is enough of a barrier
644 * for checking if it's still our child.
646 if (unlikely(parent != dentry->d_parent)) {
647 spin_unlock(&parent->d_lock);
648 goto again;
650 rcu_read_unlock();
651 if (parent != dentry)
652 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
653 else
654 parent = NULL;
655 return parent;
659 * Try to do a lockless dput(), and return whether that was successful.
661 * If unsuccessful, we return false, having already taken the dentry lock.
663 * The caller needs to hold the RCU read lock, so that the dentry is
664 * guaranteed to stay around even if the refcount goes down to zero!
666 static inline bool fast_dput(struct dentry *dentry)
668 int ret;
669 unsigned int d_flags;
672 * If we have a d_op->d_delete() operation, we sould not
673 * let the dentry count go to zero, so use "put_or_lock".
675 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
676 return lockref_put_or_lock(&dentry->d_lockref);
679 * .. otherwise, we can try to just decrement the
680 * lockref optimistically.
682 ret = lockref_put_return(&dentry->d_lockref);
685 * If the lockref_put_return() failed due to the lock being held
686 * by somebody else, the fast path has failed. We will need to
687 * get the lock, and then check the count again.
689 if (unlikely(ret < 0)) {
690 spin_lock(&dentry->d_lock);
691 if (dentry->d_lockref.count > 1) {
692 dentry->d_lockref.count--;
693 spin_unlock(&dentry->d_lock);
694 return 1;
696 return 0;
700 * If we weren't the last ref, we're done.
702 if (ret)
703 return 1;
706 * Careful, careful. The reference count went down
707 * to zero, but we don't hold the dentry lock, so
708 * somebody else could get it again, and do another
709 * dput(), and we need to not race with that.
711 * However, there is a very special and common case
712 * where we don't care, because there is nothing to
713 * do: the dentry is still hashed, it does not have
714 * a 'delete' op, and it's referenced and already on
715 * the LRU list.
717 * NOTE! Since we aren't locked, these values are
718 * not "stable". However, it is sufficient that at
719 * some point after we dropped the reference the
720 * dentry was hashed and the flags had the proper
721 * value. Other dentry users may have re-gotten
722 * a reference to the dentry and change that, but
723 * our work is done - we can leave the dentry
724 * around with a zero refcount.
726 smp_rmb();
727 d_flags = READ_ONCE(dentry->d_flags);
728 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
730 /* Nothing to do? Dropping the reference was all we needed? */
731 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
732 return 1;
735 * Not the fast normal case? Get the lock. We've already decremented
736 * the refcount, but we'll need to re-check the situation after
737 * getting the lock.
739 spin_lock(&dentry->d_lock);
742 * Did somebody else grab a reference to it in the meantime, and
743 * we're no longer the last user after all? Alternatively, somebody
744 * else could have killed it and marked it dead. Either way, we
745 * don't need to do anything else.
747 if (dentry->d_lockref.count) {
748 spin_unlock(&dentry->d_lock);
749 return 1;
753 * Re-get the reference we optimistically dropped. We hold the
754 * lock, and we just tested that it was zero, so we can just
755 * set it to 1.
757 dentry->d_lockref.count = 1;
758 return 0;
763 * This is dput
765 * This is complicated by the fact that we do not want to put
766 * dentries that are no longer on any hash chain on the unused
767 * list: we'd much rather just get rid of them immediately.
769 * However, that implies that we have to traverse the dentry
770 * tree upwards to the parents which might _also_ now be
771 * scheduled for deletion (it may have been only waiting for
772 * its last child to go away).
774 * This tail recursion is done by hand as we don't want to depend
775 * on the compiler to always get this right (gcc generally doesn't).
776 * Real recursion would eat up our stack space.
780 * dput - release a dentry
781 * @dentry: dentry to release
783 * Release a dentry. This will drop the usage count and if appropriate
784 * call the dentry unlink method as well as removing it from the queues and
785 * releasing its resources. If the parent dentries were scheduled for release
786 * they too may now get deleted.
788 void dput(struct dentry *dentry)
790 if (unlikely(!dentry))
791 return;
793 repeat:
794 might_sleep();
796 rcu_read_lock();
797 if (likely(fast_dput(dentry))) {
798 rcu_read_unlock();
799 return;
802 /* Slow case: now with the dentry lock held */
803 rcu_read_unlock();
805 WARN_ON(d_in_lookup(dentry));
807 /* Unreachable? Get rid of it */
808 if (unlikely(d_unhashed(dentry)))
809 goto kill_it;
811 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
812 goto kill_it;
814 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
815 if (dentry->d_op->d_delete(dentry))
816 goto kill_it;
819 dentry_lru_add(dentry);
821 dentry->d_lockref.count--;
822 spin_unlock(&dentry->d_lock);
823 return;
825 kill_it:
826 dentry = dentry_kill(dentry);
827 if (dentry) {
828 cond_resched();
829 goto repeat;
832 EXPORT_SYMBOL(dput);
835 /* This must be called with d_lock held */
836 static inline void __dget_dlock(struct dentry *dentry)
838 dentry->d_lockref.count++;
841 static inline void __dget(struct dentry *dentry)
843 lockref_get(&dentry->d_lockref);
846 struct dentry *dget_parent(struct dentry *dentry)
848 int gotref;
849 struct dentry *ret;
852 * Do optimistic parent lookup without any
853 * locking.
855 rcu_read_lock();
856 ret = READ_ONCE(dentry->d_parent);
857 gotref = lockref_get_not_zero(&ret->d_lockref);
858 rcu_read_unlock();
859 if (likely(gotref)) {
860 if (likely(ret == READ_ONCE(dentry->d_parent)))
861 return ret;
862 dput(ret);
865 repeat:
867 * Don't need rcu_dereference because we re-check it was correct under
868 * the lock.
870 rcu_read_lock();
871 ret = dentry->d_parent;
872 spin_lock(&ret->d_lock);
873 if (unlikely(ret != dentry->d_parent)) {
874 spin_unlock(&ret->d_lock);
875 rcu_read_unlock();
876 goto repeat;
878 rcu_read_unlock();
879 BUG_ON(!ret->d_lockref.count);
880 ret->d_lockref.count++;
881 spin_unlock(&ret->d_lock);
882 return ret;
884 EXPORT_SYMBOL(dget_parent);
887 * d_find_alias - grab a hashed alias of inode
888 * @inode: inode in question
890 * If inode has a hashed alias, or is a directory and has any alias,
891 * acquire the reference to alias and return it. Otherwise return NULL.
892 * Notice that if inode is a directory there can be only one alias and
893 * it can be unhashed only if it has no children, or if it is the root
894 * of a filesystem, or if the directory was renamed and d_revalidate
895 * was the first vfs operation to notice.
897 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
898 * any other hashed alias over that one.
900 static struct dentry *__d_find_alias(struct inode *inode)
902 struct dentry *alias, *discon_alias;
904 again:
905 discon_alias = NULL;
906 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
907 spin_lock(&alias->d_lock);
908 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
909 if (IS_ROOT(alias) &&
910 (alias->d_flags & DCACHE_DISCONNECTED)) {
911 discon_alias = alias;
912 } else {
913 __dget_dlock(alias);
914 spin_unlock(&alias->d_lock);
915 return alias;
918 spin_unlock(&alias->d_lock);
920 if (discon_alias) {
921 alias = discon_alias;
922 spin_lock(&alias->d_lock);
923 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
924 __dget_dlock(alias);
925 spin_unlock(&alias->d_lock);
926 return alias;
928 spin_unlock(&alias->d_lock);
929 goto again;
931 return NULL;
934 struct dentry *d_find_alias(struct inode *inode)
936 struct dentry *de = NULL;
938 if (!hlist_empty(&inode->i_dentry)) {
939 spin_lock(&inode->i_lock);
940 de = __d_find_alias(inode);
941 spin_unlock(&inode->i_lock);
943 return de;
945 EXPORT_SYMBOL(d_find_alias);
948 * Try to kill dentries associated with this inode.
949 * WARNING: you must own a reference to inode.
951 void d_prune_aliases(struct inode *inode)
953 struct dentry *dentry;
954 restart:
955 spin_lock(&inode->i_lock);
956 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
957 spin_lock(&dentry->d_lock);
958 if (!dentry->d_lockref.count) {
959 struct dentry *parent = lock_parent(dentry);
960 if (likely(!dentry->d_lockref.count)) {
961 __dentry_kill(dentry);
962 dput(parent);
963 goto restart;
965 if (parent)
966 spin_unlock(&parent->d_lock);
968 spin_unlock(&dentry->d_lock);
970 spin_unlock(&inode->i_lock);
972 EXPORT_SYMBOL(d_prune_aliases);
974 static void shrink_dentry_list(struct list_head *list)
976 struct dentry *dentry, *parent;
978 while (!list_empty(list)) {
979 struct inode *inode;
980 dentry = list_entry(list->prev, struct dentry, d_lru);
981 spin_lock(&dentry->d_lock);
982 parent = lock_parent(dentry);
985 * The dispose list is isolated and dentries are not accounted
986 * to the LRU here, so we can simply remove it from the list
987 * here regardless of whether it is referenced or not.
989 d_shrink_del(dentry);
992 * We found an inuse dentry which was not removed from
993 * the LRU because of laziness during lookup. Do not free it.
995 if (dentry->d_lockref.count > 0) {
996 spin_unlock(&dentry->d_lock);
997 if (parent)
998 spin_unlock(&parent->d_lock);
999 continue;
1003 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1004 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1005 spin_unlock(&dentry->d_lock);
1006 if (parent)
1007 spin_unlock(&parent->d_lock);
1008 if (can_free)
1009 dentry_free(dentry);
1010 continue;
1013 inode = dentry->d_inode;
1014 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1015 d_shrink_add(dentry, list);
1016 spin_unlock(&dentry->d_lock);
1017 if (parent)
1018 spin_unlock(&parent->d_lock);
1019 continue;
1022 __dentry_kill(dentry);
1025 * We need to prune ancestors too. This is necessary to prevent
1026 * quadratic behavior of shrink_dcache_parent(), but is also
1027 * expected to be beneficial in reducing dentry cache
1028 * fragmentation.
1030 dentry = parent;
1031 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1032 parent = lock_parent(dentry);
1033 if (dentry->d_lockref.count != 1) {
1034 dentry->d_lockref.count--;
1035 spin_unlock(&dentry->d_lock);
1036 if (parent)
1037 spin_unlock(&parent->d_lock);
1038 break;
1040 inode = dentry->d_inode; /* can't be NULL */
1041 if (unlikely(!spin_trylock(&inode->i_lock))) {
1042 spin_unlock(&dentry->d_lock);
1043 if (parent)
1044 spin_unlock(&parent->d_lock);
1045 cpu_relax();
1046 continue;
1048 __dentry_kill(dentry);
1049 dentry = parent;
1054 static enum lru_status dentry_lru_isolate(struct list_head *item,
1055 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1057 struct list_head *freeable = arg;
1058 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1062 * we are inverting the lru lock/dentry->d_lock here,
1063 * so use a trylock. If we fail to get the lock, just skip
1064 * it
1066 if (!spin_trylock(&dentry->d_lock))
1067 return LRU_SKIP;
1070 * Referenced dentries are still in use. If they have active
1071 * counts, just remove them from the LRU. Otherwise give them
1072 * another pass through the LRU.
1074 if (dentry->d_lockref.count) {
1075 d_lru_isolate(lru, dentry);
1076 spin_unlock(&dentry->d_lock);
1077 return LRU_REMOVED;
1080 if (dentry->d_flags & DCACHE_REFERENCED) {
1081 dentry->d_flags &= ~DCACHE_REFERENCED;
1082 spin_unlock(&dentry->d_lock);
1085 * The list move itself will be made by the common LRU code. At
1086 * this point, we've dropped the dentry->d_lock but keep the
1087 * lru lock. This is safe to do, since every list movement is
1088 * protected by the lru lock even if both locks are held.
1090 * This is guaranteed by the fact that all LRU management
1091 * functions are intermediated by the LRU API calls like
1092 * list_lru_add and list_lru_del. List movement in this file
1093 * only ever occur through this functions or through callbacks
1094 * like this one, that are called from the LRU API.
1096 * The only exceptions to this are functions like
1097 * shrink_dentry_list, and code that first checks for the
1098 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1099 * operating only with stack provided lists after they are
1100 * properly isolated from the main list. It is thus, always a
1101 * local access.
1103 return LRU_ROTATE;
1106 d_lru_shrink_move(lru, dentry, freeable);
1107 spin_unlock(&dentry->d_lock);
1109 return LRU_REMOVED;
1113 * prune_dcache_sb - shrink the dcache
1114 * @sb: superblock
1115 * @sc: shrink control, passed to list_lru_shrink_walk()
1117 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1118 * is done when we need more memory and called from the superblock shrinker
1119 * function.
1121 * This function may fail to free any resources if all the dentries are in
1122 * use.
1124 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1126 LIST_HEAD(dispose);
1127 long freed;
1129 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1130 dentry_lru_isolate, &dispose);
1131 shrink_dentry_list(&dispose);
1132 return freed;
1135 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1136 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1138 struct list_head *freeable = arg;
1139 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1142 * we are inverting the lru lock/dentry->d_lock here,
1143 * so use a trylock. If we fail to get the lock, just skip
1144 * it
1146 if (!spin_trylock(&dentry->d_lock))
1147 return LRU_SKIP;
1149 d_lru_shrink_move(lru, dentry, freeable);
1150 spin_unlock(&dentry->d_lock);
1152 return LRU_REMOVED;
1157 * shrink_dcache_sb - shrink dcache for a superblock
1158 * @sb: superblock
1160 * Shrink the dcache for the specified super block. This is used to free
1161 * the dcache before unmounting a file system.
1163 void shrink_dcache_sb(struct super_block *sb)
1165 long freed;
1167 do {
1168 LIST_HEAD(dispose);
1170 freed = list_lru_walk(&sb->s_dentry_lru,
1171 dentry_lru_isolate_shrink, &dispose, 1024);
1173 this_cpu_sub(nr_dentry_unused, freed);
1174 shrink_dentry_list(&dispose);
1175 cond_resched();
1176 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1178 EXPORT_SYMBOL(shrink_dcache_sb);
1181 * enum d_walk_ret - action to talke during tree walk
1182 * @D_WALK_CONTINUE: contrinue walk
1183 * @D_WALK_QUIT: quit walk
1184 * @D_WALK_NORETRY: quit when retry is needed
1185 * @D_WALK_SKIP: skip this dentry and its children
1187 enum d_walk_ret {
1188 D_WALK_CONTINUE,
1189 D_WALK_QUIT,
1190 D_WALK_NORETRY,
1191 D_WALK_SKIP,
1195 * d_walk - walk the dentry tree
1196 * @parent: start of walk
1197 * @data: data passed to @enter() and @finish()
1198 * @enter: callback when first entering the dentry
1199 * @finish: callback when successfully finished the walk
1201 * The @enter() and @finish() callbacks are called with d_lock held.
1203 static void d_walk(struct dentry *parent, void *data,
1204 enum d_walk_ret (*enter)(void *, struct dentry *),
1205 void (*finish)(void *))
1207 struct dentry *this_parent;
1208 struct list_head *next;
1209 unsigned seq = 0;
1210 enum d_walk_ret ret;
1211 bool retry = true;
1213 again:
1214 read_seqbegin_or_lock(&rename_lock, &seq);
1215 this_parent = parent;
1216 spin_lock(&this_parent->d_lock);
1218 ret = enter(data, this_parent);
1219 switch (ret) {
1220 case D_WALK_CONTINUE:
1221 break;
1222 case D_WALK_QUIT:
1223 case D_WALK_SKIP:
1224 goto out_unlock;
1225 case D_WALK_NORETRY:
1226 retry = false;
1227 break;
1229 repeat:
1230 next = this_parent->d_subdirs.next;
1231 resume:
1232 while (next != &this_parent->d_subdirs) {
1233 struct list_head *tmp = next;
1234 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1235 next = tmp->next;
1237 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1238 continue;
1240 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1242 ret = enter(data, dentry);
1243 switch (ret) {
1244 case D_WALK_CONTINUE:
1245 break;
1246 case D_WALK_QUIT:
1247 spin_unlock(&dentry->d_lock);
1248 goto out_unlock;
1249 case D_WALK_NORETRY:
1250 retry = false;
1251 break;
1252 case D_WALK_SKIP:
1253 spin_unlock(&dentry->d_lock);
1254 continue;
1257 if (!list_empty(&dentry->d_subdirs)) {
1258 spin_unlock(&this_parent->d_lock);
1259 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1260 this_parent = dentry;
1261 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1262 goto repeat;
1264 spin_unlock(&dentry->d_lock);
1267 * All done at this level ... ascend and resume the search.
1269 rcu_read_lock();
1270 ascend:
1271 if (this_parent != parent) {
1272 struct dentry *child = this_parent;
1273 this_parent = child->d_parent;
1275 spin_unlock(&child->d_lock);
1276 spin_lock(&this_parent->d_lock);
1278 /* might go back up the wrong parent if we have had a rename. */
1279 if (need_seqretry(&rename_lock, seq))
1280 goto rename_retry;
1281 /* go into the first sibling still alive */
1282 do {
1283 next = child->d_child.next;
1284 if (next == &this_parent->d_subdirs)
1285 goto ascend;
1286 child = list_entry(next, struct dentry, d_child);
1287 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1288 rcu_read_unlock();
1289 goto resume;
1291 if (need_seqretry(&rename_lock, seq))
1292 goto rename_retry;
1293 rcu_read_unlock();
1294 if (finish)
1295 finish(data);
1297 out_unlock:
1298 spin_unlock(&this_parent->d_lock);
1299 done_seqretry(&rename_lock, seq);
1300 return;
1302 rename_retry:
1303 spin_unlock(&this_parent->d_lock);
1304 rcu_read_unlock();
1305 BUG_ON(seq & 1);
1306 if (!retry)
1307 return;
1308 seq = 1;
1309 goto again;
1312 struct check_mount {
1313 struct vfsmount *mnt;
1314 unsigned int mounted;
1317 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1319 struct check_mount *info = data;
1320 struct path path = { .mnt = info->mnt, .dentry = dentry };
1322 if (likely(!d_mountpoint(dentry)))
1323 return D_WALK_CONTINUE;
1324 if (__path_is_mountpoint(&path)) {
1325 info->mounted = 1;
1326 return D_WALK_QUIT;
1328 return D_WALK_CONTINUE;
1332 * path_has_submounts - check for mounts over a dentry in the
1333 * current namespace.
1334 * @parent: path to check.
1336 * Return true if the parent or its subdirectories contain
1337 * a mount point in the current namespace.
1339 int path_has_submounts(const struct path *parent)
1341 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1343 read_seqlock_excl(&mount_lock);
1344 d_walk(parent->dentry, &data, path_check_mount, NULL);
1345 read_sequnlock_excl(&mount_lock);
1347 return data.mounted;
1349 EXPORT_SYMBOL(path_has_submounts);
1352 * Called by mount code to set a mountpoint and check if the mountpoint is
1353 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1354 * subtree can become unreachable).
1356 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1357 * this reason take rename_lock and d_lock on dentry and ancestors.
1359 int d_set_mounted(struct dentry *dentry)
1361 struct dentry *p;
1362 int ret = -ENOENT;
1363 write_seqlock(&rename_lock);
1364 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1365 /* Need exclusion wrt. d_invalidate() */
1366 spin_lock(&p->d_lock);
1367 if (unlikely(d_unhashed(p))) {
1368 spin_unlock(&p->d_lock);
1369 goto out;
1371 spin_unlock(&p->d_lock);
1373 spin_lock(&dentry->d_lock);
1374 if (!d_unlinked(dentry)) {
1375 ret = -EBUSY;
1376 if (!d_mountpoint(dentry)) {
1377 dentry->d_flags |= DCACHE_MOUNTED;
1378 ret = 0;
1381 spin_unlock(&dentry->d_lock);
1382 out:
1383 write_sequnlock(&rename_lock);
1384 return ret;
1388 * Search the dentry child list of the specified parent,
1389 * and move any unused dentries to the end of the unused
1390 * list for prune_dcache(). We descend to the next level
1391 * whenever the d_subdirs list is non-empty and continue
1392 * searching.
1394 * It returns zero iff there are no unused children,
1395 * otherwise it returns the number of children moved to
1396 * the end of the unused list. This may not be the total
1397 * number of unused children, because select_parent can
1398 * drop the lock and return early due to latency
1399 * constraints.
1402 struct select_data {
1403 struct dentry *start;
1404 struct list_head dispose;
1405 int found;
1408 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1410 struct select_data *data = _data;
1411 enum d_walk_ret ret = D_WALK_CONTINUE;
1413 if (data->start == dentry)
1414 goto out;
1416 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1417 data->found++;
1418 } else {
1419 if (dentry->d_flags & DCACHE_LRU_LIST)
1420 d_lru_del(dentry);
1421 if (!dentry->d_lockref.count) {
1422 d_shrink_add(dentry, &data->dispose);
1423 data->found++;
1427 * We can return to the caller if we have found some (this
1428 * ensures forward progress). We'll be coming back to find
1429 * the rest.
1431 if (!list_empty(&data->dispose))
1432 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1433 out:
1434 return ret;
1438 * shrink_dcache_parent - prune dcache
1439 * @parent: parent of entries to prune
1441 * Prune the dcache to remove unused children of the parent dentry.
1443 void shrink_dcache_parent(struct dentry *parent)
1445 for (;;) {
1446 struct select_data data;
1448 INIT_LIST_HEAD(&data.dispose);
1449 data.start = parent;
1450 data.found = 0;
1452 d_walk(parent, &data, select_collect, NULL);
1453 if (!data.found)
1454 break;
1456 shrink_dentry_list(&data.dispose);
1457 cond_resched();
1460 EXPORT_SYMBOL(shrink_dcache_parent);
1462 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1464 /* it has busy descendents; complain about those instead */
1465 if (!list_empty(&dentry->d_subdirs))
1466 return D_WALK_CONTINUE;
1468 /* root with refcount 1 is fine */
1469 if (dentry == _data && dentry->d_lockref.count == 1)
1470 return D_WALK_CONTINUE;
1472 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1473 " still in use (%d) [unmount of %s %s]\n",
1474 dentry,
1475 dentry->d_inode ?
1476 dentry->d_inode->i_ino : 0UL,
1477 dentry,
1478 dentry->d_lockref.count,
1479 dentry->d_sb->s_type->name,
1480 dentry->d_sb->s_id);
1481 WARN_ON(1);
1482 return D_WALK_CONTINUE;
1485 static void do_one_tree(struct dentry *dentry)
1487 shrink_dcache_parent(dentry);
1488 d_walk(dentry, dentry, umount_check, NULL);
1489 d_drop(dentry);
1490 dput(dentry);
1494 * destroy the dentries attached to a superblock on unmounting
1496 void shrink_dcache_for_umount(struct super_block *sb)
1498 struct dentry *dentry;
1500 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1502 dentry = sb->s_root;
1503 sb->s_root = NULL;
1504 do_one_tree(dentry);
1506 while (!hlist_bl_empty(&sb->s_roots)) {
1507 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1508 do_one_tree(dentry);
1512 struct detach_data {
1513 struct select_data select;
1514 struct dentry *mountpoint;
1516 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1518 struct detach_data *data = _data;
1520 if (d_mountpoint(dentry)) {
1521 __dget_dlock(dentry);
1522 data->mountpoint = dentry;
1523 return D_WALK_QUIT;
1526 return select_collect(&data->select, dentry);
1529 static void check_and_drop(void *_data)
1531 struct detach_data *data = _data;
1533 if (!data->mountpoint && list_empty(&data->select.dispose))
1534 __d_drop(data->select.start);
1538 * d_invalidate - detach submounts, prune dcache, and drop
1539 * @dentry: dentry to invalidate (aka detach, prune and drop)
1541 * no dcache lock.
1543 * The final d_drop is done as an atomic operation relative to
1544 * rename_lock ensuring there are no races with d_set_mounted. This
1545 * ensures there are no unhashed dentries on the path to a mountpoint.
1547 void d_invalidate(struct dentry *dentry)
1550 * If it's already been dropped, return OK.
1552 spin_lock(&dentry->d_lock);
1553 if (d_unhashed(dentry)) {
1554 spin_unlock(&dentry->d_lock);
1555 return;
1557 spin_unlock(&dentry->d_lock);
1559 /* Negative dentries can be dropped without further checks */
1560 if (!dentry->d_inode) {
1561 d_drop(dentry);
1562 return;
1565 for (;;) {
1566 struct detach_data data;
1568 data.mountpoint = NULL;
1569 INIT_LIST_HEAD(&data.select.dispose);
1570 data.select.start = dentry;
1571 data.select.found = 0;
1573 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1575 if (!list_empty(&data.select.dispose))
1576 shrink_dentry_list(&data.select.dispose);
1577 else if (!data.mountpoint)
1578 return;
1580 if (data.mountpoint) {
1581 detach_mounts(data.mountpoint);
1582 dput(data.mountpoint);
1584 cond_resched();
1587 EXPORT_SYMBOL(d_invalidate);
1590 * __d_alloc - allocate a dcache entry
1591 * @sb: filesystem it will belong to
1592 * @name: qstr of the name
1594 * Allocates a dentry. It returns %NULL if there is insufficient memory
1595 * available. On a success the dentry is returned. The name passed in is
1596 * copied and the copy passed in may be reused after this call.
1599 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1601 struct dentry *dentry;
1602 char *dname;
1603 int err;
1605 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1606 if (!dentry)
1607 return NULL;
1610 * We guarantee that the inline name is always NUL-terminated.
1611 * This way the memcpy() done by the name switching in rename
1612 * will still always have a NUL at the end, even if we might
1613 * be overwriting an internal NUL character
1615 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1616 if (unlikely(!name)) {
1617 name = &slash_name;
1618 dname = dentry->d_iname;
1619 } else if (name->len > DNAME_INLINE_LEN-1) {
1620 size_t size = offsetof(struct external_name, name[1]);
1621 struct external_name *p = kmalloc(size + name->len,
1622 GFP_KERNEL_ACCOUNT);
1623 if (!p) {
1624 kmem_cache_free(dentry_cache, dentry);
1625 return NULL;
1627 atomic_set(&p->u.count, 1);
1628 dname = p->name;
1629 } else {
1630 dname = dentry->d_iname;
1633 dentry->d_name.len = name->len;
1634 dentry->d_name.hash = name->hash;
1635 memcpy(dname, name->name, name->len);
1636 dname[name->len] = 0;
1638 /* Make sure we always see the terminating NUL character */
1639 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1641 dentry->d_lockref.count = 1;
1642 dentry->d_flags = 0;
1643 spin_lock_init(&dentry->d_lock);
1644 seqcount_init(&dentry->d_seq);
1645 dentry->d_inode = NULL;
1646 dentry->d_parent = dentry;
1647 dentry->d_sb = sb;
1648 dentry->d_op = NULL;
1649 dentry->d_fsdata = NULL;
1650 INIT_HLIST_BL_NODE(&dentry->d_hash);
1651 INIT_LIST_HEAD(&dentry->d_lru);
1652 INIT_LIST_HEAD(&dentry->d_subdirs);
1653 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1654 INIT_LIST_HEAD(&dentry->d_child);
1655 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1657 if (dentry->d_op && dentry->d_op->d_init) {
1658 err = dentry->d_op->d_init(dentry);
1659 if (err) {
1660 if (dname_external(dentry))
1661 kfree(external_name(dentry));
1662 kmem_cache_free(dentry_cache, dentry);
1663 return NULL;
1667 this_cpu_inc(nr_dentry);
1669 return dentry;
1673 * d_alloc - allocate a dcache entry
1674 * @parent: parent of entry to allocate
1675 * @name: qstr of the name
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1681 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1683 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1684 if (!dentry)
1685 return NULL;
1686 dentry->d_flags |= DCACHE_RCUACCESS;
1687 spin_lock(&parent->d_lock);
1689 * don't need child lock because it is not subject
1690 * to concurrency here
1692 __dget_dlock(parent);
1693 dentry->d_parent = parent;
1694 list_add(&dentry->d_child, &parent->d_subdirs);
1695 spin_unlock(&parent->d_lock);
1697 return dentry;
1699 EXPORT_SYMBOL(d_alloc);
1701 struct dentry *d_alloc_anon(struct super_block *sb)
1703 return __d_alloc(sb, NULL);
1705 EXPORT_SYMBOL(d_alloc_anon);
1707 struct dentry *d_alloc_cursor(struct dentry * parent)
1709 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1710 if (dentry) {
1711 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1712 dentry->d_parent = dget(parent);
1714 return dentry;
1718 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1719 * @sb: the superblock
1720 * @name: qstr of the name
1722 * For a filesystem that just pins its dentries in memory and never
1723 * performs lookups at all, return an unhashed IS_ROOT dentry.
1725 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1727 return __d_alloc(sb, name);
1729 EXPORT_SYMBOL(d_alloc_pseudo);
1731 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1733 struct qstr q;
1735 q.name = name;
1736 q.hash_len = hashlen_string(parent, name);
1737 return d_alloc(parent, &q);
1739 EXPORT_SYMBOL(d_alloc_name);
1741 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1743 WARN_ON_ONCE(dentry->d_op);
1744 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1745 DCACHE_OP_COMPARE |
1746 DCACHE_OP_REVALIDATE |
1747 DCACHE_OP_WEAK_REVALIDATE |
1748 DCACHE_OP_DELETE |
1749 DCACHE_OP_REAL));
1750 dentry->d_op = op;
1751 if (!op)
1752 return;
1753 if (op->d_hash)
1754 dentry->d_flags |= DCACHE_OP_HASH;
1755 if (op->d_compare)
1756 dentry->d_flags |= DCACHE_OP_COMPARE;
1757 if (op->d_revalidate)
1758 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1759 if (op->d_weak_revalidate)
1760 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1761 if (op->d_delete)
1762 dentry->d_flags |= DCACHE_OP_DELETE;
1763 if (op->d_prune)
1764 dentry->d_flags |= DCACHE_OP_PRUNE;
1765 if (op->d_real)
1766 dentry->d_flags |= DCACHE_OP_REAL;
1769 EXPORT_SYMBOL(d_set_d_op);
1773 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1774 * @dentry - The dentry to mark
1776 * Mark a dentry as falling through to the lower layer (as set with
1777 * d_pin_lower()). This flag may be recorded on the medium.
1779 void d_set_fallthru(struct dentry *dentry)
1781 spin_lock(&dentry->d_lock);
1782 dentry->d_flags |= DCACHE_FALLTHRU;
1783 spin_unlock(&dentry->d_lock);
1785 EXPORT_SYMBOL(d_set_fallthru);
1787 static unsigned d_flags_for_inode(struct inode *inode)
1789 unsigned add_flags = DCACHE_REGULAR_TYPE;
1791 if (!inode)
1792 return DCACHE_MISS_TYPE;
1794 if (S_ISDIR(inode->i_mode)) {
1795 add_flags = DCACHE_DIRECTORY_TYPE;
1796 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1797 if (unlikely(!inode->i_op->lookup))
1798 add_flags = DCACHE_AUTODIR_TYPE;
1799 else
1800 inode->i_opflags |= IOP_LOOKUP;
1802 goto type_determined;
1805 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1806 if (unlikely(inode->i_op->get_link)) {
1807 add_flags = DCACHE_SYMLINK_TYPE;
1808 goto type_determined;
1810 inode->i_opflags |= IOP_NOFOLLOW;
1813 if (unlikely(!S_ISREG(inode->i_mode)))
1814 add_flags = DCACHE_SPECIAL_TYPE;
1816 type_determined:
1817 if (unlikely(IS_AUTOMOUNT(inode)))
1818 add_flags |= DCACHE_NEED_AUTOMOUNT;
1819 return add_flags;
1822 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1824 unsigned add_flags = d_flags_for_inode(inode);
1825 WARN_ON(d_in_lookup(dentry));
1827 spin_lock(&dentry->d_lock);
1828 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1829 raw_write_seqcount_begin(&dentry->d_seq);
1830 __d_set_inode_and_type(dentry, inode, add_flags);
1831 raw_write_seqcount_end(&dentry->d_seq);
1832 fsnotify_update_flags(dentry);
1833 spin_unlock(&dentry->d_lock);
1837 * d_instantiate - fill in inode information for a dentry
1838 * @entry: dentry to complete
1839 * @inode: inode to attach to this dentry
1841 * Fill in inode information in the entry.
1843 * This turns negative dentries into productive full members
1844 * of society.
1846 * NOTE! This assumes that the inode count has been incremented
1847 * (or otherwise set) by the caller to indicate that it is now
1848 * in use by the dcache.
1851 void d_instantiate(struct dentry *entry, struct inode * inode)
1853 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1854 if (inode) {
1855 security_d_instantiate(entry, inode);
1856 spin_lock(&inode->i_lock);
1857 __d_instantiate(entry, inode);
1858 spin_unlock(&inode->i_lock);
1861 EXPORT_SYMBOL(d_instantiate);
1864 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1865 * @entry: dentry to complete
1866 * @inode: inode to attach to this dentry
1868 * Fill in inode information in the entry. If a directory alias is found, then
1869 * return an error (and drop inode). Together with d_materialise_unique() this
1870 * guarantees that a directory inode may never have more than one alias.
1872 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1874 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1876 security_d_instantiate(entry, inode);
1877 spin_lock(&inode->i_lock);
1878 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1879 spin_unlock(&inode->i_lock);
1880 iput(inode);
1881 return -EBUSY;
1883 __d_instantiate(entry, inode);
1884 spin_unlock(&inode->i_lock);
1886 return 0;
1888 EXPORT_SYMBOL(d_instantiate_no_diralias);
1890 struct dentry *d_make_root(struct inode *root_inode)
1892 struct dentry *res = NULL;
1894 if (root_inode) {
1895 res = d_alloc_anon(root_inode->i_sb);
1896 if (res)
1897 d_instantiate(res, root_inode);
1898 else
1899 iput(root_inode);
1901 return res;
1903 EXPORT_SYMBOL(d_make_root);
1905 static struct dentry * __d_find_any_alias(struct inode *inode)
1907 struct dentry *alias;
1909 if (hlist_empty(&inode->i_dentry))
1910 return NULL;
1911 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1912 __dget(alias);
1913 return alias;
1917 * d_find_any_alias - find any alias for a given inode
1918 * @inode: inode to find an alias for
1920 * If any aliases exist for the given inode, take and return a
1921 * reference for one of them. If no aliases exist, return %NULL.
1923 struct dentry *d_find_any_alias(struct inode *inode)
1925 struct dentry *de;
1927 spin_lock(&inode->i_lock);
1928 de = __d_find_any_alias(inode);
1929 spin_unlock(&inode->i_lock);
1930 return de;
1932 EXPORT_SYMBOL(d_find_any_alias);
1934 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1935 struct inode *inode,
1936 bool disconnected)
1938 struct dentry *res;
1939 unsigned add_flags;
1941 security_d_instantiate(dentry, inode);
1942 spin_lock(&inode->i_lock);
1943 res = __d_find_any_alias(inode);
1944 if (res) {
1945 spin_unlock(&inode->i_lock);
1946 dput(dentry);
1947 goto out_iput;
1950 /* attach a disconnected dentry */
1951 add_flags = d_flags_for_inode(inode);
1953 if (disconnected)
1954 add_flags |= DCACHE_DISCONNECTED;
1956 spin_lock(&dentry->d_lock);
1957 __d_set_inode_and_type(dentry, inode, add_flags);
1958 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1959 if (!disconnected) {
1960 hlist_bl_lock(&dentry->d_sb->s_roots);
1961 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1962 hlist_bl_unlock(&dentry->d_sb->s_roots);
1964 spin_unlock(&dentry->d_lock);
1965 spin_unlock(&inode->i_lock);
1967 return dentry;
1969 out_iput:
1970 iput(inode);
1971 return res;
1974 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1976 return __d_instantiate_anon(dentry, inode, true);
1978 EXPORT_SYMBOL(d_instantiate_anon);
1980 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1982 struct dentry *tmp;
1983 struct dentry *res;
1985 if (!inode)
1986 return ERR_PTR(-ESTALE);
1987 if (IS_ERR(inode))
1988 return ERR_CAST(inode);
1990 res = d_find_any_alias(inode);
1991 if (res)
1992 goto out_iput;
1994 tmp = d_alloc_anon(inode->i_sb);
1995 if (!tmp) {
1996 res = ERR_PTR(-ENOMEM);
1997 goto out_iput;
2000 return __d_instantiate_anon(tmp, inode, disconnected);
2002 out_iput:
2003 iput(inode);
2004 return res;
2008 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2009 * @inode: inode to allocate the dentry for
2011 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2012 * similar open by handle operations. The returned dentry may be anonymous,
2013 * or may have a full name (if the inode was already in the cache).
2015 * When called on a directory inode, we must ensure that the inode only ever
2016 * has one dentry. If a dentry is found, that is returned instead of
2017 * allocating a new one.
2019 * On successful return, the reference to the inode has been transferred
2020 * to the dentry. In case of an error the reference on the inode is released.
2021 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2022 * be passed in and the error will be propagated to the return value,
2023 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2025 struct dentry *d_obtain_alias(struct inode *inode)
2027 return __d_obtain_alias(inode, true);
2029 EXPORT_SYMBOL(d_obtain_alias);
2032 * d_obtain_root - find or allocate a dentry for a given inode
2033 * @inode: inode to allocate the dentry for
2035 * Obtain an IS_ROOT dentry for the root of a filesystem.
2037 * We must ensure that directory inodes only ever have one dentry. If a
2038 * dentry is found, that is returned instead of allocating a new one.
2040 * On successful return, the reference to the inode has been transferred
2041 * to the dentry. In case of an error the reference on the inode is
2042 * released. A %NULL or IS_ERR inode may be passed in and will be the
2043 * error will be propagate to the return value, with a %NULL @inode
2044 * replaced by ERR_PTR(-ESTALE).
2046 struct dentry *d_obtain_root(struct inode *inode)
2048 return __d_obtain_alias(inode, false);
2050 EXPORT_SYMBOL(d_obtain_root);
2053 * d_add_ci - lookup or allocate new dentry with case-exact name
2054 * @inode: the inode case-insensitive lookup has found
2055 * @dentry: the negative dentry that was passed to the parent's lookup func
2056 * @name: the case-exact name to be associated with the returned dentry
2058 * This is to avoid filling the dcache with case-insensitive names to the
2059 * same inode, only the actual correct case is stored in the dcache for
2060 * case-insensitive filesystems.
2062 * For a case-insensitive lookup match and if the the case-exact dentry
2063 * already exists in in the dcache, use it and return it.
2065 * If no entry exists with the exact case name, allocate new dentry with
2066 * the exact case, and return the spliced entry.
2068 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2069 struct qstr *name)
2071 struct dentry *found, *res;
2074 * First check if a dentry matching the name already exists,
2075 * if not go ahead and create it now.
2077 found = d_hash_and_lookup(dentry->d_parent, name);
2078 if (found) {
2079 iput(inode);
2080 return found;
2082 if (d_in_lookup(dentry)) {
2083 found = d_alloc_parallel(dentry->d_parent, name,
2084 dentry->d_wait);
2085 if (IS_ERR(found) || !d_in_lookup(found)) {
2086 iput(inode);
2087 return found;
2089 } else {
2090 found = d_alloc(dentry->d_parent, name);
2091 if (!found) {
2092 iput(inode);
2093 return ERR_PTR(-ENOMEM);
2096 res = d_splice_alias(inode, found);
2097 if (res) {
2098 dput(found);
2099 return res;
2101 return found;
2103 EXPORT_SYMBOL(d_add_ci);
2106 static inline bool d_same_name(const struct dentry *dentry,
2107 const struct dentry *parent,
2108 const struct qstr *name)
2110 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2111 if (dentry->d_name.len != name->len)
2112 return false;
2113 return dentry_cmp(dentry, name->name, name->len) == 0;
2115 return parent->d_op->d_compare(dentry,
2116 dentry->d_name.len, dentry->d_name.name,
2117 name) == 0;
2121 * __d_lookup_rcu - search for a dentry (racy, store-free)
2122 * @parent: parent dentry
2123 * @name: qstr of name we wish to find
2124 * @seqp: returns d_seq value at the point where the dentry was found
2125 * Returns: dentry, or NULL
2127 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2128 * resolution (store-free path walking) design described in
2129 * Documentation/filesystems/path-lookup.txt.
2131 * This is not to be used outside core vfs.
2133 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2134 * held, and rcu_read_lock held. The returned dentry must not be stored into
2135 * without taking d_lock and checking d_seq sequence count against @seq
2136 * returned here.
2138 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2139 * function.
2141 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2142 * the returned dentry, so long as its parent's seqlock is checked after the
2143 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2144 * is formed, giving integrity down the path walk.
2146 * NOTE! The caller *has* to check the resulting dentry against the sequence
2147 * number we've returned before using any of the resulting dentry state!
2149 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2150 const struct qstr *name,
2151 unsigned *seqp)
2153 u64 hashlen = name->hash_len;
2154 const unsigned char *str = name->name;
2155 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2156 struct hlist_bl_node *node;
2157 struct dentry *dentry;
2160 * Note: There is significant duplication with __d_lookup_rcu which is
2161 * required to prevent single threaded performance regressions
2162 * especially on architectures where smp_rmb (in seqcounts) are costly.
2163 * Keep the two functions in sync.
2167 * The hash list is protected using RCU.
2169 * Carefully use d_seq when comparing a candidate dentry, to avoid
2170 * races with d_move().
2172 * It is possible that concurrent renames can mess up our list
2173 * walk here and result in missing our dentry, resulting in the
2174 * false-negative result. d_lookup() protects against concurrent
2175 * renames using rename_lock seqlock.
2177 * See Documentation/filesystems/path-lookup.txt for more details.
2179 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2180 unsigned seq;
2182 seqretry:
2184 * The dentry sequence count protects us from concurrent
2185 * renames, and thus protects parent and name fields.
2187 * The caller must perform a seqcount check in order
2188 * to do anything useful with the returned dentry.
2190 * NOTE! We do a "raw" seqcount_begin here. That means that
2191 * we don't wait for the sequence count to stabilize if it
2192 * is in the middle of a sequence change. If we do the slow
2193 * dentry compare, we will do seqretries until it is stable,
2194 * and if we end up with a successful lookup, we actually
2195 * want to exit RCU lookup anyway.
2197 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2198 * we are still guaranteed NUL-termination of ->d_name.name.
2200 seq = raw_seqcount_begin(&dentry->d_seq);
2201 if (dentry->d_parent != parent)
2202 continue;
2203 if (d_unhashed(dentry))
2204 continue;
2206 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2207 int tlen;
2208 const char *tname;
2209 if (dentry->d_name.hash != hashlen_hash(hashlen))
2210 continue;
2211 tlen = dentry->d_name.len;
2212 tname = dentry->d_name.name;
2213 /* we want a consistent (name,len) pair */
2214 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2215 cpu_relax();
2216 goto seqretry;
2218 if (parent->d_op->d_compare(dentry,
2219 tlen, tname, name) != 0)
2220 continue;
2221 } else {
2222 if (dentry->d_name.hash_len != hashlen)
2223 continue;
2224 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2225 continue;
2227 *seqp = seq;
2228 return dentry;
2230 return NULL;
2234 * d_lookup - search for a dentry
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2239 * d_lookup searches the children of the parent dentry for the name in
2240 * question. If the dentry is found its reference count is incremented and the
2241 * dentry is returned. The caller must use dput to free the entry when it has
2242 * finished using it. %NULL is returned if the dentry does not exist.
2244 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2246 struct dentry *dentry;
2247 unsigned seq;
2249 do {
2250 seq = read_seqbegin(&rename_lock);
2251 dentry = __d_lookup(parent, name);
2252 if (dentry)
2253 break;
2254 } while (read_seqretry(&rename_lock, seq));
2255 return dentry;
2257 EXPORT_SYMBOL(d_lookup);
2260 * __d_lookup - search for a dentry (racy)
2261 * @parent: parent dentry
2262 * @name: qstr of name we wish to find
2263 * Returns: dentry, or NULL
2265 * __d_lookup is like d_lookup, however it may (rarely) return a
2266 * false-negative result due to unrelated rename activity.
2268 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2269 * however it must be used carefully, eg. with a following d_lookup in
2270 * the case of failure.
2272 * __d_lookup callers must be commented.
2274 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2276 unsigned int hash = name->hash;
2277 struct hlist_bl_head *b = d_hash(hash);
2278 struct hlist_bl_node *node;
2279 struct dentry *found = NULL;
2280 struct dentry *dentry;
2283 * Note: There is significant duplication with __d_lookup_rcu which is
2284 * required to prevent single threaded performance regressions
2285 * especially on architectures where smp_rmb (in seqcounts) are costly.
2286 * Keep the two functions in sync.
2290 * The hash list is protected using RCU.
2292 * Take d_lock when comparing a candidate dentry, to avoid races
2293 * with d_move().
2295 * It is possible that concurrent renames can mess up our list
2296 * walk here and result in missing our dentry, resulting in the
2297 * false-negative result. d_lookup() protects against concurrent
2298 * renames using rename_lock seqlock.
2300 * See Documentation/filesystems/path-lookup.txt for more details.
2302 rcu_read_lock();
2304 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2306 if (dentry->d_name.hash != hash)
2307 continue;
2309 spin_lock(&dentry->d_lock);
2310 if (dentry->d_parent != parent)
2311 goto next;
2312 if (d_unhashed(dentry))
2313 goto next;
2315 if (!d_same_name(dentry, parent, name))
2316 goto next;
2318 dentry->d_lockref.count++;
2319 found = dentry;
2320 spin_unlock(&dentry->d_lock);
2321 break;
2322 next:
2323 spin_unlock(&dentry->d_lock);
2325 rcu_read_unlock();
2327 return found;
2331 * d_hash_and_lookup - hash the qstr then search for a dentry
2332 * @dir: Directory to search in
2333 * @name: qstr of name we wish to find
2335 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2337 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2340 * Check for a fs-specific hash function. Note that we must
2341 * calculate the standard hash first, as the d_op->d_hash()
2342 * routine may choose to leave the hash value unchanged.
2344 name->hash = full_name_hash(dir, name->name, name->len);
2345 if (dir->d_flags & DCACHE_OP_HASH) {
2346 int err = dir->d_op->d_hash(dir, name);
2347 if (unlikely(err < 0))
2348 return ERR_PTR(err);
2350 return d_lookup(dir, name);
2352 EXPORT_SYMBOL(d_hash_and_lookup);
2355 * When a file is deleted, we have two options:
2356 * - turn this dentry into a negative dentry
2357 * - unhash this dentry and free it.
2359 * Usually, we want to just turn this into
2360 * a negative dentry, but if anybody else is
2361 * currently using the dentry or the inode
2362 * we can't do that and we fall back on removing
2363 * it from the hash queues and waiting for
2364 * it to be deleted later when it has no users
2368 * d_delete - delete a dentry
2369 * @dentry: The dentry to delete
2371 * Turn the dentry into a negative dentry if possible, otherwise
2372 * remove it from the hash queues so it can be deleted later
2375 void d_delete(struct dentry * dentry)
2377 struct inode *inode;
2378 int isdir = 0;
2380 * Are we the only user?
2382 again:
2383 spin_lock(&dentry->d_lock);
2384 inode = dentry->d_inode;
2385 isdir = S_ISDIR(inode->i_mode);
2386 if (dentry->d_lockref.count == 1) {
2387 if (!spin_trylock(&inode->i_lock)) {
2388 spin_unlock(&dentry->d_lock);
2389 cpu_relax();
2390 goto again;
2392 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2393 dentry_unlink_inode(dentry);
2394 fsnotify_nameremove(dentry, isdir);
2395 return;
2398 if (!d_unhashed(dentry))
2399 __d_drop(dentry);
2401 spin_unlock(&dentry->d_lock);
2403 fsnotify_nameremove(dentry, isdir);
2405 EXPORT_SYMBOL(d_delete);
2407 static void __d_rehash(struct dentry *entry)
2409 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2411 hlist_bl_lock(b);
2412 hlist_bl_add_head_rcu(&entry->d_hash, b);
2413 hlist_bl_unlock(b);
2417 * d_rehash - add an entry back to the hash
2418 * @entry: dentry to add to the hash
2420 * Adds a dentry to the hash according to its name.
2423 void d_rehash(struct dentry * entry)
2425 spin_lock(&entry->d_lock);
2426 __d_rehash(entry);
2427 spin_unlock(&entry->d_lock);
2429 EXPORT_SYMBOL(d_rehash);
2431 static inline unsigned start_dir_add(struct inode *dir)
2434 for (;;) {
2435 unsigned n = dir->i_dir_seq;
2436 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437 return n;
2438 cpu_relax();
2442 static inline void end_dir_add(struct inode *dir, unsigned n)
2444 smp_store_release(&dir->i_dir_seq, n + 2);
2447 static void d_wait_lookup(struct dentry *dentry)
2449 if (d_in_lookup(dentry)) {
2450 DECLARE_WAITQUEUE(wait, current);
2451 add_wait_queue(dentry->d_wait, &wait);
2452 do {
2453 set_current_state(TASK_UNINTERRUPTIBLE);
2454 spin_unlock(&dentry->d_lock);
2455 schedule();
2456 spin_lock(&dentry->d_lock);
2457 } while (d_in_lookup(dentry));
2461 struct dentry *d_alloc_parallel(struct dentry *parent,
2462 const struct qstr *name,
2463 wait_queue_head_t *wq)
2465 unsigned int hash = name->hash;
2466 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2467 struct hlist_bl_node *node;
2468 struct dentry *new = d_alloc(parent, name);
2469 struct dentry *dentry;
2470 unsigned seq, r_seq, d_seq;
2472 if (unlikely(!new))
2473 return ERR_PTR(-ENOMEM);
2475 retry:
2476 rcu_read_lock();
2477 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2478 r_seq = read_seqbegin(&rename_lock);
2479 dentry = __d_lookup_rcu(parent, name, &d_seq);
2480 if (unlikely(dentry)) {
2481 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2482 rcu_read_unlock();
2483 goto retry;
2485 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2486 rcu_read_unlock();
2487 dput(dentry);
2488 goto retry;
2490 rcu_read_unlock();
2491 dput(new);
2492 return dentry;
2494 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2495 rcu_read_unlock();
2496 goto retry;
2498 hlist_bl_lock(b);
2499 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2500 hlist_bl_unlock(b);
2501 rcu_read_unlock();
2502 goto retry;
2505 * No changes for the parent since the beginning of d_lookup().
2506 * Since all removals from the chain happen with hlist_bl_lock(),
2507 * any potential in-lookup matches are going to stay here until
2508 * we unlock the chain. All fields are stable in everything
2509 * we encounter.
2511 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2512 if (dentry->d_name.hash != hash)
2513 continue;
2514 if (dentry->d_parent != parent)
2515 continue;
2516 if (!d_same_name(dentry, parent, name))
2517 continue;
2518 hlist_bl_unlock(b);
2519 /* now we can try to grab a reference */
2520 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521 rcu_read_unlock();
2522 goto retry;
2525 rcu_read_unlock();
2527 * somebody is likely to be still doing lookup for it;
2528 * wait for them to finish
2530 spin_lock(&dentry->d_lock);
2531 d_wait_lookup(dentry);
2533 * it's not in-lookup anymore; in principle we should repeat
2534 * everything from dcache lookup, but it's likely to be what
2535 * d_lookup() would've found anyway. If it is, just return it;
2536 * otherwise we really have to repeat the whole thing.
2538 if (unlikely(dentry->d_name.hash != hash))
2539 goto mismatch;
2540 if (unlikely(dentry->d_parent != parent))
2541 goto mismatch;
2542 if (unlikely(d_unhashed(dentry)))
2543 goto mismatch;
2544 if (unlikely(!d_same_name(dentry, parent, name)))
2545 goto mismatch;
2546 /* OK, it *is* a hashed match; return it */
2547 spin_unlock(&dentry->d_lock);
2548 dput(new);
2549 return dentry;
2551 rcu_read_unlock();
2552 /* we can't take ->d_lock here; it's OK, though. */
2553 new->d_flags |= DCACHE_PAR_LOOKUP;
2554 new->d_wait = wq;
2555 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2556 hlist_bl_unlock(b);
2557 return new;
2558 mismatch:
2559 spin_unlock(&dentry->d_lock);
2560 dput(dentry);
2561 goto retry;
2563 EXPORT_SYMBOL(d_alloc_parallel);
2565 void __d_lookup_done(struct dentry *dentry)
2567 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2568 dentry->d_name.hash);
2569 hlist_bl_lock(b);
2570 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2571 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2572 wake_up_all(dentry->d_wait);
2573 dentry->d_wait = NULL;
2574 hlist_bl_unlock(b);
2575 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2576 INIT_LIST_HEAD(&dentry->d_lru);
2578 EXPORT_SYMBOL(__d_lookup_done);
2580 /* inode->i_lock held if inode is non-NULL */
2582 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2584 struct inode *dir = NULL;
2585 unsigned n;
2586 spin_lock(&dentry->d_lock);
2587 if (unlikely(d_in_lookup(dentry))) {
2588 dir = dentry->d_parent->d_inode;
2589 n = start_dir_add(dir);
2590 __d_lookup_done(dentry);
2592 if (inode) {
2593 unsigned add_flags = d_flags_for_inode(inode);
2594 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2595 raw_write_seqcount_begin(&dentry->d_seq);
2596 __d_set_inode_and_type(dentry, inode, add_flags);
2597 raw_write_seqcount_end(&dentry->d_seq);
2598 fsnotify_update_flags(dentry);
2600 __d_rehash(dentry);
2601 if (dir)
2602 end_dir_add(dir, n);
2603 spin_unlock(&dentry->d_lock);
2604 if (inode)
2605 spin_unlock(&inode->i_lock);
2609 * d_add - add dentry to hash queues
2610 * @entry: dentry to add
2611 * @inode: The inode to attach to this dentry
2613 * This adds the entry to the hash queues and initializes @inode.
2614 * The entry was actually filled in earlier during d_alloc().
2617 void d_add(struct dentry *entry, struct inode *inode)
2619 if (inode) {
2620 security_d_instantiate(entry, inode);
2621 spin_lock(&inode->i_lock);
2623 __d_add(entry, inode);
2625 EXPORT_SYMBOL(d_add);
2628 * d_exact_alias - find and hash an exact unhashed alias
2629 * @entry: dentry to add
2630 * @inode: The inode to go with this dentry
2632 * If an unhashed dentry with the same name/parent and desired
2633 * inode already exists, hash and return it. Otherwise, return
2634 * NULL.
2636 * Parent directory should be locked.
2638 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2640 struct dentry *alias;
2641 unsigned int hash = entry->d_name.hash;
2643 spin_lock(&inode->i_lock);
2644 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2646 * Don't need alias->d_lock here, because aliases with
2647 * d_parent == entry->d_parent are not subject to name or
2648 * parent changes, because the parent inode i_mutex is held.
2650 if (alias->d_name.hash != hash)
2651 continue;
2652 if (alias->d_parent != entry->d_parent)
2653 continue;
2654 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2655 continue;
2656 spin_lock(&alias->d_lock);
2657 if (!d_unhashed(alias)) {
2658 spin_unlock(&alias->d_lock);
2659 alias = NULL;
2660 } else {
2661 __dget_dlock(alias);
2662 __d_rehash(alias);
2663 spin_unlock(&alias->d_lock);
2665 spin_unlock(&inode->i_lock);
2666 return alias;
2668 spin_unlock(&inode->i_lock);
2669 return NULL;
2671 EXPORT_SYMBOL(d_exact_alias);
2674 * dentry_update_name_case - update case insensitive dentry with a new name
2675 * @dentry: dentry to be updated
2676 * @name: new name
2678 * Update a case insensitive dentry with new case of name.
2680 * dentry must have been returned by d_lookup with name @name. Old and new
2681 * name lengths must match (ie. no d_compare which allows mismatched name
2682 * lengths).
2684 * Parent inode i_mutex must be held over d_lookup and into this call (to
2685 * keep renames and concurrent inserts, and readdir(2) away).
2687 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2689 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2690 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2692 spin_lock(&dentry->d_lock);
2693 write_seqcount_begin(&dentry->d_seq);
2694 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2695 write_seqcount_end(&dentry->d_seq);
2696 spin_unlock(&dentry->d_lock);
2698 EXPORT_SYMBOL(dentry_update_name_case);
2700 static void swap_names(struct dentry *dentry, struct dentry *target)
2702 if (unlikely(dname_external(target))) {
2703 if (unlikely(dname_external(dentry))) {
2705 * Both external: swap the pointers
2707 swap(target->d_name.name, dentry->d_name.name);
2708 } else {
2710 * dentry:internal, target:external. Steal target's
2711 * storage and make target internal.
2713 memcpy(target->d_iname, dentry->d_name.name,
2714 dentry->d_name.len + 1);
2715 dentry->d_name.name = target->d_name.name;
2716 target->d_name.name = target->d_iname;
2718 } else {
2719 if (unlikely(dname_external(dentry))) {
2721 * dentry:external, target:internal. Give dentry's
2722 * storage to target and make dentry internal
2724 memcpy(dentry->d_iname, target->d_name.name,
2725 target->d_name.len + 1);
2726 target->d_name.name = dentry->d_name.name;
2727 dentry->d_name.name = dentry->d_iname;
2728 } else {
2730 * Both are internal.
2732 unsigned int i;
2733 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2734 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2735 swap(((long *) &dentry->d_iname)[i],
2736 ((long *) &target->d_iname)[i]);
2740 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2743 static void copy_name(struct dentry *dentry, struct dentry *target)
2745 struct external_name *old_name = NULL;
2746 if (unlikely(dname_external(dentry)))
2747 old_name = external_name(dentry);
2748 if (unlikely(dname_external(target))) {
2749 atomic_inc(&external_name(target)->u.count);
2750 dentry->d_name = target->d_name;
2751 } else {
2752 memcpy(dentry->d_iname, target->d_name.name,
2753 target->d_name.len + 1);
2754 dentry->d_name.name = dentry->d_iname;
2755 dentry->d_name.hash_len = target->d_name.hash_len;
2757 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2758 kfree_rcu(old_name, u.head);
2761 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2764 * XXXX: do we really need to take target->d_lock?
2766 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2767 spin_lock(&target->d_parent->d_lock);
2768 else {
2769 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2770 spin_lock(&dentry->d_parent->d_lock);
2771 spin_lock_nested(&target->d_parent->d_lock,
2772 DENTRY_D_LOCK_NESTED);
2773 } else {
2774 spin_lock(&target->d_parent->d_lock);
2775 spin_lock_nested(&dentry->d_parent->d_lock,
2776 DENTRY_D_LOCK_NESTED);
2779 if (target < dentry) {
2780 spin_lock_nested(&target->d_lock, 2);
2781 spin_lock_nested(&dentry->d_lock, 3);
2782 } else {
2783 spin_lock_nested(&dentry->d_lock, 2);
2784 spin_lock_nested(&target->d_lock, 3);
2788 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2790 if (target->d_parent != dentry->d_parent)
2791 spin_unlock(&dentry->d_parent->d_lock);
2792 if (target->d_parent != target)
2793 spin_unlock(&target->d_parent->d_lock);
2794 spin_unlock(&target->d_lock);
2795 spin_unlock(&dentry->d_lock);
2799 * When switching names, the actual string doesn't strictly have to
2800 * be preserved in the target - because we're dropping the target
2801 * anyway. As such, we can just do a simple memcpy() to copy over
2802 * the new name before we switch, unless we are going to rehash
2803 * it. Note that if we *do* unhash the target, we are not allowed
2804 * to rehash it without giving it a new name/hash key - whether
2805 * we swap or overwrite the names here, resulting name won't match
2806 * the reality in filesystem; it's only there for d_path() purposes.
2807 * Note that all of this is happening under rename_lock, so the
2808 * any hash lookup seeing it in the middle of manipulations will
2809 * be discarded anyway. So we do not care what happens to the hash
2810 * key in that case.
2813 * __d_move - move a dentry
2814 * @dentry: entry to move
2815 * @target: new dentry
2816 * @exchange: exchange the two dentries
2818 * Update the dcache to reflect the move of a file name. Negative
2819 * dcache entries should not be moved in this way. Caller must hold
2820 * rename_lock, the i_mutex of the source and target directories,
2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2823 static void __d_move(struct dentry *dentry, struct dentry *target,
2824 bool exchange)
2826 struct inode *dir = NULL;
2827 unsigned n;
2828 if (!dentry->d_inode)
2829 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2831 BUG_ON(d_ancestor(dentry, target));
2832 BUG_ON(d_ancestor(target, dentry));
2834 dentry_lock_for_move(dentry, target);
2835 if (unlikely(d_in_lookup(target))) {
2836 dir = target->d_parent->d_inode;
2837 n = start_dir_add(dir);
2838 __d_lookup_done(target);
2841 write_seqcount_begin(&dentry->d_seq);
2842 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2844 /* unhash both */
2845 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2846 ___d_drop(dentry);
2847 ___d_drop(target);
2849 /* Switch the names.. */
2850 if (exchange)
2851 swap_names(dentry, target);
2852 else
2853 copy_name(dentry, target);
2855 /* rehash in new place(s) */
2856 __d_rehash(dentry);
2857 if (exchange)
2858 __d_rehash(target);
2859 else
2860 target->d_hash.pprev = NULL;
2862 /* ... and switch them in the tree */
2863 if (IS_ROOT(dentry)) {
2864 /* splicing a tree */
2865 dentry->d_flags |= DCACHE_RCUACCESS;
2866 dentry->d_parent = target->d_parent;
2867 target->d_parent = target;
2868 list_del_init(&target->d_child);
2869 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2870 } else {
2871 /* swapping two dentries */
2872 swap(dentry->d_parent, target->d_parent);
2873 list_move(&target->d_child, &target->d_parent->d_subdirs);
2874 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2875 if (exchange)
2876 fsnotify_update_flags(target);
2877 fsnotify_update_flags(dentry);
2880 write_seqcount_end(&target->d_seq);
2881 write_seqcount_end(&dentry->d_seq);
2883 if (dir)
2884 end_dir_add(dir, n);
2885 dentry_unlock_for_move(dentry, target);
2889 * d_move - move a dentry
2890 * @dentry: entry to move
2891 * @target: new dentry
2893 * Update the dcache to reflect the move of a file name. Negative
2894 * dcache entries should not be moved in this way. See the locking
2895 * requirements for __d_move.
2897 void d_move(struct dentry *dentry, struct dentry *target)
2899 write_seqlock(&rename_lock);
2900 __d_move(dentry, target, false);
2901 write_sequnlock(&rename_lock);
2903 EXPORT_SYMBOL(d_move);
2906 * d_exchange - exchange two dentries
2907 * @dentry1: first dentry
2908 * @dentry2: second dentry
2910 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2912 write_seqlock(&rename_lock);
2914 WARN_ON(!dentry1->d_inode);
2915 WARN_ON(!dentry2->d_inode);
2916 WARN_ON(IS_ROOT(dentry1));
2917 WARN_ON(IS_ROOT(dentry2));
2919 __d_move(dentry1, dentry2, true);
2921 write_sequnlock(&rename_lock);
2925 * d_ancestor - search for an ancestor
2926 * @p1: ancestor dentry
2927 * @p2: child dentry
2929 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2930 * an ancestor of p2, else NULL.
2932 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2934 struct dentry *p;
2936 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2937 if (p->d_parent == p1)
2938 return p;
2940 return NULL;
2944 * This helper attempts to cope with remotely renamed directories
2946 * It assumes that the caller is already holding
2947 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2949 * Note: If ever the locking in lock_rename() changes, then please
2950 * remember to update this too...
2952 static int __d_unalias(struct inode *inode,
2953 struct dentry *dentry, struct dentry *alias)
2955 struct mutex *m1 = NULL;
2956 struct rw_semaphore *m2 = NULL;
2957 int ret = -ESTALE;
2959 /* If alias and dentry share a parent, then no extra locks required */
2960 if (alias->d_parent == dentry->d_parent)
2961 goto out_unalias;
2963 /* See lock_rename() */
2964 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2965 goto out_err;
2966 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2967 if (!inode_trylock_shared(alias->d_parent->d_inode))
2968 goto out_err;
2969 m2 = &alias->d_parent->d_inode->i_rwsem;
2970 out_unalias:
2971 __d_move(alias, dentry, false);
2972 ret = 0;
2973 out_err:
2974 if (m2)
2975 up_read(m2);
2976 if (m1)
2977 mutex_unlock(m1);
2978 return ret;
2982 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2983 * @inode: the inode which may have a disconnected dentry
2984 * @dentry: a negative dentry which we want to point to the inode.
2986 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2987 * place of the given dentry and return it, else simply d_add the inode
2988 * to the dentry and return NULL.
2990 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2991 * we should error out: directories can't have multiple aliases.
2993 * This is needed in the lookup routine of any filesystem that is exportable
2994 * (via knfsd) so that we can build dcache paths to directories effectively.
2996 * If a dentry was found and moved, then it is returned. Otherwise NULL
2997 * is returned. This matches the expected return value of ->lookup.
2999 * Cluster filesystems may call this function with a negative, hashed dentry.
3000 * In that case, we know that the inode will be a regular file, and also this
3001 * will only occur during atomic_open. So we need to check for the dentry
3002 * being already hashed only in the final case.
3004 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3006 if (IS_ERR(inode))
3007 return ERR_CAST(inode);
3009 BUG_ON(!d_unhashed(dentry));
3011 if (!inode)
3012 goto out;
3014 security_d_instantiate(dentry, inode);
3015 spin_lock(&inode->i_lock);
3016 if (S_ISDIR(inode->i_mode)) {
3017 struct dentry *new = __d_find_any_alias(inode);
3018 if (unlikely(new)) {
3019 /* The reference to new ensures it remains an alias */
3020 spin_unlock(&inode->i_lock);
3021 write_seqlock(&rename_lock);
3022 if (unlikely(d_ancestor(new, dentry))) {
3023 write_sequnlock(&rename_lock);
3024 dput(new);
3025 new = ERR_PTR(-ELOOP);
3026 pr_warn_ratelimited(
3027 "VFS: Lookup of '%s' in %s %s"
3028 " would have caused loop\n",
3029 dentry->d_name.name,
3030 inode->i_sb->s_type->name,
3031 inode->i_sb->s_id);
3032 } else if (!IS_ROOT(new)) {
3033 int err = __d_unalias(inode, dentry, new);
3034 write_sequnlock(&rename_lock);
3035 if (err) {
3036 dput(new);
3037 new = ERR_PTR(err);
3039 } else {
3040 __d_move(new, dentry, false);
3041 write_sequnlock(&rename_lock);
3043 iput(inode);
3044 return new;
3047 out:
3048 __d_add(dentry, inode);
3049 return NULL;
3051 EXPORT_SYMBOL(d_splice_alias);
3053 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3055 *buflen -= namelen;
3056 if (*buflen < 0)
3057 return -ENAMETOOLONG;
3058 *buffer -= namelen;
3059 memcpy(*buffer, str, namelen);
3060 return 0;
3064 * prepend_name - prepend a pathname in front of current buffer pointer
3065 * @buffer: buffer pointer
3066 * @buflen: allocated length of the buffer
3067 * @name: name string and length qstr structure
3069 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3070 * make sure that either the old or the new name pointer and length are
3071 * fetched. However, there may be mismatch between length and pointer.
3072 * The length cannot be trusted, we need to copy it byte-by-byte until
3073 * the length is reached or a null byte is found. It also prepends "/" at
3074 * the beginning of the name. The sequence number check at the caller will
3075 * retry it again when a d_move() does happen. So any garbage in the buffer
3076 * due to mismatched pointer and length will be discarded.
3078 * Load acquire is needed to make sure that we see that terminating NUL.
3080 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3082 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
3083 u32 dlen = READ_ONCE(name->len);
3084 char *p;
3086 *buflen -= dlen + 1;
3087 if (*buflen < 0)
3088 return -ENAMETOOLONG;
3089 p = *buffer -= dlen + 1;
3090 *p++ = '/';
3091 while (dlen--) {
3092 char c = *dname++;
3093 if (!c)
3094 break;
3095 *p++ = c;
3097 return 0;
3101 * prepend_path - Prepend path string to a buffer
3102 * @path: the dentry/vfsmount to report
3103 * @root: root vfsmnt/dentry
3104 * @buffer: pointer to the end of the buffer
3105 * @buflen: pointer to buffer length
3107 * The function will first try to write out the pathname without taking any
3108 * lock other than the RCU read lock to make sure that dentries won't go away.
3109 * It only checks the sequence number of the global rename_lock as any change
3110 * in the dentry's d_seq will be preceded by changes in the rename_lock
3111 * sequence number. If the sequence number had been changed, it will restart
3112 * the whole pathname back-tracing sequence again by taking the rename_lock.
3113 * In this case, there is no need to take the RCU read lock as the recursive
3114 * parent pointer references will keep the dentry chain alive as long as no
3115 * rename operation is performed.
3117 static int prepend_path(const struct path *path,
3118 const struct path *root,
3119 char **buffer, int *buflen)
3121 struct dentry *dentry;
3122 struct vfsmount *vfsmnt;
3123 struct mount *mnt;
3124 int error = 0;
3125 unsigned seq, m_seq = 0;
3126 char *bptr;
3127 int blen;
3129 rcu_read_lock();
3130 restart_mnt:
3131 read_seqbegin_or_lock(&mount_lock, &m_seq);
3132 seq = 0;
3133 rcu_read_lock();
3134 restart:
3135 bptr = *buffer;
3136 blen = *buflen;
3137 error = 0;
3138 dentry = path->dentry;
3139 vfsmnt = path->mnt;
3140 mnt = real_mount(vfsmnt);
3141 read_seqbegin_or_lock(&rename_lock, &seq);
3142 while (dentry != root->dentry || vfsmnt != root->mnt) {
3143 struct dentry * parent;
3145 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3146 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3147 /* Escaped? */
3148 if (dentry != vfsmnt->mnt_root) {
3149 bptr = *buffer;
3150 blen = *buflen;
3151 error = 3;
3152 break;
3154 /* Global root? */
3155 if (mnt != parent) {
3156 dentry = READ_ONCE(mnt->mnt_mountpoint);
3157 mnt = parent;
3158 vfsmnt = &mnt->mnt;
3159 continue;
3161 if (!error)
3162 error = is_mounted(vfsmnt) ? 1 : 2;
3163 break;
3165 parent = dentry->d_parent;
3166 prefetch(parent);
3167 error = prepend_name(&bptr, &blen, &dentry->d_name);
3168 if (error)
3169 break;
3171 dentry = parent;
3173 if (!(seq & 1))
3174 rcu_read_unlock();
3175 if (need_seqretry(&rename_lock, seq)) {
3176 seq = 1;
3177 goto restart;
3179 done_seqretry(&rename_lock, seq);
3181 if (!(m_seq & 1))
3182 rcu_read_unlock();
3183 if (need_seqretry(&mount_lock, m_seq)) {
3184 m_seq = 1;
3185 goto restart_mnt;
3187 done_seqretry(&mount_lock, m_seq);
3189 if (error >= 0 && bptr == *buffer) {
3190 if (--blen < 0)
3191 error = -ENAMETOOLONG;
3192 else
3193 *--bptr = '/';
3195 *buffer = bptr;
3196 *buflen = blen;
3197 return error;
3201 * __d_path - return the path of a dentry
3202 * @path: the dentry/vfsmount to report
3203 * @root: root vfsmnt/dentry
3204 * @buf: buffer to return value in
3205 * @buflen: buffer length
3207 * Convert a dentry into an ASCII path name.
3209 * Returns a pointer into the buffer or an error code if the
3210 * path was too long.
3212 * "buflen" should be positive.
3214 * If the path is not reachable from the supplied root, return %NULL.
3216 char *__d_path(const struct path *path,
3217 const struct path *root,
3218 char *buf, int buflen)
3220 char *res = buf + buflen;
3221 int error;
3223 prepend(&res, &buflen, "\0", 1);
3224 error = prepend_path(path, root, &res, &buflen);
3226 if (error < 0)
3227 return ERR_PTR(error);
3228 if (error > 0)
3229 return NULL;
3230 return res;
3233 char *d_absolute_path(const struct path *path,
3234 char *buf, int buflen)
3236 struct path root = {};
3237 char *res = buf + buflen;
3238 int error;
3240 prepend(&res, &buflen, "\0", 1);
3241 error = prepend_path(path, &root, &res, &buflen);
3243 if (error > 1)
3244 error = -EINVAL;
3245 if (error < 0)
3246 return ERR_PTR(error);
3247 return res;
3251 * same as __d_path but appends "(deleted)" for unlinked files.
3253 static int path_with_deleted(const struct path *path,
3254 const struct path *root,
3255 char **buf, int *buflen)
3257 prepend(buf, buflen, "\0", 1);
3258 if (d_unlinked(path->dentry)) {
3259 int error = prepend(buf, buflen, " (deleted)", 10);
3260 if (error)
3261 return error;
3264 return prepend_path(path, root, buf, buflen);
3267 static int prepend_unreachable(char **buffer, int *buflen)
3269 return prepend(buffer, buflen, "(unreachable)", 13);
3272 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3274 unsigned seq;
3276 do {
3277 seq = read_seqcount_begin(&fs->seq);
3278 *root = fs->root;
3279 } while (read_seqcount_retry(&fs->seq, seq));
3283 * d_path - return the path of a dentry
3284 * @path: path to report
3285 * @buf: buffer to return value in
3286 * @buflen: buffer length
3288 * Convert a dentry into an ASCII path name. If the entry has been deleted
3289 * the string " (deleted)" is appended. Note that this is ambiguous.
3291 * Returns a pointer into the buffer or an error code if the path was
3292 * too long. Note: Callers should use the returned pointer, not the passed
3293 * in buffer, to use the name! The implementation often starts at an offset
3294 * into the buffer, and may leave 0 bytes at the start.
3296 * "buflen" should be positive.
3298 char *d_path(const struct path *path, char *buf, int buflen)
3300 char *res = buf + buflen;
3301 struct path root;
3302 int error;
3305 * We have various synthetic filesystems that never get mounted. On
3306 * these filesystems dentries are never used for lookup purposes, and
3307 * thus don't need to be hashed. They also don't need a name until a
3308 * user wants to identify the object in /proc/pid/fd/. The little hack
3309 * below allows us to generate a name for these objects on demand:
3311 * Some pseudo inodes are mountable. When they are mounted
3312 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3313 * and instead have d_path return the mounted path.
3315 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3316 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3317 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3319 rcu_read_lock();
3320 get_fs_root_rcu(current->fs, &root);
3321 error = path_with_deleted(path, &root, &res, &buflen);
3322 rcu_read_unlock();
3324 if (error < 0)
3325 res = ERR_PTR(error);
3326 return res;
3328 EXPORT_SYMBOL(d_path);
3331 * Helper function for dentry_operations.d_dname() members
3333 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3334 const char *fmt, ...)
3336 va_list args;
3337 char temp[64];
3338 int sz;
3340 va_start(args, fmt);
3341 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3342 va_end(args);
3344 if (sz > sizeof(temp) || sz > buflen)
3345 return ERR_PTR(-ENAMETOOLONG);
3347 buffer += buflen - sz;
3348 return memcpy(buffer, temp, sz);
3351 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3353 char *end = buffer + buflen;
3354 /* these dentries are never renamed, so d_lock is not needed */
3355 if (prepend(&end, &buflen, " (deleted)", 11) ||
3356 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3357 prepend(&end, &buflen, "/", 1))
3358 end = ERR_PTR(-ENAMETOOLONG);
3359 return end;
3361 EXPORT_SYMBOL(simple_dname);
3364 * Write full pathname from the root of the filesystem into the buffer.
3366 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3368 struct dentry *dentry;
3369 char *end, *retval;
3370 int len, seq = 0;
3371 int error = 0;
3373 if (buflen < 2)
3374 goto Elong;
3376 rcu_read_lock();
3377 restart:
3378 dentry = d;
3379 end = buf + buflen;
3380 len = buflen;
3381 prepend(&end, &len, "\0", 1);
3382 /* Get '/' right */
3383 retval = end-1;
3384 *retval = '/';
3385 read_seqbegin_or_lock(&rename_lock, &seq);
3386 while (!IS_ROOT(dentry)) {
3387 struct dentry *parent = dentry->d_parent;
3389 prefetch(parent);
3390 error = prepend_name(&end, &len, &dentry->d_name);
3391 if (error)
3392 break;
3394 retval = end;
3395 dentry = parent;
3397 if (!(seq & 1))
3398 rcu_read_unlock();
3399 if (need_seqretry(&rename_lock, seq)) {
3400 seq = 1;
3401 goto restart;
3403 done_seqretry(&rename_lock, seq);
3404 if (error)
3405 goto Elong;
3406 return retval;
3407 Elong:
3408 return ERR_PTR(-ENAMETOOLONG);
3411 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3413 return __dentry_path(dentry, buf, buflen);
3415 EXPORT_SYMBOL(dentry_path_raw);
3417 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3419 char *p = NULL;
3420 char *retval;
3422 if (d_unlinked(dentry)) {
3423 p = buf + buflen;
3424 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3425 goto Elong;
3426 buflen++;
3428 retval = __dentry_path(dentry, buf, buflen);
3429 if (!IS_ERR(retval) && p)
3430 *p = '/'; /* restore '/' overriden with '\0' */
3431 return retval;
3432 Elong:
3433 return ERR_PTR(-ENAMETOOLONG);
3436 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3437 struct path *pwd)
3439 unsigned seq;
3441 do {
3442 seq = read_seqcount_begin(&fs->seq);
3443 *root = fs->root;
3444 *pwd = fs->pwd;
3445 } while (read_seqcount_retry(&fs->seq, seq));
3449 * NOTE! The user-level library version returns a
3450 * character pointer. The kernel system call just
3451 * returns the length of the buffer filled (which
3452 * includes the ending '\0' character), or a negative
3453 * error value. So libc would do something like
3455 * char *getcwd(char * buf, size_t size)
3457 * int retval;
3459 * retval = sys_getcwd(buf, size);
3460 * if (retval >= 0)
3461 * return buf;
3462 * errno = -retval;
3463 * return NULL;
3466 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3468 int error;
3469 struct path pwd, root;
3470 char *page = __getname();
3472 if (!page)
3473 return -ENOMEM;
3475 rcu_read_lock();
3476 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3478 error = -ENOENT;
3479 if (!d_unlinked(pwd.dentry)) {
3480 unsigned long len;
3481 char *cwd = page + PATH_MAX;
3482 int buflen = PATH_MAX;
3484 prepend(&cwd, &buflen, "\0", 1);
3485 error = prepend_path(&pwd, &root, &cwd, &buflen);
3486 rcu_read_unlock();
3488 if (error < 0)
3489 goto out;
3491 /* Unreachable from current root */
3492 if (error > 0) {
3493 error = prepend_unreachable(&cwd, &buflen);
3494 if (error)
3495 goto out;
3498 error = -ERANGE;
3499 len = PATH_MAX + page - cwd;
3500 if (len <= size) {
3501 error = len;
3502 if (copy_to_user(buf, cwd, len))
3503 error = -EFAULT;
3505 } else {
3506 rcu_read_unlock();
3509 out:
3510 __putname(page);
3511 return error;
3515 * Test whether new_dentry is a subdirectory of old_dentry.
3517 * Trivially implemented using the dcache structure
3521 * is_subdir - is new dentry a subdirectory of old_dentry
3522 * @new_dentry: new dentry
3523 * @old_dentry: old dentry
3525 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3526 * Returns false otherwise.
3527 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3530 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3532 bool result;
3533 unsigned seq;
3535 if (new_dentry == old_dentry)
3536 return true;
3538 do {
3539 /* for restarting inner loop in case of seq retry */
3540 seq = read_seqbegin(&rename_lock);
3542 * Need rcu_readlock to protect against the d_parent trashing
3543 * due to d_move
3545 rcu_read_lock();
3546 if (d_ancestor(old_dentry, new_dentry))
3547 result = true;
3548 else
3549 result = false;
3550 rcu_read_unlock();
3551 } while (read_seqretry(&rename_lock, seq));
3553 return result;
3555 EXPORT_SYMBOL(is_subdir);
3557 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3559 struct dentry *root = data;
3560 if (dentry != root) {
3561 if (d_unhashed(dentry) || !dentry->d_inode)
3562 return D_WALK_SKIP;
3564 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3565 dentry->d_flags |= DCACHE_GENOCIDE;
3566 dentry->d_lockref.count--;
3569 return D_WALK_CONTINUE;
3572 void d_genocide(struct dentry *parent)
3574 d_walk(parent, parent, d_genocide_kill, NULL);
3577 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3579 inode_dec_link_count(inode);
3580 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3581 !hlist_unhashed(&dentry->d_u.d_alias) ||
3582 !d_unlinked(dentry));
3583 spin_lock(&dentry->d_parent->d_lock);
3584 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3585 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3586 (unsigned long long)inode->i_ino);
3587 spin_unlock(&dentry->d_lock);
3588 spin_unlock(&dentry->d_parent->d_lock);
3589 d_instantiate(dentry, inode);
3591 EXPORT_SYMBOL(d_tmpfile);
3593 static __initdata unsigned long dhash_entries;
3594 static int __init set_dhash_entries(char *str)
3596 if (!str)
3597 return 0;
3598 dhash_entries = simple_strtoul(str, &str, 0);
3599 return 1;
3601 __setup("dhash_entries=", set_dhash_entries);
3603 static void __init dcache_init_early(void)
3605 /* If hashes are distributed across NUMA nodes, defer
3606 * hash allocation until vmalloc space is available.
3608 if (hashdist)
3609 return;
3611 dentry_hashtable =
3612 alloc_large_system_hash("Dentry cache",
3613 sizeof(struct hlist_bl_head),
3614 dhash_entries,
3616 HASH_EARLY | HASH_ZERO,
3617 &d_hash_shift,
3618 NULL,
3621 d_hash_shift = 32 - d_hash_shift;
3624 static void __init dcache_init(void)
3627 * A constructor could be added for stable state like the lists,
3628 * but it is probably not worth it because of the cache nature
3629 * of the dcache.
3631 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3632 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3633 d_iname);
3635 /* Hash may have been set up in dcache_init_early */
3636 if (!hashdist)
3637 return;
3639 dentry_hashtable =
3640 alloc_large_system_hash("Dentry cache",
3641 sizeof(struct hlist_bl_head),
3642 dhash_entries,
3644 HASH_ZERO,
3645 &d_hash_shift,
3646 NULL,
3649 d_hash_shift = 32 - d_hash_shift;
3652 /* SLAB cache for __getname() consumers */
3653 struct kmem_cache *names_cachep __read_mostly;
3654 EXPORT_SYMBOL(names_cachep);
3656 EXPORT_SYMBOL(d_genocide);
3658 void __init vfs_caches_init_early(void)
3660 int i;
3662 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3663 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3665 dcache_init_early();
3666 inode_init_early();
3669 void __init vfs_caches_init(void)
3671 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3672 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3674 dcache_init();
3675 inode_init();
3676 files_init();
3677 files_maxfiles_init();
3678 mnt_init();
3679 bdev_cache_init();
3680 chrdev_init();