4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
51 * dentry->d_sb->s_dentry_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
64 * dentry->d_inode->i_lock
66 * dentry->d_sb->s_dentry_lru_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
86 EXPORT_SYMBOL(rename_lock
);
88 static struct kmem_cache
*dentry_cache __read_mostly
;
90 const struct qstr empty_name
= QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name
);
92 const struct qstr slash_name
= QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name
);
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
104 static unsigned int d_hash_shift __read_mostly
;
106 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
108 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
110 return dentry_hashtable
+ (hash
>> d_hash_shift
);
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
116 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
119 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
120 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat
= {
129 static DEFINE_PER_CPU(long, nr_dentry
);
130 static DEFINE_PER_CPU(long, nr_dentry_unused
);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
146 static long get_nr_dentry(void)
150 for_each_possible_cpu(i
)
151 sum
+= per_cpu(nr_dentry
, i
);
152 return sum
< 0 ? 0 : sum
;
155 static long get_nr_dentry_unused(void)
159 for_each_possible_cpu(i
)
160 sum
+= per_cpu(nr_dentry_unused
, i
);
161 return sum
< 0 ? 0 : sum
;
164 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
165 size_t *lenp
, loff_t
*ppos
)
167 dentry_stat
.nr_dentry
= get_nr_dentry();
168 dentry_stat
.nr_unused
= get_nr_dentry_unused();
169 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 #include <asm/word-at-a-time.h>
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
189 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
191 unsigned long a
,b
,mask
;
194 a
= read_word_at_a_time(cs
);
195 b
= load_unaligned_zeropad(ct
);
196 if (tcount
< sizeof(unsigned long))
198 if (unlikely(a
!= b
))
200 cs
+= sizeof(unsigned long);
201 ct
+= sizeof(unsigned long);
202 tcount
-= sizeof(unsigned long);
206 mask
= bytemask_from_count(tcount
);
207 return unlikely(!!((a
^ b
) & mask
));
212 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
226 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
229 * Be careful about RCU walk racing with rename:
230 * use 'READ_ONCE' to fetch the name pointer.
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
244 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
246 return dentry_string_cmp(cs
, ct
, tcount
);
249 struct external_name
{
252 struct rcu_head head
;
254 unsigned char name
[];
257 static inline struct external_name
*external_name(struct dentry
*dentry
)
259 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
262 static void __d_free(struct rcu_head
*head
)
264 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
266 kmem_cache_free(dentry_cache
, dentry
);
269 static void __d_free_external(struct rcu_head
*head
)
271 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
272 kfree(external_name(dentry
));
273 kmem_cache_free(dentry_cache
, dentry
);
276 static inline int dname_external(const struct dentry
*dentry
)
278 return dentry
->d_name
.name
!= dentry
->d_iname
;
281 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
283 spin_lock(&dentry
->d_lock
);
284 if (unlikely(dname_external(dentry
))) {
285 struct external_name
*p
= external_name(dentry
);
286 atomic_inc(&p
->u
.count
);
287 spin_unlock(&dentry
->d_lock
);
288 name
->name
= p
->name
;
290 memcpy(name
->inline_name
, dentry
->d_iname
, DNAME_INLINE_LEN
);
291 spin_unlock(&dentry
->d_lock
);
292 name
->name
= name
->inline_name
;
295 EXPORT_SYMBOL(take_dentry_name_snapshot
);
297 void release_dentry_name_snapshot(struct name_snapshot
*name
)
299 if (unlikely(name
->name
!= name
->inline_name
)) {
300 struct external_name
*p
;
301 p
= container_of(name
->name
, struct external_name
, name
[0]);
302 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
303 kfree_rcu(p
, u
.head
);
306 EXPORT_SYMBOL(release_dentry_name_snapshot
);
308 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
314 dentry
->d_inode
= inode
;
315 flags
= READ_ONCE(dentry
->d_flags
);
316 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
318 WRITE_ONCE(dentry
->d_flags
, flags
);
321 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
323 unsigned flags
= READ_ONCE(dentry
->d_flags
);
325 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
326 WRITE_ONCE(dentry
->d_flags
, flags
);
327 dentry
->d_inode
= NULL
;
330 static void dentry_free(struct dentry
*dentry
)
332 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
333 if (unlikely(dname_external(dentry
))) {
334 struct external_name
*p
= external_name(dentry
);
335 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
336 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
342 __d_free(&dentry
->d_u
.d_rcu
);
344 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry
* dentry
)
352 __releases(dentry
->d_lock
)
353 __releases(dentry
->d_inode
->i_lock
)
355 struct inode
*inode
= dentry
->d_inode
;
356 bool hashed
= !d_unhashed(dentry
);
359 raw_write_seqcount_begin(&dentry
->d_seq
);
360 __d_clear_type_and_inode(dentry
);
361 hlist_del_init(&dentry
->d_u
.d_alias
);
363 raw_write_seqcount_end(&dentry
->d_seq
);
364 spin_unlock(&dentry
->d_lock
);
365 spin_unlock(&inode
->i_lock
);
367 fsnotify_inoderemove(inode
);
368 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
369 dentry
->d_op
->d_iput(dentry
, inode
);
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry
*dentry
)
391 D_FLAG_VERIFY(dentry
, 0);
392 dentry
->d_flags
|= DCACHE_LRU_LIST
;
393 this_cpu_inc(nr_dentry_unused
);
394 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
397 static void d_lru_del(struct dentry
*dentry
)
399 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
400 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
401 this_cpu_dec(nr_dentry_unused
);
402 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
405 static void d_shrink_del(struct dentry
*dentry
)
407 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
408 list_del_init(&dentry
->d_lru
);
409 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
410 this_cpu_dec(nr_dentry_unused
);
413 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
415 D_FLAG_VERIFY(dentry
, 0);
416 list_add(&dentry
->d_lru
, list
);
417 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
418 this_cpu_inc(nr_dentry_unused
);
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
427 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
429 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
430 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
431 this_cpu_dec(nr_dentry_unused
);
432 list_lru_isolate(lru
, &dentry
->d_lru
);
435 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
436 struct list_head
*list
)
438 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
439 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
440 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
444 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 static void dentry_lru_add(struct dentry
*dentry
)
448 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
450 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
451 dentry
->d_flags
|= DCACHE_REFERENCED
;
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 static void ___d_drop(struct dentry
*dentry
)
473 if (!d_unhashed(dentry
)) {
474 struct hlist_bl_head
*b
;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_root, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry
)))
481 b
= &dentry
->d_sb
->s_roots
;
483 b
= d_hash(dentry
->d_name
.hash
);
486 __hlist_bl_del(&dentry
->d_hash
);
488 /* After this call, in-progress rcu-walk path lookup will fail. */
489 write_seqcount_invalidate(&dentry
->d_seq
);
493 void __d_drop(struct dentry
*dentry
)
496 dentry
->d_hash
.pprev
= NULL
;
498 EXPORT_SYMBOL(__d_drop
);
500 void d_drop(struct dentry
*dentry
)
502 spin_lock(&dentry
->d_lock
);
504 spin_unlock(&dentry
->d_lock
);
506 EXPORT_SYMBOL(d_drop
);
508 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
512 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 * attached to the dentry tree
515 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
516 if (unlikely(list_empty(&dentry
->d_child
)))
518 __list_del_entry(&dentry
->d_child
);
520 * Cursors can move around the list of children. While we'd been
521 * a normal list member, it didn't matter - ->d_child.next would've
522 * been updated. However, from now on it won't be and for the
523 * things like d_walk() it might end up with a nasty surprise.
524 * Normally d_walk() doesn't care about cursors moving around -
525 * ->d_lock on parent prevents that and since a cursor has no children
526 * of its own, we get through it without ever unlocking the parent.
527 * There is one exception, though - if we ascend from a child that
528 * gets killed as soon as we unlock it, the next sibling is found
529 * using the value left in its ->d_child.next. And if _that_
530 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 * before d_walk() regains parent->d_lock, we'll end up skipping
532 * everything the cursor had been moved past.
534 * Solution: make sure that the pointer left behind in ->d_child.next
535 * points to something that won't be moving around. I.e. skip the
538 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
539 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
540 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
542 dentry
->d_child
.next
= next
->d_child
.next
;
546 static void __dentry_kill(struct dentry
*dentry
)
548 struct dentry
*parent
= NULL
;
549 bool can_free
= true;
550 if (!IS_ROOT(dentry
))
551 parent
= dentry
->d_parent
;
554 * The dentry is now unrecoverably dead to the world.
556 lockref_mark_dead(&dentry
->d_lockref
);
559 * inform the fs via d_prune that this dentry is about to be
560 * unhashed and destroyed.
562 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
563 dentry
->d_op
->d_prune(dentry
);
565 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
566 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
569 /* if it was on the hash then remove it */
571 dentry_unlist(dentry
, parent
);
573 spin_unlock(&parent
->d_lock
);
575 dentry_unlink_inode(dentry
);
577 spin_unlock(&dentry
->d_lock
);
578 this_cpu_dec(nr_dentry
);
579 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
580 dentry
->d_op
->d_release(dentry
);
582 spin_lock(&dentry
->d_lock
);
583 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
584 dentry
->d_flags
|= DCACHE_MAY_FREE
;
587 spin_unlock(&dentry
->d_lock
);
588 if (likely(can_free
))
593 * Finish off a dentry we've decided to kill.
594 * dentry->d_lock must be held, returns with it unlocked.
595 * If ref is non-zero, then decrement the refcount too.
596 * Returns dentry requiring refcount drop, or NULL if we're done.
598 static struct dentry
*dentry_kill(struct dentry
*dentry
)
599 __releases(dentry
->d_lock
)
601 struct inode
*inode
= dentry
->d_inode
;
602 struct dentry
*parent
= NULL
;
604 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
607 if (!IS_ROOT(dentry
)) {
608 parent
= dentry
->d_parent
;
609 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
611 spin_unlock(&inode
->i_lock
);
616 __dentry_kill(dentry
);
620 spin_unlock(&dentry
->d_lock
);
621 return dentry
; /* try again with same dentry */
624 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
626 struct dentry
*parent
= dentry
->d_parent
;
629 if (unlikely(dentry
->d_lockref
.count
< 0))
631 if (likely(spin_trylock(&parent
->d_lock
)))
634 spin_unlock(&dentry
->d_lock
);
636 parent
= READ_ONCE(dentry
->d_parent
);
637 spin_lock(&parent
->d_lock
);
639 * We can't blindly lock dentry until we are sure
640 * that we won't violate the locking order.
641 * Any changes of dentry->d_parent must have
642 * been done with parent->d_lock held, so
643 * spin_lock() above is enough of a barrier
644 * for checking if it's still our child.
646 if (unlikely(parent
!= dentry
->d_parent
)) {
647 spin_unlock(&parent
->d_lock
);
651 if (parent
!= dentry
)
652 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
659 * Try to do a lockless dput(), and return whether that was successful.
661 * If unsuccessful, we return false, having already taken the dentry lock.
663 * The caller needs to hold the RCU read lock, so that the dentry is
664 * guaranteed to stay around even if the refcount goes down to zero!
666 static inline bool fast_dput(struct dentry
*dentry
)
669 unsigned int d_flags
;
672 * If we have a d_op->d_delete() operation, we sould not
673 * let the dentry count go to zero, so use "put_or_lock".
675 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
676 return lockref_put_or_lock(&dentry
->d_lockref
);
679 * .. otherwise, we can try to just decrement the
680 * lockref optimistically.
682 ret
= lockref_put_return(&dentry
->d_lockref
);
685 * If the lockref_put_return() failed due to the lock being held
686 * by somebody else, the fast path has failed. We will need to
687 * get the lock, and then check the count again.
689 if (unlikely(ret
< 0)) {
690 spin_lock(&dentry
->d_lock
);
691 if (dentry
->d_lockref
.count
> 1) {
692 dentry
->d_lockref
.count
--;
693 spin_unlock(&dentry
->d_lock
);
700 * If we weren't the last ref, we're done.
706 * Careful, careful. The reference count went down
707 * to zero, but we don't hold the dentry lock, so
708 * somebody else could get it again, and do another
709 * dput(), and we need to not race with that.
711 * However, there is a very special and common case
712 * where we don't care, because there is nothing to
713 * do: the dentry is still hashed, it does not have
714 * a 'delete' op, and it's referenced and already on
717 * NOTE! Since we aren't locked, these values are
718 * not "stable". However, it is sufficient that at
719 * some point after we dropped the reference the
720 * dentry was hashed and the flags had the proper
721 * value. Other dentry users may have re-gotten
722 * a reference to the dentry and change that, but
723 * our work is done - we can leave the dentry
724 * around with a zero refcount.
727 d_flags
= READ_ONCE(dentry
->d_flags
);
728 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
730 /* Nothing to do? Dropping the reference was all we needed? */
731 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
735 * Not the fast normal case? Get the lock. We've already decremented
736 * the refcount, but we'll need to re-check the situation after
739 spin_lock(&dentry
->d_lock
);
742 * Did somebody else grab a reference to it in the meantime, and
743 * we're no longer the last user after all? Alternatively, somebody
744 * else could have killed it and marked it dead. Either way, we
745 * don't need to do anything else.
747 if (dentry
->d_lockref
.count
) {
748 spin_unlock(&dentry
->d_lock
);
753 * Re-get the reference we optimistically dropped. We hold the
754 * lock, and we just tested that it was zero, so we can just
757 dentry
->d_lockref
.count
= 1;
765 * This is complicated by the fact that we do not want to put
766 * dentries that are no longer on any hash chain on the unused
767 * list: we'd much rather just get rid of them immediately.
769 * However, that implies that we have to traverse the dentry
770 * tree upwards to the parents which might _also_ now be
771 * scheduled for deletion (it may have been only waiting for
772 * its last child to go away).
774 * This tail recursion is done by hand as we don't want to depend
775 * on the compiler to always get this right (gcc generally doesn't).
776 * Real recursion would eat up our stack space.
780 * dput - release a dentry
781 * @dentry: dentry to release
783 * Release a dentry. This will drop the usage count and if appropriate
784 * call the dentry unlink method as well as removing it from the queues and
785 * releasing its resources. If the parent dentries were scheduled for release
786 * they too may now get deleted.
788 void dput(struct dentry
*dentry
)
790 if (unlikely(!dentry
))
797 if (likely(fast_dput(dentry
))) {
802 /* Slow case: now with the dentry lock held */
805 WARN_ON(d_in_lookup(dentry
));
807 /* Unreachable? Get rid of it */
808 if (unlikely(d_unhashed(dentry
)))
811 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
814 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
815 if (dentry
->d_op
->d_delete(dentry
))
819 dentry_lru_add(dentry
);
821 dentry
->d_lockref
.count
--;
822 spin_unlock(&dentry
->d_lock
);
826 dentry
= dentry_kill(dentry
);
835 /* This must be called with d_lock held */
836 static inline void __dget_dlock(struct dentry
*dentry
)
838 dentry
->d_lockref
.count
++;
841 static inline void __dget(struct dentry
*dentry
)
843 lockref_get(&dentry
->d_lockref
);
846 struct dentry
*dget_parent(struct dentry
*dentry
)
852 * Do optimistic parent lookup without any
856 ret
= READ_ONCE(dentry
->d_parent
);
857 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
859 if (likely(gotref
)) {
860 if (likely(ret
== READ_ONCE(dentry
->d_parent
)))
867 * Don't need rcu_dereference because we re-check it was correct under
871 ret
= dentry
->d_parent
;
872 spin_lock(&ret
->d_lock
);
873 if (unlikely(ret
!= dentry
->d_parent
)) {
874 spin_unlock(&ret
->d_lock
);
879 BUG_ON(!ret
->d_lockref
.count
);
880 ret
->d_lockref
.count
++;
881 spin_unlock(&ret
->d_lock
);
884 EXPORT_SYMBOL(dget_parent
);
887 * d_find_alias - grab a hashed alias of inode
888 * @inode: inode in question
890 * If inode has a hashed alias, or is a directory and has any alias,
891 * acquire the reference to alias and return it. Otherwise return NULL.
892 * Notice that if inode is a directory there can be only one alias and
893 * it can be unhashed only if it has no children, or if it is the root
894 * of a filesystem, or if the directory was renamed and d_revalidate
895 * was the first vfs operation to notice.
897 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
898 * any other hashed alias over that one.
900 static struct dentry
*__d_find_alias(struct inode
*inode
)
902 struct dentry
*alias
, *discon_alias
;
906 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
907 spin_lock(&alias
->d_lock
);
908 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
909 if (IS_ROOT(alias
) &&
910 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
911 discon_alias
= alias
;
914 spin_unlock(&alias
->d_lock
);
918 spin_unlock(&alias
->d_lock
);
921 alias
= discon_alias
;
922 spin_lock(&alias
->d_lock
);
923 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
925 spin_unlock(&alias
->d_lock
);
928 spin_unlock(&alias
->d_lock
);
934 struct dentry
*d_find_alias(struct inode
*inode
)
936 struct dentry
*de
= NULL
;
938 if (!hlist_empty(&inode
->i_dentry
)) {
939 spin_lock(&inode
->i_lock
);
940 de
= __d_find_alias(inode
);
941 spin_unlock(&inode
->i_lock
);
945 EXPORT_SYMBOL(d_find_alias
);
948 * Try to kill dentries associated with this inode.
949 * WARNING: you must own a reference to inode.
951 void d_prune_aliases(struct inode
*inode
)
953 struct dentry
*dentry
;
955 spin_lock(&inode
->i_lock
);
956 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
957 spin_lock(&dentry
->d_lock
);
958 if (!dentry
->d_lockref
.count
) {
959 struct dentry
*parent
= lock_parent(dentry
);
960 if (likely(!dentry
->d_lockref
.count
)) {
961 __dentry_kill(dentry
);
966 spin_unlock(&parent
->d_lock
);
968 spin_unlock(&dentry
->d_lock
);
970 spin_unlock(&inode
->i_lock
);
972 EXPORT_SYMBOL(d_prune_aliases
);
974 static void shrink_dentry_list(struct list_head
*list
)
976 struct dentry
*dentry
, *parent
;
978 while (!list_empty(list
)) {
980 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
981 spin_lock(&dentry
->d_lock
);
982 parent
= lock_parent(dentry
);
985 * The dispose list is isolated and dentries are not accounted
986 * to the LRU here, so we can simply remove it from the list
987 * here regardless of whether it is referenced or not.
989 d_shrink_del(dentry
);
992 * We found an inuse dentry which was not removed from
993 * the LRU because of laziness during lookup. Do not free it.
995 if (dentry
->d_lockref
.count
> 0) {
996 spin_unlock(&dentry
->d_lock
);
998 spin_unlock(&parent
->d_lock
);
1003 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1004 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1005 spin_unlock(&dentry
->d_lock
);
1007 spin_unlock(&parent
->d_lock
);
1009 dentry_free(dentry
);
1013 inode
= dentry
->d_inode
;
1014 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1015 d_shrink_add(dentry
, list
);
1016 spin_unlock(&dentry
->d_lock
);
1018 spin_unlock(&parent
->d_lock
);
1022 __dentry_kill(dentry
);
1025 * We need to prune ancestors too. This is necessary to prevent
1026 * quadratic behavior of shrink_dcache_parent(), but is also
1027 * expected to be beneficial in reducing dentry cache
1031 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1032 parent
= lock_parent(dentry
);
1033 if (dentry
->d_lockref
.count
!= 1) {
1034 dentry
->d_lockref
.count
--;
1035 spin_unlock(&dentry
->d_lock
);
1037 spin_unlock(&parent
->d_lock
);
1040 inode
= dentry
->d_inode
; /* can't be NULL */
1041 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1042 spin_unlock(&dentry
->d_lock
);
1044 spin_unlock(&parent
->d_lock
);
1048 __dentry_kill(dentry
);
1054 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1055 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1057 struct list_head
*freeable
= arg
;
1058 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1062 * we are inverting the lru lock/dentry->d_lock here,
1063 * so use a trylock. If we fail to get the lock, just skip
1066 if (!spin_trylock(&dentry
->d_lock
))
1070 * Referenced dentries are still in use. If they have active
1071 * counts, just remove them from the LRU. Otherwise give them
1072 * another pass through the LRU.
1074 if (dentry
->d_lockref
.count
) {
1075 d_lru_isolate(lru
, dentry
);
1076 spin_unlock(&dentry
->d_lock
);
1080 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1081 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1082 spin_unlock(&dentry
->d_lock
);
1085 * The list move itself will be made by the common LRU code. At
1086 * this point, we've dropped the dentry->d_lock but keep the
1087 * lru lock. This is safe to do, since every list movement is
1088 * protected by the lru lock even if both locks are held.
1090 * This is guaranteed by the fact that all LRU management
1091 * functions are intermediated by the LRU API calls like
1092 * list_lru_add and list_lru_del. List movement in this file
1093 * only ever occur through this functions or through callbacks
1094 * like this one, that are called from the LRU API.
1096 * The only exceptions to this are functions like
1097 * shrink_dentry_list, and code that first checks for the
1098 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1099 * operating only with stack provided lists after they are
1100 * properly isolated from the main list. It is thus, always a
1106 d_lru_shrink_move(lru
, dentry
, freeable
);
1107 spin_unlock(&dentry
->d_lock
);
1113 * prune_dcache_sb - shrink the dcache
1115 * @sc: shrink control, passed to list_lru_shrink_walk()
1117 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1118 * is done when we need more memory and called from the superblock shrinker
1121 * This function may fail to free any resources if all the dentries are in
1124 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1129 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1130 dentry_lru_isolate
, &dispose
);
1131 shrink_dentry_list(&dispose
);
1135 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1136 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1138 struct list_head
*freeable
= arg
;
1139 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1142 * we are inverting the lru lock/dentry->d_lock here,
1143 * so use a trylock. If we fail to get the lock, just skip
1146 if (!spin_trylock(&dentry
->d_lock
))
1149 d_lru_shrink_move(lru
, dentry
, freeable
);
1150 spin_unlock(&dentry
->d_lock
);
1157 * shrink_dcache_sb - shrink dcache for a superblock
1160 * Shrink the dcache for the specified super block. This is used to free
1161 * the dcache before unmounting a file system.
1163 void shrink_dcache_sb(struct super_block
*sb
)
1170 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1171 dentry_lru_isolate_shrink
, &dispose
, 1024);
1173 this_cpu_sub(nr_dentry_unused
, freed
);
1174 shrink_dentry_list(&dispose
);
1176 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1178 EXPORT_SYMBOL(shrink_dcache_sb
);
1181 * enum d_walk_ret - action to talke during tree walk
1182 * @D_WALK_CONTINUE: contrinue walk
1183 * @D_WALK_QUIT: quit walk
1184 * @D_WALK_NORETRY: quit when retry is needed
1185 * @D_WALK_SKIP: skip this dentry and its children
1195 * d_walk - walk the dentry tree
1196 * @parent: start of walk
1197 * @data: data passed to @enter() and @finish()
1198 * @enter: callback when first entering the dentry
1199 * @finish: callback when successfully finished the walk
1201 * The @enter() and @finish() callbacks are called with d_lock held.
1203 static void d_walk(struct dentry
*parent
, void *data
,
1204 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1205 void (*finish
)(void *))
1207 struct dentry
*this_parent
;
1208 struct list_head
*next
;
1210 enum d_walk_ret ret
;
1214 read_seqbegin_or_lock(&rename_lock
, &seq
);
1215 this_parent
= parent
;
1216 spin_lock(&this_parent
->d_lock
);
1218 ret
= enter(data
, this_parent
);
1220 case D_WALK_CONTINUE
:
1225 case D_WALK_NORETRY
:
1230 next
= this_parent
->d_subdirs
.next
;
1232 while (next
!= &this_parent
->d_subdirs
) {
1233 struct list_head
*tmp
= next
;
1234 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1237 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1240 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1242 ret
= enter(data
, dentry
);
1244 case D_WALK_CONTINUE
:
1247 spin_unlock(&dentry
->d_lock
);
1249 case D_WALK_NORETRY
:
1253 spin_unlock(&dentry
->d_lock
);
1257 if (!list_empty(&dentry
->d_subdirs
)) {
1258 spin_unlock(&this_parent
->d_lock
);
1259 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1260 this_parent
= dentry
;
1261 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1264 spin_unlock(&dentry
->d_lock
);
1267 * All done at this level ... ascend and resume the search.
1271 if (this_parent
!= parent
) {
1272 struct dentry
*child
= this_parent
;
1273 this_parent
= child
->d_parent
;
1275 spin_unlock(&child
->d_lock
);
1276 spin_lock(&this_parent
->d_lock
);
1278 /* might go back up the wrong parent if we have had a rename. */
1279 if (need_seqretry(&rename_lock
, seq
))
1281 /* go into the first sibling still alive */
1283 next
= child
->d_child
.next
;
1284 if (next
== &this_parent
->d_subdirs
)
1286 child
= list_entry(next
, struct dentry
, d_child
);
1287 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1291 if (need_seqretry(&rename_lock
, seq
))
1298 spin_unlock(&this_parent
->d_lock
);
1299 done_seqretry(&rename_lock
, seq
);
1303 spin_unlock(&this_parent
->d_lock
);
1312 struct check_mount
{
1313 struct vfsmount
*mnt
;
1314 unsigned int mounted
;
1317 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1319 struct check_mount
*info
= data
;
1320 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1322 if (likely(!d_mountpoint(dentry
)))
1323 return D_WALK_CONTINUE
;
1324 if (__path_is_mountpoint(&path
)) {
1328 return D_WALK_CONTINUE
;
1332 * path_has_submounts - check for mounts over a dentry in the
1333 * current namespace.
1334 * @parent: path to check.
1336 * Return true if the parent or its subdirectories contain
1337 * a mount point in the current namespace.
1339 int path_has_submounts(const struct path
*parent
)
1341 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1343 read_seqlock_excl(&mount_lock
);
1344 d_walk(parent
->dentry
, &data
, path_check_mount
, NULL
);
1345 read_sequnlock_excl(&mount_lock
);
1347 return data
.mounted
;
1349 EXPORT_SYMBOL(path_has_submounts
);
1352 * Called by mount code to set a mountpoint and check if the mountpoint is
1353 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1354 * subtree can become unreachable).
1356 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1357 * this reason take rename_lock and d_lock on dentry and ancestors.
1359 int d_set_mounted(struct dentry
*dentry
)
1363 write_seqlock(&rename_lock
);
1364 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1365 /* Need exclusion wrt. d_invalidate() */
1366 spin_lock(&p
->d_lock
);
1367 if (unlikely(d_unhashed(p
))) {
1368 spin_unlock(&p
->d_lock
);
1371 spin_unlock(&p
->d_lock
);
1373 spin_lock(&dentry
->d_lock
);
1374 if (!d_unlinked(dentry
)) {
1376 if (!d_mountpoint(dentry
)) {
1377 dentry
->d_flags
|= DCACHE_MOUNTED
;
1381 spin_unlock(&dentry
->d_lock
);
1383 write_sequnlock(&rename_lock
);
1388 * Search the dentry child list of the specified parent,
1389 * and move any unused dentries to the end of the unused
1390 * list for prune_dcache(). We descend to the next level
1391 * whenever the d_subdirs list is non-empty and continue
1394 * It returns zero iff there are no unused children,
1395 * otherwise it returns the number of children moved to
1396 * the end of the unused list. This may not be the total
1397 * number of unused children, because select_parent can
1398 * drop the lock and return early due to latency
1402 struct select_data
{
1403 struct dentry
*start
;
1404 struct list_head dispose
;
1408 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1410 struct select_data
*data
= _data
;
1411 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1413 if (data
->start
== dentry
)
1416 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1419 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1421 if (!dentry
->d_lockref
.count
) {
1422 d_shrink_add(dentry
, &data
->dispose
);
1427 * We can return to the caller if we have found some (this
1428 * ensures forward progress). We'll be coming back to find
1431 if (!list_empty(&data
->dispose
))
1432 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1438 * shrink_dcache_parent - prune dcache
1439 * @parent: parent of entries to prune
1441 * Prune the dcache to remove unused children of the parent dentry.
1443 void shrink_dcache_parent(struct dentry
*parent
)
1446 struct select_data data
;
1448 INIT_LIST_HEAD(&data
.dispose
);
1449 data
.start
= parent
;
1452 d_walk(parent
, &data
, select_collect
, NULL
);
1456 shrink_dentry_list(&data
.dispose
);
1460 EXPORT_SYMBOL(shrink_dcache_parent
);
1462 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1464 /* it has busy descendents; complain about those instead */
1465 if (!list_empty(&dentry
->d_subdirs
))
1466 return D_WALK_CONTINUE
;
1468 /* root with refcount 1 is fine */
1469 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1470 return D_WALK_CONTINUE
;
1472 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1473 " still in use (%d) [unmount of %s %s]\n",
1476 dentry
->d_inode
->i_ino
: 0UL,
1478 dentry
->d_lockref
.count
,
1479 dentry
->d_sb
->s_type
->name
,
1480 dentry
->d_sb
->s_id
);
1482 return D_WALK_CONTINUE
;
1485 static void do_one_tree(struct dentry
*dentry
)
1487 shrink_dcache_parent(dentry
);
1488 d_walk(dentry
, dentry
, umount_check
, NULL
);
1494 * destroy the dentries attached to a superblock on unmounting
1496 void shrink_dcache_for_umount(struct super_block
*sb
)
1498 struct dentry
*dentry
;
1500 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1502 dentry
= sb
->s_root
;
1504 do_one_tree(dentry
);
1506 while (!hlist_bl_empty(&sb
->s_roots
)) {
1507 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1508 do_one_tree(dentry
);
1512 struct detach_data
{
1513 struct select_data select
;
1514 struct dentry
*mountpoint
;
1516 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1518 struct detach_data
*data
= _data
;
1520 if (d_mountpoint(dentry
)) {
1521 __dget_dlock(dentry
);
1522 data
->mountpoint
= dentry
;
1526 return select_collect(&data
->select
, dentry
);
1529 static void check_and_drop(void *_data
)
1531 struct detach_data
*data
= _data
;
1533 if (!data
->mountpoint
&& list_empty(&data
->select
.dispose
))
1534 __d_drop(data
->select
.start
);
1538 * d_invalidate - detach submounts, prune dcache, and drop
1539 * @dentry: dentry to invalidate (aka detach, prune and drop)
1543 * The final d_drop is done as an atomic operation relative to
1544 * rename_lock ensuring there are no races with d_set_mounted. This
1545 * ensures there are no unhashed dentries on the path to a mountpoint.
1547 void d_invalidate(struct dentry
*dentry
)
1550 * If it's already been dropped, return OK.
1552 spin_lock(&dentry
->d_lock
);
1553 if (d_unhashed(dentry
)) {
1554 spin_unlock(&dentry
->d_lock
);
1557 spin_unlock(&dentry
->d_lock
);
1559 /* Negative dentries can be dropped without further checks */
1560 if (!dentry
->d_inode
) {
1566 struct detach_data data
;
1568 data
.mountpoint
= NULL
;
1569 INIT_LIST_HEAD(&data
.select
.dispose
);
1570 data
.select
.start
= dentry
;
1571 data
.select
.found
= 0;
1573 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1575 if (!list_empty(&data
.select
.dispose
))
1576 shrink_dentry_list(&data
.select
.dispose
);
1577 else if (!data
.mountpoint
)
1580 if (data
.mountpoint
) {
1581 detach_mounts(data
.mountpoint
);
1582 dput(data
.mountpoint
);
1587 EXPORT_SYMBOL(d_invalidate
);
1590 * __d_alloc - allocate a dcache entry
1591 * @sb: filesystem it will belong to
1592 * @name: qstr of the name
1594 * Allocates a dentry. It returns %NULL if there is insufficient memory
1595 * available. On a success the dentry is returned. The name passed in is
1596 * copied and the copy passed in may be reused after this call.
1599 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1601 struct dentry
*dentry
;
1605 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1610 * We guarantee that the inline name is always NUL-terminated.
1611 * This way the memcpy() done by the name switching in rename
1612 * will still always have a NUL at the end, even if we might
1613 * be overwriting an internal NUL character
1615 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1616 if (unlikely(!name
)) {
1618 dname
= dentry
->d_iname
;
1619 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1620 size_t size
= offsetof(struct external_name
, name
[1]);
1621 struct external_name
*p
= kmalloc(size
+ name
->len
,
1622 GFP_KERNEL_ACCOUNT
);
1624 kmem_cache_free(dentry_cache
, dentry
);
1627 atomic_set(&p
->u
.count
, 1);
1630 dname
= dentry
->d_iname
;
1633 dentry
->d_name
.len
= name
->len
;
1634 dentry
->d_name
.hash
= name
->hash
;
1635 memcpy(dname
, name
->name
, name
->len
);
1636 dname
[name
->len
] = 0;
1638 /* Make sure we always see the terminating NUL character */
1639 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1641 dentry
->d_lockref
.count
= 1;
1642 dentry
->d_flags
= 0;
1643 spin_lock_init(&dentry
->d_lock
);
1644 seqcount_init(&dentry
->d_seq
);
1645 dentry
->d_inode
= NULL
;
1646 dentry
->d_parent
= dentry
;
1648 dentry
->d_op
= NULL
;
1649 dentry
->d_fsdata
= NULL
;
1650 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1651 INIT_LIST_HEAD(&dentry
->d_lru
);
1652 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1653 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1654 INIT_LIST_HEAD(&dentry
->d_child
);
1655 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1657 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1658 err
= dentry
->d_op
->d_init(dentry
);
1660 if (dname_external(dentry
))
1661 kfree(external_name(dentry
));
1662 kmem_cache_free(dentry_cache
, dentry
);
1667 this_cpu_inc(nr_dentry
);
1673 * d_alloc - allocate a dcache entry
1674 * @parent: parent of entry to allocate
1675 * @name: qstr of the name
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1681 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1683 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1686 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1687 spin_lock(&parent
->d_lock
);
1689 * don't need child lock because it is not subject
1690 * to concurrency here
1692 __dget_dlock(parent
);
1693 dentry
->d_parent
= parent
;
1694 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1695 spin_unlock(&parent
->d_lock
);
1699 EXPORT_SYMBOL(d_alloc
);
1701 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1703 return __d_alloc(sb
, NULL
);
1705 EXPORT_SYMBOL(d_alloc_anon
);
1707 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1709 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1711 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1712 dentry
->d_parent
= dget(parent
);
1718 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1719 * @sb: the superblock
1720 * @name: qstr of the name
1722 * For a filesystem that just pins its dentries in memory and never
1723 * performs lookups at all, return an unhashed IS_ROOT dentry.
1725 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1727 return __d_alloc(sb
, name
);
1729 EXPORT_SYMBOL(d_alloc_pseudo
);
1731 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1736 q
.hash_len
= hashlen_string(parent
, name
);
1737 return d_alloc(parent
, &q
);
1739 EXPORT_SYMBOL(d_alloc_name
);
1741 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1743 WARN_ON_ONCE(dentry
->d_op
);
1744 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1746 DCACHE_OP_REVALIDATE
|
1747 DCACHE_OP_WEAK_REVALIDATE
|
1754 dentry
->d_flags
|= DCACHE_OP_HASH
;
1756 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1757 if (op
->d_revalidate
)
1758 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1759 if (op
->d_weak_revalidate
)
1760 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1762 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1764 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1766 dentry
->d_flags
|= DCACHE_OP_REAL
;
1769 EXPORT_SYMBOL(d_set_d_op
);
1773 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1774 * @dentry - The dentry to mark
1776 * Mark a dentry as falling through to the lower layer (as set with
1777 * d_pin_lower()). This flag may be recorded on the medium.
1779 void d_set_fallthru(struct dentry
*dentry
)
1781 spin_lock(&dentry
->d_lock
);
1782 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1783 spin_unlock(&dentry
->d_lock
);
1785 EXPORT_SYMBOL(d_set_fallthru
);
1787 static unsigned d_flags_for_inode(struct inode
*inode
)
1789 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1792 return DCACHE_MISS_TYPE
;
1794 if (S_ISDIR(inode
->i_mode
)) {
1795 add_flags
= DCACHE_DIRECTORY_TYPE
;
1796 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1797 if (unlikely(!inode
->i_op
->lookup
))
1798 add_flags
= DCACHE_AUTODIR_TYPE
;
1800 inode
->i_opflags
|= IOP_LOOKUP
;
1802 goto type_determined
;
1805 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1806 if (unlikely(inode
->i_op
->get_link
)) {
1807 add_flags
= DCACHE_SYMLINK_TYPE
;
1808 goto type_determined
;
1810 inode
->i_opflags
|= IOP_NOFOLLOW
;
1813 if (unlikely(!S_ISREG(inode
->i_mode
)))
1814 add_flags
= DCACHE_SPECIAL_TYPE
;
1817 if (unlikely(IS_AUTOMOUNT(inode
)))
1818 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1822 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1824 unsigned add_flags
= d_flags_for_inode(inode
);
1825 WARN_ON(d_in_lookup(dentry
));
1827 spin_lock(&dentry
->d_lock
);
1828 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1829 raw_write_seqcount_begin(&dentry
->d_seq
);
1830 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1831 raw_write_seqcount_end(&dentry
->d_seq
);
1832 fsnotify_update_flags(dentry
);
1833 spin_unlock(&dentry
->d_lock
);
1837 * d_instantiate - fill in inode information for a dentry
1838 * @entry: dentry to complete
1839 * @inode: inode to attach to this dentry
1841 * Fill in inode information in the entry.
1843 * This turns negative dentries into productive full members
1846 * NOTE! This assumes that the inode count has been incremented
1847 * (or otherwise set) by the caller to indicate that it is now
1848 * in use by the dcache.
1851 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1853 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1855 security_d_instantiate(entry
, inode
);
1856 spin_lock(&inode
->i_lock
);
1857 __d_instantiate(entry
, inode
);
1858 spin_unlock(&inode
->i_lock
);
1861 EXPORT_SYMBOL(d_instantiate
);
1864 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1865 * @entry: dentry to complete
1866 * @inode: inode to attach to this dentry
1868 * Fill in inode information in the entry. If a directory alias is found, then
1869 * return an error (and drop inode). Together with d_materialise_unique() this
1870 * guarantees that a directory inode may never have more than one alias.
1872 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1874 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1876 security_d_instantiate(entry
, inode
);
1877 spin_lock(&inode
->i_lock
);
1878 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1879 spin_unlock(&inode
->i_lock
);
1883 __d_instantiate(entry
, inode
);
1884 spin_unlock(&inode
->i_lock
);
1888 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1890 struct dentry
*d_make_root(struct inode
*root_inode
)
1892 struct dentry
*res
= NULL
;
1895 res
= d_alloc_anon(root_inode
->i_sb
);
1897 d_instantiate(res
, root_inode
);
1903 EXPORT_SYMBOL(d_make_root
);
1905 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1907 struct dentry
*alias
;
1909 if (hlist_empty(&inode
->i_dentry
))
1911 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1917 * d_find_any_alias - find any alias for a given inode
1918 * @inode: inode to find an alias for
1920 * If any aliases exist for the given inode, take and return a
1921 * reference for one of them. If no aliases exist, return %NULL.
1923 struct dentry
*d_find_any_alias(struct inode
*inode
)
1927 spin_lock(&inode
->i_lock
);
1928 de
= __d_find_any_alias(inode
);
1929 spin_unlock(&inode
->i_lock
);
1932 EXPORT_SYMBOL(d_find_any_alias
);
1934 static struct dentry
*__d_instantiate_anon(struct dentry
*dentry
,
1935 struct inode
*inode
,
1941 security_d_instantiate(dentry
, inode
);
1942 spin_lock(&inode
->i_lock
);
1943 res
= __d_find_any_alias(inode
);
1945 spin_unlock(&inode
->i_lock
);
1950 /* attach a disconnected dentry */
1951 add_flags
= d_flags_for_inode(inode
);
1954 add_flags
|= DCACHE_DISCONNECTED
;
1956 spin_lock(&dentry
->d_lock
);
1957 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1958 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1959 if (!disconnected
) {
1960 hlist_bl_lock(&dentry
->d_sb
->s_roots
);
1961 hlist_bl_add_head(&dentry
->d_hash
, &dentry
->d_sb
->s_roots
);
1962 hlist_bl_unlock(&dentry
->d_sb
->s_roots
);
1964 spin_unlock(&dentry
->d_lock
);
1965 spin_unlock(&inode
->i_lock
);
1974 struct dentry
*d_instantiate_anon(struct dentry
*dentry
, struct inode
*inode
)
1976 return __d_instantiate_anon(dentry
, inode
, true);
1978 EXPORT_SYMBOL(d_instantiate_anon
);
1980 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
1986 return ERR_PTR(-ESTALE
);
1988 return ERR_CAST(inode
);
1990 res
= d_find_any_alias(inode
);
1994 tmp
= d_alloc_anon(inode
->i_sb
);
1996 res
= ERR_PTR(-ENOMEM
);
2000 return __d_instantiate_anon(tmp
, inode
, disconnected
);
2008 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2009 * @inode: inode to allocate the dentry for
2011 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2012 * similar open by handle operations. The returned dentry may be anonymous,
2013 * or may have a full name (if the inode was already in the cache).
2015 * When called on a directory inode, we must ensure that the inode only ever
2016 * has one dentry. If a dentry is found, that is returned instead of
2017 * allocating a new one.
2019 * On successful return, the reference to the inode has been transferred
2020 * to the dentry. In case of an error the reference on the inode is released.
2021 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2022 * be passed in and the error will be propagated to the return value,
2023 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2025 struct dentry
*d_obtain_alias(struct inode
*inode
)
2027 return __d_obtain_alias(inode
, true);
2029 EXPORT_SYMBOL(d_obtain_alias
);
2032 * d_obtain_root - find or allocate a dentry for a given inode
2033 * @inode: inode to allocate the dentry for
2035 * Obtain an IS_ROOT dentry for the root of a filesystem.
2037 * We must ensure that directory inodes only ever have one dentry. If a
2038 * dentry is found, that is returned instead of allocating a new one.
2040 * On successful return, the reference to the inode has been transferred
2041 * to the dentry. In case of an error the reference on the inode is
2042 * released. A %NULL or IS_ERR inode may be passed in and will be the
2043 * error will be propagate to the return value, with a %NULL @inode
2044 * replaced by ERR_PTR(-ESTALE).
2046 struct dentry
*d_obtain_root(struct inode
*inode
)
2048 return __d_obtain_alias(inode
, false);
2050 EXPORT_SYMBOL(d_obtain_root
);
2053 * d_add_ci - lookup or allocate new dentry with case-exact name
2054 * @inode: the inode case-insensitive lookup has found
2055 * @dentry: the negative dentry that was passed to the parent's lookup func
2056 * @name: the case-exact name to be associated with the returned dentry
2058 * This is to avoid filling the dcache with case-insensitive names to the
2059 * same inode, only the actual correct case is stored in the dcache for
2060 * case-insensitive filesystems.
2062 * For a case-insensitive lookup match and if the the case-exact dentry
2063 * already exists in in the dcache, use it and return it.
2065 * If no entry exists with the exact case name, allocate new dentry with
2066 * the exact case, and return the spliced entry.
2068 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2071 struct dentry
*found
, *res
;
2074 * First check if a dentry matching the name already exists,
2075 * if not go ahead and create it now.
2077 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2082 if (d_in_lookup(dentry
)) {
2083 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2085 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2090 found
= d_alloc(dentry
->d_parent
, name
);
2093 return ERR_PTR(-ENOMEM
);
2096 res
= d_splice_alias(inode
, found
);
2103 EXPORT_SYMBOL(d_add_ci
);
2106 static inline bool d_same_name(const struct dentry
*dentry
,
2107 const struct dentry
*parent
,
2108 const struct qstr
*name
)
2110 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2111 if (dentry
->d_name
.len
!= name
->len
)
2113 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2115 return parent
->d_op
->d_compare(dentry
,
2116 dentry
->d_name
.len
, dentry
->d_name
.name
,
2121 * __d_lookup_rcu - search for a dentry (racy, store-free)
2122 * @parent: parent dentry
2123 * @name: qstr of name we wish to find
2124 * @seqp: returns d_seq value at the point where the dentry was found
2125 * Returns: dentry, or NULL
2127 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2128 * resolution (store-free path walking) design described in
2129 * Documentation/filesystems/path-lookup.txt.
2131 * This is not to be used outside core vfs.
2133 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2134 * held, and rcu_read_lock held. The returned dentry must not be stored into
2135 * without taking d_lock and checking d_seq sequence count against @seq
2138 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2141 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2142 * the returned dentry, so long as its parent's seqlock is checked after the
2143 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2144 * is formed, giving integrity down the path walk.
2146 * NOTE! The caller *has* to check the resulting dentry against the sequence
2147 * number we've returned before using any of the resulting dentry state!
2149 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2150 const struct qstr
*name
,
2153 u64 hashlen
= name
->hash_len
;
2154 const unsigned char *str
= name
->name
;
2155 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2156 struct hlist_bl_node
*node
;
2157 struct dentry
*dentry
;
2160 * Note: There is significant duplication with __d_lookup_rcu which is
2161 * required to prevent single threaded performance regressions
2162 * especially on architectures where smp_rmb (in seqcounts) are costly.
2163 * Keep the two functions in sync.
2167 * The hash list is protected using RCU.
2169 * Carefully use d_seq when comparing a candidate dentry, to avoid
2170 * races with d_move().
2172 * It is possible that concurrent renames can mess up our list
2173 * walk here and result in missing our dentry, resulting in the
2174 * false-negative result. d_lookup() protects against concurrent
2175 * renames using rename_lock seqlock.
2177 * See Documentation/filesystems/path-lookup.txt for more details.
2179 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2184 * The dentry sequence count protects us from concurrent
2185 * renames, and thus protects parent and name fields.
2187 * The caller must perform a seqcount check in order
2188 * to do anything useful with the returned dentry.
2190 * NOTE! We do a "raw" seqcount_begin here. That means that
2191 * we don't wait for the sequence count to stabilize if it
2192 * is in the middle of a sequence change. If we do the slow
2193 * dentry compare, we will do seqretries until it is stable,
2194 * and if we end up with a successful lookup, we actually
2195 * want to exit RCU lookup anyway.
2197 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2198 * we are still guaranteed NUL-termination of ->d_name.name.
2200 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2201 if (dentry
->d_parent
!= parent
)
2203 if (d_unhashed(dentry
))
2206 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2209 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2211 tlen
= dentry
->d_name
.len
;
2212 tname
= dentry
->d_name
.name
;
2213 /* we want a consistent (name,len) pair */
2214 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2218 if (parent
->d_op
->d_compare(dentry
,
2219 tlen
, tname
, name
) != 0)
2222 if (dentry
->d_name
.hash_len
!= hashlen
)
2224 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2234 * d_lookup - search for a dentry
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2239 * d_lookup searches the children of the parent dentry for the name in
2240 * question. If the dentry is found its reference count is incremented and the
2241 * dentry is returned. The caller must use dput to free the entry when it has
2242 * finished using it. %NULL is returned if the dentry does not exist.
2244 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2246 struct dentry
*dentry
;
2250 seq
= read_seqbegin(&rename_lock
);
2251 dentry
= __d_lookup(parent
, name
);
2254 } while (read_seqretry(&rename_lock
, seq
));
2257 EXPORT_SYMBOL(d_lookup
);
2260 * __d_lookup - search for a dentry (racy)
2261 * @parent: parent dentry
2262 * @name: qstr of name we wish to find
2263 * Returns: dentry, or NULL
2265 * __d_lookup is like d_lookup, however it may (rarely) return a
2266 * false-negative result due to unrelated rename activity.
2268 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2269 * however it must be used carefully, eg. with a following d_lookup in
2270 * the case of failure.
2272 * __d_lookup callers must be commented.
2274 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2276 unsigned int hash
= name
->hash
;
2277 struct hlist_bl_head
*b
= d_hash(hash
);
2278 struct hlist_bl_node
*node
;
2279 struct dentry
*found
= NULL
;
2280 struct dentry
*dentry
;
2283 * Note: There is significant duplication with __d_lookup_rcu which is
2284 * required to prevent single threaded performance regressions
2285 * especially on architectures where smp_rmb (in seqcounts) are costly.
2286 * Keep the two functions in sync.
2290 * The hash list is protected using RCU.
2292 * Take d_lock when comparing a candidate dentry, to avoid races
2295 * It is possible that concurrent renames can mess up our list
2296 * walk here and result in missing our dentry, resulting in the
2297 * false-negative result. d_lookup() protects against concurrent
2298 * renames using rename_lock seqlock.
2300 * See Documentation/filesystems/path-lookup.txt for more details.
2304 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2306 if (dentry
->d_name
.hash
!= hash
)
2309 spin_lock(&dentry
->d_lock
);
2310 if (dentry
->d_parent
!= parent
)
2312 if (d_unhashed(dentry
))
2315 if (!d_same_name(dentry
, parent
, name
))
2318 dentry
->d_lockref
.count
++;
2320 spin_unlock(&dentry
->d_lock
);
2323 spin_unlock(&dentry
->d_lock
);
2331 * d_hash_and_lookup - hash the qstr then search for a dentry
2332 * @dir: Directory to search in
2333 * @name: qstr of name we wish to find
2335 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2337 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2340 * Check for a fs-specific hash function. Note that we must
2341 * calculate the standard hash first, as the d_op->d_hash()
2342 * routine may choose to leave the hash value unchanged.
2344 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2345 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2346 int err
= dir
->d_op
->d_hash(dir
, name
);
2347 if (unlikely(err
< 0))
2348 return ERR_PTR(err
);
2350 return d_lookup(dir
, name
);
2352 EXPORT_SYMBOL(d_hash_and_lookup
);
2355 * When a file is deleted, we have two options:
2356 * - turn this dentry into a negative dentry
2357 * - unhash this dentry and free it.
2359 * Usually, we want to just turn this into
2360 * a negative dentry, but if anybody else is
2361 * currently using the dentry or the inode
2362 * we can't do that and we fall back on removing
2363 * it from the hash queues and waiting for
2364 * it to be deleted later when it has no users
2368 * d_delete - delete a dentry
2369 * @dentry: The dentry to delete
2371 * Turn the dentry into a negative dentry if possible, otherwise
2372 * remove it from the hash queues so it can be deleted later
2375 void d_delete(struct dentry
* dentry
)
2377 struct inode
*inode
;
2380 * Are we the only user?
2383 spin_lock(&dentry
->d_lock
);
2384 inode
= dentry
->d_inode
;
2385 isdir
= S_ISDIR(inode
->i_mode
);
2386 if (dentry
->d_lockref
.count
== 1) {
2387 if (!spin_trylock(&inode
->i_lock
)) {
2388 spin_unlock(&dentry
->d_lock
);
2392 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2393 dentry_unlink_inode(dentry
);
2394 fsnotify_nameremove(dentry
, isdir
);
2398 if (!d_unhashed(dentry
))
2401 spin_unlock(&dentry
->d_lock
);
2403 fsnotify_nameremove(dentry
, isdir
);
2405 EXPORT_SYMBOL(d_delete
);
2407 static void __d_rehash(struct dentry
*entry
)
2409 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2412 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2417 * d_rehash - add an entry back to the hash
2418 * @entry: dentry to add to the hash
2420 * Adds a dentry to the hash according to its name.
2423 void d_rehash(struct dentry
* entry
)
2425 spin_lock(&entry
->d_lock
);
2427 spin_unlock(&entry
->d_lock
);
2429 EXPORT_SYMBOL(d_rehash
);
2431 static inline unsigned start_dir_add(struct inode
*dir
)
2435 unsigned n
= dir
->i_dir_seq
;
2436 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2442 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2444 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2447 static void d_wait_lookup(struct dentry
*dentry
)
2449 if (d_in_lookup(dentry
)) {
2450 DECLARE_WAITQUEUE(wait
, current
);
2451 add_wait_queue(dentry
->d_wait
, &wait
);
2453 set_current_state(TASK_UNINTERRUPTIBLE
);
2454 spin_unlock(&dentry
->d_lock
);
2456 spin_lock(&dentry
->d_lock
);
2457 } while (d_in_lookup(dentry
));
2461 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2462 const struct qstr
*name
,
2463 wait_queue_head_t
*wq
)
2465 unsigned int hash
= name
->hash
;
2466 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2467 struct hlist_bl_node
*node
;
2468 struct dentry
*new = d_alloc(parent
, name
);
2469 struct dentry
*dentry
;
2470 unsigned seq
, r_seq
, d_seq
;
2473 return ERR_PTR(-ENOMEM
);
2477 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
) & ~1;
2478 r_seq
= read_seqbegin(&rename_lock
);
2479 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2480 if (unlikely(dentry
)) {
2481 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2485 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2494 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2499 if (unlikely(parent
->d_inode
->i_dir_seq
!= seq
)) {
2505 * No changes for the parent since the beginning of d_lookup().
2506 * Since all removals from the chain happen with hlist_bl_lock(),
2507 * any potential in-lookup matches are going to stay here until
2508 * we unlock the chain. All fields are stable in everything
2511 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2512 if (dentry
->d_name
.hash
!= hash
)
2514 if (dentry
->d_parent
!= parent
)
2516 if (!d_same_name(dentry
, parent
, name
))
2519 /* now we can try to grab a reference */
2520 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2527 * somebody is likely to be still doing lookup for it;
2528 * wait for them to finish
2530 spin_lock(&dentry
->d_lock
);
2531 d_wait_lookup(dentry
);
2533 * it's not in-lookup anymore; in principle we should repeat
2534 * everything from dcache lookup, but it's likely to be what
2535 * d_lookup() would've found anyway. If it is, just return it;
2536 * otherwise we really have to repeat the whole thing.
2538 if (unlikely(dentry
->d_name
.hash
!= hash
))
2540 if (unlikely(dentry
->d_parent
!= parent
))
2542 if (unlikely(d_unhashed(dentry
)))
2544 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2546 /* OK, it *is* a hashed match; return it */
2547 spin_unlock(&dentry
->d_lock
);
2552 /* we can't take ->d_lock here; it's OK, though. */
2553 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2555 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2559 spin_unlock(&dentry
->d_lock
);
2563 EXPORT_SYMBOL(d_alloc_parallel
);
2565 void __d_lookup_done(struct dentry
*dentry
)
2567 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2568 dentry
->d_name
.hash
);
2570 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2571 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2572 wake_up_all(dentry
->d_wait
);
2573 dentry
->d_wait
= NULL
;
2575 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2576 INIT_LIST_HEAD(&dentry
->d_lru
);
2578 EXPORT_SYMBOL(__d_lookup_done
);
2580 /* inode->i_lock held if inode is non-NULL */
2582 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2584 struct inode
*dir
= NULL
;
2586 spin_lock(&dentry
->d_lock
);
2587 if (unlikely(d_in_lookup(dentry
))) {
2588 dir
= dentry
->d_parent
->d_inode
;
2589 n
= start_dir_add(dir
);
2590 __d_lookup_done(dentry
);
2593 unsigned add_flags
= d_flags_for_inode(inode
);
2594 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2595 raw_write_seqcount_begin(&dentry
->d_seq
);
2596 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2597 raw_write_seqcount_end(&dentry
->d_seq
);
2598 fsnotify_update_flags(dentry
);
2602 end_dir_add(dir
, n
);
2603 spin_unlock(&dentry
->d_lock
);
2605 spin_unlock(&inode
->i_lock
);
2609 * d_add - add dentry to hash queues
2610 * @entry: dentry to add
2611 * @inode: The inode to attach to this dentry
2613 * This adds the entry to the hash queues and initializes @inode.
2614 * The entry was actually filled in earlier during d_alloc().
2617 void d_add(struct dentry
*entry
, struct inode
*inode
)
2620 security_d_instantiate(entry
, inode
);
2621 spin_lock(&inode
->i_lock
);
2623 __d_add(entry
, inode
);
2625 EXPORT_SYMBOL(d_add
);
2628 * d_exact_alias - find and hash an exact unhashed alias
2629 * @entry: dentry to add
2630 * @inode: The inode to go with this dentry
2632 * If an unhashed dentry with the same name/parent and desired
2633 * inode already exists, hash and return it. Otherwise, return
2636 * Parent directory should be locked.
2638 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2640 struct dentry
*alias
;
2641 unsigned int hash
= entry
->d_name
.hash
;
2643 spin_lock(&inode
->i_lock
);
2644 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2646 * Don't need alias->d_lock here, because aliases with
2647 * d_parent == entry->d_parent are not subject to name or
2648 * parent changes, because the parent inode i_mutex is held.
2650 if (alias
->d_name
.hash
!= hash
)
2652 if (alias
->d_parent
!= entry
->d_parent
)
2654 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2656 spin_lock(&alias
->d_lock
);
2657 if (!d_unhashed(alias
)) {
2658 spin_unlock(&alias
->d_lock
);
2661 __dget_dlock(alias
);
2663 spin_unlock(&alias
->d_lock
);
2665 spin_unlock(&inode
->i_lock
);
2668 spin_unlock(&inode
->i_lock
);
2671 EXPORT_SYMBOL(d_exact_alias
);
2674 * dentry_update_name_case - update case insensitive dentry with a new name
2675 * @dentry: dentry to be updated
2678 * Update a case insensitive dentry with new case of name.
2680 * dentry must have been returned by d_lookup with name @name. Old and new
2681 * name lengths must match (ie. no d_compare which allows mismatched name
2684 * Parent inode i_mutex must be held over d_lookup and into this call (to
2685 * keep renames and concurrent inserts, and readdir(2) away).
2687 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2689 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2690 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2692 spin_lock(&dentry
->d_lock
);
2693 write_seqcount_begin(&dentry
->d_seq
);
2694 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2695 write_seqcount_end(&dentry
->d_seq
);
2696 spin_unlock(&dentry
->d_lock
);
2698 EXPORT_SYMBOL(dentry_update_name_case
);
2700 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2702 if (unlikely(dname_external(target
))) {
2703 if (unlikely(dname_external(dentry
))) {
2705 * Both external: swap the pointers
2707 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2710 * dentry:internal, target:external. Steal target's
2711 * storage and make target internal.
2713 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2714 dentry
->d_name
.len
+ 1);
2715 dentry
->d_name
.name
= target
->d_name
.name
;
2716 target
->d_name
.name
= target
->d_iname
;
2719 if (unlikely(dname_external(dentry
))) {
2721 * dentry:external, target:internal. Give dentry's
2722 * storage to target and make dentry internal
2724 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2725 target
->d_name
.len
+ 1);
2726 target
->d_name
.name
= dentry
->d_name
.name
;
2727 dentry
->d_name
.name
= dentry
->d_iname
;
2730 * Both are internal.
2733 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2734 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2735 swap(((long *) &dentry
->d_iname
)[i
],
2736 ((long *) &target
->d_iname
)[i
]);
2740 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2743 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2745 struct external_name
*old_name
= NULL
;
2746 if (unlikely(dname_external(dentry
)))
2747 old_name
= external_name(dentry
);
2748 if (unlikely(dname_external(target
))) {
2749 atomic_inc(&external_name(target
)->u
.count
);
2750 dentry
->d_name
= target
->d_name
;
2752 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2753 target
->d_name
.len
+ 1);
2754 dentry
->d_name
.name
= dentry
->d_iname
;
2755 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2757 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2758 kfree_rcu(old_name
, u
.head
);
2761 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2764 * XXXX: do we really need to take target->d_lock?
2766 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2767 spin_lock(&target
->d_parent
->d_lock
);
2769 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2770 spin_lock(&dentry
->d_parent
->d_lock
);
2771 spin_lock_nested(&target
->d_parent
->d_lock
,
2772 DENTRY_D_LOCK_NESTED
);
2774 spin_lock(&target
->d_parent
->d_lock
);
2775 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2776 DENTRY_D_LOCK_NESTED
);
2779 if (target
< dentry
) {
2780 spin_lock_nested(&target
->d_lock
, 2);
2781 spin_lock_nested(&dentry
->d_lock
, 3);
2783 spin_lock_nested(&dentry
->d_lock
, 2);
2784 spin_lock_nested(&target
->d_lock
, 3);
2788 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2790 if (target
->d_parent
!= dentry
->d_parent
)
2791 spin_unlock(&dentry
->d_parent
->d_lock
);
2792 if (target
->d_parent
!= target
)
2793 spin_unlock(&target
->d_parent
->d_lock
);
2794 spin_unlock(&target
->d_lock
);
2795 spin_unlock(&dentry
->d_lock
);
2799 * When switching names, the actual string doesn't strictly have to
2800 * be preserved in the target - because we're dropping the target
2801 * anyway. As such, we can just do a simple memcpy() to copy over
2802 * the new name before we switch, unless we are going to rehash
2803 * it. Note that if we *do* unhash the target, we are not allowed
2804 * to rehash it without giving it a new name/hash key - whether
2805 * we swap or overwrite the names here, resulting name won't match
2806 * the reality in filesystem; it's only there for d_path() purposes.
2807 * Note that all of this is happening under rename_lock, so the
2808 * any hash lookup seeing it in the middle of manipulations will
2809 * be discarded anyway. So we do not care what happens to the hash
2813 * __d_move - move a dentry
2814 * @dentry: entry to move
2815 * @target: new dentry
2816 * @exchange: exchange the two dentries
2818 * Update the dcache to reflect the move of a file name. Negative
2819 * dcache entries should not be moved in this way. Caller must hold
2820 * rename_lock, the i_mutex of the source and target directories,
2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2823 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2826 struct inode
*dir
= NULL
;
2828 if (!dentry
->d_inode
)
2829 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2831 BUG_ON(d_ancestor(dentry
, target
));
2832 BUG_ON(d_ancestor(target
, dentry
));
2834 dentry_lock_for_move(dentry
, target
);
2835 if (unlikely(d_in_lookup(target
))) {
2836 dir
= target
->d_parent
->d_inode
;
2837 n
= start_dir_add(dir
);
2838 __d_lookup_done(target
);
2841 write_seqcount_begin(&dentry
->d_seq
);
2842 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2845 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2849 /* Switch the names.. */
2851 swap_names(dentry
, target
);
2853 copy_name(dentry
, target
);
2855 /* rehash in new place(s) */
2860 target
->d_hash
.pprev
= NULL
;
2862 /* ... and switch them in the tree */
2863 if (IS_ROOT(dentry
)) {
2864 /* splicing a tree */
2865 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2866 dentry
->d_parent
= target
->d_parent
;
2867 target
->d_parent
= target
;
2868 list_del_init(&target
->d_child
);
2869 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2871 /* swapping two dentries */
2872 swap(dentry
->d_parent
, target
->d_parent
);
2873 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2874 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2876 fsnotify_update_flags(target
);
2877 fsnotify_update_flags(dentry
);
2880 write_seqcount_end(&target
->d_seq
);
2881 write_seqcount_end(&dentry
->d_seq
);
2884 end_dir_add(dir
, n
);
2885 dentry_unlock_for_move(dentry
, target
);
2889 * d_move - move a dentry
2890 * @dentry: entry to move
2891 * @target: new dentry
2893 * Update the dcache to reflect the move of a file name. Negative
2894 * dcache entries should not be moved in this way. See the locking
2895 * requirements for __d_move.
2897 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2899 write_seqlock(&rename_lock
);
2900 __d_move(dentry
, target
, false);
2901 write_sequnlock(&rename_lock
);
2903 EXPORT_SYMBOL(d_move
);
2906 * d_exchange - exchange two dentries
2907 * @dentry1: first dentry
2908 * @dentry2: second dentry
2910 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2912 write_seqlock(&rename_lock
);
2914 WARN_ON(!dentry1
->d_inode
);
2915 WARN_ON(!dentry2
->d_inode
);
2916 WARN_ON(IS_ROOT(dentry1
));
2917 WARN_ON(IS_ROOT(dentry2
));
2919 __d_move(dentry1
, dentry2
, true);
2921 write_sequnlock(&rename_lock
);
2925 * d_ancestor - search for an ancestor
2926 * @p1: ancestor dentry
2929 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2930 * an ancestor of p2, else NULL.
2932 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2936 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2937 if (p
->d_parent
== p1
)
2944 * This helper attempts to cope with remotely renamed directories
2946 * It assumes that the caller is already holding
2947 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2949 * Note: If ever the locking in lock_rename() changes, then please
2950 * remember to update this too...
2952 static int __d_unalias(struct inode
*inode
,
2953 struct dentry
*dentry
, struct dentry
*alias
)
2955 struct mutex
*m1
= NULL
;
2956 struct rw_semaphore
*m2
= NULL
;
2959 /* If alias and dentry share a parent, then no extra locks required */
2960 if (alias
->d_parent
== dentry
->d_parent
)
2963 /* See lock_rename() */
2964 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2966 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2967 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2969 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2971 __d_move(alias
, dentry
, false);
2982 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2983 * @inode: the inode which may have a disconnected dentry
2984 * @dentry: a negative dentry which we want to point to the inode.
2986 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2987 * place of the given dentry and return it, else simply d_add the inode
2988 * to the dentry and return NULL.
2990 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2991 * we should error out: directories can't have multiple aliases.
2993 * This is needed in the lookup routine of any filesystem that is exportable
2994 * (via knfsd) so that we can build dcache paths to directories effectively.
2996 * If a dentry was found and moved, then it is returned. Otherwise NULL
2997 * is returned. This matches the expected return value of ->lookup.
2999 * Cluster filesystems may call this function with a negative, hashed dentry.
3000 * In that case, we know that the inode will be a regular file, and also this
3001 * will only occur during atomic_open. So we need to check for the dentry
3002 * being already hashed only in the final case.
3004 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
3007 return ERR_CAST(inode
);
3009 BUG_ON(!d_unhashed(dentry
));
3014 security_d_instantiate(dentry
, inode
);
3015 spin_lock(&inode
->i_lock
);
3016 if (S_ISDIR(inode
->i_mode
)) {
3017 struct dentry
*new = __d_find_any_alias(inode
);
3018 if (unlikely(new)) {
3019 /* The reference to new ensures it remains an alias */
3020 spin_unlock(&inode
->i_lock
);
3021 write_seqlock(&rename_lock
);
3022 if (unlikely(d_ancestor(new, dentry
))) {
3023 write_sequnlock(&rename_lock
);
3025 new = ERR_PTR(-ELOOP
);
3026 pr_warn_ratelimited(
3027 "VFS: Lookup of '%s' in %s %s"
3028 " would have caused loop\n",
3029 dentry
->d_name
.name
,
3030 inode
->i_sb
->s_type
->name
,
3032 } else if (!IS_ROOT(new)) {
3033 int err
= __d_unalias(inode
, dentry
, new);
3034 write_sequnlock(&rename_lock
);
3040 __d_move(new, dentry
, false);
3041 write_sequnlock(&rename_lock
);
3048 __d_add(dentry
, inode
);
3051 EXPORT_SYMBOL(d_splice_alias
);
3053 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3057 return -ENAMETOOLONG
;
3059 memcpy(*buffer
, str
, namelen
);
3064 * prepend_name - prepend a pathname in front of current buffer pointer
3065 * @buffer: buffer pointer
3066 * @buflen: allocated length of the buffer
3067 * @name: name string and length qstr structure
3069 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3070 * make sure that either the old or the new name pointer and length are
3071 * fetched. However, there may be mismatch between length and pointer.
3072 * The length cannot be trusted, we need to copy it byte-by-byte until
3073 * the length is reached or a null byte is found. It also prepends "/" at
3074 * the beginning of the name. The sequence number check at the caller will
3075 * retry it again when a d_move() does happen. So any garbage in the buffer
3076 * due to mismatched pointer and length will be discarded.
3078 * Load acquire is needed to make sure that we see that terminating NUL.
3080 static int prepend_name(char **buffer
, int *buflen
, const struct qstr
*name
)
3082 const char *dname
= smp_load_acquire(&name
->name
); /* ^^^ */
3083 u32 dlen
= READ_ONCE(name
->len
);
3086 *buflen
-= dlen
+ 1;
3088 return -ENAMETOOLONG
;
3089 p
= *buffer
-= dlen
+ 1;
3101 * prepend_path - Prepend path string to a buffer
3102 * @path: the dentry/vfsmount to report
3103 * @root: root vfsmnt/dentry
3104 * @buffer: pointer to the end of the buffer
3105 * @buflen: pointer to buffer length
3107 * The function will first try to write out the pathname without taking any
3108 * lock other than the RCU read lock to make sure that dentries won't go away.
3109 * It only checks the sequence number of the global rename_lock as any change
3110 * in the dentry's d_seq will be preceded by changes in the rename_lock
3111 * sequence number. If the sequence number had been changed, it will restart
3112 * the whole pathname back-tracing sequence again by taking the rename_lock.
3113 * In this case, there is no need to take the RCU read lock as the recursive
3114 * parent pointer references will keep the dentry chain alive as long as no
3115 * rename operation is performed.
3117 static int prepend_path(const struct path
*path
,
3118 const struct path
*root
,
3119 char **buffer
, int *buflen
)
3121 struct dentry
*dentry
;
3122 struct vfsmount
*vfsmnt
;
3125 unsigned seq
, m_seq
= 0;
3131 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3138 dentry
= path
->dentry
;
3140 mnt
= real_mount(vfsmnt
);
3141 read_seqbegin_or_lock(&rename_lock
, &seq
);
3142 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3143 struct dentry
* parent
;
3145 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3146 struct mount
*parent
= READ_ONCE(mnt
->mnt_parent
);
3148 if (dentry
!= vfsmnt
->mnt_root
) {
3155 if (mnt
!= parent
) {
3156 dentry
= READ_ONCE(mnt
->mnt_mountpoint
);
3162 error
= is_mounted(vfsmnt
) ? 1 : 2;
3165 parent
= dentry
->d_parent
;
3167 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3175 if (need_seqretry(&rename_lock
, seq
)) {
3179 done_seqretry(&rename_lock
, seq
);
3183 if (need_seqretry(&mount_lock
, m_seq
)) {
3187 done_seqretry(&mount_lock
, m_seq
);
3189 if (error
>= 0 && bptr
== *buffer
) {
3191 error
= -ENAMETOOLONG
;
3201 * __d_path - return the path of a dentry
3202 * @path: the dentry/vfsmount to report
3203 * @root: root vfsmnt/dentry
3204 * @buf: buffer to return value in
3205 * @buflen: buffer length
3207 * Convert a dentry into an ASCII path name.
3209 * Returns a pointer into the buffer or an error code if the
3210 * path was too long.
3212 * "buflen" should be positive.
3214 * If the path is not reachable from the supplied root, return %NULL.
3216 char *__d_path(const struct path
*path
,
3217 const struct path
*root
,
3218 char *buf
, int buflen
)
3220 char *res
= buf
+ buflen
;
3223 prepend(&res
, &buflen
, "\0", 1);
3224 error
= prepend_path(path
, root
, &res
, &buflen
);
3227 return ERR_PTR(error
);
3233 char *d_absolute_path(const struct path
*path
,
3234 char *buf
, int buflen
)
3236 struct path root
= {};
3237 char *res
= buf
+ buflen
;
3240 prepend(&res
, &buflen
, "\0", 1);
3241 error
= prepend_path(path
, &root
, &res
, &buflen
);
3246 return ERR_PTR(error
);
3251 * same as __d_path but appends "(deleted)" for unlinked files.
3253 static int path_with_deleted(const struct path
*path
,
3254 const struct path
*root
,
3255 char **buf
, int *buflen
)
3257 prepend(buf
, buflen
, "\0", 1);
3258 if (d_unlinked(path
->dentry
)) {
3259 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3264 return prepend_path(path
, root
, buf
, buflen
);
3267 static int prepend_unreachable(char **buffer
, int *buflen
)
3269 return prepend(buffer
, buflen
, "(unreachable)", 13);
3272 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3277 seq
= read_seqcount_begin(&fs
->seq
);
3279 } while (read_seqcount_retry(&fs
->seq
, seq
));
3283 * d_path - return the path of a dentry
3284 * @path: path to report
3285 * @buf: buffer to return value in
3286 * @buflen: buffer length
3288 * Convert a dentry into an ASCII path name. If the entry has been deleted
3289 * the string " (deleted)" is appended. Note that this is ambiguous.
3291 * Returns a pointer into the buffer or an error code if the path was
3292 * too long. Note: Callers should use the returned pointer, not the passed
3293 * in buffer, to use the name! The implementation often starts at an offset
3294 * into the buffer, and may leave 0 bytes at the start.
3296 * "buflen" should be positive.
3298 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3300 char *res
= buf
+ buflen
;
3305 * We have various synthetic filesystems that never get mounted. On
3306 * these filesystems dentries are never used for lookup purposes, and
3307 * thus don't need to be hashed. They also don't need a name until a
3308 * user wants to identify the object in /proc/pid/fd/. The little hack
3309 * below allows us to generate a name for these objects on demand:
3311 * Some pseudo inodes are mountable. When they are mounted
3312 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3313 * and instead have d_path return the mounted path.
3315 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3316 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3317 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3320 get_fs_root_rcu(current
->fs
, &root
);
3321 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3325 res
= ERR_PTR(error
);
3328 EXPORT_SYMBOL(d_path
);
3331 * Helper function for dentry_operations.d_dname() members
3333 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3334 const char *fmt
, ...)
3340 va_start(args
, fmt
);
3341 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3344 if (sz
> sizeof(temp
) || sz
> buflen
)
3345 return ERR_PTR(-ENAMETOOLONG
);
3347 buffer
+= buflen
- sz
;
3348 return memcpy(buffer
, temp
, sz
);
3351 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3353 char *end
= buffer
+ buflen
;
3354 /* these dentries are never renamed, so d_lock is not needed */
3355 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3356 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3357 prepend(&end
, &buflen
, "/", 1))
3358 end
= ERR_PTR(-ENAMETOOLONG
);
3361 EXPORT_SYMBOL(simple_dname
);
3364 * Write full pathname from the root of the filesystem into the buffer.
3366 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3368 struct dentry
*dentry
;
3381 prepend(&end
, &len
, "\0", 1);
3385 read_seqbegin_or_lock(&rename_lock
, &seq
);
3386 while (!IS_ROOT(dentry
)) {
3387 struct dentry
*parent
= dentry
->d_parent
;
3390 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3399 if (need_seqretry(&rename_lock
, seq
)) {
3403 done_seqretry(&rename_lock
, seq
);
3408 return ERR_PTR(-ENAMETOOLONG
);
3411 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3413 return __dentry_path(dentry
, buf
, buflen
);
3415 EXPORT_SYMBOL(dentry_path_raw
);
3417 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3422 if (d_unlinked(dentry
)) {
3424 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3428 retval
= __dentry_path(dentry
, buf
, buflen
);
3429 if (!IS_ERR(retval
) && p
)
3430 *p
= '/'; /* restore '/' overriden with '\0' */
3433 return ERR_PTR(-ENAMETOOLONG
);
3436 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3442 seq
= read_seqcount_begin(&fs
->seq
);
3445 } while (read_seqcount_retry(&fs
->seq
, seq
));
3449 * NOTE! The user-level library version returns a
3450 * character pointer. The kernel system call just
3451 * returns the length of the buffer filled (which
3452 * includes the ending '\0' character), or a negative
3453 * error value. So libc would do something like
3455 * char *getcwd(char * buf, size_t size)
3459 * retval = sys_getcwd(buf, size);
3466 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3469 struct path pwd
, root
;
3470 char *page
= __getname();
3476 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3479 if (!d_unlinked(pwd
.dentry
)) {
3481 char *cwd
= page
+ PATH_MAX
;
3482 int buflen
= PATH_MAX
;
3484 prepend(&cwd
, &buflen
, "\0", 1);
3485 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3491 /* Unreachable from current root */
3493 error
= prepend_unreachable(&cwd
, &buflen
);
3499 len
= PATH_MAX
+ page
- cwd
;
3502 if (copy_to_user(buf
, cwd
, len
))
3515 * Test whether new_dentry is a subdirectory of old_dentry.
3517 * Trivially implemented using the dcache structure
3521 * is_subdir - is new dentry a subdirectory of old_dentry
3522 * @new_dentry: new dentry
3523 * @old_dentry: old dentry
3525 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3526 * Returns false otherwise.
3527 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3530 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3535 if (new_dentry
== old_dentry
)
3539 /* for restarting inner loop in case of seq retry */
3540 seq
= read_seqbegin(&rename_lock
);
3542 * Need rcu_readlock to protect against the d_parent trashing
3546 if (d_ancestor(old_dentry
, new_dentry
))
3551 } while (read_seqretry(&rename_lock
, seq
));
3555 EXPORT_SYMBOL(is_subdir
);
3557 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3559 struct dentry
*root
= data
;
3560 if (dentry
!= root
) {
3561 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3564 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3565 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3566 dentry
->d_lockref
.count
--;
3569 return D_WALK_CONTINUE
;
3572 void d_genocide(struct dentry
*parent
)
3574 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3577 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3579 inode_dec_link_count(inode
);
3580 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3581 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3582 !d_unlinked(dentry
));
3583 spin_lock(&dentry
->d_parent
->d_lock
);
3584 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3585 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3586 (unsigned long long)inode
->i_ino
);
3587 spin_unlock(&dentry
->d_lock
);
3588 spin_unlock(&dentry
->d_parent
->d_lock
);
3589 d_instantiate(dentry
, inode
);
3591 EXPORT_SYMBOL(d_tmpfile
);
3593 static __initdata
unsigned long dhash_entries
;
3594 static int __init
set_dhash_entries(char *str
)
3598 dhash_entries
= simple_strtoul(str
, &str
, 0);
3601 __setup("dhash_entries=", set_dhash_entries
);
3603 static void __init
dcache_init_early(void)
3605 /* If hashes are distributed across NUMA nodes, defer
3606 * hash allocation until vmalloc space is available.
3612 alloc_large_system_hash("Dentry cache",
3613 sizeof(struct hlist_bl_head
),
3616 HASH_EARLY
| HASH_ZERO
,
3621 d_hash_shift
= 32 - d_hash_shift
;
3624 static void __init
dcache_init(void)
3627 * A constructor could be added for stable state like the lists,
3628 * but it is probably not worth it because of the cache nature
3631 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3632 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
,
3635 /* Hash may have been set up in dcache_init_early */
3640 alloc_large_system_hash("Dentry cache",
3641 sizeof(struct hlist_bl_head
),
3649 d_hash_shift
= 32 - d_hash_shift
;
3652 /* SLAB cache for __getname() consumers */
3653 struct kmem_cache
*names_cachep __read_mostly
;
3654 EXPORT_SYMBOL(names_cachep
);
3656 EXPORT_SYMBOL(d_genocide
);
3658 void __init
vfs_caches_init_early(void)
3662 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3663 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3665 dcache_init_early();
3669 void __init
vfs_caches_init(void)
3671 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3672 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3677 files_maxfiles_init();