2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/sched/signal.h>
24 #include "trace_gfs2.h"
27 * gfs2_update_stats - Update time based stats
28 * @mv: Pointer to mean/variance structure to update
29 * @sample: New data to include
31 * @delta is the difference between the current rtt sample and the
32 * running average srtt. We add 1/8 of that to the srtt in order to
33 * update the current srtt estimate. The variance estimate is a bit
34 * more complicated. We subtract the abs value of the @delta from
35 * the current variance estimate and add 1/4 of that to the running
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
46 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
49 s64 delta
= sample
- s
->stats
[index
];
50 s
->stats
[index
] += (delta
>> 3);
52 s
->stats
[index
] += ((abs(delta
) - s
->stats
[index
]) >> 2);
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
59 * This assumes that gl->gl_dstamp has been set earlier.
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
72 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
74 struct gfs2_pcpu_lkstats
*lks
;
75 const unsigned gltype
= gl
->gl_name
.ln_type
;
76 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
77 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
81 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
82 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
83 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
84 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
87 trace_gfs2_glock_lock_time(gl
, rtt
);
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
99 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
101 struct gfs2_pcpu_lkstats
*lks
;
102 const unsigned gltype
= gl
->gl_name
.ln_type
;
107 dstamp
= gl
->gl_dstamp
;
108 gl
->gl_dstamp
= ktime_get_real();
109 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
110 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
111 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
112 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
116 static void gdlm_ast(void *arg
)
118 struct gfs2_glock
*gl
= arg
;
119 unsigned ret
= gl
->gl_state
;
121 gfs2_update_reply_times(gl
);
122 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
124 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
125 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
127 switch (gl
->gl_lksb
.sb_status
) {
128 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
131 case -DLM_ECANCEL
: /* Cancel while getting lock */
132 ret
|= LM_OUT_CANCELED
;
134 case -EAGAIN
: /* Try lock fails */
135 case -EDEADLK
: /* Deadlock detected */
137 case -ETIMEDOUT
: /* Canceled due to timeout */
140 case 0: /* Success */
142 default: /* Something unexpected */
147 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
148 if (gl
->gl_req
== LM_ST_SHARED
)
149 ret
= LM_ST_DEFERRED
;
150 else if (gl
->gl_req
== LM_ST_DEFERRED
)
156 set_bit(GLF_INITIAL
, &gl
->gl_flags
);
157 gfs2_glock_complete(gl
, ret
);
160 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
))
161 gl
->gl_lksb
.sb_lkid
= 0;
162 gfs2_glock_complete(gl
, ret
);
165 static void gdlm_bast(void *arg
, int mode
)
167 struct gfs2_glock
*gl
= arg
;
171 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
174 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
177 gfs2_glock_cb(gl
, LM_ST_SHARED
);
180 pr_err("unknown bast mode %d\n", mode
);
185 /* convert gfs lock-state to dlm lock-mode */
187 static int make_mode(const unsigned int lmstate
)
192 case LM_ST_EXCLUSIVE
:
199 pr_err("unknown LM state %d\n", lmstate
);
204 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
209 if (gl
->gl_lksb
.sb_lvbptr
)
210 lkf
|= DLM_LKF_VALBLK
;
212 if (gfs_flags
& LM_FLAG_TRY
)
213 lkf
|= DLM_LKF_NOQUEUE
;
215 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
216 lkf
|= DLM_LKF_NOQUEUE
;
217 lkf
|= DLM_LKF_NOQUEUEBAST
;
220 if (gfs_flags
& LM_FLAG_PRIORITY
) {
221 lkf
|= DLM_LKF_NOORDER
;
222 lkf
|= DLM_LKF_HEADQUE
;
225 if (gfs_flags
& LM_FLAG_ANY
) {
226 if (req
== DLM_LOCK_PR
)
227 lkf
|= DLM_LKF_ALTCW
;
228 else if (req
== DLM_LOCK_CW
)
229 lkf
|= DLM_LKF_ALTPR
;
234 if (gl
->gl_lksb
.sb_lkid
!= 0) {
235 lkf
|= DLM_LKF_CONVERT
;
236 if (test_bit(GLF_BLOCKING
, &gl
->gl_flags
))
237 lkf
|= DLM_LKF_QUECVT
;
243 static void gfs2_reverse_hex(char *c
, u64 value
)
247 *c
-- = hex_asc
[value
& 0x0f];
252 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
255 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
258 char strname
[GDLM_STRNAME_BYTES
] = "";
260 req
= make_mode(req_state
);
261 lkf
= make_flags(gl
, flags
, req
);
262 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
263 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
264 if (gl
->gl_lksb
.sb_lkid
) {
265 gfs2_update_request_times(gl
);
267 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
268 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
269 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
270 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
271 gl
->gl_dstamp
= ktime_get_real();
274 * Submit the actual lock request.
277 return dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
278 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
281 static void gdlm_put_lock(struct gfs2_glock
*gl
)
283 struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
284 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
285 int lvb_needs_unlock
= 0;
288 if (gl
->gl_lksb
.sb_lkid
== 0) {
293 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
294 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
295 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
296 gfs2_update_request_times(gl
);
298 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
300 if (gl
->gl_lksb
.sb_lvbptr
&& (gl
->gl_state
== LM_ST_EXCLUSIVE
))
301 lvb_needs_unlock
= 1;
303 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
309 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
312 pr_err("gdlm_unlock %x,%llx err=%d\n",
314 (unsigned long long)gl
->gl_name
.ln_number
, error
);
319 static void gdlm_cancel(struct gfs2_glock
*gl
)
321 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
322 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
326 * dlm/gfs2 recovery coordination using dlm_recover callbacks
328 * 1. dlm_controld sees lockspace members change
329 * 2. dlm_controld blocks dlm-kernel locking activity
330 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
331 * 4. dlm_controld starts and finishes its own user level recovery
332 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
333 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
334 * 7. dlm_recoverd does its own lock recovery
335 * 8. dlm_recoverd unblocks dlm-kernel locking activity
336 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
337 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
338 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
339 * 12. gfs2_recover dequeues and recovers journals of failed nodes
340 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
341 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
342 * 15. gfs2_control unblocks normal locking when all journals are recovered
344 * - failures during recovery
346 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
347 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
348 * recovering for a prior failure. gfs2_control needs a way to detect
349 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
350 * the recover_block and recover_start values.
352 * recover_done() provides a new lockspace generation number each time it
353 * is called (step 9). This generation number is saved as recover_start.
354 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
355 * recover_block = recover_start. So, while recover_block is equal to
356 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
357 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
359 * - more specific gfs2 steps in sequence above
361 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
362 * 6. recover_slot records any failed jids (maybe none)
363 * 9. recover_done sets recover_start = new generation number
364 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
365 * 12. gfs2_recover does journal recoveries for failed jids identified above
366 * 14. gfs2_control clears control_lock lvb bits for recovered jids
367 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
368 * again) then do nothing, otherwise if recover_start > recover_block
369 * then clear BLOCK_LOCKS.
371 * - parallel recovery steps across all nodes
373 * All nodes attempt to update the control_lock lvb with the new generation
374 * number and jid bits, but only the first to get the control_lock EX will
375 * do so; others will see that it's already done (lvb already contains new
376 * generation number.)
378 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
379 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
380 * . One node gets control_lock first and writes the lvb, others see it's done
381 * . All nodes attempt to recover jids for which they see control_lock bits set
382 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
383 * . All nodes will eventually see all lvb bits clear and unblock locks
385 * - is there a problem with clearing an lvb bit that should be set
386 * and missing a journal recovery?
389 * 2. lvb bit set for step 1
390 * 3. jid recovered for step 1
391 * 4. jid taken again (new mount)
392 * 5. jid fails (for step 4)
393 * 6. lvb bit set for step 5 (will already be set)
394 * 7. lvb bit cleared for step 3
396 * This is not a problem because the failure in step 5 does not
397 * require recovery, because the mount in step 4 could not have
398 * progressed far enough to unblock locks and access the fs. The
399 * control_mount() function waits for all recoveries to be complete
400 * for the latest lockspace generation before ever unblocking locks
401 * and returning. The mount in step 4 waits until the recovery in
404 * - special case of first mounter: first node to mount the fs
406 * The first node to mount a gfs2 fs needs to check all the journals
407 * and recover any that need recovery before other nodes are allowed
408 * to mount the fs. (Others may begin mounting, but they must wait
409 * for the first mounter to be done before taking locks on the fs
410 * or accessing the fs.) This has two parts:
412 * 1. The mounted_lock tells a node it's the first to mount the fs.
413 * Each node holds the mounted_lock in PR while it's mounted.
414 * Each node tries to acquire the mounted_lock in EX when it mounts.
415 * If a node is granted the mounted_lock EX it means there are no
416 * other mounted nodes (no PR locks exist), and it is the first mounter.
417 * The mounted_lock is demoted to PR when first recovery is done, so
418 * others will fail to get an EX lock, but will get a PR lock.
420 * 2. The control_lock blocks others in control_mount() while the first
421 * mounter is doing first mount recovery of all journals.
422 * A mounting node needs to acquire control_lock in EX mode before
423 * it can proceed. The first mounter holds control_lock in EX while doing
424 * the first mount recovery, blocking mounts from other nodes, then demotes
425 * control_lock to NL when it's done (others_may_mount/first_done),
426 * allowing other nodes to continue mounting.
429 * control_lock EX/NOQUEUE success
430 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
432 * do first mounter recovery
433 * mounted_lock EX->PR
434 * control_lock EX->NL, write lvb generation
437 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
438 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
439 * mounted_lock PR/NOQUEUE success
440 * read lvb generation
441 * control_lock EX->NL
444 * - mount during recovery
446 * If a node mounts while others are doing recovery (not first mounter),
447 * the mounting node will get its initial recover_done() callback without
448 * having seen any previous failures/callbacks.
450 * It must wait for all recoveries preceding its mount to be finished
451 * before it unblocks locks. It does this by repeating the "other mounter"
452 * steps above until the lvb generation number is >= its mount generation
453 * number (from initial recover_done) and all lvb bits are clear.
455 * - control_lock lvb format
457 * 4 bytes generation number: the latest dlm lockspace generation number
458 * from recover_done callback. Indicates the jid bitmap has been updated
459 * to reflect all slot failures through that generation.
461 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
462 * that jid N needs recovery.
465 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
467 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
471 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
472 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
473 *lvb_gen
= le32_to_cpu(gen
);
476 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
480 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
481 gen
= cpu_to_le32(lvb_gen
);
482 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
485 static int all_jid_bits_clear(char *lvb
)
487 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
488 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
491 static void sync_wait_cb(void *arg
)
493 struct lm_lockstruct
*ls
= arg
;
494 complete(&ls
->ls_sync_wait
);
497 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
499 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
502 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
504 fs_err(sdp
, "%s lkid %x error %d\n",
505 name
, lksb
->sb_lkid
, error
);
509 wait_for_completion(&ls
->ls_sync_wait
);
511 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
512 fs_err(sdp
, "%s lkid %x status %d\n",
513 name
, lksb
->sb_lkid
, lksb
->sb_status
);
519 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
520 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
522 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
523 char strname
[GDLM_STRNAME_BYTES
];
526 memset(strname
, 0, GDLM_STRNAME_BYTES
);
527 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
529 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
530 strname
, GDLM_STRNAME_BYTES
- 1,
531 0, sync_wait_cb
, ls
, NULL
);
533 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
534 name
, lksb
->sb_lkid
, flags
, mode
, error
);
538 wait_for_completion(&ls
->ls_sync_wait
);
540 status
= lksb
->sb_status
;
542 if (status
&& status
!= -EAGAIN
) {
543 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
544 name
, lksb
->sb_lkid
, flags
, mode
, status
);
550 static int mounted_unlock(struct gfs2_sbd
*sdp
)
552 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
553 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
556 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
558 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
559 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
560 &ls
->ls_mounted_lksb
, "mounted_lock");
563 static int control_unlock(struct gfs2_sbd
*sdp
)
565 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
566 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
569 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
571 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
572 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
573 &ls
->ls_control_lksb
, "control_lock");
576 static void gfs2_control_func(struct work_struct
*work
)
578 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
579 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
580 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
586 spin_lock(&ls
->ls_recover_spin
);
588 * No MOUNT_DONE means we're still mounting; control_mount()
589 * will set this flag, after which this thread will take over
590 * all further clearing of BLOCK_LOCKS.
592 * FIRST_MOUNT means this node is doing first mounter recovery,
593 * for which recovery control is handled by
594 * control_mount()/control_first_done(), not this thread.
596 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
597 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
598 spin_unlock(&ls
->ls_recover_spin
);
601 block_gen
= ls
->ls_recover_block
;
602 start_gen
= ls
->ls_recover_start
;
603 spin_unlock(&ls
->ls_recover_spin
);
606 * Equal block_gen and start_gen implies we are between
607 * recover_prep and recover_done callbacks, which means
608 * dlm recovery is in progress and dlm locking is blocked.
609 * There's no point trying to do any work until recover_done.
612 if (block_gen
== start_gen
)
616 * Propagate recover_submit[] and recover_result[] to lvb:
617 * dlm_recoverd adds to recover_submit[] jids needing recovery
618 * gfs2_recover adds to recover_result[] journal recovery results
620 * set lvb bit for jids in recover_submit[] if the lvb has not
621 * yet been updated for the generation of the failure
623 * clear lvb bit for jids in recover_result[] if the result of
624 * the journal recovery is SUCCESS
627 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
629 fs_err(sdp
, "control lock EX error %d\n", error
);
633 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
635 spin_lock(&ls
->ls_recover_spin
);
636 if (block_gen
!= ls
->ls_recover_block
||
637 start_gen
!= ls
->ls_recover_start
) {
638 fs_info(sdp
, "recover generation %u block1 %u %u\n",
639 start_gen
, block_gen
, ls
->ls_recover_block
);
640 spin_unlock(&ls
->ls_recover_spin
);
641 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
645 recover_size
= ls
->ls_recover_size
;
647 if (lvb_gen
<= start_gen
) {
649 * Clear lvb bits for jids we've successfully recovered.
650 * Because all nodes attempt to recover failed journals,
651 * a journal can be recovered multiple times successfully
652 * in succession. Only the first will really do recovery,
653 * the others find it clean, but still report a successful
654 * recovery. So, another node may have already recovered
655 * the jid and cleared the lvb bit for it.
657 for (i
= 0; i
< recover_size
; i
++) {
658 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
661 ls
->ls_recover_result
[i
] = 0;
663 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
666 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
671 if (lvb_gen
== start_gen
) {
673 * Failed slots before start_gen are already set in lvb.
675 for (i
= 0; i
< recover_size
; i
++) {
676 if (!ls
->ls_recover_submit
[i
])
678 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
679 ls
->ls_recover_submit
[i
] = 0;
681 } else if (lvb_gen
< start_gen
) {
683 * Failed slots before start_gen are not yet set in lvb.
685 for (i
= 0; i
< recover_size
; i
++) {
686 if (!ls
->ls_recover_submit
[i
])
688 if (ls
->ls_recover_submit
[i
] < start_gen
) {
689 ls
->ls_recover_submit
[i
] = 0;
690 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
693 /* even if there are no bits to set, we need to write the
694 latest generation to the lvb */
698 * we should be getting a recover_done() for lvb_gen soon
701 spin_unlock(&ls
->ls_recover_spin
);
704 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
705 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
707 flags
= DLM_LKF_CONVERT
;
710 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
712 fs_err(sdp
, "control lock NL error %d\n", error
);
717 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
718 * and clear a jid bit in the lvb if the recovery is a success.
719 * Eventually all journals will be recovered, all jid bits will
720 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
723 for (i
= 0; i
< recover_size
; i
++) {
724 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
725 fs_info(sdp
, "recover generation %u jid %d\n",
727 gfs2_recover_set(sdp
, i
);
735 * No more jid bits set in lvb, all recovery is done, unblock locks
736 * (unless a new recover_prep callback has occured blocking locks
737 * again while working above)
740 spin_lock(&ls
->ls_recover_spin
);
741 if (ls
->ls_recover_block
== block_gen
&&
742 ls
->ls_recover_start
== start_gen
) {
743 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
744 spin_unlock(&ls
->ls_recover_spin
);
745 fs_info(sdp
, "recover generation %u done\n", start_gen
);
746 gfs2_glock_thaw(sdp
);
748 fs_info(sdp
, "recover generation %u block2 %u %u\n",
749 start_gen
, block_gen
, ls
->ls_recover_block
);
750 spin_unlock(&ls
->ls_recover_spin
);
754 static int control_mount(struct gfs2_sbd
*sdp
)
756 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
757 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
762 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
763 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
764 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
765 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
766 init_completion(&ls
->ls_sync_wait
);
768 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
770 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
772 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
776 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
778 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
782 mounted_mode
= DLM_LOCK_NL
;
785 if (retries
++ && signal_pending(current
)) {
791 * We always start with both locks in NL. control_lock is
792 * demoted to NL below so we don't need to do it here.
795 if (mounted_mode
!= DLM_LOCK_NL
) {
796 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
799 mounted_mode
= DLM_LOCK_NL
;
803 * Other nodes need to do some work in dlm recovery and gfs2_control
804 * before the recover_done and control_lock will be ready for us below.
805 * A delay here is not required but often avoids having to retry.
808 msleep_interruptible(500);
811 * Acquire control_lock in EX and mounted_lock in either EX or PR.
812 * control_lock lvb keeps track of any pending journal recoveries.
813 * mounted_lock indicates if any other nodes have the fs mounted.
816 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
817 if (error
== -EAGAIN
) {
820 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
824 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
826 mounted_mode
= DLM_LOCK_EX
;
828 } else if (error
!= -EAGAIN
) {
829 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
833 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
835 mounted_mode
= DLM_LOCK_PR
;
838 /* not even -EAGAIN should happen here */
839 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
845 * If we got both locks above in EX, then we're the first mounter.
846 * If not, then we need to wait for the control_lock lvb to be
847 * updated by other mounted nodes to reflect our mount generation.
849 * In simple first mounter cases, first mounter will see zero lvb_gen,
850 * but in cases where all existing nodes leave/fail before mounting
851 * nodes finish control_mount, then all nodes will be mounting and
852 * lvb_gen will be non-zero.
855 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
857 if (lvb_gen
== 0xFFFFFFFF) {
858 /* special value to force mount attempts to fail */
859 fs_err(sdp
, "control_mount control_lock disabled\n");
864 if (mounted_mode
== DLM_LOCK_EX
) {
865 /* first mounter, keep both EX while doing first recovery */
866 spin_lock(&ls
->ls_recover_spin
);
867 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
868 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
869 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
870 spin_unlock(&ls
->ls_recover_spin
);
871 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
875 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
880 * We are not first mounter, now we need to wait for the control_lock
881 * lvb generation to be >= the generation from our first recover_done
882 * and all lvb bits to be clear (no pending journal recoveries.)
885 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
886 /* journals need recovery, wait until all are clear */
887 fs_info(sdp
, "control_mount wait for journal recovery\n");
891 spin_lock(&ls
->ls_recover_spin
);
892 block_gen
= ls
->ls_recover_block
;
893 start_gen
= ls
->ls_recover_start
;
894 mount_gen
= ls
->ls_recover_mount
;
896 if (lvb_gen
< mount_gen
) {
897 /* wait for mounted nodes to update control_lock lvb to our
898 generation, which might include new recovery bits set */
899 fs_info(sdp
, "control_mount wait1 block %u start %u mount %u "
900 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
901 lvb_gen
, ls
->ls_recover_flags
);
902 spin_unlock(&ls
->ls_recover_spin
);
906 if (lvb_gen
!= start_gen
) {
907 /* wait for mounted nodes to update control_lock lvb to the
908 latest recovery generation */
909 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
910 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
911 lvb_gen
, ls
->ls_recover_flags
);
912 spin_unlock(&ls
->ls_recover_spin
);
916 if (block_gen
== start_gen
) {
917 /* dlm recovery in progress, wait for it to finish */
918 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
919 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
920 lvb_gen
, ls
->ls_recover_flags
);
921 spin_unlock(&ls
->ls_recover_spin
);
925 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
926 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
927 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
928 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
929 spin_unlock(&ls
->ls_recover_spin
);
938 static int control_first_done(struct gfs2_sbd
*sdp
)
940 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
941 uint32_t start_gen
, block_gen
;
945 spin_lock(&ls
->ls_recover_spin
);
946 start_gen
= ls
->ls_recover_start
;
947 block_gen
= ls
->ls_recover_block
;
949 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
950 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
951 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
952 /* sanity check, should not happen */
953 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
954 start_gen
, block_gen
, ls
->ls_recover_flags
);
955 spin_unlock(&ls
->ls_recover_spin
);
960 if (start_gen
== block_gen
) {
962 * Wait for the end of a dlm recovery cycle to switch from
963 * first mounter recovery. We can ignore any recover_slot
964 * callbacks between the recover_prep and next recover_done
965 * because we are still the first mounter and any failed nodes
966 * have not fully mounted, so they don't need recovery.
968 spin_unlock(&ls
->ls_recover_spin
);
969 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
971 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
972 TASK_UNINTERRUPTIBLE
);
976 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
977 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
978 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
979 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
980 spin_unlock(&ls
->ls_recover_spin
);
982 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
983 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
985 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
987 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
989 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
991 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
997 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
998 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
999 * gfs2 jids start at 0, so jid = slot - 1)
1002 #define RECOVER_SIZE_INC 16
1004 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1007 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1008 uint32_t *submit
= NULL
;
1009 uint32_t *result
= NULL
;
1010 uint32_t old_size
, new_size
;
1013 if (!ls
->ls_lvb_bits
) {
1014 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1015 if (!ls
->ls_lvb_bits
)
1020 for (i
= 0; i
< num_slots
; i
++) {
1021 if (max_jid
< slots
[i
].slot
- 1)
1022 max_jid
= slots
[i
].slot
- 1;
1025 old_size
= ls
->ls_recover_size
;
1027 if (old_size
>= max_jid
+ 1)
1030 new_size
= old_size
+ RECOVER_SIZE_INC
;
1032 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1033 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1034 if (!submit
|| !result
) {
1040 spin_lock(&ls
->ls_recover_spin
);
1041 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1042 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1043 kfree(ls
->ls_recover_submit
);
1044 kfree(ls
->ls_recover_result
);
1045 ls
->ls_recover_submit
= submit
;
1046 ls
->ls_recover_result
= result
;
1047 ls
->ls_recover_size
= new_size
;
1048 spin_unlock(&ls
->ls_recover_spin
);
1052 static void free_recover_size(struct lm_lockstruct
*ls
)
1054 kfree(ls
->ls_lvb_bits
);
1055 kfree(ls
->ls_recover_submit
);
1056 kfree(ls
->ls_recover_result
);
1057 ls
->ls_recover_submit
= NULL
;
1058 ls
->ls_recover_result
= NULL
;
1059 ls
->ls_recover_size
= 0;
1060 ls
->ls_lvb_bits
= NULL
;
1063 /* dlm calls before it does lock recovery */
1065 static void gdlm_recover_prep(void *arg
)
1067 struct gfs2_sbd
*sdp
= arg
;
1068 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1070 spin_lock(&ls
->ls_recover_spin
);
1071 ls
->ls_recover_block
= ls
->ls_recover_start
;
1072 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1074 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1075 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1076 spin_unlock(&ls
->ls_recover_spin
);
1079 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1080 spin_unlock(&ls
->ls_recover_spin
);
1083 /* dlm calls after recover_prep has been completed on all lockspace members;
1084 identifies slot/jid of failed member */
1086 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1088 struct gfs2_sbd
*sdp
= arg
;
1089 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1090 int jid
= slot
->slot
- 1;
1092 spin_lock(&ls
->ls_recover_spin
);
1093 if (ls
->ls_recover_size
< jid
+ 1) {
1094 fs_err(sdp
, "recover_slot jid %d gen %u short size %d\n",
1095 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1096 spin_unlock(&ls
->ls_recover_spin
);
1100 if (ls
->ls_recover_submit
[jid
]) {
1101 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1102 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1104 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1105 spin_unlock(&ls
->ls_recover_spin
);
1108 /* dlm calls after recover_slot and after it completes lock recovery */
1110 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1111 int our_slot
, uint32_t generation
)
1113 struct gfs2_sbd
*sdp
= arg
;
1114 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1116 /* ensure the ls jid arrays are large enough */
1117 set_recover_size(sdp
, slots
, num_slots
);
1119 spin_lock(&ls
->ls_recover_spin
);
1120 ls
->ls_recover_start
= generation
;
1122 if (!ls
->ls_recover_mount
) {
1123 ls
->ls_recover_mount
= generation
;
1124 ls
->ls_jid
= our_slot
- 1;
1127 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1128 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1130 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1131 smp_mb__after_atomic();
1132 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1133 spin_unlock(&ls
->ls_recover_spin
);
1136 /* gfs2_recover thread has a journal recovery result */
1138 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1139 unsigned int result
)
1141 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1143 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1146 /* don't care about the recovery of own journal during mount */
1147 if (jid
== ls
->ls_jid
)
1150 spin_lock(&ls
->ls_recover_spin
);
1151 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1152 spin_unlock(&ls
->ls_recover_spin
);
1155 if (ls
->ls_recover_size
< jid
+ 1) {
1156 fs_err(sdp
, "recovery_result jid %d short size %d\n",
1157 jid
, ls
->ls_recover_size
);
1158 spin_unlock(&ls
->ls_recover_spin
);
1162 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1163 result
== LM_RD_GAVEUP
? "busy" : "success");
1165 ls
->ls_recover_result
[jid
] = result
;
1167 /* GAVEUP means another node is recovering the journal; delay our
1168 next attempt to recover it, to give the other node a chance to
1169 finish before trying again */
1171 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1172 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1173 result
== LM_RD_GAVEUP
? HZ
: 0);
1174 spin_unlock(&ls
->ls_recover_spin
);
1177 static const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1178 .recover_prep
= gdlm_recover_prep
,
1179 .recover_slot
= gdlm_recover_slot
,
1180 .recover_done
= gdlm_recover_done
,
1183 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1185 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1186 char cluster
[GFS2_LOCKNAME_LEN
];
1189 int error
, ops_result
;
1192 * initialize everything
1195 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1196 spin_lock_init(&ls
->ls_recover_spin
);
1197 ls
->ls_recover_flags
= 0;
1198 ls
->ls_recover_mount
= 0;
1199 ls
->ls_recover_start
= 0;
1200 ls
->ls_recover_block
= 0;
1201 ls
->ls_recover_size
= 0;
1202 ls
->ls_recover_submit
= NULL
;
1203 ls
->ls_recover_result
= NULL
;
1204 ls
->ls_lvb_bits
= NULL
;
1206 error
= set_recover_size(sdp
, NULL
, 0);
1211 * prepare dlm_new_lockspace args
1214 fsname
= strchr(table
, ':');
1216 fs_info(sdp
, "no fsname found\n");
1220 memset(cluster
, 0, sizeof(cluster
));
1221 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1224 flags
= DLM_LSFL_FS
| DLM_LSFL_NEWEXCL
;
1227 * create/join lockspace
1230 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1231 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1234 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1238 if (ops_result
< 0) {
1240 * dlm does not support ops callbacks,
1241 * old dlm_controld/gfs_controld are used, try without ops.
1243 fs_info(sdp
, "dlm lockspace ops not used\n");
1244 free_recover_size(ls
);
1245 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1249 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1250 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1256 * control_mount() uses control_lock to determine first mounter,
1257 * and for later mounts, waits for any recoveries to be cleared.
1260 error
= control_mount(sdp
);
1262 fs_err(sdp
, "mount control error %d\n", error
);
1266 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1267 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1268 smp_mb__after_atomic();
1269 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1273 dlm_release_lockspace(ls
->ls_dlm
, 2);
1275 free_recover_size(ls
);
1280 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1282 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1285 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1288 error
= control_first_done(sdp
);
1290 fs_err(sdp
, "mount first_done error %d\n", error
);
1293 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1295 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1297 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1300 /* wait for gfs2_control_wq to be done with this mount */
1302 spin_lock(&ls
->ls_recover_spin
);
1303 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1304 spin_unlock(&ls
->ls_recover_spin
);
1305 flush_delayed_work(&sdp
->sd_control_work
);
1307 /* mounted_lock and control_lock will be purged in dlm recovery */
1310 dlm_release_lockspace(ls
->ls_dlm
, 2);
1314 free_recover_size(ls
);
1317 static const match_table_t dlm_tokens
= {
1318 { Opt_jid
, "jid=%d"},
1320 { Opt_first
, "first=%d"},
1321 { Opt_nodir
, "nodir=%d"},
1325 const struct lm_lockops gfs2_dlm_ops
= {
1326 .lm_proto_name
= "lock_dlm",
1327 .lm_mount
= gdlm_mount
,
1328 .lm_first_done
= gdlm_first_done
,
1329 .lm_recovery_result
= gdlm_recovery_result
,
1330 .lm_unmount
= gdlm_unmount
,
1331 .lm_put_lock
= gdlm_put_lock
,
1332 .lm_lock
= gdlm_lock
,
1333 .lm_cancel
= gdlm_cancel
,
1334 .lm_tokens
= &dlm_tokens
,