Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / nfs / dir.c
blob2f3f86726f5b96cdbdf426a0ee7264b6fd3aa5ae
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
46 #include "nfstrace.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
86 return ERR_PTR(-ENOMEM);
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
99 * Open file
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
120 filp->private_data = ctx;
121 out:
122 put_rpccred(cred);
123 return res;
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
166 * we are freeing strings created by nfs_add_to_readdir_array()
168 static
169 void nfs_readdir_clear_array(struct page *page)
171 struct nfs_cache_array *array;
172 int i;
174 array = kmap_atomic(page);
175 for (i = 0; i < array->size; i++)
176 kfree(array->array[i].string.name);
177 kunmap_atomic(array);
181 * the caller is responsible for freeing qstr.name
182 * when called by nfs_readdir_add_to_array, the strings will be freed in
183 * nfs_clear_readdir_array()
185 static
186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
188 string->len = len;
189 string->name = kmemdup(name, len, GFP_KERNEL);
190 if (string->name == NULL)
191 return -ENOMEM;
193 * Avoid a kmemleak false positive. The pointer to the name is stored
194 * in a page cache page which kmemleak does not scan.
196 kmemleak_not_leak(string->name);
197 string->hash = full_name_hash(NULL, name, len);
198 return 0;
201 static
202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
204 struct nfs_cache_array *array = kmap(page);
205 struct nfs_cache_array_entry *cache_entry;
206 int ret;
208 cache_entry = &array->array[array->size];
210 /* Check that this entry lies within the page bounds */
211 ret = -ENOSPC;
212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 goto out;
215 cache_entry->cookie = entry->prev_cookie;
216 cache_entry->ino = entry->ino;
217 cache_entry->d_type = entry->d_type;
218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 if (ret)
220 goto out;
221 array->last_cookie = entry->cookie;
222 array->size++;
223 if (entry->eof != 0)
224 array->eof_index = array->size;
225 out:
226 kunmap(page);
227 return ret;
230 static
231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
233 loff_t diff = desc->ctx->pos - desc->current_index;
234 unsigned int index;
236 if (diff < 0)
237 goto out_eof;
238 if (diff >= array->size) {
239 if (array->eof_index >= 0)
240 goto out_eof;
241 return -EAGAIN;
244 index = (unsigned int)diff;
245 *desc->dir_cookie = array->array[index].cookie;
246 desc->cache_entry_index = index;
247 return 0;
248 out_eof:
249 desc->eof = true;
250 return -EBADCOOKIE;
253 static bool
254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 return false;
258 smp_rmb();
259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
262 static
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
265 int i;
266 loff_t new_pos;
267 int status = -EAGAIN;
269 for (i = 0; i < array->size; i++) {
270 if (array->array[i].cookie == *desc->dir_cookie) {
271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 struct nfs_open_dir_context *ctx = desc->file->private_data;
274 new_pos = desc->current_index + i;
275 if (ctx->attr_gencount != nfsi->attr_gencount ||
276 !nfs_readdir_inode_mapping_valid(nfsi)) {
277 ctx->duped = 0;
278 ctx->attr_gencount = nfsi->attr_gencount;
279 } else if (new_pos < desc->ctx->pos) {
280 if (ctx->duped > 0
281 && ctx->dup_cookie == *desc->dir_cookie) {
282 if (printk_ratelimit()) {
283 pr_notice("NFS: directory %pD2 contains a readdir loop."
284 "Please contact your server vendor. "
285 "The file: %.*s has duplicate cookie %llu\n",
286 desc->file, array->array[i].string.len,
287 array->array[i].string.name, *desc->dir_cookie);
289 status = -ELOOP;
290 goto out;
292 ctx->dup_cookie = *desc->dir_cookie;
293 ctx->duped = -1;
295 desc->ctx->pos = new_pos;
296 desc->cache_entry_index = i;
297 return 0;
300 if (array->eof_index >= 0) {
301 status = -EBADCOOKIE;
302 if (*desc->dir_cookie == array->last_cookie)
303 desc->eof = true;
305 out:
306 return status;
309 static
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
312 struct nfs_cache_array *array;
313 int status;
315 array = kmap(desc->page);
317 if (*desc->dir_cookie == 0)
318 status = nfs_readdir_search_for_pos(array, desc);
319 else
320 status = nfs_readdir_search_for_cookie(array, desc);
322 if (status == -EAGAIN) {
323 desc->last_cookie = array->last_cookie;
324 desc->current_index += array->size;
325 desc->page_index++;
327 kunmap(desc->page);
328 return status;
331 /* Fill a page with xdr information before transferring to the cache page */
332 static
333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 struct nfs_entry *entry, struct file *file, struct inode *inode)
336 struct nfs_open_dir_context *ctx = file->private_data;
337 struct rpc_cred *cred = ctx->cred;
338 unsigned long timestamp, gencount;
339 int error;
341 again:
342 timestamp = jiffies;
343 gencount = nfs_inc_attr_generation_counter();
344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 NFS_SERVER(inode)->dtsize, desc->plus);
346 if (error < 0) {
347 /* We requested READDIRPLUS, but the server doesn't grok it */
348 if (error == -ENOTSUPP && desc->plus) {
349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 desc->plus = false;
352 goto again;
354 goto error;
356 desc->timestamp = timestamp;
357 desc->gencount = gencount;
358 error:
359 return error;
362 static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 struct nfs_entry *entry, struct xdr_stream *xdr)
365 int error;
367 error = desc->decode(xdr, entry, desc->plus);
368 if (error)
369 return error;
370 entry->fattr->time_start = desc->timestamp;
371 entry->fattr->gencount = desc->gencount;
372 return 0;
375 /* Match file and dirent using either filehandle or fileid
376 * Note: caller is responsible for checking the fsid
378 static
379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
381 struct inode *inode;
382 struct nfs_inode *nfsi;
384 if (d_really_is_negative(dentry))
385 return 0;
387 inode = d_inode(dentry);
388 if (is_bad_inode(inode) || NFS_STALE(inode))
389 return 0;
391 nfsi = NFS_I(inode);
392 if (entry->fattr->fileid != nfsi->fileid)
393 return 0;
394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 return 0;
396 return 1;
399 static
400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 return false;
404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 return true;
406 if (ctx->pos == 0)
407 return true;
408 return false;
412 * This function is called by the lookup and getattr code to request the
413 * use of readdirplus to accelerate any future lookups in the same
414 * directory.
416 void nfs_advise_use_readdirplus(struct inode *dir)
418 struct nfs_inode *nfsi = NFS_I(dir);
420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 !list_empty(&nfsi->open_files))
422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
426 * This function is mainly for use by nfs_getattr().
428 * If this is an 'ls -l', we want to force use of readdirplus.
429 * Do this by checking if there is an active file descriptor
430 * and calling nfs_advise_use_readdirplus, then forcing a
431 * cache flush.
433 void nfs_force_use_readdirplus(struct inode *dir)
435 struct nfs_inode *nfsi = NFS_I(dir);
437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 !list_empty(&nfsi->open_files)) {
439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 invalidate_mapping_pages(dir->i_mapping, 0, -1);
444 static
445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
447 struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 struct dentry *dentry;
450 struct dentry *alias;
451 struct inode *dir = d_inode(parent);
452 struct inode *inode;
453 int status;
455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 return;
457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 return;
459 if (filename.len == 0)
460 return;
461 /* Validate that the name doesn't contain any illegal '\0' */
462 if (strnlen(filename.name, filename.len) != filename.len)
463 return;
464 /* ...or '/' */
465 if (strnchr(filename.name, filename.len, '/'))
466 return;
467 if (filename.name[0] == '.') {
468 if (filename.len == 1)
469 return;
470 if (filename.len == 2 && filename.name[1] == '.')
471 return;
473 filename.hash = full_name_hash(parent, filename.name, filename.len);
475 dentry = d_lookup(parent, &filename);
476 again:
477 if (!dentry) {
478 dentry = d_alloc_parallel(parent, &filename, &wq);
479 if (IS_ERR(dentry))
480 return;
482 if (!d_in_lookup(dentry)) {
483 /* Is there a mountpoint here? If so, just exit */
484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 &entry->fattr->fsid))
486 goto out;
487 if (nfs_same_file(dentry, entry)) {
488 if (!entry->fh->size)
489 goto out;
490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 if (!status)
493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 goto out;
495 } else {
496 d_invalidate(dentry);
497 dput(dentry);
498 dentry = NULL;
499 goto again;
502 if (!entry->fh->size) {
503 d_lookup_done(dentry);
504 goto out;
507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 alias = d_splice_alias(inode, dentry);
509 d_lookup_done(dentry);
510 if (alias) {
511 if (IS_ERR(alias))
512 goto out;
513 dput(dentry);
514 dentry = alias;
516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517 out:
518 dput(dentry);
521 /* Perform conversion from xdr to cache array */
522 static
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 struct page **xdr_pages, struct page *page, unsigned int buflen)
526 struct xdr_stream stream;
527 struct xdr_buf buf;
528 struct page *scratch;
529 struct nfs_cache_array *array;
530 unsigned int count = 0;
531 int status;
533 scratch = alloc_page(GFP_KERNEL);
534 if (scratch == NULL)
535 return -ENOMEM;
537 if (buflen == 0)
538 goto out_nopages;
540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
543 do {
544 status = xdr_decode(desc, entry, &stream);
545 if (status != 0) {
546 if (status == -EAGAIN)
547 status = 0;
548 break;
551 count++;
553 if (desc->plus)
554 nfs_prime_dcache(file_dentry(desc->file), entry);
556 status = nfs_readdir_add_to_array(entry, page);
557 if (status != 0)
558 break;
559 } while (!entry->eof);
561 out_nopages:
562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 array = kmap(page);
564 array->eof_index = array->size;
565 status = 0;
566 kunmap(page);
569 put_page(scratch);
570 return status;
573 static
574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
576 unsigned int i;
577 for (i = 0; i < npages; i++)
578 put_page(pages[i]);
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_pagearray
585 static
586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
588 unsigned int i;
590 for (i = 0; i < npages; i++) {
591 struct page *page = alloc_page(GFP_KERNEL);
592 if (page == NULL)
593 goto out_freepages;
594 pages[i] = page;
596 return 0;
598 out_freepages:
599 nfs_readdir_free_pages(pages, i);
600 return -ENOMEM;
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
606 struct page *pages[NFS_MAX_READDIR_PAGES];
607 struct nfs_entry entry;
608 struct file *file = desc->file;
609 struct nfs_cache_array *array;
610 int status = -ENOMEM;
611 unsigned int array_size = ARRAY_SIZE(pages);
613 entry.prev_cookie = 0;
614 entry.cookie = desc->last_cookie;
615 entry.eof = 0;
616 entry.fh = nfs_alloc_fhandle();
617 entry.fattr = nfs_alloc_fattr();
618 entry.server = NFS_SERVER(inode);
619 if (entry.fh == NULL || entry.fattr == NULL)
620 goto out;
622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 if (IS_ERR(entry.label)) {
624 status = PTR_ERR(entry.label);
625 goto out;
628 array = kmap(page);
629 memset(array, 0, sizeof(struct nfs_cache_array));
630 array->eof_index = -1;
632 status = nfs_readdir_alloc_pages(pages, array_size);
633 if (status < 0)
634 goto out_release_array;
635 do {
636 unsigned int pglen;
637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
639 if (status < 0)
640 break;
641 pglen = status;
642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 if (status < 0) {
644 if (status == -ENOSPC)
645 status = 0;
646 break;
648 } while (array->eof_index < 0);
650 nfs_readdir_free_pages(pages, array_size);
651 out_release_array:
652 kunmap(page);
653 nfs4_label_free(entry.label);
654 out:
655 nfs_free_fattr(entry.fattr);
656 nfs_free_fhandle(entry.fh);
657 return status;
661 * Now we cache directories properly, by converting xdr information
662 * to an array that can be used for lookups later. This results in
663 * fewer cache pages, since we can store more information on each page.
664 * We only need to convert from xdr once so future lookups are much simpler
666 static
667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
669 struct inode *inode = file_inode(desc->file);
670 int ret;
672 ret = nfs_readdir_xdr_to_array(desc, page, inode);
673 if (ret < 0)
674 goto error;
675 SetPageUptodate(page);
677 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
678 /* Should never happen */
679 nfs_zap_mapping(inode, inode->i_mapping);
681 unlock_page(page);
682 return 0;
683 error:
684 unlock_page(page);
685 return ret;
688 static
689 void cache_page_release(nfs_readdir_descriptor_t *desc)
691 if (!desc->page->mapping)
692 nfs_readdir_clear_array(desc->page);
693 put_page(desc->page);
694 desc->page = NULL;
697 static
698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
700 return read_cache_page(desc->file->f_mapping,
701 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
705 * Returns 0 if desc->dir_cookie was found on page desc->page_index
707 static
708 int find_cache_page(nfs_readdir_descriptor_t *desc)
710 int res;
712 desc->page = get_cache_page(desc);
713 if (IS_ERR(desc->page))
714 return PTR_ERR(desc->page);
716 res = nfs_readdir_search_array(desc);
717 if (res != 0)
718 cache_page_release(desc);
719 return res;
722 /* Search for desc->dir_cookie from the beginning of the page cache */
723 static inline
724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
726 int res;
728 if (desc->page_index == 0) {
729 desc->current_index = 0;
730 desc->last_cookie = 0;
732 do {
733 res = find_cache_page(desc);
734 } while (res == -EAGAIN);
735 return res;
739 * Once we've found the start of the dirent within a page: fill 'er up...
741 static
742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
744 struct file *file = desc->file;
745 int i = 0;
746 int res = 0;
747 struct nfs_cache_array *array = NULL;
748 struct nfs_open_dir_context *ctx = file->private_data;
750 array = kmap(desc->page);
751 for (i = desc->cache_entry_index; i < array->size; i++) {
752 struct nfs_cache_array_entry *ent;
754 ent = &array->array[i];
755 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
756 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
757 desc->eof = true;
758 break;
760 desc->ctx->pos++;
761 if (i < (array->size-1))
762 *desc->dir_cookie = array->array[i+1].cookie;
763 else
764 *desc->dir_cookie = array->last_cookie;
765 if (ctx->duped != 0)
766 ctx->duped = 1;
768 if (array->eof_index >= 0)
769 desc->eof = true;
771 kunmap(desc->page);
772 cache_page_release(desc);
773 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 (unsigned long long)*desc->dir_cookie, res);
775 return res;
779 * If we cannot find a cookie in our cache, we suspect that this is
780 * because it points to a deleted file, so we ask the server to return
781 * whatever it thinks is the next entry. We then feed this to filldir.
782 * If all goes well, we should then be able to find our way round the
783 * cache on the next call to readdir_search_pagecache();
785 * NOTE: we cannot add the anonymous page to the pagecache because
786 * the data it contains might not be page aligned. Besides,
787 * we should already have a complete representation of the
788 * directory in the page cache by the time we get here.
790 static inline
791 int uncached_readdir(nfs_readdir_descriptor_t *desc)
793 struct page *page = NULL;
794 int status;
795 struct inode *inode = file_inode(desc->file);
796 struct nfs_open_dir_context *ctx = desc->file->private_data;
798 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 (unsigned long long)*desc->dir_cookie);
801 page = alloc_page(GFP_HIGHUSER);
802 if (!page) {
803 status = -ENOMEM;
804 goto out;
807 desc->page_index = 0;
808 desc->last_cookie = *desc->dir_cookie;
809 desc->page = page;
810 ctx->duped = 0;
812 status = nfs_readdir_xdr_to_array(desc, page, inode);
813 if (status < 0)
814 goto out_release;
816 status = nfs_do_filldir(desc);
818 out:
819 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
820 __func__, status);
821 return status;
822 out_release:
823 cache_page_release(desc);
824 goto out;
827 /* The file offset position represents the dirent entry number. A
828 last cookie cache takes care of the common case of reading the
829 whole directory.
831 static int nfs_readdir(struct file *file, struct dir_context *ctx)
833 struct dentry *dentry = file_dentry(file);
834 struct inode *inode = d_inode(dentry);
835 nfs_readdir_descriptor_t my_desc,
836 *desc = &my_desc;
837 struct nfs_open_dir_context *dir_ctx = file->private_data;
838 int res = 0;
840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 file, (long long)ctx->pos);
842 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
845 * ctx->pos points to the dirent entry number.
846 * *desc->dir_cookie has the cookie for the next entry. We have
847 * to either find the entry with the appropriate number or
848 * revalidate the cookie.
850 memset(desc, 0, sizeof(*desc));
852 desc->file = file;
853 desc->ctx = ctx;
854 desc->dir_cookie = &dir_ctx->dir_cookie;
855 desc->decode = NFS_PROTO(inode)->decode_dirent;
856 desc->plus = nfs_use_readdirplus(inode, ctx);
858 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
859 res = nfs_revalidate_mapping(inode, file->f_mapping);
860 if (res < 0)
861 goto out;
863 do {
864 res = readdir_search_pagecache(desc);
866 if (res == -EBADCOOKIE) {
867 res = 0;
868 /* This means either end of directory */
869 if (*desc->dir_cookie && !desc->eof) {
870 /* Or that the server has 'lost' a cookie */
871 res = uncached_readdir(desc);
872 if (res == 0)
873 continue;
875 break;
877 if (res == -ETOOSMALL && desc->plus) {
878 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
879 nfs_zap_caches(inode);
880 desc->page_index = 0;
881 desc->plus = false;
882 desc->eof = false;
883 continue;
885 if (res < 0)
886 break;
888 res = nfs_do_filldir(desc);
889 if (res < 0)
890 break;
891 } while (!desc->eof);
892 out:
893 if (res > 0)
894 res = 0;
895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
896 return res;
899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
901 struct inode *inode = file_inode(filp);
902 struct nfs_open_dir_context *dir_ctx = filp->private_data;
904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 filp, offset, whence);
907 inode_lock(inode);
908 switch (whence) {
909 case 1:
910 offset += filp->f_pos;
911 case 0:
912 if (offset >= 0)
913 break;
914 default:
915 offset = -EINVAL;
916 goto out;
918 if (offset != filp->f_pos) {
919 filp->f_pos = offset;
920 dir_ctx->dir_cookie = 0;
921 dir_ctx->duped = 0;
923 out:
924 inode_unlock(inode);
925 return offset;
929 * All directory operations under NFS are synchronous, so fsync()
930 * is a dummy operation.
932 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
933 int datasync)
935 struct inode *inode = file_inode(filp);
937 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
939 inode_lock(inode);
940 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
941 inode_unlock(inode);
942 return 0;
946 * nfs_force_lookup_revalidate - Mark the directory as having changed
947 * @dir - pointer to directory inode
949 * This forces the revalidation code in nfs_lookup_revalidate() to do a
950 * full lookup on all child dentries of 'dir' whenever a change occurs
951 * on the server that might have invalidated our dcache.
953 * The caller should be holding dir->i_lock
955 void nfs_force_lookup_revalidate(struct inode *dir)
957 NFS_I(dir)->cache_change_attribute++;
959 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
962 * A check for whether or not the parent directory has changed.
963 * In the case it has, we assume that the dentries are untrustworthy
964 * and may need to be looked up again.
965 * If rcu_walk prevents us from performing a full check, return 0.
967 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
968 int rcu_walk)
970 if (IS_ROOT(dentry))
971 return 1;
972 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
973 return 0;
974 if (!nfs_verify_change_attribute(dir, dentry->d_time))
975 return 0;
976 /* Revalidate nfsi->cache_change_attribute before we declare a match */
977 if (nfs_mapping_need_revalidate_inode(dir)) {
978 if (rcu_walk)
979 return 0;
980 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
981 return 0;
983 if (!nfs_verify_change_attribute(dir, dentry->d_time))
984 return 0;
985 return 1;
989 * Use intent information to check whether or not we're going to do
990 * an O_EXCL create using this path component.
992 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
994 if (NFS_PROTO(dir)->version == 2)
995 return 0;
996 return flags & LOOKUP_EXCL;
1000 * Inode and filehandle revalidation for lookups.
1002 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1003 * or if the intent information indicates that we're about to open this
1004 * particular file and the "nocto" mount flag is not set.
1007 static
1008 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1010 struct nfs_server *server = NFS_SERVER(inode);
1011 int ret;
1013 if (IS_AUTOMOUNT(inode))
1014 return 0;
1015 /* VFS wants an on-the-wire revalidation */
1016 if (flags & LOOKUP_REVAL)
1017 goto out_force;
1018 /* This is an open(2) */
1019 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1020 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1021 goto out_force;
1022 out:
1023 return (inode->i_nlink == 0) ? -ENOENT : 0;
1024 out_force:
1025 if (flags & LOOKUP_RCU)
1026 return -ECHILD;
1027 ret = __nfs_revalidate_inode(server, inode);
1028 if (ret != 0)
1029 return ret;
1030 goto out;
1034 * We judge how long we want to trust negative
1035 * dentries by looking at the parent inode mtime.
1037 * If parent mtime has changed, we revalidate, else we wait for a
1038 * period corresponding to the parent's attribute cache timeout value.
1040 * If LOOKUP_RCU prevents us from performing a full check, return 1
1041 * suggesting a reval is needed.
1043 static inline
1044 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1045 unsigned int flags)
1047 /* Don't revalidate a negative dentry if we're creating a new file */
1048 if (flags & LOOKUP_CREATE)
1049 return 0;
1050 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1051 return 1;
1052 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1056 * This is called every time the dcache has a lookup hit,
1057 * and we should check whether we can really trust that
1058 * lookup.
1060 * NOTE! The hit can be a negative hit too, don't assume
1061 * we have an inode!
1063 * If the parent directory is seen to have changed, we throw out the
1064 * cached dentry and do a new lookup.
1066 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1068 struct inode *dir;
1069 struct inode *inode;
1070 struct dentry *parent;
1071 struct nfs_fh *fhandle = NULL;
1072 struct nfs_fattr *fattr = NULL;
1073 struct nfs4_label *label = NULL;
1074 int error;
1076 if (flags & LOOKUP_RCU) {
1077 parent = READ_ONCE(dentry->d_parent);
1078 dir = d_inode_rcu(parent);
1079 if (!dir)
1080 return -ECHILD;
1081 } else {
1082 parent = dget_parent(dentry);
1083 dir = d_inode(parent);
1085 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1086 inode = d_inode(dentry);
1088 if (!inode) {
1089 if (nfs_neg_need_reval(dir, dentry, flags)) {
1090 if (flags & LOOKUP_RCU)
1091 return -ECHILD;
1092 goto out_bad;
1094 goto out_valid;
1097 if (is_bad_inode(inode)) {
1098 if (flags & LOOKUP_RCU)
1099 return -ECHILD;
1100 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1101 __func__, dentry);
1102 goto out_bad;
1105 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1106 goto out_set_verifier;
1108 /* Force a full look up iff the parent directory has changed */
1109 if (!nfs_is_exclusive_create(dir, flags) &&
1110 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1111 error = nfs_lookup_verify_inode(inode, flags);
1112 if (error) {
1113 if (flags & LOOKUP_RCU)
1114 return -ECHILD;
1115 if (error == -ESTALE)
1116 goto out_zap_parent;
1117 goto out_error;
1119 nfs_advise_use_readdirplus(dir);
1120 goto out_valid;
1123 if (flags & LOOKUP_RCU)
1124 return -ECHILD;
1126 if (NFS_STALE(inode))
1127 goto out_bad;
1129 error = -ENOMEM;
1130 fhandle = nfs_alloc_fhandle();
1131 fattr = nfs_alloc_fattr();
1132 if (fhandle == NULL || fattr == NULL)
1133 goto out_error;
1135 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1136 if (IS_ERR(label))
1137 goto out_error;
1139 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1140 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1141 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1142 if (error == -ESTALE || error == -ENOENT)
1143 goto out_bad;
1144 if (error)
1145 goto out_error;
1146 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147 goto out_bad;
1148 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1149 goto out_bad;
1151 nfs_setsecurity(inode, fattr, label);
1153 nfs_free_fattr(fattr);
1154 nfs_free_fhandle(fhandle);
1155 nfs4_label_free(label);
1157 /* set a readdirplus hint that we had a cache miss */
1158 nfs_force_use_readdirplus(dir);
1160 out_set_verifier:
1161 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1162 out_valid:
1163 if (flags & LOOKUP_RCU) {
1164 if (parent != READ_ONCE(dentry->d_parent))
1165 return -ECHILD;
1166 } else
1167 dput(parent);
1168 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1169 __func__, dentry);
1170 return 1;
1171 out_zap_parent:
1172 nfs_zap_caches(dir);
1173 out_bad:
1174 WARN_ON(flags & LOOKUP_RCU);
1175 nfs_free_fattr(fattr);
1176 nfs_free_fhandle(fhandle);
1177 nfs4_label_free(label);
1178 nfs_mark_for_revalidate(dir);
1179 if (inode && S_ISDIR(inode->i_mode)) {
1180 /* Purge readdir caches. */
1181 nfs_zap_caches(inode);
1183 * We can't d_drop the root of a disconnected tree:
1184 * its d_hash is on the s_anon list and d_drop() would hide
1185 * it from shrink_dcache_for_unmount(), leading to busy
1186 * inodes on unmount and further oopses.
1188 if (IS_ROOT(dentry))
1189 goto out_valid;
1191 dput(parent);
1192 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1193 __func__, dentry);
1194 return 0;
1195 out_error:
1196 WARN_ON(flags & LOOKUP_RCU);
1197 nfs_free_fattr(fattr);
1198 nfs_free_fhandle(fhandle);
1199 nfs4_label_free(label);
1200 dput(parent);
1201 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1202 __func__, dentry, error);
1203 return error;
1207 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1208 * when we don't really care about the dentry name. This is called when a
1209 * pathwalk ends on a dentry that was not found via a normal lookup in the
1210 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1212 * In this situation, we just want to verify that the inode itself is OK
1213 * since the dentry might have changed on the server.
1215 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1217 struct inode *inode = d_inode(dentry);
1218 int error = 0;
1221 * I believe we can only get a negative dentry here in the case of a
1222 * procfs-style symlink. Just assume it's correct for now, but we may
1223 * eventually need to do something more here.
1225 if (!inode) {
1226 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1227 __func__, dentry);
1228 return 1;
1231 if (is_bad_inode(inode)) {
1232 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1233 __func__, dentry);
1234 return 0;
1237 error = nfs_lookup_verify_inode(inode, flags);
1238 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1239 __func__, inode->i_ino, error ? "invalid" : "valid");
1240 return !error;
1244 * This is called from dput() when d_count is going to 0.
1246 static int nfs_dentry_delete(const struct dentry *dentry)
1248 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1249 dentry, dentry->d_flags);
1251 /* Unhash any dentry with a stale inode */
1252 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1253 return 1;
1255 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1256 /* Unhash it, so that ->d_iput() would be called */
1257 return 1;
1259 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1260 /* Unhash it, so that ancestors of killed async unlink
1261 * files will be cleaned up during umount */
1262 return 1;
1264 return 0;
1268 /* Ensure that we revalidate inode->i_nlink */
1269 static void nfs_drop_nlink(struct inode *inode)
1271 spin_lock(&inode->i_lock);
1272 /* drop the inode if we're reasonably sure this is the last link */
1273 if (inode->i_nlink == 1)
1274 clear_nlink(inode);
1275 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1276 spin_unlock(&inode->i_lock);
1280 * Called when the dentry loses inode.
1281 * We use it to clean up silly-renamed files.
1283 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1285 if (S_ISDIR(inode->i_mode))
1286 /* drop any readdir cache as it could easily be old */
1287 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1289 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1290 nfs_complete_unlink(dentry, inode);
1291 nfs_drop_nlink(inode);
1293 iput(inode);
1296 static void nfs_d_release(struct dentry *dentry)
1298 /* free cached devname value, if it survived that far */
1299 if (unlikely(dentry->d_fsdata)) {
1300 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1301 WARN_ON(1);
1302 else
1303 kfree(dentry->d_fsdata);
1307 const struct dentry_operations nfs_dentry_operations = {
1308 .d_revalidate = nfs_lookup_revalidate,
1309 .d_weak_revalidate = nfs_weak_revalidate,
1310 .d_delete = nfs_dentry_delete,
1311 .d_iput = nfs_dentry_iput,
1312 .d_automount = nfs_d_automount,
1313 .d_release = nfs_d_release,
1315 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1317 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1319 struct dentry *res;
1320 struct inode *inode = NULL;
1321 struct nfs_fh *fhandle = NULL;
1322 struct nfs_fattr *fattr = NULL;
1323 struct nfs4_label *label = NULL;
1324 int error;
1326 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1327 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1329 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1330 return ERR_PTR(-ENAMETOOLONG);
1333 * If we're doing an exclusive create, optimize away the lookup
1334 * but don't hash the dentry.
1336 if (nfs_is_exclusive_create(dir, flags))
1337 return NULL;
1339 res = ERR_PTR(-ENOMEM);
1340 fhandle = nfs_alloc_fhandle();
1341 fattr = nfs_alloc_fattr();
1342 if (fhandle == NULL || fattr == NULL)
1343 goto out;
1345 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1346 if (IS_ERR(label))
1347 goto out;
1349 trace_nfs_lookup_enter(dir, dentry, flags);
1350 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1351 if (error == -ENOENT)
1352 goto no_entry;
1353 if (error < 0) {
1354 res = ERR_PTR(error);
1355 goto out_label;
1357 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1358 res = ERR_CAST(inode);
1359 if (IS_ERR(res))
1360 goto out_label;
1362 /* Notify readdir to use READDIRPLUS */
1363 nfs_force_use_readdirplus(dir);
1365 no_entry:
1366 res = d_splice_alias(inode, dentry);
1367 if (res != NULL) {
1368 if (IS_ERR(res))
1369 goto out_label;
1370 dentry = res;
1372 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1373 out_label:
1374 trace_nfs_lookup_exit(dir, dentry, flags, error);
1375 nfs4_label_free(label);
1376 out:
1377 nfs_free_fattr(fattr);
1378 nfs_free_fhandle(fhandle);
1379 return res;
1381 EXPORT_SYMBOL_GPL(nfs_lookup);
1383 #if IS_ENABLED(CONFIG_NFS_V4)
1384 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1386 const struct dentry_operations nfs4_dentry_operations = {
1387 .d_revalidate = nfs4_lookup_revalidate,
1388 .d_weak_revalidate = nfs_weak_revalidate,
1389 .d_delete = nfs_dentry_delete,
1390 .d_iput = nfs_dentry_iput,
1391 .d_automount = nfs_d_automount,
1392 .d_release = nfs_d_release,
1394 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1396 static fmode_t flags_to_mode(int flags)
1398 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1399 if ((flags & O_ACCMODE) != O_WRONLY)
1400 res |= FMODE_READ;
1401 if ((flags & O_ACCMODE) != O_RDONLY)
1402 res |= FMODE_WRITE;
1403 return res;
1406 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1408 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1411 static int do_open(struct inode *inode, struct file *filp)
1413 nfs_fscache_open_file(inode, filp);
1414 return 0;
1417 static int nfs_finish_open(struct nfs_open_context *ctx,
1418 struct dentry *dentry,
1419 struct file *file, unsigned open_flags,
1420 int *opened)
1422 int err;
1424 err = finish_open(file, dentry, do_open, opened);
1425 if (err)
1426 goto out;
1427 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1428 nfs_file_set_open_context(file, ctx);
1429 else
1430 err = -ESTALE;
1431 out:
1432 return err;
1435 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1436 struct file *file, unsigned open_flags,
1437 umode_t mode, int *opened)
1439 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1440 struct nfs_open_context *ctx;
1441 struct dentry *res;
1442 struct iattr attr = { .ia_valid = ATTR_OPEN };
1443 struct inode *inode;
1444 unsigned int lookup_flags = 0;
1445 bool switched = false;
1446 int err;
1448 /* Expect a negative dentry */
1449 BUG_ON(d_inode(dentry));
1451 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1452 dir->i_sb->s_id, dir->i_ino, dentry);
1454 err = nfs_check_flags(open_flags);
1455 if (err)
1456 return err;
1458 /* NFS only supports OPEN on regular files */
1459 if ((open_flags & O_DIRECTORY)) {
1460 if (!d_in_lookup(dentry)) {
1462 * Hashed negative dentry with O_DIRECTORY: dentry was
1463 * revalidated and is fine, no need to perform lookup
1464 * again
1466 return -ENOENT;
1468 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1469 goto no_open;
1472 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1473 return -ENAMETOOLONG;
1475 if (open_flags & O_CREAT) {
1476 struct nfs_server *server = NFS_SERVER(dir);
1478 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1479 mode &= ~current_umask();
1481 attr.ia_valid |= ATTR_MODE;
1482 attr.ia_mode = mode;
1484 if (open_flags & O_TRUNC) {
1485 attr.ia_valid |= ATTR_SIZE;
1486 attr.ia_size = 0;
1489 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1490 d_drop(dentry);
1491 switched = true;
1492 dentry = d_alloc_parallel(dentry->d_parent,
1493 &dentry->d_name, &wq);
1494 if (IS_ERR(dentry))
1495 return PTR_ERR(dentry);
1496 if (unlikely(!d_in_lookup(dentry)))
1497 return finish_no_open(file, dentry);
1500 ctx = create_nfs_open_context(dentry, open_flags, file);
1501 err = PTR_ERR(ctx);
1502 if (IS_ERR(ctx))
1503 goto out;
1505 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1506 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1507 if (IS_ERR(inode)) {
1508 err = PTR_ERR(inode);
1509 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1510 put_nfs_open_context(ctx);
1511 d_drop(dentry);
1512 switch (err) {
1513 case -ENOENT:
1514 d_splice_alias(NULL, dentry);
1515 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1516 break;
1517 case -EISDIR:
1518 case -ENOTDIR:
1519 goto no_open;
1520 case -ELOOP:
1521 if (!(open_flags & O_NOFOLLOW))
1522 goto no_open;
1523 break;
1524 /* case -EINVAL: */
1525 default:
1526 break;
1528 goto out;
1531 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1532 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1533 put_nfs_open_context(ctx);
1534 out:
1535 if (unlikely(switched)) {
1536 d_lookup_done(dentry);
1537 dput(dentry);
1539 return err;
1541 no_open:
1542 res = nfs_lookup(dir, dentry, lookup_flags);
1543 if (switched) {
1544 d_lookup_done(dentry);
1545 if (!res)
1546 res = dentry;
1547 else
1548 dput(dentry);
1550 if (IS_ERR(res))
1551 return PTR_ERR(res);
1552 return finish_no_open(file, res);
1554 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1556 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1558 struct inode *inode;
1559 int ret = 0;
1561 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1562 goto no_open;
1563 if (d_mountpoint(dentry))
1564 goto no_open;
1565 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1566 goto no_open;
1568 inode = d_inode(dentry);
1570 /* We can't create new files in nfs_open_revalidate(), so we
1571 * optimize away revalidation of negative dentries.
1573 if (inode == NULL) {
1574 struct dentry *parent;
1575 struct inode *dir;
1577 if (flags & LOOKUP_RCU) {
1578 parent = READ_ONCE(dentry->d_parent);
1579 dir = d_inode_rcu(parent);
1580 if (!dir)
1581 return -ECHILD;
1582 } else {
1583 parent = dget_parent(dentry);
1584 dir = d_inode(parent);
1586 if (!nfs_neg_need_reval(dir, dentry, flags))
1587 ret = 1;
1588 else if (flags & LOOKUP_RCU)
1589 ret = -ECHILD;
1590 if (!(flags & LOOKUP_RCU))
1591 dput(parent);
1592 else if (parent != READ_ONCE(dentry->d_parent))
1593 return -ECHILD;
1594 goto out;
1597 /* NFS only supports OPEN on regular files */
1598 if (!S_ISREG(inode->i_mode))
1599 goto no_open;
1600 /* We cannot do exclusive creation on a positive dentry */
1601 if (flags & LOOKUP_EXCL)
1602 goto no_open;
1604 /* Let f_op->open() actually open (and revalidate) the file */
1605 ret = 1;
1607 out:
1608 return ret;
1610 no_open:
1611 return nfs_lookup_revalidate(dentry, flags);
1614 #endif /* CONFIG_NFSV4 */
1617 * Code common to create, mkdir, and mknod.
1619 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1620 struct nfs_fattr *fattr,
1621 struct nfs4_label *label)
1623 struct dentry *parent = dget_parent(dentry);
1624 struct inode *dir = d_inode(parent);
1625 struct inode *inode;
1626 int error = -EACCES;
1628 d_drop(dentry);
1630 /* We may have been initialized further down */
1631 if (d_really_is_positive(dentry))
1632 goto out;
1633 if (fhandle->size == 0) {
1634 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1635 if (error)
1636 goto out_error;
1638 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1639 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1640 struct nfs_server *server = NFS_SB(dentry->d_sb);
1641 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1642 if (error < 0)
1643 goto out_error;
1645 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1646 error = PTR_ERR(inode);
1647 if (IS_ERR(inode))
1648 goto out_error;
1649 d_add(dentry, inode);
1650 out:
1651 dput(parent);
1652 return 0;
1653 out_error:
1654 nfs_mark_for_revalidate(dir);
1655 dput(parent);
1656 return error;
1658 EXPORT_SYMBOL_GPL(nfs_instantiate);
1661 * Following a failed create operation, we drop the dentry rather
1662 * than retain a negative dentry. This avoids a problem in the event
1663 * that the operation succeeded on the server, but an error in the
1664 * reply path made it appear to have failed.
1666 int nfs_create(struct inode *dir, struct dentry *dentry,
1667 umode_t mode, bool excl)
1669 struct iattr attr;
1670 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1671 int error;
1673 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1674 dir->i_sb->s_id, dir->i_ino, dentry);
1676 attr.ia_mode = mode;
1677 attr.ia_valid = ATTR_MODE;
1679 trace_nfs_create_enter(dir, dentry, open_flags);
1680 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1681 trace_nfs_create_exit(dir, dentry, open_flags, error);
1682 if (error != 0)
1683 goto out_err;
1684 return 0;
1685 out_err:
1686 d_drop(dentry);
1687 return error;
1689 EXPORT_SYMBOL_GPL(nfs_create);
1692 * See comments for nfs_proc_create regarding failed operations.
1695 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1697 struct iattr attr;
1698 int status;
1700 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1701 dir->i_sb->s_id, dir->i_ino, dentry);
1703 attr.ia_mode = mode;
1704 attr.ia_valid = ATTR_MODE;
1706 trace_nfs_mknod_enter(dir, dentry);
1707 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1708 trace_nfs_mknod_exit(dir, dentry, status);
1709 if (status != 0)
1710 goto out_err;
1711 return 0;
1712 out_err:
1713 d_drop(dentry);
1714 return status;
1716 EXPORT_SYMBOL_GPL(nfs_mknod);
1719 * See comments for nfs_proc_create regarding failed operations.
1721 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1723 struct iattr attr;
1724 int error;
1726 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1727 dir->i_sb->s_id, dir->i_ino, dentry);
1729 attr.ia_valid = ATTR_MODE;
1730 attr.ia_mode = mode | S_IFDIR;
1732 trace_nfs_mkdir_enter(dir, dentry);
1733 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1734 trace_nfs_mkdir_exit(dir, dentry, error);
1735 if (error != 0)
1736 goto out_err;
1737 return 0;
1738 out_err:
1739 d_drop(dentry);
1740 return error;
1742 EXPORT_SYMBOL_GPL(nfs_mkdir);
1744 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1746 if (simple_positive(dentry))
1747 d_delete(dentry);
1750 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1752 int error;
1754 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1755 dir->i_sb->s_id, dir->i_ino, dentry);
1757 trace_nfs_rmdir_enter(dir, dentry);
1758 if (d_really_is_positive(dentry)) {
1759 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1760 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1761 /* Ensure the VFS deletes this inode */
1762 switch (error) {
1763 case 0:
1764 clear_nlink(d_inode(dentry));
1765 break;
1766 case -ENOENT:
1767 nfs_dentry_handle_enoent(dentry);
1769 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1770 } else
1771 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1772 trace_nfs_rmdir_exit(dir, dentry, error);
1774 return error;
1776 EXPORT_SYMBOL_GPL(nfs_rmdir);
1779 * Remove a file after making sure there are no pending writes,
1780 * and after checking that the file has only one user.
1782 * We invalidate the attribute cache and free the inode prior to the operation
1783 * to avoid possible races if the server reuses the inode.
1785 static int nfs_safe_remove(struct dentry *dentry)
1787 struct inode *dir = d_inode(dentry->d_parent);
1788 struct inode *inode = d_inode(dentry);
1789 int error = -EBUSY;
1791 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1793 /* If the dentry was sillyrenamed, we simply call d_delete() */
1794 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1795 error = 0;
1796 goto out;
1799 trace_nfs_remove_enter(dir, dentry);
1800 if (inode != NULL) {
1801 NFS_PROTO(inode)->return_delegation(inode);
1802 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1803 if (error == 0)
1804 nfs_drop_nlink(inode);
1805 } else
1806 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1807 if (error == -ENOENT)
1808 nfs_dentry_handle_enoent(dentry);
1809 trace_nfs_remove_exit(dir, dentry, error);
1810 out:
1811 return error;
1814 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1815 * belongs to an active ".nfs..." file and we return -EBUSY.
1817 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1819 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1821 int error;
1822 int need_rehash = 0;
1824 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1825 dir->i_ino, dentry);
1827 trace_nfs_unlink_enter(dir, dentry);
1828 spin_lock(&dentry->d_lock);
1829 if (d_count(dentry) > 1) {
1830 spin_unlock(&dentry->d_lock);
1831 /* Start asynchronous writeout of the inode */
1832 write_inode_now(d_inode(dentry), 0);
1833 error = nfs_sillyrename(dir, dentry);
1834 goto out;
1836 if (!d_unhashed(dentry)) {
1837 __d_drop(dentry);
1838 need_rehash = 1;
1840 spin_unlock(&dentry->d_lock);
1841 error = nfs_safe_remove(dentry);
1842 if (!error || error == -ENOENT) {
1843 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1844 } else if (need_rehash)
1845 d_rehash(dentry);
1846 out:
1847 trace_nfs_unlink_exit(dir, dentry, error);
1848 return error;
1850 EXPORT_SYMBOL_GPL(nfs_unlink);
1853 * To create a symbolic link, most file systems instantiate a new inode,
1854 * add a page to it containing the path, then write it out to the disk
1855 * using prepare_write/commit_write.
1857 * Unfortunately the NFS client can't create the in-core inode first
1858 * because it needs a file handle to create an in-core inode (see
1859 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1860 * symlink request has completed on the server.
1862 * So instead we allocate a raw page, copy the symname into it, then do
1863 * the SYMLINK request with the page as the buffer. If it succeeds, we
1864 * now have a new file handle and can instantiate an in-core NFS inode
1865 * and move the raw page into its mapping.
1867 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1869 struct page *page;
1870 char *kaddr;
1871 struct iattr attr;
1872 unsigned int pathlen = strlen(symname);
1873 int error;
1875 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1876 dir->i_ino, dentry, symname);
1878 if (pathlen > PAGE_SIZE)
1879 return -ENAMETOOLONG;
1881 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1882 attr.ia_valid = ATTR_MODE;
1884 page = alloc_page(GFP_USER);
1885 if (!page)
1886 return -ENOMEM;
1888 kaddr = page_address(page);
1889 memcpy(kaddr, symname, pathlen);
1890 if (pathlen < PAGE_SIZE)
1891 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1893 trace_nfs_symlink_enter(dir, dentry);
1894 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1895 trace_nfs_symlink_exit(dir, dentry, error);
1896 if (error != 0) {
1897 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1898 dir->i_sb->s_id, dir->i_ino,
1899 dentry, symname, error);
1900 d_drop(dentry);
1901 __free_page(page);
1902 return error;
1906 * No big deal if we can't add this page to the page cache here.
1907 * READLINK will get the missing page from the server if needed.
1909 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1910 GFP_KERNEL)) {
1911 SetPageUptodate(page);
1912 unlock_page(page);
1914 * add_to_page_cache_lru() grabs an extra page refcount.
1915 * Drop it here to avoid leaking this page later.
1917 put_page(page);
1918 } else
1919 __free_page(page);
1921 return 0;
1923 EXPORT_SYMBOL_GPL(nfs_symlink);
1926 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1928 struct inode *inode = d_inode(old_dentry);
1929 int error;
1931 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1932 old_dentry, dentry);
1934 trace_nfs_link_enter(inode, dir, dentry);
1935 NFS_PROTO(inode)->return_delegation(inode);
1937 d_drop(dentry);
1938 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1939 if (error == 0) {
1940 ihold(inode);
1941 d_add(dentry, inode);
1943 trace_nfs_link_exit(inode, dir, dentry, error);
1944 return error;
1946 EXPORT_SYMBOL_GPL(nfs_link);
1949 * RENAME
1950 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1951 * different file handle for the same inode after a rename (e.g. when
1952 * moving to a different directory). A fail-safe method to do so would
1953 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1954 * rename the old file using the sillyrename stuff. This way, the original
1955 * file in old_dir will go away when the last process iput()s the inode.
1957 * FIXED.
1959 * It actually works quite well. One needs to have the possibility for
1960 * at least one ".nfs..." file in each directory the file ever gets
1961 * moved or linked to which happens automagically with the new
1962 * implementation that only depends on the dcache stuff instead of
1963 * using the inode layer
1965 * Unfortunately, things are a little more complicated than indicated
1966 * above. For a cross-directory move, we want to make sure we can get
1967 * rid of the old inode after the operation. This means there must be
1968 * no pending writes (if it's a file), and the use count must be 1.
1969 * If these conditions are met, we can drop the dentries before doing
1970 * the rename.
1972 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1973 struct inode *new_dir, struct dentry *new_dentry,
1974 unsigned int flags)
1976 struct inode *old_inode = d_inode(old_dentry);
1977 struct inode *new_inode = d_inode(new_dentry);
1978 struct dentry *dentry = NULL, *rehash = NULL;
1979 struct rpc_task *task;
1980 int error = -EBUSY;
1982 if (flags)
1983 return -EINVAL;
1985 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1986 old_dentry, new_dentry,
1987 d_count(new_dentry));
1989 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1991 * For non-directories, check whether the target is busy and if so,
1992 * make a copy of the dentry and then do a silly-rename. If the
1993 * silly-rename succeeds, the copied dentry is hashed and becomes
1994 * the new target.
1996 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1998 * To prevent any new references to the target during the
1999 * rename, we unhash the dentry in advance.
2001 if (!d_unhashed(new_dentry)) {
2002 d_drop(new_dentry);
2003 rehash = new_dentry;
2006 if (d_count(new_dentry) > 2) {
2007 int err;
2009 /* copy the target dentry's name */
2010 dentry = d_alloc(new_dentry->d_parent,
2011 &new_dentry->d_name);
2012 if (!dentry)
2013 goto out;
2015 /* silly-rename the existing target ... */
2016 err = nfs_sillyrename(new_dir, new_dentry);
2017 if (err)
2018 goto out;
2020 new_dentry = dentry;
2021 rehash = NULL;
2022 new_inode = NULL;
2026 NFS_PROTO(old_inode)->return_delegation(old_inode);
2027 if (new_inode != NULL)
2028 NFS_PROTO(new_inode)->return_delegation(new_inode);
2030 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2031 if (IS_ERR(task)) {
2032 error = PTR_ERR(task);
2033 goto out;
2036 error = rpc_wait_for_completion_task(task);
2037 if (error != 0) {
2038 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2039 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2040 smp_wmb();
2041 } else
2042 error = task->tk_status;
2043 rpc_put_task(task);
2044 nfs_mark_for_revalidate(old_inode);
2045 out:
2046 if (rehash)
2047 d_rehash(rehash);
2048 trace_nfs_rename_exit(old_dir, old_dentry,
2049 new_dir, new_dentry, error);
2050 if (!error) {
2051 if (new_inode != NULL)
2052 nfs_drop_nlink(new_inode);
2054 * The d_move() should be here instead of in an async RPC completion
2055 * handler because we need the proper locks to move the dentry. If
2056 * we're interrupted by a signal, the async RPC completion handler
2057 * should mark the directories for revalidation.
2059 d_move(old_dentry, new_dentry);
2060 nfs_set_verifier(old_dentry,
2061 nfs_save_change_attribute(new_dir));
2062 } else if (error == -ENOENT)
2063 nfs_dentry_handle_enoent(old_dentry);
2065 /* new dentry created? */
2066 if (dentry)
2067 dput(dentry);
2068 return error;
2070 EXPORT_SYMBOL_GPL(nfs_rename);
2072 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2073 static LIST_HEAD(nfs_access_lru_list);
2074 static atomic_long_t nfs_access_nr_entries;
2076 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2077 module_param(nfs_access_max_cachesize, ulong, 0644);
2078 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2080 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2082 put_rpccred(entry->cred);
2083 kfree_rcu(entry, rcu_head);
2084 smp_mb__before_atomic();
2085 atomic_long_dec(&nfs_access_nr_entries);
2086 smp_mb__after_atomic();
2089 static void nfs_access_free_list(struct list_head *head)
2091 struct nfs_access_entry *cache;
2093 while (!list_empty(head)) {
2094 cache = list_entry(head->next, struct nfs_access_entry, lru);
2095 list_del(&cache->lru);
2096 nfs_access_free_entry(cache);
2100 static unsigned long
2101 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2103 LIST_HEAD(head);
2104 struct nfs_inode *nfsi, *next;
2105 struct nfs_access_entry *cache;
2106 long freed = 0;
2108 spin_lock(&nfs_access_lru_lock);
2109 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2110 struct inode *inode;
2112 if (nr_to_scan-- == 0)
2113 break;
2114 inode = &nfsi->vfs_inode;
2115 spin_lock(&inode->i_lock);
2116 if (list_empty(&nfsi->access_cache_entry_lru))
2117 goto remove_lru_entry;
2118 cache = list_entry(nfsi->access_cache_entry_lru.next,
2119 struct nfs_access_entry, lru);
2120 list_move(&cache->lru, &head);
2121 rb_erase(&cache->rb_node, &nfsi->access_cache);
2122 freed++;
2123 if (!list_empty(&nfsi->access_cache_entry_lru))
2124 list_move_tail(&nfsi->access_cache_inode_lru,
2125 &nfs_access_lru_list);
2126 else {
2127 remove_lru_entry:
2128 list_del_init(&nfsi->access_cache_inode_lru);
2129 smp_mb__before_atomic();
2130 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2131 smp_mb__after_atomic();
2133 spin_unlock(&inode->i_lock);
2135 spin_unlock(&nfs_access_lru_lock);
2136 nfs_access_free_list(&head);
2137 return freed;
2140 unsigned long
2141 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2143 int nr_to_scan = sc->nr_to_scan;
2144 gfp_t gfp_mask = sc->gfp_mask;
2146 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2147 return SHRINK_STOP;
2148 return nfs_do_access_cache_scan(nr_to_scan);
2152 unsigned long
2153 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2155 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2158 static void
2159 nfs_access_cache_enforce_limit(void)
2161 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2162 unsigned long diff;
2163 unsigned int nr_to_scan;
2165 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2166 return;
2167 nr_to_scan = 100;
2168 diff = nr_entries - nfs_access_max_cachesize;
2169 if (diff < nr_to_scan)
2170 nr_to_scan = diff;
2171 nfs_do_access_cache_scan(nr_to_scan);
2174 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2176 struct rb_root *root_node = &nfsi->access_cache;
2177 struct rb_node *n;
2178 struct nfs_access_entry *entry;
2180 /* Unhook entries from the cache */
2181 while ((n = rb_first(root_node)) != NULL) {
2182 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2183 rb_erase(n, root_node);
2184 list_move(&entry->lru, head);
2186 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2189 void nfs_access_zap_cache(struct inode *inode)
2191 LIST_HEAD(head);
2193 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2194 return;
2195 /* Remove from global LRU init */
2196 spin_lock(&nfs_access_lru_lock);
2197 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2198 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2200 spin_lock(&inode->i_lock);
2201 __nfs_access_zap_cache(NFS_I(inode), &head);
2202 spin_unlock(&inode->i_lock);
2203 spin_unlock(&nfs_access_lru_lock);
2204 nfs_access_free_list(&head);
2206 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2208 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2210 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2211 struct nfs_access_entry *entry;
2213 while (n != NULL) {
2214 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2216 if (cred < entry->cred)
2217 n = n->rb_left;
2218 else if (cred > entry->cred)
2219 n = n->rb_right;
2220 else
2221 return entry;
2223 return NULL;
2226 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2228 struct nfs_inode *nfsi = NFS_I(inode);
2229 struct nfs_access_entry *cache;
2230 bool retry = true;
2231 int err;
2233 spin_lock(&inode->i_lock);
2234 for(;;) {
2235 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2236 goto out_zap;
2237 cache = nfs_access_search_rbtree(inode, cred);
2238 err = -ENOENT;
2239 if (cache == NULL)
2240 goto out;
2241 /* Found an entry, is our attribute cache valid? */
2242 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2243 break;
2244 err = -ECHILD;
2245 if (!may_block)
2246 goto out;
2247 if (!retry)
2248 goto out_zap;
2249 spin_unlock(&inode->i_lock);
2250 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2251 if (err)
2252 return err;
2253 spin_lock(&inode->i_lock);
2254 retry = false;
2256 res->cred = cache->cred;
2257 res->mask = cache->mask;
2258 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2259 err = 0;
2260 out:
2261 spin_unlock(&inode->i_lock);
2262 return err;
2263 out_zap:
2264 spin_unlock(&inode->i_lock);
2265 nfs_access_zap_cache(inode);
2266 return -ENOENT;
2269 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2271 /* Only check the most recently returned cache entry,
2272 * but do it without locking.
2274 struct nfs_inode *nfsi = NFS_I(inode);
2275 struct nfs_access_entry *cache;
2276 int err = -ECHILD;
2277 struct list_head *lh;
2279 rcu_read_lock();
2280 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2281 goto out;
2282 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2283 cache = list_entry(lh, struct nfs_access_entry, lru);
2284 if (lh == &nfsi->access_cache_entry_lru ||
2285 cred != cache->cred)
2286 cache = NULL;
2287 if (cache == NULL)
2288 goto out;
2289 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2290 goto out;
2291 res->cred = cache->cred;
2292 res->mask = cache->mask;
2293 err = 0;
2294 out:
2295 rcu_read_unlock();
2296 return err;
2299 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2301 struct nfs_inode *nfsi = NFS_I(inode);
2302 struct rb_root *root_node = &nfsi->access_cache;
2303 struct rb_node **p = &root_node->rb_node;
2304 struct rb_node *parent = NULL;
2305 struct nfs_access_entry *entry;
2307 spin_lock(&inode->i_lock);
2308 while (*p != NULL) {
2309 parent = *p;
2310 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2312 if (set->cred < entry->cred)
2313 p = &parent->rb_left;
2314 else if (set->cred > entry->cred)
2315 p = &parent->rb_right;
2316 else
2317 goto found;
2319 rb_link_node(&set->rb_node, parent, p);
2320 rb_insert_color(&set->rb_node, root_node);
2321 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2322 spin_unlock(&inode->i_lock);
2323 return;
2324 found:
2325 rb_replace_node(parent, &set->rb_node, root_node);
2326 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2327 list_del(&entry->lru);
2328 spin_unlock(&inode->i_lock);
2329 nfs_access_free_entry(entry);
2332 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2334 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2335 if (cache == NULL)
2336 return;
2337 RB_CLEAR_NODE(&cache->rb_node);
2338 cache->cred = get_rpccred(set->cred);
2339 cache->mask = set->mask;
2341 /* The above field assignments must be visible
2342 * before this item appears on the lru. We cannot easily
2343 * use rcu_assign_pointer, so just force the memory barrier.
2345 smp_wmb();
2346 nfs_access_add_rbtree(inode, cache);
2348 /* Update accounting */
2349 smp_mb__before_atomic();
2350 atomic_long_inc(&nfs_access_nr_entries);
2351 smp_mb__after_atomic();
2353 /* Add inode to global LRU list */
2354 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2355 spin_lock(&nfs_access_lru_lock);
2356 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2357 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2358 &nfs_access_lru_list);
2359 spin_unlock(&nfs_access_lru_lock);
2361 nfs_access_cache_enforce_limit();
2363 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2365 #define NFS_MAY_READ (NFS_ACCESS_READ)
2366 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2367 NFS_ACCESS_EXTEND | \
2368 NFS_ACCESS_DELETE)
2369 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2370 NFS_ACCESS_EXTEND)
2371 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2372 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2373 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2374 static int
2375 nfs_access_calc_mask(u32 access_result, umode_t umode)
2377 int mask = 0;
2379 if (access_result & NFS_MAY_READ)
2380 mask |= MAY_READ;
2381 if (S_ISDIR(umode)) {
2382 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2383 mask |= MAY_WRITE;
2384 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2385 mask |= MAY_EXEC;
2386 } else if (S_ISREG(umode)) {
2387 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2388 mask |= MAY_WRITE;
2389 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2390 mask |= MAY_EXEC;
2391 } else if (access_result & NFS_MAY_WRITE)
2392 mask |= MAY_WRITE;
2393 return mask;
2396 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2398 entry->mask = access_result;
2400 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2402 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2404 struct nfs_access_entry cache;
2405 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2406 int cache_mask;
2407 int status;
2409 trace_nfs_access_enter(inode);
2411 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2412 if (status != 0)
2413 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2414 if (status == 0)
2415 goto out_cached;
2417 status = -ECHILD;
2418 if (!may_block)
2419 goto out;
2422 * Determine which access bits we want to ask for...
2424 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2425 if (S_ISDIR(inode->i_mode))
2426 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2427 else
2428 cache.mask |= NFS_ACCESS_EXECUTE;
2429 cache.cred = cred;
2430 status = NFS_PROTO(inode)->access(inode, &cache);
2431 if (status != 0) {
2432 if (status == -ESTALE) {
2433 nfs_zap_caches(inode);
2434 if (!S_ISDIR(inode->i_mode))
2435 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2437 goto out;
2439 nfs_access_add_cache(inode, &cache);
2440 out_cached:
2441 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2442 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2443 status = -EACCES;
2444 out:
2445 trace_nfs_access_exit(inode, status);
2446 return status;
2449 static int nfs_open_permission_mask(int openflags)
2451 int mask = 0;
2453 if (openflags & __FMODE_EXEC) {
2454 /* ONLY check exec rights */
2455 mask = MAY_EXEC;
2456 } else {
2457 if ((openflags & O_ACCMODE) != O_WRONLY)
2458 mask |= MAY_READ;
2459 if ((openflags & O_ACCMODE) != O_RDONLY)
2460 mask |= MAY_WRITE;
2463 return mask;
2466 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2468 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2470 EXPORT_SYMBOL_GPL(nfs_may_open);
2472 static int nfs_execute_ok(struct inode *inode, int mask)
2474 struct nfs_server *server = NFS_SERVER(inode);
2475 int ret = 0;
2477 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2478 if (mask & MAY_NOT_BLOCK)
2479 return -ECHILD;
2480 ret = __nfs_revalidate_inode(server, inode);
2482 if (ret == 0 && !execute_ok(inode))
2483 ret = -EACCES;
2484 return ret;
2487 int nfs_permission(struct inode *inode, int mask)
2489 struct rpc_cred *cred;
2490 int res = 0;
2492 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2494 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2495 goto out;
2496 /* Is this sys_access() ? */
2497 if (mask & (MAY_ACCESS | MAY_CHDIR))
2498 goto force_lookup;
2500 switch (inode->i_mode & S_IFMT) {
2501 case S_IFLNK:
2502 goto out;
2503 case S_IFREG:
2504 if ((mask & MAY_OPEN) &&
2505 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2506 return 0;
2507 break;
2508 case S_IFDIR:
2510 * Optimize away all write operations, since the server
2511 * will check permissions when we perform the op.
2513 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2514 goto out;
2517 force_lookup:
2518 if (!NFS_PROTO(inode)->access)
2519 goto out_notsup;
2521 /* Always try fast lookups first */
2522 rcu_read_lock();
2523 cred = rpc_lookup_cred_nonblock();
2524 if (!IS_ERR(cred))
2525 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2526 else
2527 res = PTR_ERR(cred);
2528 rcu_read_unlock();
2529 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2530 /* Fast lookup failed, try the slow way */
2531 cred = rpc_lookup_cred();
2532 if (!IS_ERR(cred)) {
2533 res = nfs_do_access(inode, cred, mask);
2534 put_rpccred(cred);
2535 } else
2536 res = PTR_ERR(cred);
2538 out:
2539 if (!res && (mask & MAY_EXEC))
2540 res = nfs_execute_ok(inode, mask);
2542 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2543 inode->i_sb->s_id, inode->i_ino, mask, res);
2544 return res;
2545 out_notsup:
2546 if (mask & MAY_NOT_BLOCK)
2547 return -ECHILD;
2549 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2550 if (res == 0)
2551 res = generic_permission(inode, mask);
2552 goto out;
2554 EXPORT_SYMBOL_GPL(nfs_permission);
2557 * Local variables:
2558 * version-control: t
2559 * kept-new-versions: 5
2560 * End: