1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
42 #include <cluster/masklog.h>
50 #include "extent_map.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
66 #include "buffer_head_io.h"
68 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
70 struct ocfs2_file_private
*fp
;
72 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
77 mutex_init(&fp
->fp_mutex
);
78 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
79 file
->private_data
= fp
;
84 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
86 struct ocfs2_file_private
*fp
= file
->private_data
;
87 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
90 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
91 ocfs2_lock_res_free(&fp
->fp_flock
);
93 file
->private_data
= NULL
;
97 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
100 int mode
= file
->f_flags
;
101 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
103 trace_ocfs2_file_open(inode
, file
, file
->f_path
.dentry
,
104 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
105 file
->f_path
.dentry
->d_name
.len
,
106 file
->f_path
.dentry
->d_name
.name
, mode
);
108 if (file
->f_mode
& FMODE_WRITE
) {
109 status
= dquot_initialize(inode
);
114 spin_lock(&oi
->ip_lock
);
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
120 spin_unlock(&oi
->ip_lock
);
127 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
130 spin_unlock(&oi
->ip_lock
);
132 status
= ocfs2_init_file_private(inode
, file
);
135 * We want to set open count back if we're failing the
138 spin_lock(&oi
->ip_lock
);
140 spin_unlock(&oi
->ip_lock
);
143 file
->f_mode
|= FMODE_NOWAIT
;
149 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
151 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
153 spin_lock(&oi
->ip_lock
);
154 if (!--oi
->ip_open_count
)
155 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
157 trace_ocfs2_file_release(inode
, file
, file
->f_path
.dentry
,
159 file
->f_path
.dentry
->d_name
.len
,
160 file
->f_path
.dentry
->d_name
.name
,
162 spin_unlock(&oi
->ip_lock
);
164 ocfs2_free_file_private(inode
, file
);
169 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
171 return ocfs2_init_file_private(inode
, file
);
174 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
176 ocfs2_free_file_private(inode
, file
);
180 static int ocfs2_sync_file(struct file
*file
, loff_t start
, loff_t end
,
184 struct inode
*inode
= file
->f_mapping
->host
;
185 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
186 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
187 journal_t
*journal
= osb
->journal
->j_journal
;
190 bool needs_barrier
= false;
192 trace_ocfs2_sync_file(inode
, file
, file
->f_path
.dentry
,
193 OCFS2_I(inode
)->ip_blkno
,
194 file
->f_path
.dentry
->d_name
.len
,
195 file
->f_path
.dentry
->d_name
.name
,
196 (unsigned long long)datasync
);
198 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
201 err
= file_write_and_wait_range(file
, start
, end
);
205 commit_tid
= datasync
? oi
->i_datasync_tid
: oi
->i_sync_tid
;
206 if (journal
->j_flags
& JBD2_BARRIER
&&
207 !jbd2_trans_will_send_data_barrier(journal
, commit_tid
))
208 needs_barrier
= true;
209 err
= jbd2_complete_transaction(journal
, commit_tid
);
211 ret
= blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
219 return (err
< 0) ? -EIO
: 0;
222 int ocfs2_should_update_atime(struct inode
*inode
,
223 struct vfsmount
*vfsmnt
)
226 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
228 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
231 if ((inode
->i_flags
& S_NOATIME
) ||
232 ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
236 * We can be called with no vfsmnt structure - NFSD will
239 * Note that our action here is different than touch_atime() -
240 * if we can't tell whether this is a noatime mount, then we
241 * don't know whether to trust the value of s_atime_quantum.
246 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
247 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
250 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
251 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
252 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
258 now
= current_time(inode
);
259 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
265 int ocfs2_update_inode_atime(struct inode
*inode
,
266 struct buffer_head
*bh
)
269 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
271 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
273 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
274 if (IS_ERR(handle
)) {
275 ret
= PTR_ERR(handle
);
280 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
281 OCFS2_JOURNAL_ACCESS_WRITE
);
288 * Don't use ocfs2_mark_inode_dirty() here as we don't always
289 * have i_mutex to guard against concurrent changes to other
292 inode
->i_atime
= current_time(inode
);
293 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
294 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
295 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
296 ocfs2_journal_dirty(handle
, bh
);
299 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
304 int ocfs2_set_inode_size(handle_t
*handle
,
306 struct buffer_head
*fe_bh
,
311 i_size_write(inode
, new_i_size
);
312 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
313 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
315 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
325 int ocfs2_simple_size_update(struct inode
*inode
,
326 struct buffer_head
*di_bh
,
330 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
331 handle_t
*handle
= NULL
;
333 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
334 if (IS_ERR(handle
)) {
335 ret
= PTR_ERR(handle
);
340 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
345 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
346 ocfs2_commit_trans(osb
, handle
);
351 static int ocfs2_cow_file_pos(struct inode
*inode
,
352 struct buffer_head
*fe_bh
,
356 u32 phys
, cpos
= offset
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
357 unsigned int num_clusters
= 0;
358 unsigned int ext_flags
= 0;
361 * If the new offset is aligned to the range of the cluster, there is
362 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
365 if ((offset
& (OCFS2_SB(inode
->i_sb
)->s_clustersize
- 1)) == 0)
368 status
= ocfs2_get_clusters(inode
, cpos
, &phys
,
369 &num_clusters
, &ext_flags
);
375 if (!(ext_flags
& OCFS2_EXT_REFCOUNTED
))
378 return ocfs2_refcount_cow(inode
, fe_bh
, cpos
, 1, cpos
+1);
384 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
386 struct buffer_head
*fe_bh
,
391 struct ocfs2_dinode
*di
;
395 * We need to CoW the cluster contains the offset if it is reflinked
396 * since we will call ocfs2_zero_range_for_truncate later which will
397 * write "0" from offset to the end of the cluster.
399 status
= ocfs2_cow_file_pos(inode
, fe_bh
, new_i_size
);
405 /* TODO: This needs to actually orphan the inode in this
408 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
409 if (IS_ERR(handle
)) {
410 status
= PTR_ERR(handle
);
415 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), fe_bh
,
416 OCFS2_JOURNAL_ACCESS_WRITE
);
423 * Do this before setting i_size.
425 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
426 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
433 i_size_write(inode
, new_i_size
);
434 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
436 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
437 di
->i_size
= cpu_to_le64(new_i_size
);
438 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
439 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
440 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
442 ocfs2_journal_dirty(handle
, fe_bh
);
445 ocfs2_commit_trans(osb
, handle
);
450 int ocfs2_truncate_file(struct inode
*inode
,
451 struct buffer_head
*di_bh
,
455 struct ocfs2_dinode
*fe
= NULL
;
456 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
458 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
459 * already validated it */
460 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
462 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
463 (unsigned long long)le64_to_cpu(fe
->i_size
),
464 (unsigned long long)new_i_size
);
466 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
467 "Inode %llu, inode i_size = %lld != di "
468 "i_size = %llu, i_flags = 0x%x\n",
469 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
471 (unsigned long long)le64_to_cpu(fe
->i_size
),
472 le32_to_cpu(fe
->i_flags
));
474 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
475 trace_ocfs2_truncate_file_error(
476 (unsigned long long)le64_to_cpu(fe
->i_size
),
477 (unsigned long long)new_i_size
);
483 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
485 ocfs2_resv_discard(&osb
->osb_la_resmap
,
486 &OCFS2_I(inode
)->ip_la_data_resv
);
489 * The inode lock forced other nodes to sync and drop their
490 * pages, which (correctly) happens even if we have a truncate
491 * without allocation change - ocfs2 cluster sizes can be much
492 * greater than page size, so we have to truncate them
495 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
496 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
498 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
499 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
500 i_size_read(inode
), 1);
504 goto bail_unlock_sem
;
507 /* alright, we're going to need to do a full blown alloc size
508 * change. Orphan the inode so that recovery can complete the
509 * truncate if necessary. This does the task of marking
511 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
514 goto bail_unlock_sem
;
517 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
);
520 goto bail_unlock_sem
;
523 /* TODO: orphan dir cleanup here. */
525 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
528 if (!status
&& OCFS2_I(inode
)->ip_clusters
== 0)
529 status
= ocfs2_try_remove_refcount_tree(inode
, di_bh
);
535 * extend file allocation only here.
536 * we'll update all the disk stuff, and oip->alloc_size
538 * expect stuff to be locked, a transaction started and enough data /
539 * metadata reservations in the contexts.
541 * Will return -EAGAIN, and a reason if a restart is needed.
542 * If passed in, *reason will always be set, even in error.
544 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
549 struct buffer_head
*fe_bh
,
551 struct ocfs2_alloc_context
*data_ac
,
552 struct ocfs2_alloc_context
*meta_ac
,
553 enum ocfs2_alloc_restarted
*reason_ret
)
556 struct ocfs2_extent_tree et
;
558 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), fe_bh
);
559 ret
= ocfs2_add_clusters_in_btree(handle
, &et
, logical_offset
,
560 clusters_to_add
, mark_unwritten
,
561 data_ac
, meta_ac
, reason_ret
);
566 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
567 u32 clusters_to_add
, int mark_unwritten
)
570 int restart_func
= 0;
573 struct buffer_head
*bh
= NULL
;
574 struct ocfs2_dinode
*fe
= NULL
;
575 handle_t
*handle
= NULL
;
576 struct ocfs2_alloc_context
*data_ac
= NULL
;
577 struct ocfs2_alloc_context
*meta_ac
= NULL
;
578 enum ocfs2_alloc_restarted why
= RESTART_NONE
;
579 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
580 struct ocfs2_extent_tree et
;
584 * Unwritten extent only exists for file systems which
587 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
589 status
= ocfs2_read_inode_block(inode
, &bh
);
594 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
597 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
599 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), bh
);
600 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
607 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
);
608 handle
= ocfs2_start_trans(osb
, credits
);
609 if (IS_ERR(handle
)) {
610 status
= PTR_ERR(handle
);
616 restarted_transaction
:
617 trace_ocfs2_extend_allocation(
618 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
619 (unsigned long long)i_size_read(inode
),
620 le32_to_cpu(fe
->i_clusters
), clusters_to_add
,
623 status
= dquot_alloc_space_nodirty(inode
,
624 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
629 /* reserve a write to the file entry early on - that we if we
630 * run out of credits in the allocation path, we can still
632 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
633 OCFS2_JOURNAL_ACCESS_WRITE
);
639 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
641 status
= ocfs2_add_inode_data(osb
,
651 if ((status
< 0) && (status
!= -EAGAIN
)) {
652 if (status
!= -ENOSPC
)
656 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
657 ocfs2_journal_dirty(handle
, bh
);
659 spin_lock(&OCFS2_I(inode
)->ip_lock
);
660 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
661 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
662 /* Release unused quota reservation */
663 dquot_free_space(inode
,
664 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
667 if (why
!= RESTART_NONE
&& clusters_to_add
) {
668 if (why
== RESTART_META
) {
672 BUG_ON(why
!= RESTART_TRANS
);
674 status
= ocfs2_allocate_extend_trans(handle
, 1);
676 /* handle still has to be committed at
682 goto restarted_transaction
;
686 trace_ocfs2_extend_allocation_end(OCFS2_I(inode
)->ip_blkno
,
687 le32_to_cpu(fe
->i_clusters
),
688 (unsigned long long)le64_to_cpu(fe
->i_size
),
689 OCFS2_I(inode
)->ip_clusters
,
690 (unsigned long long)i_size_read(inode
));
693 if (status
< 0 && did_quota
)
694 dquot_free_space(inode
,
695 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_add
));
697 ocfs2_commit_trans(osb
, handle
);
701 ocfs2_free_alloc_context(data_ac
);
705 ocfs2_free_alloc_context(meta_ac
);
708 if ((!status
) && restart_func
) {
719 * While a write will already be ordering the data, a truncate will not.
720 * Thus, we need to explicitly order the zeroed pages.
722 static handle_t
*ocfs2_zero_start_ordered_transaction(struct inode
*inode
,
723 struct buffer_head
*di_bh
)
725 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
726 handle_t
*handle
= NULL
;
729 if (!ocfs2_should_order_data(inode
))
732 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
733 if (IS_ERR(handle
)) {
739 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
745 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
746 OCFS2_JOURNAL_ACCESS_WRITE
);
749 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
754 ocfs2_commit_trans(osb
, handle
);
755 handle
= ERR_PTR(ret
);
760 /* Some parts of this taken from generic_cont_expand, which turned out
761 * to be too fragile to do exactly what we need without us having to
762 * worry about recursive locking in ->write_begin() and ->write_end(). */
763 static int ocfs2_write_zero_page(struct inode
*inode
, u64 abs_from
,
764 u64 abs_to
, struct buffer_head
*di_bh
)
766 struct address_space
*mapping
= inode
->i_mapping
;
768 unsigned long index
= abs_from
>> PAGE_SHIFT
;
771 unsigned zero_from
, zero_to
, block_start
, block_end
;
772 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
774 BUG_ON(abs_from
>= abs_to
);
775 BUG_ON(abs_to
> (((u64
)index
+ 1) << PAGE_SHIFT
));
776 BUG_ON(abs_from
& (inode
->i_blkbits
- 1));
778 handle
= ocfs2_zero_start_ordered_transaction(inode
, di_bh
);
779 if (IS_ERR(handle
)) {
780 ret
= PTR_ERR(handle
);
784 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
788 goto out_commit_trans
;
791 /* Get the offsets within the page that we want to zero */
792 zero_from
= abs_from
& (PAGE_SIZE
- 1);
793 zero_to
= abs_to
& (PAGE_SIZE
- 1);
797 trace_ocfs2_write_zero_page(
798 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
799 (unsigned long long)abs_from
,
800 (unsigned long long)abs_to
,
801 index
, zero_from
, zero_to
);
803 /* We know that zero_from is block aligned */
804 for (block_start
= zero_from
; block_start
< zero_to
;
805 block_start
= block_end
) {
806 block_end
= block_start
+ i_blocksize(inode
);
809 * block_start is block-aligned. Bump it by one to force
810 * __block_write_begin and block_commit_write to zero the
813 ret
= __block_write_begin(page
, block_start
+ 1, 0,
821 /* must not update i_size! */
822 ret
= block_commit_write(page
, block_start
+ 1,
831 * fs-writeback will release the dirty pages without page lock
832 * whose offset are over inode size, the release happens at
833 * block_write_full_page().
835 i_size_write(inode
, abs_to
);
836 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
837 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
838 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
839 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
840 di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
841 di
->i_mtime_nsec
= di
->i_ctime_nsec
;
843 ocfs2_journal_dirty(handle
, di_bh
);
844 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
852 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
858 * Find the next range to zero. We do this in terms of bytes because
859 * that's what ocfs2_zero_extend() wants, and it is dealing with the
860 * pagecache. We may return multiple extents.
862 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
863 * needs to be zeroed. range_start and range_end return the next zeroing
864 * range. A subsequent call should pass the previous range_end as its
865 * zero_start. If range_end is 0, there's nothing to do.
867 * Unwritten extents are skipped over. Refcounted extents are CoWd.
869 static int ocfs2_zero_extend_get_range(struct inode
*inode
,
870 struct buffer_head
*di_bh
,
871 u64 zero_start
, u64 zero_end
,
872 u64
*range_start
, u64
*range_end
)
874 int rc
= 0, needs_cow
= 0;
875 u32 p_cpos
, zero_clusters
= 0;
877 zero_start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
878 u32 last_cpos
= ocfs2_clusters_for_bytes(inode
->i_sb
, zero_end
);
879 unsigned int num_clusters
= 0;
880 unsigned int ext_flags
= 0;
882 while (zero_cpos
< last_cpos
) {
883 rc
= ocfs2_get_clusters(inode
, zero_cpos
, &p_cpos
,
884 &num_clusters
, &ext_flags
);
890 if (p_cpos
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
)) {
891 zero_clusters
= num_clusters
;
892 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
897 zero_cpos
+= num_clusters
;
899 if (!zero_clusters
) {
904 while ((zero_cpos
+ zero_clusters
) < last_cpos
) {
905 rc
= ocfs2_get_clusters(inode
, zero_cpos
+ zero_clusters
,
906 &p_cpos
, &num_clusters
,
913 if (!p_cpos
|| (ext_flags
& OCFS2_EXT_UNWRITTEN
))
915 if (ext_flags
& OCFS2_EXT_REFCOUNTED
)
917 zero_clusters
+= num_clusters
;
919 if ((zero_cpos
+ zero_clusters
) > last_cpos
)
920 zero_clusters
= last_cpos
- zero_cpos
;
923 rc
= ocfs2_refcount_cow(inode
, di_bh
, zero_cpos
,
924 zero_clusters
, UINT_MAX
);
931 *range_start
= ocfs2_clusters_to_bytes(inode
->i_sb
, zero_cpos
);
932 *range_end
= ocfs2_clusters_to_bytes(inode
->i_sb
,
933 zero_cpos
+ zero_clusters
);
940 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
941 * has made sure that the entire range needs zeroing.
943 static int ocfs2_zero_extend_range(struct inode
*inode
, u64 range_start
,
944 u64 range_end
, struct buffer_head
*di_bh
)
948 u64 zero_pos
= range_start
;
950 trace_ocfs2_zero_extend_range(
951 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
952 (unsigned long long)range_start
,
953 (unsigned long long)range_end
);
954 BUG_ON(range_start
>= range_end
);
956 while (zero_pos
< range_end
) {
957 next_pos
= (zero_pos
& PAGE_MASK
) + PAGE_SIZE
;
958 if (next_pos
> range_end
)
959 next_pos
= range_end
;
960 rc
= ocfs2_write_zero_page(inode
, zero_pos
, next_pos
, di_bh
);
968 * Very large extends have the potential to lock up
969 * the cpu for extended periods of time.
977 int ocfs2_zero_extend(struct inode
*inode
, struct buffer_head
*di_bh
,
981 u64 zero_start
, range_start
= 0, range_end
= 0;
982 struct super_block
*sb
= inode
->i_sb
;
984 zero_start
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
985 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
986 (unsigned long long)zero_start
,
987 (unsigned long long)i_size_read(inode
));
988 while (zero_start
< zero_to_size
) {
989 ret
= ocfs2_zero_extend_get_range(inode
, di_bh
, zero_start
,
1000 if (range_start
< zero_start
)
1001 range_start
= zero_start
;
1002 if (range_end
> zero_to_size
)
1003 range_end
= zero_to_size
;
1005 ret
= ocfs2_zero_extend_range(inode
, range_start
,
1011 zero_start
= range_end
;
1017 int ocfs2_extend_no_holes(struct inode
*inode
, struct buffer_head
*di_bh
,
1018 u64 new_i_size
, u64 zero_to
)
1021 u32 clusters_to_add
;
1022 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1025 * Only quota files call this without a bh, and they can't be
1028 BUG_ON(!di_bh
&& ocfs2_is_refcount_inode(inode
));
1029 BUG_ON(!di_bh
&& !(oi
->ip_flags
& OCFS2_INODE_SYSTEM_FILE
));
1031 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
1032 if (clusters_to_add
< oi
->ip_clusters
)
1033 clusters_to_add
= 0;
1035 clusters_to_add
-= oi
->ip_clusters
;
1037 if (clusters_to_add
) {
1038 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
1039 clusters_to_add
, 0);
1047 * Call this even if we don't add any clusters to the tree. We
1048 * still need to zero the area between the old i_size and the
1051 ret
= ocfs2_zero_extend(inode
, di_bh
, zero_to
);
1059 static int ocfs2_extend_file(struct inode
*inode
,
1060 struct buffer_head
*di_bh
,
1064 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1068 /* setattr sometimes calls us like this. */
1069 if (new_i_size
== 0)
1072 if (i_size_read(inode
) == new_i_size
)
1074 BUG_ON(new_i_size
< i_size_read(inode
));
1077 * The alloc sem blocks people in read/write from reading our
1078 * allocation until we're done changing it. We depend on
1079 * i_mutex to block other extend/truncate calls while we're
1080 * here. We even have to hold it for sparse files because there
1081 * might be some tail zeroing.
1083 down_write(&oi
->ip_alloc_sem
);
1085 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1087 * We can optimize small extends by keeping the inodes
1090 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1091 up_write(&oi
->ip_alloc_sem
);
1092 goto out_update_size
;
1095 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1097 up_write(&oi
->ip_alloc_sem
);
1103 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1104 ret
= ocfs2_zero_extend(inode
, di_bh
, new_i_size
);
1106 ret
= ocfs2_extend_no_holes(inode
, di_bh
, new_i_size
,
1109 up_write(&oi
->ip_alloc_sem
);
1117 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1125 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1127 int status
= 0, size_change
;
1128 int inode_locked
= 0;
1129 struct inode
*inode
= d_inode(dentry
);
1130 struct super_block
*sb
= inode
->i_sb
;
1131 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1132 struct buffer_head
*bh
= NULL
;
1133 handle_t
*handle
= NULL
;
1134 struct dquot
*transfer_to
[MAXQUOTAS
] = { };
1137 struct ocfs2_lock_holder oh
;
1139 trace_ocfs2_setattr(inode
, dentry
,
1140 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1141 dentry
->d_name
.len
, dentry
->d_name
.name
,
1142 attr
->ia_valid
, attr
->ia_mode
,
1143 from_kuid(&init_user_ns
, attr
->ia_uid
),
1144 from_kgid(&init_user_ns
, attr
->ia_gid
));
1146 /* ensuring we don't even attempt to truncate a symlink */
1147 if (S_ISLNK(inode
->i_mode
))
1148 attr
->ia_valid
&= ~ATTR_SIZE
;
1150 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1151 | ATTR_GID | ATTR_UID | ATTR_MODE)
1152 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
))
1155 status
= setattr_prepare(dentry
, attr
);
1159 if (is_quota_modification(inode
, attr
)) {
1160 status
= dquot_initialize(inode
);
1164 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1167 * Here we should wait dio to finish before inode lock
1168 * to avoid a deadlock between ocfs2_setattr() and
1169 * ocfs2_dio_end_io_write()
1171 inode_dio_wait(inode
);
1173 status
= ocfs2_rw_lock(inode
, 1);
1180 had_lock
= ocfs2_inode_lock_tracker(inode
, &bh
, 1, &oh
);
1183 goto bail_unlock_rw
;
1184 } else if (had_lock
) {
1186 * As far as we know, ocfs2_setattr() could only be the first
1187 * VFS entry point in the call chain of recursive cluster
1195 * ocfs2_iop_get_acl()
1197 * But, we're not 100% sure if it's always true, because the
1198 * ordering of the VFS entry points in the call chain is out
1199 * of our control. So, we'd better dump the stack here to
1200 * catch the other cases of recursive locking.
1202 mlog(ML_ERROR
, "Another case of recursive locking:\n");
1208 status
= inode_newsize_ok(inode
, attr
->ia_size
);
1212 if (i_size_read(inode
) >= attr
->ia_size
) {
1213 if (ocfs2_should_order_data(inode
)) {
1214 status
= ocfs2_begin_ordered_truncate(inode
,
1219 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1221 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1223 if (status
!= -ENOSPC
)
1230 if ((attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
1231 (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
1233 * Gather pointers to quota structures so that allocation /
1234 * freeing of quota structures happens here and not inside
1235 * dquot_transfer() where we have problems with lock ordering
1237 if (attr
->ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)
1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1239 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)) {
1240 transfer_to
[USRQUOTA
] = dqget(sb
, make_kqid_uid(attr
->ia_uid
));
1241 if (IS_ERR(transfer_to
[USRQUOTA
])) {
1242 status
= PTR_ERR(transfer_to
[USRQUOTA
]);
1246 if (attr
->ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
)
1247 && OCFS2_HAS_RO_COMPAT_FEATURE(sb
,
1248 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
)) {
1249 transfer_to
[GRPQUOTA
] = dqget(sb
, make_kqid_gid(attr
->ia_gid
));
1250 if (IS_ERR(transfer_to
[GRPQUOTA
])) {
1251 status
= PTR_ERR(transfer_to
[GRPQUOTA
]);
1255 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
+
1256 2 * ocfs2_quota_trans_credits(sb
));
1257 if (IS_ERR(handle
)) {
1258 status
= PTR_ERR(handle
);
1262 status
= __dquot_transfer(inode
, transfer_to
);
1266 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1267 if (IS_ERR(handle
)) {
1268 status
= PTR_ERR(handle
);
1274 setattr_copy(inode
, attr
);
1275 mark_inode_dirty(inode
);
1277 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1282 ocfs2_commit_trans(osb
, handle
);
1284 if (status
&& inode_locked
) {
1285 ocfs2_inode_unlock_tracker(inode
, 1, &oh
, had_lock
);
1290 ocfs2_rw_unlock(inode
, 1);
1293 /* Release quota pointers in case we acquired them */
1294 for (qtype
= 0; qtype
< OCFS2_MAXQUOTAS
; qtype
++)
1295 dqput(transfer_to
[qtype
]);
1297 if (!status
&& attr
->ia_valid
& ATTR_MODE
) {
1298 status
= ocfs2_acl_chmod(inode
, bh
);
1303 ocfs2_inode_unlock_tracker(inode
, 1, &oh
, had_lock
);
1309 int ocfs2_getattr(const struct path
*path
, struct kstat
*stat
,
1310 u32 request_mask
, unsigned int flags
)
1312 struct inode
*inode
= d_inode(path
->dentry
);
1313 struct super_block
*sb
= path
->dentry
->d_sb
;
1314 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1317 err
= ocfs2_inode_revalidate(path
->dentry
);
1324 generic_fillattr(inode
, stat
);
1326 * If there is inline data in the inode, the inode will normally not
1327 * have data blocks allocated (it may have an external xattr block).
1328 * Report at least one sector for such files, so tools like tar, rsync,
1329 * others don't incorrectly think the file is completely sparse.
1331 if (unlikely(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1332 stat
->blocks
+= (stat
->size
+ 511)>>9;
1334 /* We set the blksize from the cluster size for performance */
1335 stat
->blksize
= osb
->s_clustersize
;
1341 int ocfs2_permission(struct inode
*inode
, int mask
)
1344 struct ocfs2_lock_holder oh
;
1346 if (mask
& MAY_NOT_BLOCK
)
1349 had_lock
= ocfs2_inode_lock_tracker(inode
, NULL
, 0, &oh
);
1353 } else if (had_lock
) {
1354 /* See comments in ocfs2_setattr() for details.
1355 * The call chain of this case could be:
1358 * inode_permission()
1359 * ocfs2_permission()
1360 * ocfs2_iop_get_acl()
1362 mlog(ML_ERROR
, "Another case of recursive locking:\n");
1366 ret
= generic_permission(inode
, mask
);
1368 ocfs2_inode_unlock_tracker(inode
, 0, &oh
, had_lock
);
1373 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1374 struct buffer_head
*bh
)
1378 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1379 struct ocfs2_dinode
*di
;
1381 trace_ocfs2_write_remove_suid(
1382 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1385 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1386 if (IS_ERR(handle
)) {
1387 ret
= PTR_ERR(handle
);
1392 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), bh
,
1393 OCFS2_JOURNAL_ACCESS_WRITE
);
1399 inode
->i_mode
&= ~S_ISUID
;
1400 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1401 inode
->i_mode
&= ~S_ISGID
;
1403 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1404 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1405 ocfs2_update_inode_fsync_trans(handle
, inode
, 0);
1407 ocfs2_journal_dirty(handle
, bh
);
1410 ocfs2_commit_trans(osb
, handle
);
1415 static int ocfs2_write_remove_suid(struct inode
*inode
)
1418 struct buffer_head
*bh
= NULL
;
1420 ret
= ocfs2_read_inode_block(inode
, &bh
);
1426 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1433 * Allocate enough extents to cover the region starting at byte offset
1434 * start for len bytes. Existing extents are skipped, any extents
1435 * added are marked as "unwritten".
1437 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1441 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1442 u64 end
= start
+ len
;
1443 struct buffer_head
*di_bh
= NULL
;
1445 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1446 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
1453 * Nothing to do if the requested reservation range
1454 * fits within the inode.
1456 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1459 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1467 * We consider both start and len to be inclusive.
1469 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1470 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1474 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1482 * Hole or existing extent len can be arbitrary, so
1483 * cap it to our own allocation request.
1485 if (alloc_size
> clusters
)
1486 alloc_size
= clusters
;
1490 * We already have an allocation at this
1491 * region so we can safely skip it.
1496 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1505 clusters
-= alloc_size
;
1516 * Truncate a byte range, avoiding pages within partial clusters. This
1517 * preserves those pages for the zeroing code to write to.
1519 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1522 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1524 struct address_space
*mapping
= inode
->i_mapping
;
1526 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1527 end
= byte_start
+ byte_len
;
1528 end
= end
& ~(osb
->s_clustersize
- 1);
1531 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1532 truncate_inode_pages_range(mapping
, start
, end
- 1);
1536 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1541 u64 end
= start
+ len
;
1542 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1543 unsigned int csize
= osb
->s_clustersize
;
1547 * The "start" and "end" values are NOT necessarily part of
1548 * the range whose allocation is being deleted. Rather, this
1549 * is what the user passed in with the request. We must zero
1550 * partial clusters here. There's no need to worry about
1551 * physical allocation - the zeroing code knows to skip holes.
1553 trace_ocfs2_zero_partial_clusters(
1554 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1555 (unsigned long long)start
, (unsigned long long)end
);
1558 * If both edges are on a cluster boundary then there's no
1559 * zeroing required as the region is part of the allocation to
1562 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1565 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1566 if (IS_ERR(handle
)) {
1567 ret
= PTR_ERR(handle
);
1573 * If start is on a cluster boundary and end is somewhere in another
1574 * cluster, we have not COWed the cluster starting at start, unless
1575 * end is also within the same cluster. So, in this case, we skip this
1576 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1579 if ((start
& (csize
- 1)) != 0) {
1581 * We want to get the byte offset of the end of the 1st
1584 tmpend
= (u64
)osb
->s_clustersize
+
1585 (start
& ~(osb
->s_clustersize
- 1));
1589 trace_ocfs2_zero_partial_clusters_range1(
1590 (unsigned long long)start
,
1591 (unsigned long long)tmpend
);
1593 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
,
1601 * This may make start and end equal, but the zeroing
1602 * code will skip any work in that case so there's no
1603 * need to catch it up here.
1605 start
= end
& ~(osb
->s_clustersize
- 1);
1607 trace_ocfs2_zero_partial_clusters_range2(
1608 (unsigned long long)start
, (unsigned long long)end
);
1610 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1614 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
1616 ocfs2_commit_trans(osb
, handle
);
1621 static int ocfs2_find_rec(struct ocfs2_extent_list
*el
, u32 pos
)
1624 struct ocfs2_extent_rec
*rec
= NULL
;
1626 for (i
= le16_to_cpu(el
->l_next_free_rec
) - 1; i
>= 0; i
--) {
1628 rec
= &el
->l_recs
[i
];
1630 if (le32_to_cpu(rec
->e_cpos
) < pos
)
1638 * Helper to calculate the punching pos and length in one run, we handle the
1639 * following three cases in order:
1641 * - remove the entire record
1642 * - remove a partial record
1643 * - no record needs to be removed (hole-punching completed)
1645 static void ocfs2_calc_trunc_pos(struct inode
*inode
,
1646 struct ocfs2_extent_list
*el
,
1647 struct ocfs2_extent_rec
*rec
,
1648 u32 trunc_start
, u32
*trunc_cpos
,
1649 u32
*trunc_len
, u32
*trunc_end
,
1650 u64
*blkno
, int *done
)
1655 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1657 if (le32_to_cpu(rec
->e_cpos
) >= trunc_start
) {
1659 * remove an entire extent record.
1661 *trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
1663 * Skip holes if any.
1665 if (range
< *trunc_end
)
1667 *trunc_len
= *trunc_end
- le32_to_cpu(rec
->e_cpos
);
1668 *blkno
= le64_to_cpu(rec
->e_blkno
);
1669 *trunc_end
= le32_to_cpu(rec
->e_cpos
);
1670 } else if (range
> trunc_start
) {
1672 * remove a partial extent record, which means we're
1673 * removing the last extent record.
1675 *trunc_cpos
= trunc_start
;
1679 if (range
< *trunc_end
)
1681 *trunc_len
= *trunc_end
- trunc_start
;
1682 coff
= trunc_start
- le32_to_cpu(rec
->e_cpos
);
1683 *blkno
= le64_to_cpu(rec
->e_blkno
) +
1684 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
1685 *trunc_end
= trunc_start
;
1688 * It may have two following possibilities:
1690 * - last record has been removed
1691 * - trunc_start was within a hole
1693 * both two cases mean the completion of hole punching.
1701 int ocfs2_remove_inode_range(struct inode
*inode
,
1702 struct buffer_head
*di_bh
, u64 byte_start
,
1705 int ret
= 0, flags
= 0, done
= 0, i
;
1706 u32 trunc_start
, trunc_len
, trunc_end
, trunc_cpos
, phys_cpos
;
1708 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1709 struct ocfs2_cached_dealloc_ctxt dealloc
;
1710 struct address_space
*mapping
= inode
->i_mapping
;
1711 struct ocfs2_extent_tree et
;
1712 struct ocfs2_path
*path
= NULL
;
1713 struct ocfs2_extent_list
*el
= NULL
;
1714 struct ocfs2_extent_rec
*rec
= NULL
;
1715 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1716 u64 blkno
, refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
1718 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
1719 ocfs2_init_dealloc_ctxt(&dealloc
);
1721 trace_ocfs2_remove_inode_range(
1722 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1723 (unsigned long long)byte_start
,
1724 (unsigned long long)byte_len
);
1729 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1730 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1731 byte_start
+ byte_len
, 0);
1737 * There's no need to get fancy with the page cache
1738 * truncate of an inline-data inode. We're talking
1739 * about less than a page here, which will be cached
1740 * in the dinode buffer anyway.
1742 unmap_mapping_range(mapping
, 0, 0, 0);
1743 truncate_inode_pages(mapping
, 0);
1748 * For reflinks, we may need to CoW 2 clusters which might be
1749 * partially zero'd later, if hole's start and end offset were
1750 * within one cluster(means is not exactly aligned to clustersize).
1753 if (ocfs2_is_refcount_inode(inode
)) {
1754 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
);
1760 ret
= ocfs2_cow_file_pos(inode
, di_bh
, byte_start
+ byte_len
);
1767 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1768 trunc_end
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1769 cluster_in_el
= trunc_end
;
1771 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1777 path
= ocfs2_new_path_from_et(&et
);
1784 while (trunc_end
> trunc_start
) {
1786 ret
= ocfs2_find_path(INODE_CACHE(inode
), path
,
1793 el
= path_leaf_el(path
);
1795 i
= ocfs2_find_rec(el
, trunc_end
);
1797 * Need to go to previous extent block.
1800 if (path
->p_tree_depth
== 0)
1803 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
1812 * We've reached the leftmost extent block,
1813 * it's safe to leave.
1815 if (cluster_in_el
== 0)
1819 * The 'pos' searched for previous extent block is
1820 * always one cluster less than actual trunc_end.
1822 trunc_end
= cluster_in_el
+ 1;
1824 ocfs2_reinit_path(path
, 1);
1829 rec
= &el
->l_recs
[i
];
1831 ocfs2_calc_trunc_pos(inode
, el
, rec
, trunc_start
, &trunc_cpos
,
1832 &trunc_len
, &trunc_end
, &blkno
, &done
);
1836 flags
= rec
->e_flags
;
1837 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
1839 ret
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
1840 phys_cpos
, trunc_len
, flags
,
1841 &dealloc
, refcount_loc
, false);
1847 cluster_in_el
= trunc_end
;
1849 ocfs2_reinit_path(path
, 1);
1852 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1855 ocfs2_free_path(path
);
1856 ocfs2_schedule_truncate_log_flush(osb
, 1);
1857 ocfs2_run_deallocs(osb
, &dealloc
);
1863 * Parts of this function taken from xfs_change_file_space()
1865 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1866 loff_t f_pos
, unsigned int cmd
,
1867 struct ocfs2_space_resv
*sr
,
1873 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1874 struct buffer_head
*di_bh
= NULL
;
1876 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1878 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1884 * This prevents concurrent writes on other nodes
1886 ret
= ocfs2_rw_lock(inode
, 1);
1892 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1898 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1900 goto out_inode_unlock
;
1903 switch (sr
->l_whence
) {
1904 case 0: /*SEEK_SET*/
1906 case 1: /*SEEK_CUR*/
1907 sr
->l_start
+= f_pos
;
1909 case 2: /*SEEK_END*/
1910 sr
->l_start
+= i_size_read(inode
);
1914 goto out_inode_unlock
;
1918 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1921 || sr
->l_start
> max_off
1922 || (sr
->l_start
+ llen
) < 0
1923 || (sr
->l_start
+ llen
) > max_off
) {
1925 goto out_inode_unlock
;
1927 size
= sr
->l_start
+ sr
->l_len
;
1929 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
||
1930 cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) {
1931 if (sr
->l_len
<= 0) {
1933 goto out_inode_unlock
;
1937 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1938 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1941 goto out_inode_unlock
;
1945 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1947 case OCFS2_IOC_RESVSP
:
1948 case OCFS2_IOC_RESVSP64
:
1950 * This takes unsigned offsets, but the signed ones we
1951 * pass have been checked against overflow above.
1953 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1956 case OCFS2_IOC_UNRESVSP
:
1957 case OCFS2_IOC_UNRESVSP64
:
1958 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1964 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1967 goto out_inode_unlock
;
1971 * We update c/mtime for these changes
1973 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1974 if (IS_ERR(handle
)) {
1975 ret
= PTR_ERR(handle
);
1977 goto out_inode_unlock
;
1980 if (change_size
&& i_size_read(inode
) < size
)
1981 i_size_write(inode
, size
);
1983 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1984 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1988 if (file
&& (file
->f_flags
& O_SYNC
))
1991 ocfs2_commit_trans(osb
, handle
);
1995 ocfs2_inode_unlock(inode
, 1);
1997 ocfs2_rw_unlock(inode
, 1);
2000 inode_unlock(inode
);
2004 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
2005 struct ocfs2_space_resv
*sr
)
2007 struct inode
*inode
= file_inode(file
);
2008 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2011 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
2012 !ocfs2_writes_unwritten_extents(osb
))
2014 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
2015 !ocfs2_sparse_alloc(osb
))
2018 if (!S_ISREG(inode
->i_mode
))
2021 if (!(file
->f_mode
& FMODE_WRITE
))
2024 ret
= mnt_want_write_file(file
);
2027 ret
= __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
2028 mnt_drop_write_file(file
);
2032 static long ocfs2_fallocate(struct file
*file
, int mode
, loff_t offset
,
2035 struct inode
*inode
= file_inode(file
);
2036 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2037 struct ocfs2_space_resv sr
;
2038 int change_size
= 1;
2039 int cmd
= OCFS2_IOC_RESVSP64
;
2041 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2043 if (!ocfs2_writes_unwritten_extents(osb
))
2046 if (mode
& FALLOC_FL_KEEP_SIZE
)
2049 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2050 cmd
= OCFS2_IOC_UNRESVSP64
;
2053 sr
.l_start
= (s64
)offset
;
2054 sr
.l_len
= (s64
)len
;
2056 return __ocfs2_change_file_space(NULL
, inode
, offset
, cmd
, &sr
,
2060 int ocfs2_check_range_for_refcount(struct inode
*inode
, loff_t pos
,
2064 unsigned int extent_flags
;
2065 u32 cpos
, clusters
, extent_len
, phys_cpos
;
2066 struct super_block
*sb
= inode
->i_sb
;
2068 if (!ocfs2_refcount_tree(OCFS2_SB(inode
->i_sb
)) ||
2069 !ocfs2_is_refcount_inode(inode
) ||
2070 OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2073 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
2074 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
2077 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
2084 if (phys_cpos
&& (extent_flags
& OCFS2_EXT_REFCOUNTED
)) {
2089 if (extent_len
> clusters
)
2090 extent_len
= clusters
;
2092 clusters
-= extent_len
;
2099 static int ocfs2_is_io_unaligned(struct inode
*inode
, size_t count
, loff_t pos
)
2101 int blockmask
= inode
->i_sb
->s_blocksize
- 1;
2102 loff_t final_size
= pos
+ count
;
2104 if ((pos
& blockmask
) || (final_size
& blockmask
))
2109 static int ocfs2_prepare_inode_for_refcount(struct inode
*inode
,
2111 loff_t pos
, size_t count
,
2115 struct buffer_head
*di_bh
= NULL
;
2116 u32 cpos
= pos
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
2118 ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ count
) - cpos
;
2120 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2128 ret
= ocfs2_refcount_cow(inode
, di_bh
, cpos
, clusters
, UINT_MAX
);
2136 static int ocfs2_prepare_inode_for_write(struct file
*file
,
2137 loff_t pos
, size_t count
, int wait
)
2139 int ret
= 0, meta_level
= 0, overwrite_io
= 0;
2140 struct dentry
*dentry
= file
->f_path
.dentry
;
2141 struct inode
*inode
= d_inode(dentry
);
2142 struct buffer_head
*di_bh
= NULL
;
2146 * We start with a read level meta lock and only jump to an ex
2147 * if we need to make modifications here.
2151 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
2153 ret
= ocfs2_try_inode_lock(inode
,
2154 overwrite_io
? NULL
: &di_bh
, meta_level
);
2163 * Check if IO will overwrite allocated blocks in case
2164 * IOCB_NOWAIT flag is set.
2166 if (!wait
&& !overwrite_io
) {
2168 if (!down_read_trylock(&OCFS2_I(inode
)->ip_alloc_sem
)) {
2173 ret
= ocfs2_overwrite_io(inode
, di_bh
, pos
, count
);
2176 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
2184 /* Clear suid / sgid if necessary. We do this here
2185 * instead of later in the write path because
2186 * remove_suid() calls ->setattr without any hint that
2187 * we may have already done our cluster locking. Since
2188 * ocfs2_setattr() *must* take cluster locks to
2189 * proceed, this will lead us to recursively lock the
2190 * inode. There's also the dinode i_size state which
2191 * can be lost via setattr during extending writes (we
2192 * set inode->i_size at the end of a write. */
2193 if (should_remove_suid(dentry
)) {
2194 if (meta_level
== 0) {
2195 ocfs2_inode_unlock(inode
, meta_level
);
2200 ret
= ocfs2_write_remove_suid(inode
);
2209 ret
= ocfs2_check_range_for_refcount(inode
, pos
, count
);
2211 ocfs2_inode_unlock(inode
, meta_level
);
2214 ret
= ocfs2_prepare_inode_for_refcount(inode
,
2230 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode
)->ip_blkno
,
2235 if (meta_level
>= 0)
2236 ocfs2_inode_unlock(inode
, meta_level
);
2242 static ssize_t
ocfs2_file_write_iter(struct kiocb
*iocb
,
2243 struct iov_iter
*from
)
2246 ssize_t written
= 0;
2248 size_t count
= iov_iter_count(from
);
2249 struct file
*file
= iocb
->ki_filp
;
2250 struct inode
*inode
= file_inode(file
);
2251 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2252 int full_coherency
= !(osb
->s_mount_opt
&
2253 OCFS2_MOUNT_COHERENCY_BUFFERED
);
2254 void *saved_ki_complete
= NULL
;
2255 int append_write
= ((iocb
->ki_pos
+ count
) >=
2256 i_size_read(inode
) ? 1 : 0);
2257 int direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2258 int nowait
= iocb
->ki_flags
& IOCB_NOWAIT
? 1 : 0;
2260 trace_ocfs2_file_aio_write(inode
, file
, file
->f_path
.dentry
,
2261 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2262 file
->f_path
.dentry
->d_name
.len
,
2263 file
->f_path
.dentry
->d_name
.name
,
2264 (unsigned int)from
->nr_segs
); /* GRRRRR */
2266 if (!direct_io
&& nowait
)
2273 if (!inode_trylock(inode
))
2279 * Concurrent O_DIRECT writes are allowed with
2280 * mount_option "coherency=buffered".
2281 * For append write, we must take rw EX.
2283 rw_level
= (!direct_io
|| full_coherency
|| append_write
);
2286 ret
= ocfs2_try_rw_lock(inode
, rw_level
);
2288 ret
= ocfs2_rw_lock(inode
, rw_level
);
2296 * O_DIRECT writes with "coherency=full" need to take EX cluster
2297 * inode_lock to guarantee coherency.
2299 if (direct_io
&& full_coherency
) {
2301 * We need to take and drop the inode lock to force
2302 * other nodes to drop their caches. Buffered I/O
2303 * already does this in write_begin().
2306 ret
= ocfs2_try_inode_lock(inode
, NULL
, 1);
2308 ret
= ocfs2_inode_lock(inode
, NULL
, 1);
2315 ocfs2_inode_unlock(inode
, 1);
2318 ret
= generic_write_checks(iocb
, from
);
2326 ret
= ocfs2_prepare_inode_for_write(file
, iocb
->ki_pos
, count
, !nowait
);
2333 if (direct_io
&& !is_sync_kiocb(iocb
) &&
2334 ocfs2_is_io_unaligned(inode
, count
, iocb
->ki_pos
)) {
2336 * Make it a sync io if it's an unaligned aio.
2338 saved_ki_complete
= xchg(&iocb
->ki_complete
, NULL
);
2341 /* communicate with ocfs2_dio_end_io */
2342 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2344 written
= __generic_file_write_iter(iocb
, from
);
2345 /* buffered aio wouldn't have proper lock coverage today */
2346 BUG_ON(written
== -EIOCBQUEUED
&& !(iocb
->ki_flags
& IOCB_DIRECT
));
2349 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2350 * function pointer which is called when o_direct io completes so that
2351 * it can unlock our rw lock.
2352 * Unfortunately there are error cases which call end_io and others
2353 * that don't. so we don't have to unlock the rw_lock if either an
2354 * async dio is going to do it in the future or an end_io after an
2355 * error has already done it.
2357 if ((written
== -EIOCBQUEUED
) || (!ocfs2_iocb_is_rw_locked(iocb
))) {
2361 if (unlikely(written
<= 0))
2364 if (((file
->f_flags
& O_DSYNC
) && !direct_io
) ||
2366 ret
= filemap_fdatawrite_range(file
->f_mapping
,
2367 iocb
->ki_pos
- written
,
2373 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
2379 ret
= filemap_fdatawait_range(file
->f_mapping
,
2380 iocb
->ki_pos
- written
,
2385 if (saved_ki_complete
)
2386 xchg(&iocb
->ki_complete
, saved_ki_complete
);
2389 ocfs2_rw_unlock(inode
, rw_level
);
2392 inode_unlock(inode
);
2399 static ssize_t
ocfs2_file_read_iter(struct kiocb
*iocb
,
2400 struct iov_iter
*to
)
2402 int ret
= 0, rw_level
= -1, lock_level
= 0;
2403 struct file
*filp
= iocb
->ki_filp
;
2404 struct inode
*inode
= file_inode(filp
);
2405 int direct_io
= iocb
->ki_flags
& IOCB_DIRECT
? 1 : 0;
2406 int nowait
= iocb
->ki_flags
& IOCB_NOWAIT
? 1 : 0;
2408 trace_ocfs2_file_aio_read(inode
, filp
, filp
->f_path
.dentry
,
2409 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2410 filp
->f_path
.dentry
->d_name
.len
,
2411 filp
->f_path
.dentry
->d_name
.name
,
2412 to
->nr_segs
); /* GRRRRR */
2421 if (!direct_io
&& nowait
)
2425 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2426 * need locks to protect pending reads from racing with truncate.
2430 ret
= ocfs2_try_rw_lock(inode
, 0);
2432 ret
= ocfs2_rw_lock(inode
, 0);
2440 /* communicate with ocfs2_dio_end_io */
2441 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2445 * We're fine letting folks race truncates and extending
2446 * writes with read across the cluster, just like they can
2447 * locally. Hence no rw_lock during read.
2449 * Take and drop the meta data lock to update inode fields
2450 * like i_size. This allows the checks down below
2451 * generic_file_aio_read() a chance of actually working.
2453 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_path
.mnt
, &lock_level
,
2460 ocfs2_inode_unlock(inode
, lock_level
);
2462 ret
= generic_file_read_iter(iocb
, to
);
2463 trace_generic_file_aio_read_ret(ret
);
2465 /* buffered aio wouldn't have proper lock coverage today */
2466 BUG_ON(ret
== -EIOCBQUEUED
&& !(iocb
->ki_flags
& IOCB_DIRECT
));
2468 /* see ocfs2_file_write_iter */
2469 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2475 ocfs2_rw_unlock(inode
, rw_level
);
2480 /* Refer generic_file_llseek_unlocked() */
2481 static loff_t
ocfs2_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2483 struct inode
*inode
= file
->f_mapping
->host
;
2492 /* SEEK_END requires the OCFS2 inode lock for the file
2493 * because it references the file's size.
2495 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
2500 offset
+= i_size_read(inode
);
2501 ocfs2_inode_unlock(inode
, 0);
2505 offset
= file
->f_pos
;
2508 offset
+= file
->f_pos
;
2512 ret
= ocfs2_seek_data_hole_offset(file
, &offset
, whence
);
2521 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2524 inode_unlock(inode
);
2530 static int ocfs2_file_clone_range(struct file
*file_in
,
2532 struct file
*file_out
,
2536 return ocfs2_reflink_remap_range(file_in
, pos_in
, file_out
, pos_out
,
2540 static ssize_t
ocfs2_file_dedupe_range(struct file
*src_file
,
2543 struct file
*dst_file
,
2548 error
= ocfs2_reflink_remap_range(src_file
, loff
, dst_file
, dst_loff
,
2555 const struct inode_operations ocfs2_file_iops
= {
2556 .setattr
= ocfs2_setattr
,
2557 .getattr
= ocfs2_getattr
,
2558 .permission
= ocfs2_permission
,
2559 .listxattr
= ocfs2_listxattr
,
2560 .fiemap
= ocfs2_fiemap
,
2561 .get_acl
= ocfs2_iop_get_acl
,
2562 .set_acl
= ocfs2_iop_set_acl
,
2565 const struct inode_operations ocfs2_special_file_iops
= {
2566 .setattr
= ocfs2_setattr
,
2567 .getattr
= ocfs2_getattr
,
2568 .permission
= ocfs2_permission
,
2569 .get_acl
= ocfs2_iop_get_acl
,
2570 .set_acl
= ocfs2_iop_set_acl
,
2574 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2575 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2577 const struct file_operations ocfs2_fops
= {
2578 .llseek
= ocfs2_file_llseek
,
2580 .fsync
= ocfs2_sync_file
,
2581 .release
= ocfs2_file_release
,
2582 .open
= ocfs2_file_open
,
2583 .read_iter
= ocfs2_file_read_iter
,
2584 .write_iter
= ocfs2_file_write_iter
,
2585 .unlocked_ioctl
= ocfs2_ioctl
,
2586 #ifdef CONFIG_COMPAT
2587 .compat_ioctl
= ocfs2_compat_ioctl
,
2590 .flock
= ocfs2_flock
,
2591 .splice_read
= generic_file_splice_read
,
2592 .splice_write
= iter_file_splice_write
,
2593 .fallocate
= ocfs2_fallocate
,
2594 .clone_file_range
= ocfs2_file_clone_range
,
2595 .dedupe_file_range
= ocfs2_file_dedupe_range
,
2598 const struct file_operations ocfs2_dops
= {
2599 .llseek
= generic_file_llseek
,
2600 .read
= generic_read_dir
,
2601 .iterate
= ocfs2_readdir
,
2602 .fsync
= ocfs2_sync_file
,
2603 .release
= ocfs2_dir_release
,
2604 .open
= ocfs2_dir_open
,
2605 .unlocked_ioctl
= ocfs2_ioctl
,
2606 #ifdef CONFIG_COMPAT
2607 .compat_ioctl
= ocfs2_compat_ioctl
,
2610 .flock
= ocfs2_flock
,
2614 * POSIX-lockless variants of our file_operations.
2616 * These will be used if the underlying cluster stack does not support
2617 * posix file locking, if the user passes the "localflocks" mount
2618 * option, or if we have a local-only fs.
2620 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2621 * so we still want it in the case of no stack support for
2622 * plocks. Internally, it will do the right thing when asked to ignore
2625 const struct file_operations ocfs2_fops_no_plocks
= {
2626 .llseek
= ocfs2_file_llseek
,
2628 .fsync
= ocfs2_sync_file
,
2629 .release
= ocfs2_file_release
,
2630 .open
= ocfs2_file_open
,
2631 .read_iter
= ocfs2_file_read_iter
,
2632 .write_iter
= ocfs2_file_write_iter
,
2633 .unlocked_ioctl
= ocfs2_ioctl
,
2634 #ifdef CONFIG_COMPAT
2635 .compat_ioctl
= ocfs2_compat_ioctl
,
2637 .flock
= ocfs2_flock
,
2638 .splice_read
= generic_file_splice_read
,
2639 .splice_write
= iter_file_splice_write
,
2640 .fallocate
= ocfs2_fallocate
,
2641 .clone_file_range
= ocfs2_file_clone_range
,
2642 .dedupe_file_range
= ocfs2_file_dedupe_range
,
2645 const struct file_operations ocfs2_dops_no_plocks
= {
2646 .llseek
= generic_file_llseek
,
2647 .read
= generic_read_dir
,
2648 .iterate
= ocfs2_readdir
,
2649 .fsync
= ocfs2_sync_file
,
2650 .release
= ocfs2_dir_release
,
2651 .open
= ocfs2_dir_open
,
2652 .unlocked_ioctl
= ocfs2_ioctl
,
2653 #ifdef CONFIG_COMPAT
2654 .compat_ioctl
= ocfs2_compat_ioctl
,
2656 .flock
= ocfs2_flock
,