Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / proc / page.c
blob1491918a33c385394fcaf06ef07dcd7751832c82
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bootmem.h>
3 #include <linux/compiler.h>
4 #include <linux/fs.h>
5 #include <linux/init.h>
6 #include <linux/ksm.h>
7 #include <linux/mm.h>
8 #include <linux/mmzone.h>
9 #include <linux/huge_mm.h>
10 #include <linux/proc_fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/hugetlb.h>
13 #include <linux/memcontrol.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/page_idle.h>
16 #include <linux/kernel-page-flags.h>
17 #include <linux/uaccess.h>
18 #include "internal.h"
20 #define KPMSIZE sizeof(u64)
21 #define KPMMASK (KPMSIZE - 1)
22 #define KPMBITS (KPMSIZE * BITS_PER_BYTE)
24 /* /proc/kpagecount - an array exposing page counts
26 * Each entry is a u64 representing the corresponding
27 * physical page count.
29 static ssize_t kpagecount_read(struct file *file, char __user *buf,
30 size_t count, loff_t *ppos)
32 u64 __user *out = (u64 __user *)buf;
33 struct page *ppage;
34 unsigned long src = *ppos;
35 unsigned long pfn;
36 ssize_t ret = 0;
37 u64 pcount;
39 pfn = src / KPMSIZE;
40 count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
41 if (src & KPMMASK || count & KPMMASK)
42 return -EINVAL;
44 while (count > 0) {
45 if (pfn_valid(pfn))
46 ppage = pfn_to_page(pfn);
47 else
48 ppage = NULL;
49 if (!ppage || PageSlab(ppage))
50 pcount = 0;
51 else
52 pcount = page_mapcount(ppage);
54 if (put_user(pcount, out)) {
55 ret = -EFAULT;
56 break;
59 pfn++;
60 out++;
61 count -= KPMSIZE;
63 cond_resched();
66 *ppos += (char __user *)out - buf;
67 if (!ret)
68 ret = (char __user *)out - buf;
69 return ret;
72 static const struct file_operations proc_kpagecount_operations = {
73 .llseek = mem_lseek,
74 .read = kpagecount_read,
77 /* /proc/kpageflags - an array exposing page flags
79 * Each entry is a u64 representing the corresponding
80 * physical page flags.
83 static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
85 return ((kflags >> kbit) & 1) << ubit;
88 u64 stable_page_flags(struct page *page)
90 u64 k;
91 u64 u;
94 * pseudo flag: KPF_NOPAGE
95 * it differentiates a memory hole from a page with no flags
97 if (!page)
98 return 1 << KPF_NOPAGE;
100 k = page->flags;
101 u = 0;
104 * pseudo flags for the well known (anonymous) memory mapped pages
106 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
107 * simple test in page_mapped() is not enough.
109 if (!PageSlab(page) && page_mapped(page))
110 u |= 1 << KPF_MMAP;
111 if (PageAnon(page))
112 u |= 1 << KPF_ANON;
113 if (PageKsm(page))
114 u |= 1 << KPF_KSM;
117 * compound pages: export both head/tail info
118 * they together define a compound page's start/end pos and order
120 if (PageHead(page))
121 u |= 1 << KPF_COMPOUND_HEAD;
122 if (PageTail(page))
123 u |= 1 << KPF_COMPOUND_TAIL;
124 if (PageHuge(page))
125 u |= 1 << KPF_HUGE;
127 * PageTransCompound can be true for non-huge compound pages (slab
128 * pages or pages allocated by drivers with __GFP_COMP) because it
129 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
130 * to make sure a given page is a thp, not a non-huge compound page.
132 else if (PageTransCompound(page)) {
133 struct page *head = compound_head(page);
135 if (PageLRU(head) || PageAnon(head))
136 u |= 1 << KPF_THP;
137 else if (is_huge_zero_page(head)) {
138 u |= 1 << KPF_ZERO_PAGE;
139 u |= 1 << KPF_THP;
141 } else if (is_zero_pfn(page_to_pfn(page)))
142 u |= 1 << KPF_ZERO_PAGE;
146 * Caveats on high order pages: page->_refcount will only be set
147 * -1 on the head page; SLUB/SLQB do the same for PG_slab;
148 * SLOB won't set PG_slab at all on compound pages.
150 if (PageBuddy(page))
151 u |= 1 << KPF_BUDDY;
152 else if (page_count(page) == 0 && is_free_buddy_page(page))
153 u |= 1 << KPF_BUDDY;
155 if (PageBalloon(page))
156 u |= 1 << KPF_BALLOON;
158 if (page_is_idle(page))
159 u |= 1 << KPF_IDLE;
161 u |= kpf_copy_bit(k, KPF_LOCKED, PG_locked);
163 u |= kpf_copy_bit(k, KPF_SLAB, PG_slab);
164 if (PageTail(page) && PageSlab(compound_head(page)))
165 u |= 1 << KPF_SLAB;
167 u |= kpf_copy_bit(k, KPF_ERROR, PG_error);
168 u |= kpf_copy_bit(k, KPF_DIRTY, PG_dirty);
169 u |= kpf_copy_bit(k, KPF_UPTODATE, PG_uptodate);
170 u |= kpf_copy_bit(k, KPF_WRITEBACK, PG_writeback);
172 u |= kpf_copy_bit(k, KPF_LRU, PG_lru);
173 u |= kpf_copy_bit(k, KPF_REFERENCED, PG_referenced);
174 u |= kpf_copy_bit(k, KPF_ACTIVE, PG_active);
175 u |= kpf_copy_bit(k, KPF_RECLAIM, PG_reclaim);
177 if (PageSwapCache(page))
178 u |= 1 << KPF_SWAPCACHE;
179 u |= kpf_copy_bit(k, KPF_SWAPBACKED, PG_swapbacked);
181 u |= kpf_copy_bit(k, KPF_UNEVICTABLE, PG_unevictable);
182 u |= kpf_copy_bit(k, KPF_MLOCKED, PG_mlocked);
184 #ifdef CONFIG_MEMORY_FAILURE
185 u |= kpf_copy_bit(k, KPF_HWPOISON, PG_hwpoison);
186 #endif
188 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
189 u |= kpf_copy_bit(k, KPF_UNCACHED, PG_uncached);
190 #endif
192 u |= kpf_copy_bit(k, KPF_RESERVED, PG_reserved);
193 u |= kpf_copy_bit(k, KPF_MAPPEDTODISK, PG_mappedtodisk);
194 u |= kpf_copy_bit(k, KPF_PRIVATE, PG_private);
195 u |= kpf_copy_bit(k, KPF_PRIVATE_2, PG_private_2);
196 u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE, PG_owner_priv_1);
197 u |= kpf_copy_bit(k, KPF_ARCH, PG_arch_1);
199 return u;
202 static ssize_t kpageflags_read(struct file *file, char __user *buf,
203 size_t count, loff_t *ppos)
205 u64 __user *out = (u64 __user *)buf;
206 struct page *ppage;
207 unsigned long src = *ppos;
208 unsigned long pfn;
209 ssize_t ret = 0;
211 pfn = src / KPMSIZE;
212 count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
213 if (src & KPMMASK || count & KPMMASK)
214 return -EINVAL;
216 while (count > 0) {
217 if (pfn_valid(pfn))
218 ppage = pfn_to_page(pfn);
219 else
220 ppage = NULL;
222 if (put_user(stable_page_flags(ppage), out)) {
223 ret = -EFAULT;
224 break;
227 pfn++;
228 out++;
229 count -= KPMSIZE;
231 cond_resched();
234 *ppos += (char __user *)out - buf;
235 if (!ret)
236 ret = (char __user *)out - buf;
237 return ret;
240 static const struct file_operations proc_kpageflags_operations = {
241 .llseek = mem_lseek,
242 .read = kpageflags_read,
245 #ifdef CONFIG_MEMCG
246 static ssize_t kpagecgroup_read(struct file *file, char __user *buf,
247 size_t count, loff_t *ppos)
249 u64 __user *out = (u64 __user *)buf;
250 struct page *ppage;
251 unsigned long src = *ppos;
252 unsigned long pfn;
253 ssize_t ret = 0;
254 u64 ino;
256 pfn = src / KPMSIZE;
257 count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
258 if (src & KPMMASK || count & KPMMASK)
259 return -EINVAL;
261 while (count > 0) {
262 if (pfn_valid(pfn))
263 ppage = pfn_to_page(pfn);
264 else
265 ppage = NULL;
267 if (ppage)
268 ino = page_cgroup_ino(ppage);
269 else
270 ino = 0;
272 if (put_user(ino, out)) {
273 ret = -EFAULT;
274 break;
277 pfn++;
278 out++;
279 count -= KPMSIZE;
281 cond_resched();
284 *ppos += (char __user *)out - buf;
285 if (!ret)
286 ret = (char __user *)out - buf;
287 return ret;
290 static const struct file_operations proc_kpagecgroup_operations = {
291 .llseek = mem_lseek,
292 .read = kpagecgroup_read,
294 #endif /* CONFIG_MEMCG */
296 static int __init proc_page_init(void)
298 proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
299 proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
300 #ifdef CONFIG_MEMCG
301 proc_create("kpagecgroup", S_IRUSR, NULL, &proc_kpagecgroup_operations);
302 #endif
303 return 0;
305 fs_initcall(proc_page_init);