Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / xfs / xfs_aops.c
blob9c6a830da0eec4663c04b5c58606962139598890
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
41 * structure owned by writepages passed to individual writepage calls
43 struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
51 void
52 xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
57 struct buffer_head *bh, *head;
59 *delalloc = *unwritten = 0;
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 struct inode *inode)
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
83 struct dax_device *
84 xfs_find_daxdev_for_inode(
85 struct inode *inode)
87 struct xfs_inode *ip = XFS_I(inode);
88 struct xfs_mount *mp = ip->i_mount;
90 if (XFS_IS_REALTIME_INODE(ip))
91 return mp->m_rtdev_targp->bt_daxdev;
92 else
93 return mp->m_ddev_targp->bt_daxdev;
97 * We're now finished for good with this page. Update the page state via the
98 * associated buffer_heads, paying attention to the start and end offsets that
99 * we need to process on the page.
101 * Note that we open code the action in end_buffer_async_write here so that we
102 * only have to iterate over the buffers attached to the page once. This is not
103 * only more efficient, but also ensures that we only calls end_page_writeback
104 * at the end of the iteration, and thus avoids the pitfall of having the page
105 * and buffers potentially freed after every call to end_buffer_async_write.
107 static void
108 xfs_finish_page_writeback(
109 struct inode *inode,
110 struct bio_vec *bvec,
111 int error)
113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
114 bool busy = false;
115 unsigned int off = 0;
116 unsigned long flags;
118 ASSERT(bvec->bv_offset < PAGE_SIZE);
119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
123 local_irq_save(flags);
124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 do {
126 if (off >= bvec->bv_offset &&
127 off < bvec->bv_offset + bvec->bv_len) {
128 ASSERT(buffer_async_write(bh));
129 ASSERT(bh->b_end_io == NULL);
131 if (error) {
132 mark_buffer_write_io_error(bh);
133 clear_buffer_uptodate(bh);
134 SetPageError(bvec->bv_page);
135 } else {
136 set_buffer_uptodate(bh);
138 clear_buffer_async_write(bh);
139 unlock_buffer(bh);
140 } else if (buffer_async_write(bh)) {
141 ASSERT(buffer_locked(bh));
142 busy = true;
144 off += bh->b_size;
145 } while ((bh = bh->b_this_page) != head);
146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 local_irq_restore(flags);
149 if (!busy)
150 end_page_writeback(bvec->bv_page);
154 * We're now finished for good with this ioend structure. Update the page
155 * state, release holds on bios, and finally free up memory. Do not use the
156 * ioend after this.
158 STATIC void
159 xfs_destroy_ioend(
160 struct xfs_ioend *ioend,
161 int error)
163 struct inode *inode = ioend->io_inode;
164 struct bio *bio = &ioend->io_inline_bio;
165 struct bio *last = ioend->io_bio, *next;
166 u64 start = bio->bi_iter.bi_sector;
167 bool quiet = bio_flagged(bio, BIO_QUIET);
169 for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 struct bio_vec *bvec;
171 int i;
174 * For the last bio, bi_private points to the ioend, so we
175 * need to explicitly end the iteration here.
177 if (bio == last)
178 next = NULL;
179 else
180 next = bio->bi_private;
182 /* walk each page on bio, ending page IO on them */
183 bio_for_each_segment_all(bvec, bio, i)
184 xfs_finish_page_writeback(inode, bvec, error);
186 bio_put(bio);
189 if (unlikely(error && !quiet)) {
190 xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 "writeback error on sector %llu", start);
196 * Fast and loose check if this write could update the on-disk inode size.
198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
200 return ioend->io_offset + ioend->io_size >
201 XFS_I(ioend->io_inode)->i_d.di_size;
204 STATIC int
205 xfs_setfilesize_trans_alloc(
206 struct xfs_ioend *ioend)
208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
209 struct xfs_trans *tp;
210 int error;
212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
213 if (error)
214 return error;
216 ioend->io_append_trans = tp;
219 * We may pass freeze protection with a transaction. So tell lockdep
220 * we released it.
222 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
224 * We hand off the transaction to the completion thread now, so
225 * clear the flag here.
227 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
228 return 0;
232 * Update on-disk file size now that data has been written to disk.
234 STATIC int
235 __xfs_setfilesize(
236 struct xfs_inode *ip,
237 struct xfs_trans *tp,
238 xfs_off_t offset,
239 size_t size)
241 xfs_fsize_t isize;
243 xfs_ilock(ip, XFS_ILOCK_EXCL);
244 isize = xfs_new_eof(ip, offset + size);
245 if (!isize) {
246 xfs_iunlock(ip, XFS_ILOCK_EXCL);
247 xfs_trans_cancel(tp);
248 return 0;
251 trace_xfs_setfilesize(ip, offset, size);
253 ip->i_d.di_size = isize;
254 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
255 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257 return xfs_trans_commit(tp);
261 xfs_setfilesize(
262 struct xfs_inode *ip,
263 xfs_off_t offset,
264 size_t size)
266 struct xfs_mount *mp = ip->i_mount;
267 struct xfs_trans *tp;
268 int error;
270 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
271 if (error)
272 return error;
274 return __xfs_setfilesize(ip, tp, offset, size);
277 STATIC int
278 xfs_setfilesize_ioend(
279 struct xfs_ioend *ioend,
280 int error)
282 struct xfs_inode *ip = XFS_I(ioend->io_inode);
283 struct xfs_trans *tp = ioend->io_append_trans;
286 * The transaction may have been allocated in the I/O submission thread,
287 * thus we need to mark ourselves as being in a transaction manually.
288 * Similarly for freeze protection.
290 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
291 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
293 /* we abort the update if there was an IO error */
294 if (error) {
295 xfs_trans_cancel(tp);
296 return error;
299 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
303 * IO write completion.
305 STATIC void
306 xfs_end_io(
307 struct work_struct *work)
309 struct xfs_ioend *ioend =
310 container_of(work, struct xfs_ioend, io_work);
311 struct xfs_inode *ip = XFS_I(ioend->io_inode);
312 xfs_off_t offset = ioend->io_offset;
313 size_t size = ioend->io_size;
314 int error;
317 * Just clean up the in-memory strutures if the fs has been shut down.
319 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
320 error = -EIO;
321 goto done;
325 * Clean up any COW blocks on an I/O error.
327 error = blk_status_to_errno(ioend->io_bio->bi_status);
328 if (unlikely(error)) {
329 switch (ioend->io_type) {
330 case XFS_IO_COW:
331 xfs_reflink_cancel_cow_range(ip, offset, size, true);
332 break;
335 goto done;
339 * Success: commit the COW or unwritten blocks if needed.
341 switch (ioend->io_type) {
342 case XFS_IO_COW:
343 error = xfs_reflink_end_cow(ip, offset, size);
344 break;
345 case XFS_IO_UNWRITTEN:
346 /* writeback should never update isize */
347 error = xfs_iomap_write_unwritten(ip, offset, size, false);
348 break;
349 default:
350 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
351 break;
354 done:
355 if (ioend->io_append_trans)
356 error = xfs_setfilesize_ioend(ioend, error);
357 xfs_destroy_ioend(ioend, error);
360 STATIC void
361 xfs_end_bio(
362 struct bio *bio)
364 struct xfs_ioend *ioend = bio->bi_private;
365 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
367 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
368 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
369 else if (ioend->io_append_trans)
370 queue_work(mp->m_data_workqueue, &ioend->io_work);
371 else
372 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
375 STATIC int
376 xfs_map_blocks(
377 struct inode *inode,
378 loff_t offset,
379 struct xfs_bmbt_irec *imap,
380 int type)
382 struct xfs_inode *ip = XFS_I(inode);
383 struct xfs_mount *mp = ip->i_mount;
384 ssize_t count = i_blocksize(inode);
385 xfs_fileoff_t offset_fsb, end_fsb;
386 int error = 0;
387 int bmapi_flags = XFS_BMAPI_ENTIRE;
388 int nimaps = 1;
390 if (XFS_FORCED_SHUTDOWN(mp))
391 return -EIO;
394 * Truncate can race with writeback since writeback doesn't take the
395 * iolock and truncate decreases the file size before it starts
396 * truncating the pages between new_size and old_size. Therefore, we
397 * can end up in the situation where writeback gets a CoW fork mapping
398 * but the truncate makes the mapping invalid and we end up in here
399 * trying to get a new mapping. Bail out here so that we simply never
400 * get a valid mapping and so we drop the write altogether. The page
401 * truncation will kill the contents anyway.
403 if (type == XFS_IO_COW && offset > i_size_read(inode))
404 return 0;
406 ASSERT(type != XFS_IO_COW);
407 if (type == XFS_IO_UNWRITTEN)
408 bmapi_flags |= XFS_BMAPI_IGSTATE;
410 xfs_ilock(ip, XFS_ILOCK_SHARED);
411 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
412 (ip->i_df.if_flags & XFS_IFEXTENTS));
413 ASSERT(offset <= mp->m_super->s_maxbytes);
415 if (offset > mp->m_super->s_maxbytes - count)
416 count = mp->m_super->s_maxbytes - offset;
417 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
418 offset_fsb = XFS_B_TO_FSBT(mp, offset);
419 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
420 imap, &nimaps, bmapi_flags);
422 * Truncate an overwrite extent if there's a pending CoW
423 * reservation before the end of this extent. This forces us
424 * to come back to writepage to take care of the CoW.
426 if (nimaps && type == XFS_IO_OVERWRITE)
427 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
428 xfs_iunlock(ip, XFS_ILOCK_SHARED);
430 if (error)
431 return error;
433 if (type == XFS_IO_DELALLOC &&
434 (!nimaps || isnullstartblock(imap->br_startblock))) {
435 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
436 imap);
437 if (!error)
438 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
439 return error;
442 #ifdef DEBUG
443 if (type == XFS_IO_UNWRITTEN) {
444 ASSERT(nimaps);
445 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
446 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 #endif
449 if (nimaps)
450 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
451 return 0;
454 STATIC bool
455 xfs_imap_valid(
456 struct inode *inode,
457 struct xfs_bmbt_irec *imap,
458 xfs_off_t offset)
460 offset >>= inode->i_blkbits;
463 * We have to make sure the cached mapping is within EOF to protect
464 * against eofblocks trimming on file release leaving us with a stale
465 * mapping. Otherwise, a page for a subsequent file extending buffered
466 * write could get picked up by this writeback cycle and written to the
467 * wrong blocks.
469 * Note that what we really want here is a generic mapping invalidation
470 * mechanism to protect us from arbitrary extent modifying contexts, not
471 * just eofblocks.
473 xfs_trim_extent_eof(imap, XFS_I(inode));
475 return offset >= imap->br_startoff &&
476 offset < imap->br_startoff + imap->br_blockcount;
479 STATIC void
480 xfs_start_buffer_writeback(
481 struct buffer_head *bh)
483 ASSERT(buffer_mapped(bh));
484 ASSERT(buffer_locked(bh));
485 ASSERT(!buffer_delay(bh));
486 ASSERT(!buffer_unwritten(bh));
488 bh->b_end_io = NULL;
489 set_buffer_async_write(bh);
490 set_buffer_uptodate(bh);
491 clear_buffer_dirty(bh);
494 STATIC void
495 xfs_start_page_writeback(
496 struct page *page,
497 int clear_dirty)
499 ASSERT(PageLocked(page));
500 ASSERT(!PageWriteback(page));
503 * if the page was not fully cleaned, we need to ensure that the higher
504 * layers come back to it correctly. That means we need to keep the page
505 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
506 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
507 * write this page in this writeback sweep will be made.
509 if (clear_dirty) {
510 clear_page_dirty_for_io(page);
511 set_page_writeback(page);
512 } else
513 set_page_writeback_keepwrite(page);
515 unlock_page(page);
518 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
520 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
524 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
525 * it, and we submit that bio. The ioend may be used for multiple bio
526 * submissions, so we only want to allocate an append transaction for the ioend
527 * once. In the case of multiple bio submission, each bio will take an IO
528 * reference to the ioend to ensure that the ioend completion is only done once
529 * all bios have been submitted and the ioend is really done.
531 * If @fail is non-zero, it means that we have a situation where some part of
532 * the submission process has failed after we have marked paged for writeback
533 * and unlocked them. In this situation, we need to fail the bio and ioend
534 * rather than submit it to IO. This typically only happens on a filesystem
535 * shutdown.
537 STATIC int
538 xfs_submit_ioend(
539 struct writeback_control *wbc,
540 struct xfs_ioend *ioend,
541 int status)
543 /* Convert CoW extents to regular */
544 if (!status && ioend->io_type == XFS_IO_COW) {
545 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
546 ioend->io_offset, ioend->io_size);
549 /* Reserve log space if we might write beyond the on-disk inode size. */
550 if (!status &&
551 ioend->io_type != XFS_IO_UNWRITTEN &&
552 xfs_ioend_is_append(ioend) &&
553 !ioend->io_append_trans)
554 status = xfs_setfilesize_trans_alloc(ioend);
556 ioend->io_bio->bi_private = ioend;
557 ioend->io_bio->bi_end_io = xfs_end_bio;
558 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
561 * If we are failing the IO now, just mark the ioend with an
562 * error and finish it. This will run IO completion immediately
563 * as there is only one reference to the ioend at this point in
564 * time.
566 if (status) {
567 ioend->io_bio->bi_status = errno_to_blk_status(status);
568 bio_endio(ioend->io_bio);
569 return status;
572 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
573 submit_bio(ioend->io_bio);
574 return 0;
577 static void
578 xfs_init_bio_from_bh(
579 struct bio *bio,
580 struct buffer_head *bh)
582 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
583 bio_set_dev(bio, bh->b_bdev);
586 static struct xfs_ioend *
587 xfs_alloc_ioend(
588 struct inode *inode,
589 unsigned int type,
590 xfs_off_t offset,
591 struct buffer_head *bh)
593 struct xfs_ioend *ioend;
594 struct bio *bio;
596 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
597 xfs_init_bio_from_bh(bio, bh);
599 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
600 INIT_LIST_HEAD(&ioend->io_list);
601 ioend->io_type = type;
602 ioend->io_inode = inode;
603 ioend->io_size = 0;
604 ioend->io_offset = offset;
605 INIT_WORK(&ioend->io_work, xfs_end_io);
606 ioend->io_append_trans = NULL;
607 ioend->io_bio = bio;
608 return ioend;
612 * Allocate a new bio, and chain the old bio to the new one.
614 * Note that we have to do perform the chaining in this unintuitive order
615 * so that the bi_private linkage is set up in the right direction for the
616 * traversal in xfs_destroy_ioend().
618 static void
619 xfs_chain_bio(
620 struct xfs_ioend *ioend,
621 struct writeback_control *wbc,
622 struct buffer_head *bh)
624 struct bio *new;
626 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
627 xfs_init_bio_from_bh(new, bh);
629 bio_chain(ioend->io_bio, new);
630 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
631 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
632 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
633 submit_bio(ioend->io_bio);
634 ioend->io_bio = new;
638 * Test to see if we've been building up a completion structure for
639 * earlier buffers -- if so, we try to append to this ioend if we
640 * can, otherwise we finish off any current ioend and start another.
641 * Return the ioend we finished off so that the caller can submit it
642 * once it has finished processing the dirty page.
644 STATIC void
645 xfs_add_to_ioend(
646 struct inode *inode,
647 struct buffer_head *bh,
648 xfs_off_t offset,
649 struct xfs_writepage_ctx *wpc,
650 struct writeback_control *wbc,
651 struct list_head *iolist)
653 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
654 bh->b_blocknr != wpc->last_block + 1 ||
655 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
656 if (wpc->ioend)
657 list_add(&wpc->ioend->io_list, iolist);
658 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
662 * If the buffer doesn't fit into the bio we need to allocate a new
663 * one. This shouldn't happen more than once for a given buffer.
665 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
666 xfs_chain_bio(wpc->ioend, wbc, bh);
668 wpc->ioend->io_size += bh->b_size;
669 wpc->last_block = bh->b_blocknr;
670 xfs_start_buffer_writeback(bh);
673 STATIC void
674 xfs_map_buffer(
675 struct inode *inode,
676 struct buffer_head *bh,
677 struct xfs_bmbt_irec *imap,
678 xfs_off_t offset)
680 sector_t bn;
681 struct xfs_mount *m = XFS_I(inode)->i_mount;
682 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
683 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
685 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
686 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
688 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
689 ((offset - iomap_offset) >> inode->i_blkbits);
691 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
693 bh->b_blocknr = bn;
694 set_buffer_mapped(bh);
697 STATIC void
698 xfs_map_at_offset(
699 struct inode *inode,
700 struct buffer_head *bh,
701 struct xfs_bmbt_irec *imap,
702 xfs_off_t offset)
704 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
705 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
707 xfs_map_buffer(inode, bh, imap, offset);
708 set_buffer_mapped(bh);
709 clear_buffer_delay(bh);
710 clear_buffer_unwritten(bh);
714 * Test if a given page contains at least one buffer of a given @type.
715 * If @check_all_buffers is true, then we walk all the buffers in the page to
716 * try to find one of the type passed in. If it is not set, then the caller only
717 * needs to check the first buffer on the page for a match.
719 STATIC bool
720 xfs_check_page_type(
721 struct page *page,
722 unsigned int type,
723 bool check_all_buffers)
725 struct buffer_head *bh;
726 struct buffer_head *head;
728 if (PageWriteback(page))
729 return false;
730 if (!page->mapping)
731 return false;
732 if (!page_has_buffers(page))
733 return false;
735 bh = head = page_buffers(page);
736 do {
737 if (buffer_unwritten(bh)) {
738 if (type == XFS_IO_UNWRITTEN)
739 return true;
740 } else if (buffer_delay(bh)) {
741 if (type == XFS_IO_DELALLOC)
742 return true;
743 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
744 if (type == XFS_IO_OVERWRITE)
745 return true;
748 /* If we are only checking the first buffer, we are done now. */
749 if (!check_all_buffers)
750 break;
751 } while ((bh = bh->b_this_page) != head);
753 return false;
756 STATIC void
757 xfs_vm_invalidatepage(
758 struct page *page,
759 unsigned int offset,
760 unsigned int length)
762 trace_xfs_invalidatepage(page->mapping->host, page, offset,
763 length);
766 * If we are invalidating the entire page, clear the dirty state from it
767 * so that we can check for attempts to release dirty cached pages in
768 * xfs_vm_releasepage().
770 if (offset == 0 && length >= PAGE_SIZE)
771 cancel_dirty_page(page);
772 block_invalidatepage(page, offset, length);
776 * If the page has delalloc buffers on it, we need to punch them out before we
777 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
778 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
779 * is done on that same region - the delalloc extent is returned when none is
780 * supposed to be there.
782 * We prevent this by truncating away the delalloc regions on the page before
783 * invalidating it. Because they are delalloc, we can do this without needing a
784 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
785 * truncation without a transaction as there is no space left for block
786 * reservation (typically why we see a ENOSPC in writeback).
788 * This is not a performance critical path, so for now just do the punching a
789 * buffer head at a time.
791 STATIC void
792 xfs_aops_discard_page(
793 struct page *page)
795 struct inode *inode = page->mapping->host;
796 struct xfs_inode *ip = XFS_I(inode);
797 struct buffer_head *bh, *head;
798 loff_t offset = page_offset(page);
800 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
801 goto out_invalidate;
803 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
804 goto out_invalidate;
806 xfs_alert(ip->i_mount,
807 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
808 page, ip->i_ino, offset);
810 xfs_ilock(ip, XFS_ILOCK_EXCL);
811 bh = head = page_buffers(page);
812 do {
813 int error;
814 xfs_fileoff_t start_fsb;
816 if (!buffer_delay(bh))
817 goto next_buffer;
819 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
820 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
821 if (error) {
822 /* something screwed, just bail */
823 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
824 xfs_alert(ip->i_mount,
825 "page discard unable to remove delalloc mapping.");
827 break;
829 next_buffer:
830 offset += i_blocksize(inode);
832 } while ((bh = bh->b_this_page) != head);
834 xfs_iunlock(ip, XFS_ILOCK_EXCL);
835 out_invalidate:
836 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
837 return;
840 static int
841 xfs_map_cow(
842 struct xfs_writepage_ctx *wpc,
843 struct inode *inode,
844 loff_t offset,
845 unsigned int *new_type)
847 struct xfs_inode *ip = XFS_I(inode);
848 struct xfs_bmbt_irec imap;
849 bool is_cow = false;
850 int error;
853 * If we already have a valid COW mapping keep using it.
855 if (wpc->io_type == XFS_IO_COW) {
856 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
857 if (wpc->imap_valid) {
858 *new_type = XFS_IO_COW;
859 return 0;
864 * Else we need to check if there is a COW mapping at this offset.
866 xfs_ilock(ip, XFS_ILOCK_SHARED);
867 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
868 xfs_iunlock(ip, XFS_ILOCK_SHARED);
870 if (!is_cow)
871 return 0;
874 * And if the COW mapping has a delayed extent here we need to
875 * allocate real space for it now.
877 if (isnullstartblock(imap.br_startblock)) {
878 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
879 &imap);
880 if (error)
881 return error;
884 wpc->io_type = *new_type = XFS_IO_COW;
885 wpc->imap_valid = true;
886 wpc->imap = imap;
887 return 0;
891 * We implement an immediate ioend submission policy here to avoid needing to
892 * chain multiple ioends and hence nest mempool allocations which can violate
893 * forward progress guarantees we need to provide. The current ioend we are
894 * adding buffers to is cached on the writepage context, and if the new buffer
895 * does not append to the cached ioend it will create a new ioend and cache that
896 * instead.
898 * If a new ioend is created and cached, the old ioend is returned and queued
899 * locally for submission once the entire page is processed or an error has been
900 * detected. While ioends are submitted immediately after they are completed,
901 * batching optimisations are provided by higher level block plugging.
903 * At the end of a writeback pass, there will be a cached ioend remaining on the
904 * writepage context that the caller will need to submit.
906 static int
907 xfs_writepage_map(
908 struct xfs_writepage_ctx *wpc,
909 struct writeback_control *wbc,
910 struct inode *inode,
911 struct page *page,
912 uint64_t end_offset)
914 LIST_HEAD(submit_list);
915 struct xfs_ioend *ioend, *next;
916 struct buffer_head *bh, *head;
917 ssize_t len = i_blocksize(inode);
918 uint64_t offset;
919 int error = 0;
920 int count = 0;
921 int uptodate = 1;
922 unsigned int new_type;
924 bh = head = page_buffers(page);
925 offset = page_offset(page);
926 do {
927 if (offset >= end_offset)
928 break;
929 if (!buffer_uptodate(bh))
930 uptodate = 0;
933 * set_page_dirty dirties all buffers in a page, independent
934 * of their state. The dirty state however is entirely
935 * meaningless for holes (!mapped && uptodate), so skip
936 * buffers covering holes here.
938 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
939 wpc->imap_valid = false;
940 continue;
943 if (buffer_unwritten(bh))
944 new_type = XFS_IO_UNWRITTEN;
945 else if (buffer_delay(bh))
946 new_type = XFS_IO_DELALLOC;
947 else if (buffer_uptodate(bh))
948 new_type = XFS_IO_OVERWRITE;
949 else {
950 if (PageUptodate(page))
951 ASSERT(buffer_mapped(bh));
953 * This buffer is not uptodate and will not be
954 * written to disk. Ensure that we will put any
955 * subsequent writeable buffers into a new
956 * ioend.
958 wpc->imap_valid = false;
959 continue;
962 if (xfs_is_reflink_inode(XFS_I(inode))) {
963 error = xfs_map_cow(wpc, inode, offset, &new_type);
964 if (error)
965 goto out;
968 if (wpc->io_type != new_type) {
969 wpc->io_type = new_type;
970 wpc->imap_valid = false;
973 if (wpc->imap_valid)
974 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
975 offset);
976 if (!wpc->imap_valid) {
977 error = xfs_map_blocks(inode, offset, &wpc->imap,
978 wpc->io_type);
979 if (error)
980 goto out;
981 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
982 offset);
984 if (wpc->imap_valid) {
985 lock_buffer(bh);
986 if (wpc->io_type != XFS_IO_OVERWRITE)
987 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
988 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
989 count++;
992 } while (offset += len, ((bh = bh->b_this_page) != head));
994 if (uptodate && bh == head)
995 SetPageUptodate(page);
997 ASSERT(wpc->ioend || list_empty(&submit_list));
999 out:
1001 * On error, we have to fail the ioend here because we have locked
1002 * buffers in the ioend. If we don't do this, we'll deadlock
1003 * invalidating the page as that tries to lock the buffers on the page.
1004 * Also, because we may have set pages under writeback, we have to make
1005 * sure we run IO completion to mark the error state of the IO
1006 * appropriately, so we can't cancel the ioend directly here. That means
1007 * we have to mark this page as under writeback if we included any
1008 * buffers from it in the ioend chain so that completion treats it
1009 * correctly.
1011 * If we didn't include the page in the ioend, the on error we can
1012 * simply discard and unlock it as there are no other users of the page
1013 * or it's buffers right now. The caller will still need to trigger
1014 * submission of outstanding ioends on the writepage context so they are
1015 * treated correctly on error.
1017 if (count) {
1018 xfs_start_page_writeback(page, !error);
1021 * Preserve the original error if there was one, otherwise catch
1022 * submission errors here and propagate into subsequent ioend
1023 * submissions.
1025 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1026 int error2;
1028 list_del_init(&ioend->io_list);
1029 error2 = xfs_submit_ioend(wbc, ioend, error);
1030 if (error2 && !error)
1031 error = error2;
1033 } else if (error) {
1034 xfs_aops_discard_page(page);
1035 ClearPageUptodate(page);
1036 unlock_page(page);
1037 } else {
1039 * We can end up here with no error and nothing to write if we
1040 * race with a partial page truncate on a sub-page block sized
1041 * filesystem. In that case we need to mark the page clean.
1043 xfs_start_page_writeback(page, 1);
1044 end_page_writeback(page);
1047 mapping_set_error(page->mapping, error);
1048 return error;
1052 * Write out a dirty page.
1054 * For delalloc space on the page we need to allocate space and flush it.
1055 * For unwritten space on the page we need to start the conversion to
1056 * regular allocated space.
1057 * For any other dirty buffer heads on the page we should flush them.
1059 STATIC int
1060 xfs_do_writepage(
1061 struct page *page,
1062 struct writeback_control *wbc,
1063 void *data)
1065 struct xfs_writepage_ctx *wpc = data;
1066 struct inode *inode = page->mapping->host;
1067 loff_t offset;
1068 uint64_t end_offset;
1069 pgoff_t end_index;
1071 trace_xfs_writepage(inode, page, 0, 0);
1073 ASSERT(page_has_buffers(page));
1076 * Refuse to write the page out if we are called from reclaim context.
1078 * This avoids stack overflows when called from deeply used stacks in
1079 * random callers for direct reclaim or memcg reclaim. We explicitly
1080 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 * This should never happen except in the case of a VM regression so
1083 * warn about it.
1085 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1086 PF_MEMALLOC))
1087 goto redirty;
1090 * Given that we do not allow direct reclaim to call us, we should
1091 * never be called while in a filesystem transaction.
1093 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1094 goto redirty;
1097 * Is this page beyond the end of the file?
1099 * The page index is less than the end_index, adjust the end_offset
1100 * to the highest offset that this page should represent.
1101 * -----------------------------------------------------
1102 * | file mapping | <EOF> |
1103 * -----------------------------------------------------
1104 * | Page ... | Page N-2 | Page N-1 | Page N | |
1105 * ^--------------------------------^----------|--------
1106 * | desired writeback range | see else |
1107 * ---------------------------------^------------------|
1109 offset = i_size_read(inode);
1110 end_index = offset >> PAGE_SHIFT;
1111 if (page->index < end_index)
1112 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1113 else {
1115 * Check whether the page to write out is beyond or straddles
1116 * i_size or not.
1117 * -------------------------------------------------------
1118 * | file mapping | <EOF> |
1119 * -------------------------------------------------------
1120 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1121 * ^--------------------------------^-----------|---------
1122 * | | Straddles |
1123 * ---------------------------------^-----------|--------|
1125 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1128 * Skip the page if it is fully outside i_size, e.g. due to a
1129 * truncate operation that is in progress. We must redirty the
1130 * page so that reclaim stops reclaiming it. Otherwise
1131 * xfs_vm_releasepage() is called on it and gets confused.
1133 * Note that the end_index is unsigned long, it would overflow
1134 * if the given offset is greater than 16TB on 32-bit system
1135 * and if we do check the page is fully outside i_size or not
1136 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1137 * will be evaluated to 0. Hence this page will be redirtied
1138 * and be written out repeatedly which would result in an
1139 * infinite loop, the user program that perform this operation
1140 * will hang. Instead, we can verify this situation by checking
1141 * if the page to write is totally beyond the i_size or if it's
1142 * offset is just equal to the EOF.
1144 if (page->index > end_index ||
1145 (page->index == end_index && offset_into_page == 0))
1146 goto redirty;
1149 * The page straddles i_size. It must be zeroed out on each
1150 * and every writepage invocation because it may be mmapped.
1151 * "A file is mapped in multiples of the page size. For a file
1152 * that is not a multiple of the page size, the remaining
1153 * memory is zeroed when mapped, and writes to that region are
1154 * not written out to the file."
1156 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158 /* Adjust the end_offset to the end of file */
1159 end_offset = offset;
1162 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164 redirty:
1165 redirty_page_for_writepage(wbc, page);
1166 unlock_page(page);
1167 return 0;
1170 STATIC int
1171 xfs_vm_writepage(
1172 struct page *page,
1173 struct writeback_control *wbc)
1175 struct xfs_writepage_ctx wpc = {
1176 .io_type = XFS_IO_INVALID,
1178 int ret;
1180 ret = xfs_do_writepage(page, wbc, &wpc);
1181 if (wpc.ioend)
1182 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1183 return ret;
1186 STATIC int
1187 xfs_vm_writepages(
1188 struct address_space *mapping,
1189 struct writeback_control *wbc)
1191 struct xfs_writepage_ctx wpc = {
1192 .io_type = XFS_IO_INVALID,
1194 int ret;
1196 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1197 if (dax_mapping(mapping))
1198 return dax_writeback_mapping_range(mapping,
1199 xfs_find_bdev_for_inode(mapping->host), wbc);
1201 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1202 if (wpc.ioend)
1203 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1204 return ret;
1208 * Called to move a page into cleanable state - and from there
1209 * to be released. The page should already be clean. We always
1210 * have buffer heads in this call.
1212 * Returns 1 if the page is ok to release, 0 otherwise.
1214 STATIC int
1215 xfs_vm_releasepage(
1216 struct page *page,
1217 gfp_t gfp_mask)
1219 int delalloc, unwritten;
1221 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1224 * mm accommodates an old ext3 case where clean pages might not have had
1225 * the dirty bit cleared. Thus, it can send actual dirty pages to
1226 * ->releasepage() via shrink_active_list(). Conversely,
1227 * block_invalidatepage() can send pages that are still marked dirty but
1228 * otherwise have invalidated buffers.
1230 * We want to release the latter to avoid unnecessary buildup of the
1231 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1232 * that are entirely invalidated and need to be released. Hence the
1233 * only time we should get dirty pages here is through
1234 * shrink_active_list() and so we can simply skip those now.
1236 * warn if we've left any lingering delalloc/unwritten buffers on clean
1237 * or invalidated pages we are about to release.
1239 if (PageDirty(page))
1240 return 0;
1242 xfs_count_page_state(page, &delalloc, &unwritten);
1244 if (WARN_ON_ONCE(delalloc))
1245 return 0;
1246 if (WARN_ON_ONCE(unwritten))
1247 return 0;
1249 return try_to_free_buffers(page);
1253 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1254 * is, so that we can avoid repeated get_blocks calls.
1256 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1257 * for blocks beyond EOF must be marked new so that sub block regions can be
1258 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1259 * was just allocated or is unwritten, otherwise the callers would overwrite
1260 * existing data with zeros. Hence we have to split the mapping into a range up
1261 * to and including EOF, and a second mapping for beyond EOF.
1263 static void
1264 xfs_map_trim_size(
1265 struct inode *inode,
1266 sector_t iblock,
1267 struct buffer_head *bh_result,
1268 struct xfs_bmbt_irec *imap,
1269 xfs_off_t offset,
1270 ssize_t size)
1272 xfs_off_t mapping_size;
1274 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1275 mapping_size <<= inode->i_blkbits;
1277 ASSERT(mapping_size > 0);
1278 if (mapping_size > size)
1279 mapping_size = size;
1280 if (offset < i_size_read(inode) &&
1281 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1282 /* limit mapping to block that spans EOF */
1283 mapping_size = roundup_64(i_size_read(inode) - offset,
1284 i_blocksize(inode));
1286 if (mapping_size > LONG_MAX)
1287 mapping_size = LONG_MAX;
1289 bh_result->b_size = mapping_size;
1292 static int
1293 xfs_get_blocks(
1294 struct inode *inode,
1295 sector_t iblock,
1296 struct buffer_head *bh_result,
1297 int create)
1299 struct xfs_inode *ip = XFS_I(inode);
1300 struct xfs_mount *mp = ip->i_mount;
1301 xfs_fileoff_t offset_fsb, end_fsb;
1302 int error = 0;
1303 int lockmode = 0;
1304 struct xfs_bmbt_irec imap;
1305 int nimaps = 1;
1306 xfs_off_t offset;
1307 ssize_t size;
1309 BUG_ON(create);
1311 if (XFS_FORCED_SHUTDOWN(mp))
1312 return -EIO;
1314 offset = (xfs_off_t)iblock << inode->i_blkbits;
1315 ASSERT(bh_result->b_size >= i_blocksize(inode));
1316 size = bh_result->b_size;
1318 if (offset >= i_size_read(inode))
1319 return 0;
1322 * Direct I/O is usually done on preallocated files, so try getting
1323 * a block mapping without an exclusive lock first.
1325 lockmode = xfs_ilock_data_map_shared(ip);
1327 ASSERT(offset <= mp->m_super->s_maxbytes);
1328 if (offset > mp->m_super->s_maxbytes - size)
1329 size = mp->m_super->s_maxbytes - offset;
1330 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1331 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1333 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1334 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1335 if (error)
1336 goto out_unlock;
1338 if (nimaps) {
1339 trace_xfs_get_blocks_found(ip, offset, size,
1340 imap.br_state == XFS_EXT_UNWRITTEN ?
1341 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1342 xfs_iunlock(ip, lockmode);
1343 } else {
1344 trace_xfs_get_blocks_notfound(ip, offset, size);
1345 goto out_unlock;
1348 /* trim mapping down to size requested */
1349 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1352 * For unwritten extents do not report a disk address in the buffered
1353 * read case (treat as if we're reading into a hole).
1355 if (xfs_bmap_is_real_extent(&imap))
1356 xfs_map_buffer(inode, bh_result, &imap, offset);
1359 * If this is a realtime file, data may be on a different device.
1360 * to that pointed to from the buffer_head b_bdev currently.
1362 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1363 return 0;
1365 out_unlock:
1366 xfs_iunlock(ip, lockmode);
1367 return error;
1370 STATIC ssize_t
1371 xfs_vm_direct_IO(
1372 struct kiocb *iocb,
1373 struct iov_iter *iter)
1376 * We just need the method present so that open/fcntl allow direct I/O.
1378 return -EINVAL;
1381 STATIC sector_t
1382 xfs_vm_bmap(
1383 struct address_space *mapping,
1384 sector_t block)
1386 struct inode *inode = (struct inode *)mapping->host;
1387 struct xfs_inode *ip = XFS_I(inode);
1389 trace_xfs_vm_bmap(XFS_I(inode));
1392 * The swap code (ab-)uses ->bmap to get a block mapping and then
1393 * bypasseѕ the file system for actual I/O. We really can't allow
1394 * that on reflinks inodes, so we have to skip out here. And yes,
1395 * 0 is the magic code for a bmap error.
1397 * Since we don't pass back blockdev info, we can't return bmap
1398 * information for rt files either.
1400 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1401 return 0;
1403 filemap_write_and_wait(mapping);
1404 return generic_block_bmap(mapping, block, xfs_get_blocks);
1407 STATIC int
1408 xfs_vm_readpage(
1409 struct file *unused,
1410 struct page *page)
1412 trace_xfs_vm_readpage(page->mapping->host, 1);
1413 return mpage_readpage(page, xfs_get_blocks);
1416 STATIC int
1417 xfs_vm_readpages(
1418 struct file *unused,
1419 struct address_space *mapping,
1420 struct list_head *pages,
1421 unsigned nr_pages)
1423 trace_xfs_vm_readpages(mapping->host, nr_pages);
1424 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1428 * This is basically a copy of __set_page_dirty_buffers() with one
1429 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1430 * dirty, we'll never be able to clean them because we don't write buffers
1431 * beyond EOF, and that means we can't invalidate pages that span EOF
1432 * that have been marked dirty. Further, the dirty state can leak into
1433 * the file interior if the file is extended, resulting in all sorts of
1434 * bad things happening as the state does not match the underlying data.
1436 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1437 * this only exist because of bufferheads and how the generic code manages them.
1439 STATIC int
1440 xfs_vm_set_page_dirty(
1441 struct page *page)
1443 struct address_space *mapping = page->mapping;
1444 struct inode *inode = mapping->host;
1445 loff_t end_offset;
1446 loff_t offset;
1447 int newly_dirty;
1449 if (unlikely(!mapping))
1450 return !TestSetPageDirty(page);
1452 end_offset = i_size_read(inode);
1453 offset = page_offset(page);
1455 spin_lock(&mapping->private_lock);
1456 if (page_has_buffers(page)) {
1457 struct buffer_head *head = page_buffers(page);
1458 struct buffer_head *bh = head;
1460 do {
1461 if (offset < end_offset)
1462 set_buffer_dirty(bh);
1463 bh = bh->b_this_page;
1464 offset += i_blocksize(inode);
1465 } while (bh != head);
1468 * Lock out page->mem_cgroup migration to keep PageDirty
1469 * synchronized with per-memcg dirty page counters.
1471 lock_page_memcg(page);
1472 newly_dirty = !TestSetPageDirty(page);
1473 spin_unlock(&mapping->private_lock);
1475 if (newly_dirty) {
1476 /* sigh - __set_page_dirty() is static, so copy it here, too */
1477 unsigned long flags;
1479 spin_lock_irqsave(&mapping->tree_lock, flags);
1480 if (page->mapping) { /* Race with truncate? */
1481 WARN_ON_ONCE(!PageUptodate(page));
1482 account_page_dirtied(page, mapping);
1483 radix_tree_tag_set(&mapping->page_tree,
1484 page_index(page), PAGECACHE_TAG_DIRTY);
1486 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1488 unlock_page_memcg(page);
1489 if (newly_dirty)
1490 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1491 return newly_dirty;
1494 const struct address_space_operations xfs_address_space_operations = {
1495 .readpage = xfs_vm_readpage,
1496 .readpages = xfs_vm_readpages,
1497 .writepage = xfs_vm_writepage,
1498 .writepages = xfs_vm_writepages,
1499 .set_page_dirty = xfs_vm_set_page_dirty,
1500 .releasepage = xfs_vm_releasepage,
1501 .invalidatepage = xfs_vm_invalidatepage,
1502 .bmap = xfs_vm_bmap,
1503 .direct_IO = xfs_vm_direct_IO,
1504 .migratepage = buffer_migrate_page,
1505 .is_partially_uptodate = block_is_partially_uptodate,
1506 .error_remove_page = generic_error_remove_page,