Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / xfs / xfs_buf.c
blobd1da2ee9e6dbced92e2aaaddb0ae635f5b4d9bab
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 #include "xfs_errortag.h"
46 #include "xfs_error.h"
48 static kmem_zone_t *xfs_buf_zone;
50 #ifdef XFS_BUF_LOCK_TRACKING
51 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
52 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
53 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54 #else
55 # define XB_SET_OWNER(bp) do { } while (0)
56 # define XB_CLEAR_OWNER(bp) do { } while (0)
57 # define XB_GET_OWNER(bp) do { } while (0)
58 #endif
60 #define xb_to_gfp(flags) \
61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
64 static inline int
65 xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
69 * Return true if the buffer is vmapped.
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
75 return bp->b_addr && bp->b_page_count > 1;
78 static inline int
79 xfs_buf_vmap_len(
80 struct xfs_buf *bp)
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * in-flight buffers.
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
98 static inline void
99 xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
111 spin_unlock(&bp->b_lock);
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
118 static inline void
119 __xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
122 lockdep_assert_held(&bp->b_lock);
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
130 static inline void
131 xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
145 * This prevents build-up of stale buffers on the LRU.
147 void
148 xfs_buf_stale(
149 struct xfs_buf *bp)
151 ASSERT(xfs_buf_islocked(bp));
153 bp->b_flags |= XBF_STALE;
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
160 bp->b_flags &= ~_XBF_DELWRI_Q;
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
180 static int
181 xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
201 * Frees b_pages if it was allocated.
203 static void
204 xfs_buf_free_maps(
205 struct xfs_buf *bp)
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
213 struct xfs_buf *
214 _xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags)
220 struct xfs_buf *bp;
221 int error;
222 int i;
224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 if (unlikely(!bp))
226 return NULL;
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_li_list);
240 sema_init(&bp->b_sema, 0); /* held, no waiters */
241 spin_lock_init(&bp->b_lock);
242 XB_SET_OWNER(bp);
243 bp->b_target = target;
244 bp->b_flags = flags;
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
253 kmem_zone_free(xfs_buf_zone, bp);
254 return NULL;
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
264 bp->b_io_length = bp->b_length;
266 atomic_set(&bp->b_pin_count, 0);
267 init_waitqueue_head(&bp->b_waiters);
269 XFS_STATS_INC(target->bt_mount, xb_create);
270 trace_xfs_buf_init(bp, _RET_IP_);
272 return bp;
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
279 STATIC int
280 _xfs_buf_get_pages(
281 xfs_buf_t *bp,
282 int page_count)
284 /* Make sure that we have a page list */
285 if (bp->b_pages == NULL) {
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
289 } else {
290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 page_count, KM_NOFS);
292 if (bp->b_pages == NULL)
293 return -ENOMEM;
295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
297 return 0;
301 * Frees b_pages if it was allocated.
303 STATIC void
304 _xfs_buf_free_pages(
305 xfs_buf_t *bp)
307 if (bp->b_pages != bp->b_page_array) {
308 kmem_free(bp->b_pages);
309 bp->b_pages = NULL;
314 * Releases the specified buffer.
316 * The modification state of any associated pages is left unchanged.
317 * The buffer must not be on any hash - use xfs_buf_rele instead for
318 * hashed and refcounted buffers
320 void
321 xfs_buf_free(
322 xfs_buf_t *bp)
324 trace_xfs_buf_free(bp, _RET_IP_);
326 ASSERT(list_empty(&bp->b_lru));
328 if (bp->b_flags & _XBF_PAGES) {
329 uint i;
331 if (xfs_buf_is_vmapped(bp))
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
338 __free_page(page);
340 } else if (bp->b_flags & _XBF_KMEM)
341 kmem_free(bp->b_addr);
342 _xfs_buf_free_pages(bp);
343 xfs_buf_free_maps(bp);
344 kmem_zone_free(xfs_buf_zone, bp);
348 * Allocates all the pages for buffer in question and builds it's page list.
350 STATIC int
351 xfs_buf_allocate_memory(
352 xfs_buf_t *bp,
353 uint flags)
355 size_t size;
356 size_t nbytes, offset;
357 gfp_t gfp_mask = xb_to_gfp(flags);
358 unsigned short page_count, i;
359 xfs_off_t start, end;
360 int error;
363 * for buffers that are contained within a single page, just allocate
364 * the memory from the heap - there's no need for the complexity of
365 * page arrays to keep allocation down to order 0.
367 size = BBTOB(bp->b_length);
368 if (size < PAGE_SIZE) {
369 bp->b_addr = kmem_alloc(size, KM_NOFS);
370 if (!bp->b_addr) {
371 /* low memory - use alloc_page loop instead */
372 goto use_alloc_page;
375 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 /* b_addr spans two pages - use alloc_page instead */
378 kmem_free(bp->b_addr);
379 bp->b_addr = NULL;
380 goto use_alloc_page;
382 bp->b_offset = offset_in_page(bp->b_addr);
383 bp->b_pages = bp->b_page_array;
384 bp->b_pages[0] = virt_to_page(bp->b_addr);
385 bp->b_page_count = 1;
386 bp->b_flags |= _XBF_KMEM;
387 return 0;
390 use_alloc_page:
391 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 >> PAGE_SHIFT;
394 page_count = end - start;
395 error = _xfs_buf_get_pages(bp, page_count);
396 if (unlikely(error))
397 return error;
399 offset = bp->b_offset;
400 bp->b_flags |= _XBF_PAGES;
402 for (i = 0; i < bp->b_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405 retry:
406 page = alloc_page(gfp_mask);
407 if (unlikely(page == NULL)) {
408 if (flags & XBF_READ_AHEAD) {
409 bp->b_page_count = i;
410 error = -ENOMEM;
411 goto out_free_pages;
415 * This could deadlock.
417 * But until all the XFS lowlevel code is revamped to
418 * handle buffer allocation failures we can't do much.
420 if (!(++retries % 100))
421 xfs_err(NULL,
422 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 current->comm, current->pid,
424 __func__, gfp_mask);
426 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 congestion_wait(BLK_RW_ASYNC, HZ/50);
428 goto retry;
431 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
433 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 size -= nbytes;
435 bp->b_pages[i] = page;
436 offset = 0;
438 return 0;
440 out_free_pages:
441 for (i = 0; i < bp->b_page_count; i++)
442 __free_page(bp->b_pages[i]);
443 bp->b_flags &= ~_XBF_PAGES;
444 return error;
448 * Map buffer into kernel address-space if necessary.
450 STATIC int
451 _xfs_buf_map_pages(
452 xfs_buf_t *bp,
453 uint flags)
455 ASSERT(bp->b_flags & _XBF_PAGES);
456 if (bp->b_page_count == 1) {
457 /* A single page buffer is always mappable */
458 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 } else if (flags & XBF_UNMAPPED) {
460 bp->b_addr = NULL;
461 } else {
462 int retried = 0;
463 unsigned nofs_flag;
466 * vm_map_ram() will allocate auxillary structures (e.g.
467 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 * memory reclaim re-entering the filesystem here and
471 * potentially deadlocking.
473 nofs_flag = memalloc_nofs_save();
474 do {
475 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 -1, PAGE_KERNEL);
477 if (bp->b_addr)
478 break;
479 vm_unmap_aliases();
480 } while (retried++ <= 1);
481 memalloc_nofs_restore(nofs_flag);
483 if (!bp->b_addr)
484 return -ENOMEM;
485 bp->b_addr += bp->b_offset;
488 return 0;
492 * Finding and Reading Buffers
494 static int
495 _xfs_buf_obj_cmp(
496 struct rhashtable_compare_arg *arg,
497 const void *obj)
499 const struct xfs_buf_map *map = arg->key;
500 const struct xfs_buf *bp = obj;
503 * The key hashing in the lookup path depends on the key being the
504 * first element of the compare_arg, make sure to assert this.
506 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
508 if (bp->b_bn != map->bm_bn)
509 return 1;
511 if (unlikely(bp->b_length != map->bm_len)) {
513 * found a block number match. If the range doesn't
514 * match, the only way this is allowed is if the buffer
515 * in the cache is stale and the transaction that made
516 * it stale has not yet committed. i.e. we are
517 * reallocating a busy extent. Skip this buffer and
518 * continue searching for an exact match.
520 ASSERT(bp->b_flags & XBF_STALE);
521 return 1;
523 return 0;
526 static const struct rhashtable_params xfs_buf_hash_params = {
527 .min_size = 32, /* empty AGs have minimal footprint */
528 .nelem_hint = 16,
529 .key_len = sizeof(xfs_daddr_t),
530 .key_offset = offsetof(struct xfs_buf, b_bn),
531 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
532 .automatic_shrinking = true,
533 .obj_cmpfn = _xfs_buf_obj_cmp,
537 xfs_buf_hash_init(
538 struct xfs_perag *pag)
540 spin_lock_init(&pag->pag_buf_lock);
541 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 void
545 xfs_buf_hash_destroy(
546 struct xfs_perag *pag)
548 rhashtable_destroy(&pag->pag_buf_hash);
552 * Look up, and creates if absent, a lockable buffer for
553 * a given range of an inode. The buffer is returned
554 * locked. No I/O is implied by this call.
556 xfs_buf_t *
557 _xfs_buf_find(
558 struct xfs_buftarg *btp,
559 struct xfs_buf_map *map,
560 int nmaps,
561 xfs_buf_flags_t flags,
562 xfs_buf_t *new_bp)
564 struct xfs_perag *pag;
565 xfs_buf_t *bp;
566 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
567 xfs_daddr_t eofs;
568 int i;
570 for (i = 0; i < nmaps; i++)
571 cmap.bm_len += map[i].bm_len;
573 /* Check for IOs smaller than the sector size / not sector aligned */
574 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
575 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
578 * Corrupted block numbers can get through to here, unfortunately, so we
579 * have to check that the buffer falls within the filesystem bounds.
581 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
582 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
584 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
585 * but none of the higher level infrastructure supports
586 * returning a specific error on buffer lookup failures.
588 xfs_alert(btp->bt_mount,
589 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
590 __func__, cmap.bm_bn, eofs);
591 WARN_ON(1);
592 return NULL;
595 pag = xfs_perag_get(btp->bt_mount,
596 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
598 spin_lock(&pag->pag_buf_lock);
599 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
600 xfs_buf_hash_params);
601 if (bp) {
602 atomic_inc(&bp->b_hold);
603 goto found;
606 /* No match found */
607 if (new_bp) {
608 /* the buffer keeps the perag reference until it is freed */
609 new_bp->b_pag = pag;
610 rhashtable_insert_fast(&pag->pag_buf_hash,
611 &new_bp->b_rhash_head,
612 xfs_buf_hash_params);
613 spin_unlock(&pag->pag_buf_lock);
614 } else {
615 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
616 spin_unlock(&pag->pag_buf_lock);
617 xfs_perag_put(pag);
619 return new_bp;
621 found:
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
625 if (!xfs_buf_trylock(bp)) {
626 if (flags & XBF_TRYLOCK) {
627 xfs_buf_rele(bp);
628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 return NULL;
631 xfs_buf_lock(bp);
632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
636 * if the buffer is stale, clear all the external state associated with
637 * it. We need to keep flags such as how we allocated the buffer memory
638 * intact here.
640 if (bp->b_flags & XBF_STALE) {
641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 ASSERT(bp->b_iodone == NULL);
643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 bp->b_ops = NULL;
647 trace_xfs_buf_find(bp, flags, _RET_IP_);
648 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 return bp;
653 * Assembles a buffer covering the specified range. The code is optimised for
654 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
655 * more hits than misses.
657 struct xfs_buf *
658 xfs_buf_get_map(
659 struct xfs_buftarg *target,
660 struct xfs_buf_map *map,
661 int nmaps,
662 xfs_buf_flags_t flags)
664 struct xfs_buf *bp;
665 struct xfs_buf *new_bp;
666 int error = 0;
668 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 if (likely(bp))
670 goto found;
672 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
673 if (unlikely(!new_bp))
674 return NULL;
676 error = xfs_buf_allocate_memory(new_bp, flags);
677 if (error) {
678 xfs_buf_free(new_bp);
679 return NULL;
682 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
683 if (!bp) {
684 xfs_buf_free(new_bp);
685 return NULL;
688 if (bp != new_bp)
689 xfs_buf_free(new_bp);
691 found:
692 if (!bp->b_addr) {
693 error = _xfs_buf_map_pages(bp, flags);
694 if (unlikely(error)) {
695 xfs_warn(target->bt_mount,
696 "%s: failed to map pagesn", __func__);
697 xfs_buf_relse(bp);
698 return NULL;
703 * Clear b_error if this is a lookup from a caller that doesn't expect
704 * valid data to be found in the buffer.
706 if (!(flags & XBF_READ))
707 xfs_buf_ioerror(bp, 0);
709 XFS_STATS_INC(target->bt_mount, xb_get);
710 trace_xfs_buf_get(bp, flags, _RET_IP_);
711 return bp;
714 STATIC int
715 _xfs_buf_read(
716 xfs_buf_t *bp,
717 xfs_buf_flags_t flags)
719 ASSERT(!(flags & XBF_WRITE));
720 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
722 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
723 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
725 if (flags & XBF_ASYNC) {
726 xfs_buf_submit(bp);
727 return 0;
729 return xfs_buf_submit_wait(bp);
732 xfs_buf_t *
733 xfs_buf_read_map(
734 struct xfs_buftarg *target,
735 struct xfs_buf_map *map,
736 int nmaps,
737 xfs_buf_flags_t flags,
738 const struct xfs_buf_ops *ops)
740 struct xfs_buf *bp;
742 flags |= XBF_READ;
744 bp = xfs_buf_get_map(target, map, nmaps, flags);
745 if (bp) {
746 trace_xfs_buf_read(bp, flags, _RET_IP_);
748 if (!(bp->b_flags & XBF_DONE)) {
749 XFS_STATS_INC(target->bt_mount, xb_get_read);
750 bp->b_ops = ops;
751 _xfs_buf_read(bp, flags);
752 } else if (flags & XBF_ASYNC) {
754 * Read ahead call which is already satisfied,
755 * drop the buffer
757 xfs_buf_relse(bp);
758 return NULL;
759 } else {
760 /* We do not want read in the flags */
761 bp->b_flags &= ~XBF_READ;
765 return bp;
769 * If we are not low on memory then do the readahead in a deadlock
770 * safe manner.
772 void
773 xfs_buf_readahead_map(
774 struct xfs_buftarg *target,
775 struct xfs_buf_map *map,
776 int nmaps,
777 const struct xfs_buf_ops *ops)
779 if (bdi_read_congested(target->bt_bdev->bd_bdi))
780 return;
782 xfs_buf_read_map(target, map, nmaps,
783 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
787 * Read an uncached buffer from disk. Allocates and returns a locked
788 * buffer containing the disk contents or nothing.
791 xfs_buf_read_uncached(
792 struct xfs_buftarg *target,
793 xfs_daddr_t daddr,
794 size_t numblks,
795 int flags,
796 struct xfs_buf **bpp,
797 const struct xfs_buf_ops *ops)
799 struct xfs_buf *bp;
801 *bpp = NULL;
803 bp = xfs_buf_get_uncached(target, numblks, flags);
804 if (!bp)
805 return -ENOMEM;
807 /* set up the buffer for a read IO */
808 ASSERT(bp->b_map_count == 1);
809 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
810 bp->b_maps[0].bm_bn = daddr;
811 bp->b_flags |= XBF_READ;
812 bp->b_ops = ops;
814 xfs_buf_submit_wait(bp);
815 if (bp->b_error) {
816 int error = bp->b_error;
817 xfs_buf_relse(bp);
818 return error;
821 *bpp = bp;
822 return 0;
826 * Return a buffer allocated as an empty buffer and associated to external
827 * memory via xfs_buf_associate_memory() back to it's empty state.
829 void
830 xfs_buf_set_empty(
831 struct xfs_buf *bp,
832 size_t numblks)
834 if (bp->b_pages)
835 _xfs_buf_free_pages(bp);
837 bp->b_pages = NULL;
838 bp->b_page_count = 0;
839 bp->b_addr = NULL;
840 bp->b_length = numblks;
841 bp->b_io_length = numblks;
843 ASSERT(bp->b_map_count == 1);
844 bp->b_bn = XFS_BUF_DADDR_NULL;
845 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
846 bp->b_maps[0].bm_len = bp->b_length;
849 static inline struct page *
850 mem_to_page(
851 void *addr)
853 if ((!is_vmalloc_addr(addr))) {
854 return virt_to_page(addr);
855 } else {
856 return vmalloc_to_page(addr);
861 xfs_buf_associate_memory(
862 xfs_buf_t *bp,
863 void *mem,
864 size_t len)
866 int rval;
867 int i = 0;
868 unsigned long pageaddr;
869 unsigned long offset;
870 size_t buflen;
871 int page_count;
873 pageaddr = (unsigned long)mem & PAGE_MASK;
874 offset = (unsigned long)mem - pageaddr;
875 buflen = PAGE_ALIGN(len + offset);
876 page_count = buflen >> PAGE_SHIFT;
878 /* Free any previous set of page pointers */
879 if (bp->b_pages)
880 _xfs_buf_free_pages(bp);
882 bp->b_pages = NULL;
883 bp->b_addr = mem;
885 rval = _xfs_buf_get_pages(bp, page_count);
886 if (rval)
887 return rval;
889 bp->b_offset = offset;
891 for (i = 0; i < bp->b_page_count; i++) {
892 bp->b_pages[i] = mem_to_page((void *)pageaddr);
893 pageaddr += PAGE_SIZE;
896 bp->b_io_length = BTOBB(len);
897 bp->b_length = BTOBB(buflen);
899 return 0;
902 xfs_buf_t *
903 xfs_buf_get_uncached(
904 struct xfs_buftarg *target,
905 size_t numblks,
906 int flags)
908 unsigned long page_count;
909 int error, i;
910 struct xfs_buf *bp;
911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
913 /* flags might contain irrelevant bits, pass only what we care about */
914 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
915 if (unlikely(bp == NULL))
916 goto fail;
918 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
919 error = _xfs_buf_get_pages(bp, page_count);
920 if (error)
921 goto fail_free_buf;
923 for (i = 0; i < page_count; i++) {
924 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 if (!bp->b_pages[i])
926 goto fail_free_mem;
928 bp->b_flags |= _XBF_PAGES;
930 error = _xfs_buf_map_pages(bp, 0);
931 if (unlikely(error)) {
932 xfs_warn(target->bt_mount,
933 "%s: failed to map pages", __func__);
934 goto fail_free_mem;
937 trace_xfs_buf_get_uncached(bp, _RET_IP_);
938 return bp;
940 fail_free_mem:
941 while (--i >= 0)
942 __free_page(bp->b_pages[i]);
943 _xfs_buf_free_pages(bp);
944 fail_free_buf:
945 xfs_buf_free_maps(bp);
946 kmem_zone_free(xfs_buf_zone, bp);
947 fail:
948 return NULL;
952 * Increment reference count on buffer, to hold the buffer concurrently
953 * with another thread which may release (free) the buffer asynchronously.
954 * Must hold the buffer already to call this function.
956 void
957 xfs_buf_hold(
958 xfs_buf_t *bp)
960 trace_xfs_buf_hold(bp, _RET_IP_);
961 atomic_inc(&bp->b_hold);
965 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
966 * placed on LRU or freed (depending on b_lru_ref).
968 void
969 xfs_buf_rele(
970 xfs_buf_t *bp)
972 struct xfs_perag *pag = bp->b_pag;
973 bool release;
974 bool freebuf = false;
976 trace_xfs_buf_rele(bp, _RET_IP_);
978 if (!pag) {
979 ASSERT(list_empty(&bp->b_lru));
980 if (atomic_dec_and_test(&bp->b_hold)) {
981 xfs_buf_ioacct_dec(bp);
982 xfs_buf_free(bp);
984 return;
987 ASSERT(atomic_read(&bp->b_hold) > 0);
989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 spin_lock(&bp->b_lock);
991 if (!release) {
993 * Drop the in-flight state if the buffer is already on the LRU
994 * and it holds the only reference. This is racy because we
995 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
996 * ensures the decrement occurs only once per-buf.
998 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
999 __xfs_buf_ioacct_dec(bp);
1000 goto out_unlock;
1003 /* the last reference has been dropped ... */
1004 __xfs_buf_ioacct_dec(bp);
1005 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1007 * If the buffer is added to the LRU take a new reference to the
1008 * buffer for the LRU and clear the (now stale) dispose list
1009 * state flag
1011 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1012 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1013 atomic_inc(&bp->b_hold);
1015 spin_unlock(&pag->pag_buf_lock);
1016 } else {
1018 * most of the time buffers will already be removed from the
1019 * LRU, so optimise that case by checking for the
1020 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1021 * was on was the disposal list
1023 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1024 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1025 } else {
1026 ASSERT(list_empty(&bp->b_lru));
1029 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1030 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1031 xfs_buf_hash_params);
1032 spin_unlock(&pag->pag_buf_lock);
1033 xfs_perag_put(pag);
1034 freebuf = true;
1037 out_unlock:
1038 spin_unlock(&bp->b_lock);
1040 if (freebuf)
1041 xfs_buf_free(bp);
1046 * Lock a buffer object, if it is not already locked.
1048 * If we come across a stale, pinned, locked buffer, we know that we are
1049 * being asked to lock a buffer that has been reallocated. Because it is
1050 * pinned, we know that the log has not been pushed to disk and hence it
1051 * will still be locked. Rather than continuing to have trylock attempts
1052 * fail until someone else pushes the log, push it ourselves before
1053 * returning. This means that the xfsaild will not get stuck trying
1054 * to push on stale inode buffers.
1057 xfs_buf_trylock(
1058 struct xfs_buf *bp)
1060 int locked;
1062 locked = down_trylock(&bp->b_sema) == 0;
1063 if (locked) {
1064 XB_SET_OWNER(bp);
1065 trace_xfs_buf_trylock(bp, _RET_IP_);
1066 } else {
1067 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1069 return locked;
1073 * Lock a buffer object.
1075 * If we come across a stale, pinned, locked buffer, we know that we
1076 * are being asked to lock a buffer that has been reallocated. Because
1077 * it is pinned, we know that the log has not been pushed to disk and
1078 * hence it will still be locked. Rather than sleeping until someone
1079 * else pushes the log, push it ourselves before trying to get the lock.
1081 void
1082 xfs_buf_lock(
1083 struct xfs_buf *bp)
1085 trace_xfs_buf_lock(bp, _RET_IP_);
1087 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1088 xfs_log_force(bp->b_target->bt_mount, 0);
1089 down(&bp->b_sema);
1090 XB_SET_OWNER(bp);
1092 trace_xfs_buf_lock_done(bp, _RET_IP_);
1095 void
1096 xfs_buf_unlock(
1097 struct xfs_buf *bp)
1099 ASSERT(xfs_buf_islocked(bp));
1101 XB_CLEAR_OWNER(bp);
1102 up(&bp->b_sema);
1104 trace_xfs_buf_unlock(bp, _RET_IP_);
1107 STATIC void
1108 xfs_buf_wait_unpin(
1109 xfs_buf_t *bp)
1111 DECLARE_WAITQUEUE (wait, current);
1113 if (atomic_read(&bp->b_pin_count) == 0)
1114 return;
1116 add_wait_queue(&bp->b_waiters, &wait);
1117 for (;;) {
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 if (atomic_read(&bp->b_pin_count) == 0)
1120 break;
1121 io_schedule();
1123 remove_wait_queue(&bp->b_waiters, &wait);
1124 set_current_state(TASK_RUNNING);
1128 * Buffer Utility Routines
1131 void
1132 xfs_buf_ioend(
1133 struct xfs_buf *bp)
1135 bool read = bp->b_flags & XBF_READ;
1137 trace_xfs_buf_iodone(bp, _RET_IP_);
1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1142 * Pull in IO completion errors now. We are guaranteed to be running
1143 * single threaded, so we don't need the lock to read b_io_error.
1145 if (!bp->b_error && bp->b_io_error)
1146 xfs_buf_ioerror(bp, bp->b_io_error);
1148 /* Only validate buffers that were read without errors */
1149 if (read && !bp->b_error && bp->b_ops) {
1150 ASSERT(!bp->b_iodone);
1151 bp->b_ops->verify_read(bp);
1154 if (!bp->b_error)
1155 bp->b_flags |= XBF_DONE;
1157 if (bp->b_iodone)
1158 (*(bp->b_iodone))(bp);
1159 else if (bp->b_flags & XBF_ASYNC)
1160 xfs_buf_relse(bp);
1161 else
1162 complete(&bp->b_iowait);
1165 static void
1166 xfs_buf_ioend_work(
1167 struct work_struct *work)
1169 struct xfs_buf *bp =
1170 container_of(work, xfs_buf_t, b_ioend_work);
1172 xfs_buf_ioend(bp);
1175 static void
1176 xfs_buf_ioend_async(
1177 struct xfs_buf *bp)
1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1183 void
1184 __xfs_buf_ioerror(
1185 xfs_buf_t *bp,
1186 int error,
1187 xfs_failaddr_t failaddr)
1189 ASSERT(error <= 0 && error >= -1000);
1190 bp->b_error = error;
1191 trace_xfs_buf_ioerror(bp, error, failaddr);
1194 void
1195 xfs_buf_ioerror_alert(
1196 struct xfs_buf *bp,
1197 const char *func)
1199 xfs_alert(bp->b_target->bt_mount,
1200 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 -bp->b_error);
1206 xfs_bwrite(
1207 struct xfs_buf *bp)
1209 int error;
1211 ASSERT(xfs_buf_islocked(bp));
1213 bp->b_flags |= XBF_WRITE;
1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 XBF_WRITE_FAIL | XBF_DONE);
1217 error = xfs_buf_submit_wait(bp);
1218 if (error) {
1219 xfs_force_shutdown(bp->b_target->bt_mount,
1220 SHUTDOWN_META_IO_ERROR);
1222 return error;
1225 static void
1226 xfs_buf_bio_end_io(
1227 struct bio *bio)
1229 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1232 * don't overwrite existing errors - otherwise we can lose errors on
1233 * buffers that require multiple bios to complete.
1235 if (bio->bi_status) {
1236 int error = blk_status_to_errno(bio->bi_status);
1238 cmpxchg(&bp->b_io_error, 0, error);
1241 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1242 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1244 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1245 xfs_buf_ioend_async(bp);
1246 bio_put(bio);
1249 static void
1250 xfs_buf_ioapply_map(
1251 struct xfs_buf *bp,
1252 int map,
1253 int *buf_offset,
1254 int *count,
1255 int op,
1256 int op_flags)
1258 int page_index;
1259 int total_nr_pages = bp->b_page_count;
1260 int nr_pages;
1261 struct bio *bio;
1262 sector_t sector = bp->b_maps[map].bm_bn;
1263 int size;
1264 int offset;
1266 /* skip the pages in the buffer before the start offset */
1267 page_index = 0;
1268 offset = *buf_offset;
1269 while (offset >= PAGE_SIZE) {
1270 page_index++;
1271 offset -= PAGE_SIZE;
1275 * Limit the IO size to the length of the current vector, and update the
1276 * remaining IO count for the next time around.
1278 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1279 *count -= size;
1280 *buf_offset += size;
1282 next_chunk:
1283 atomic_inc(&bp->b_io_remaining);
1284 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
1287 bio_set_dev(bio, bp->b_target->bt_bdev);
1288 bio->bi_iter.bi_sector = sector;
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1291 bio_set_op_attrs(bio, op, op_flags);
1293 for (; size && nr_pages; nr_pages--, page_index++) {
1294 int rbytes, nbytes = PAGE_SIZE - offset;
1296 if (nbytes > size)
1297 nbytes = size;
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
1301 if (rbytes < nbytes)
1302 break;
1304 offset = 0;
1305 sector += BTOBB(nbytes);
1306 size -= nbytes;
1307 total_nr_pages--;
1310 if (likely(bio->bi_iter.bi_size)) {
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1315 submit_bio(bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_submit) holds a count itself.
1323 atomic_dec(&bp->b_io_remaining);
1324 xfs_buf_ioerror(bp, -EIO);
1325 bio_put(bio);
1330 STATIC void
1331 _xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1334 struct blk_plug plug;
1335 int op;
1336 int op_flags = 0;
1337 int offset;
1338 int size;
1339 int i;
1342 * Make sure we capture only current IO errors rather than stale errors
1343 * left over from previous use of the buffer (e.g. failed readahead).
1345 bp->b_error = 0;
1348 * Initialize the I/O completion workqueue if we haven't yet or the
1349 * submitter has not opted to specify a custom one.
1351 if (!bp->b_ioend_wq)
1352 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1354 if (bp->b_flags & XBF_WRITE) {
1355 op = REQ_OP_WRITE;
1356 if (bp->b_flags & XBF_SYNCIO)
1357 op_flags = REQ_SYNC;
1358 if (bp->b_flags & XBF_FUA)
1359 op_flags |= REQ_FUA;
1360 if (bp->b_flags & XBF_FLUSH)
1361 op_flags |= REQ_PREFLUSH;
1364 * Run the write verifier callback function if it exists. If
1365 * this function fails it will mark the buffer with an error and
1366 * the IO should not be dispatched.
1368 if (bp->b_ops) {
1369 bp->b_ops->verify_write(bp);
1370 if (bp->b_error) {
1371 xfs_force_shutdown(bp->b_target->bt_mount,
1372 SHUTDOWN_CORRUPT_INCORE);
1373 return;
1375 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1376 struct xfs_mount *mp = bp->b_target->bt_mount;
1379 * non-crc filesystems don't attach verifiers during
1380 * log recovery, so don't warn for such filesystems.
1382 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1383 xfs_warn(mp,
1384 "%s: no buf ops on daddr 0x%llx len %d",
1385 __func__, bp->b_bn, bp->b_length);
1386 xfs_hex_dump(bp->b_addr,
1387 XFS_CORRUPTION_DUMP_LEN);
1388 dump_stack();
1391 } else if (bp->b_flags & XBF_READ_AHEAD) {
1392 op = REQ_OP_READ;
1393 op_flags = REQ_RAHEAD;
1394 } else {
1395 op = REQ_OP_READ;
1398 /* we only use the buffer cache for meta-data */
1399 op_flags |= REQ_META;
1402 * Walk all the vectors issuing IO on them. Set up the initial offset
1403 * into the buffer and the desired IO size before we start -
1404 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 * subsequent call.
1407 offset = bp->b_offset;
1408 size = BBTOB(bp->b_io_length);
1409 blk_start_plug(&plug);
1410 for (i = 0; i < bp->b_map_count; i++) {
1411 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1412 if (bp->b_error)
1413 break;
1414 if (size <= 0)
1415 break; /* all done */
1417 blk_finish_plug(&plug);
1421 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1422 * the current reference to the IO. It is not safe to reference the buffer after
1423 * a call to this function unless the caller holds an additional reference
1424 * itself.
1426 void
1427 xfs_buf_submit(
1428 struct xfs_buf *bp)
1430 trace_xfs_buf_submit(bp, _RET_IP_);
1432 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1433 ASSERT(bp->b_flags & XBF_ASYNC);
1435 /* on shutdown we stale and complete the buffer immediately */
1436 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1437 xfs_buf_ioerror(bp, -EIO);
1438 bp->b_flags &= ~XBF_DONE;
1439 xfs_buf_stale(bp);
1440 xfs_buf_ioend(bp);
1441 return;
1444 if (bp->b_flags & XBF_WRITE)
1445 xfs_buf_wait_unpin(bp);
1447 /* clear the internal error state to avoid spurious errors */
1448 bp->b_io_error = 0;
1451 * The caller's reference is released during I/O completion.
1452 * This occurs some time after the last b_io_remaining reference is
1453 * released, so after we drop our Io reference we have to have some
1454 * other reference to ensure the buffer doesn't go away from underneath
1455 * us. Take a direct reference to ensure we have safe access to the
1456 * buffer until we are finished with it.
1458 xfs_buf_hold(bp);
1461 * Set the count to 1 initially, this will stop an I/O completion
1462 * callout which happens before we have started all the I/O from calling
1463 * xfs_buf_ioend too early.
1465 atomic_set(&bp->b_io_remaining, 1);
1466 xfs_buf_ioacct_inc(bp);
1467 _xfs_buf_ioapply(bp);
1470 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1471 * reference we took above. If we drop it to zero, run completion so
1472 * that we don't return to the caller with completion still pending.
1474 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1475 if (bp->b_error)
1476 xfs_buf_ioend(bp);
1477 else
1478 xfs_buf_ioend_async(bp);
1481 xfs_buf_rele(bp);
1482 /* Note: it is not safe to reference bp now we've dropped our ref */
1486 * Synchronous buffer IO submission path, read or write.
1489 xfs_buf_submit_wait(
1490 struct xfs_buf *bp)
1492 int error;
1494 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1496 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1498 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1499 xfs_buf_ioerror(bp, -EIO);
1500 xfs_buf_stale(bp);
1501 bp->b_flags &= ~XBF_DONE;
1502 return -EIO;
1505 if (bp->b_flags & XBF_WRITE)
1506 xfs_buf_wait_unpin(bp);
1508 /* clear the internal error state to avoid spurious errors */
1509 bp->b_io_error = 0;
1512 * For synchronous IO, the IO does not inherit the submitters reference
1513 * count, nor the buffer lock. Hence we cannot release the reference we
1514 * are about to take until we've waited for all IO completion to occur,
1515 * including any xfs_buf_ioend_async() work that may be pending.
1517 xfs_buf_hold(bp);
1520 * Set the count to 1 initially, this will stop an I/O completion
1521 * callout which happens before we have started all the I/O from calling
1522 * xfs_buf_ioend too early.
1524 atomic_set(&bp->b_io_remaining, 1);
1525 _xfs_buf_ioapply(bp);
1528 * make sure we run completion synchronously if it raced with us and is
1529 * already complete.
1531 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1532 xfs_buf_ioend(bp);
1534 /* wait for completion before gathering the error from the buffer */
1535 trace_xfs_buf_iowait(bp, _RET_IP_);
1536 wait_for_completion(&bp->b_iowait);
1537 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1538 error = bp->b_error;
1541 * all done now, we can release the hold that keeps the buffer
1542 * referenced for the entire IO.
1544 xfs_buf_rele(bp);
1545 return error;
1548 void *
1549 xfs_buf_offset(
1550 struct xfs_buf *bp,
1551 size_t offset)
1553 struct page *page;
1555 if (bp->b_addr)
1556 return bp->b_addr + offset;
1558 offset += bp->b_offset;
1559 page = bp->b_pages[offset >> PAGE_SHIFT];
1560 return page_address(page) + (offset & (PAGE_SIZE-1));
1564 * Move data into or out of a buffer.
1566 void
1567 xfs_buf_iomove(
1568 xfs_buf_t *bp, /* buffer to process */
1569 size_t boff, /* starting buffer offset */
1570 size_t bsize, /* length to copy */
1571 void *data, /* data address */
1572 xfs_buf_rw_t mode) /* read/write/zero flag */
1574 size_t bend;
1576 bend = boff + bsize;
1577 while (boff < bend) {
1578 struct page *page;
1579 int page_index, page_offset, csize;
1581 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1582 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1583 page = bp->b_pages[page_index];
1584 csize = min_t(size_t, PAGE_SIZE - page_offset,
1585 BBTOB(bp->b_io_length) - boff);
1587 ASSERT((csize + page_offset) <= PAGE_SIZE);
1589 switch (mode) {
1590 case XBRW_ZERO:
1591 memset(page_address(page) + page_offset, 0, csize);
1592 break;
1593 case XBRW_READ:
1594 memcpy(data, page_address(page) + page_offset, csize);
1595 break;
1596 case XBRW_WRITE:
1597 memcpy(page_address(page) + page_offset, data, csize);
1600 boff += csize;
1601 data += csize;
1606 * Handling of buffer targets (buftargs).
1610 * Wait for any bufs with callbacks that have been submitted but have not yet
1611 * returned. These buffers will have an elevated hold count, so wait on those
1612 * while freeing all the buffers only held by the LRU.
1614 static enum lru_status
1615 xfs_buftarg_wait_rele(
1616 struct list_head *item,
1617 struct list_lru_one *lru,
1618 spinlock_t *lru_lock,
1619 void *arg)
1622 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1623 struct list_head *dispose = arg;
1625 if (atomic_read(&bp->b_hold) > 1) {
1626 /* need to wait, so skip it this pass */
1627 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1628 return LRU_SKIP;
1630 if (!spin_trylock(&bp->b_lock))
1631 return LRU_SKIP;
1634 * clear the LRU reference count so the buffer doesn't get
1635 * ignored in xfs_buf_rele().
1637 atomic_set(&bp->b_lru_ref, 0);
1638 bp->b_state |= XFS_BSTATE_DISPOSE;
1639 list_lru_isolate_move(lru, item, dispose);
1640 spin_unlock(&bp->b_lock);
1641 return LRU_REMOVED;
1644 void
1645 xfs_wait_buftarg(
1646 struct xfs_buftarg *btp)
1648 LIST_HEAD(dispose);
1649 int loop = 0;
1652 * First wait on the buftarg I/O count for all in-flight buffers to be
1653 * released. This is critical as new buffers do not make the LRU until
1654 * they are released.
1656 * Next, flush the buffer workqueue to ensure all completion processing
1657 * has finished. Just waiting on buffer locks is not sufficient for
1658 * async IO as the reference count held over IO is not released until
1659 * after the buffer lock is dropped. Hence we need to ensure here that
1660 * all reference counts have been dropped before we start walking the
1661 * LRU list.
1663 while (percpu_counter_sum(&btp->bt_io_count))
1664 delay(100);
1665 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1667 /* loop until there is nothing left on the lru list. */
1668 while (list_lru_count(&btp->bt_lru)) {
1669 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1670 &dispose, LONG_MAX);
1672 while (!list_empty(&dispose)) {
1673 struct xfs_buf *bp;
1674 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1675 list_del_init(&bp->b_lru);
1676 if (bp->b_flags & XBF_WRITE_FAIL) {
1677 xfs_alert(btp->bt_mount,
1678 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1679 (long long)bp->b_bn);
1680 xfs_alert(btp->bt_mount,
1681 "Please run xfs_repair to determine the extent of the problem.");
1683 xfs_buf_rele(bp);
1685 if (loop++ != 0)
1686 delay(100);
1690 static enum lru_status
1691 xfs_buftarg_isolate(
1692 struct list_head *item,
1693 struct list_lru_one *lru,
1694 spinlock_t *lru_lock,
1695 void *arg)
1697 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1698 struct list_head *dispose = arg;
1701 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1702 * If we fail to get the lock, just skip it.
1704 if (!spin_trylock(&bp->b_lock))
1705 return LRU_SKIP;
1707 * Decrement the b_lru_ref count unless the value is already
1708 * zero. If the value is already zero, we need to reclaim the
1709 * buffer, otherwise it gets another trip through the LRU.
1711 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1712 spin_unlock(&bp->b_lock);
1713 return LRU_ROTATE;
1716 bp->b_state |= XFS_BSTATE_DISPOSE;
1717 list_lru_isolate_move(lru, item, dispose);
1718 spin_unlock(&bp->b_lock);
1719 return LRU_REMOVED;
1722 static unsigned long
1723 xfs_buftarg_shrink_scan(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 LIST_HEAD(dispose);
1730 unsigned long freed;
1732 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1733 xfs_buftarg_isolate, &dispose);
1735 while (!list_empty(&dispose)) {
1736 struct xfs_buf *bp;
1737 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1738 list_del_init(&bp->b_lru);
1739 xfs_buf_rele(bp);
1742 return freed;
1745 static unsigned long
1746 xfs_buftarg_shrink_count(
1747 struct shrinker *shrink,
1748 struct shrink_control *sc)
1750 struct xfs_buftarg *btp = container_of(shrink,
1751 struct xfs_buftarg, bt_shrinker);
1752 return list_lru_shrink_count(&btp->bt_lru, sc);
1755 void
1756 xfs_free_buftarg(
1757 struct xfs_mount *mp,
1758 struct xfs_buftarg *btp)
1760 unregister_shrinker(&btp->bt_shrinker);
1761 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1762 percpu_counter_destroy(&btp->bt_io_count);
1763 list_lru_destroy(&btp->bt_lru);
1765 xfs_blkdev_issue_flush(btp);
1767 kmem_free(btp);
1771 xfs_setsize_buftarg(
1772 xfs_buftarg_t *btp,
1773 unsigned int sectorsize)
1775 /* Set up metadata sector size info */
1776 btp->bt_meta_sectorsize = sectorsize;
1777 btp->bt_meta_sectormask = sectorsize - 1;
1779 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1780 xfs_warn(btp->bt_mount,
1781 "Cannot set_blocksize to %u on device %pg",
1782 sectorsize, btp->bt_bdev);
1783 return -EINVAL;
1786 /* Set up device logical sector size mask */
1787 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1788 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1790 return 0;
1794 * When allocating the initial buffer target we have not yet
1795 * read in the superblock, so don't know what sized sectors
1796 * are being used at this early stage. Play safe.
1798 STATIC int
1799 xfs_setsize_buftarg_early(
1800 xfs_buftarg_t *btp,
1801 struct block_device *bdev)
1803 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1806 xfs_buftarg_t *
1807 xfs_alloc_buftarg(
1808 struct xfs_mount *mp,
1809 struct block_device *bdev,
1810 struct dax_device *dax_dev)
1812 xfs_buftarg_t *btp;
1814 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1816 btp->bt_mount = mp;
1817 btp->bt_dev = bdev->bd_dev;
1818 btp->bt_bdev = bdev;
1819 btp->bt_daxdev = dax_dev;
1821 if (xfs_setsize_buftarg_early(btp, bdev))
1822 goto error_free;
1824 if (list_lru_init(&btp->bt_lru))
1825 goto error_free;
1827 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1828 goto error_lru;
1830 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1831 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1832 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1833 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1834 if (register_shrinker(&btp->bt_shrinker))
1835 goto error_pcpu;
1836 return btp;
1838 error_pcpu:
1839 percpu_counter_destroy(&btp->bt_io_count);
1840 error_lru:
1841 list_lru_destroy(&btp->bt_lru);
1842 error_free:
1843 kmem_free(btp);
1844 return NULL;
1848 * Cancel a delayed write list.
1850 * Remove each buffer from the list, clear the delwri queue flag and drop the
1851 * associated buffer reference.
1853 void
1854 xfs_buf_delwri_cancel(
1855 struct list_head *list)
1857 struct xfs_buf *bp;
1859 while (!list_empty(list)) {
1860 bp = list_first_entry(list, struct xfs_buf, b_list);
1862 xfs_buf_lock(bp);
1863 bp->b_flags &= ~_XBF_DELWRI_Q;
1864 list_del_init(&bp->b_list);
1865 xfs_buf_relse(bp);
1870 * Add a buffer to the delayed write list.
1872 * This queues a buffer for writeout if it hasn't already been. Note that
1873 * neither this routine nor the buffer list submission functions perform
1874 * any internal synchronization. It is expected that the lists are thread-local
1875 * to the callers.
1877 * Returns true if we queued up the buffer, or false if it already had
1878 * been on the buffer list.
1880 bool
1881 xfs_buf_delwri_queue(
1882 struct xfs_buf *bp,
1883 struct list_head *list)
1885 ASSERT(xfs_buf_islocked(bp));
1886 ASSERT(!(bp->b_flags & XBF_READ));
1889 * If the buffer is already marked delwri it already is queued up
1890 * by someone else for imediate writeout. Just ignore it in that
1891 * case.
1893 if (bp->b_flags & _XBF_DELWRI_Q) {
1894 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1895 return false;
1898 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1901 * If a buffer gets written out synchronously or marked stale while it
1902 * is on a delwri list we lazily remove it. To do this, the other party
1903 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1904 * It remains referenced and on the list. In a rare corner case it
1905 * might get readded to a delwri list after the synchronous writeout, in
1906 * which case we need just need to re-add the flag here.
1908 bp->b_flags |= _XBF_DELWRI_Q;
1909 if (list_empty(&bp->b_list)) {
1910 atomic_inc(&bp->b_hold);
1911 list_add_tail(&bp->b_list, list);
1914 return true;
1918 * Compare function is more complex than it needs to be because
1919 * the return value is only 32 bits and we are doing comparisons
1920 * on 64 bit values
1922 static int
1923 xfs_buf_cmp(
1924 void *priv,
1925 struct list_head *a,
1926 struct list_head *b)
1928 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1929 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1930 xfs_daddr_t diff;
1932 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1933 if (diff < 0)
1934 return -1;
1935 if (diff > 0)
1936 return 1;
1937 return 0;
1941 * submit buffers for write.
1943 * When we have a large buffer list, we do not want to hold all the buffers
1944 * locked while we block on the request queue waiting for IO dispatch. To avoid
1945 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1946 * the lock hold times for lists which may contain thousands of objects.
1948 * To do this, we sort the buffer list before we walk the list to lock and
1949 * submit buffers, and we plug and unplug around each group of buffers we
1950 * submit.
1952 static int
1953 xfs_buf_delwri_submit_buffers(
1954 struct list_head *buffer_list,
1955 struct list_head *wait_list)
1957 struct xfs_buf *bp, *n;
1958 LIST_HEAD (submit_list);
1959 int pinned = 0;
1960 struct blk_plug plug;
1962 list_sort(NULL, buffer_list, xfs_buf_cmp);
1964 blk_start_plug(&plug);
1965 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1966 if (!wait_list) {
1967 if (xfs_buf_ispinned(bp)) {
1968 pinned++;
1969 continue;
1971 if (!xfs_buf_trylock(bp))
1972 continue;
1973 } else {
1974 xfs_buf_lock(bp);
1978 * Someone else might have written the buffer synchronously or
1979 * marked it stale in the meantime. In that case only the
1980 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1981 * reference and remove it from the list here.
1983 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1984 list_del_init(&bp->b_list);
1985 xfs_buf_relse(bp);
1986 continue;
1989 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1992 * We do all IO submission async. This means if we need
1993 * to wait for IO completion we need to take an extra
1994 * reference so the buffer is still valid on the other
1995 * side. We need to move the buffer onto the io_list
1996 * at this point so the caller can still access it.
1998 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1999 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
2000 if (wait_list) {
2001 xfs_buf_hold(bp);
2002 list_move_tail(&bp->b_list, wait_list);
2003 } else
2004 list_del_init(&bp->b_list);
2006 xfs_buf_submit(bp);
2008 blk_finish_plug(&plug);
2010 return pinned;
2014 * Write out a buffer list asynchronously.
2016 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2017 * out and not wait for I/O completion on any of the buffers. This interface
2018 * is only safely useable for callers that can track I/O completion by higher
2019 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2020 * function.
2023 xfs_buf_delwri_submit_nowait(
2024 struct list_head *buffer_list)
2026 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2030 * Write out a buffer list synchronously.
2032 * This will take the @buffer_list, write all buffers out and wait for I/O
2033 * completion on all of the buffers. @buffer_list is consumed by the function,
2034 * so callers must have some other way of tracking buffers if they require such
2035 * functionality.
2038 xfs_buf_delwri_submit(
2039 struct list_head *buffer_list)
2041 LIST_HEAD (wait_list);
2042 int error = 0, error2;
2043 struct xfs_buf *bp;
2045 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2047 /* Wait for IO to complete. */
2048 while (!list_empty(&wait_list)) {
2049 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2051 list_del_init(&bp->b_list);
2053 /* locking the buffer will wait for async IO completion. */
2054 xfs_buf_lock(bp);
2055 error2 = bp->b_error;
2056 xfs_buf_relse(bp);
2057 if (!error)
2058 error = error2;
2061 return error;
2065 * Push a single buffer on a delwri queue.
2067 * The purpose of this function is to submit a single buffer of a delwri queue
2068 * and return with the buffer still on the original queue. The waiting delwri
2069 * buffer submission infrastructure guarantees transfer of the delwri queue
2070 * buffer reference to a temporary wait list. We reuse this infrastructure to
2071 * transfer the buffer back to the original queue.
2073 * Note the buffer transitions from the queued state, to the submitted and wait
2074 * listed state and back to the queued state during this call. The buffer
2075 * locking and queue management logic between _delwri_pushbuf() and
2076 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2077 * before returning.
2080 xfs_buf_delwri_pushbuf(
2081 struct xfs_buf *bp,
2082 struct list_head *buffer_list)
2084 LIST_HEAD (submit_list);
2085 int error;
2087 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2089 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2092 * Isolate the buffer to a new local list so we can submit it for I/O
2093 * independently from the rest of the original list.
2095 xfs_buf_lock(bp);
2096 list_move(&bp->b_list, &submit_list);
2097 xfs_buf_unlock(bp);
2100 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2101 * the buffer on the wait list with an associated reference. Rather than
2102 * bounce the buffer from a local wait list back to the original list
2103 * after I/O completion, reuse the original list as the wait list.
2105 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2108 * The buffer is now under I/O and wait listed as during typical delwri
2109 * submission. Lock the buffer to wait for I/O completion. Rather than
2110 * remove the buffer from the wait list and release the reference, we
2111 * want to return with the buffer queued to the original list. The
2112 * buffer already sits on the original list with a wait list reference,
2113 * however. If we let the queue inherit that wait list reference, all we
2114 * need to do is reset the DELWRI_Q flag.
2116 xfs_buf_lock(bp);
2117 error = bp->b_error;
2118 bp->b_flags |= _XBF_DELWRI_Q;
2119 xfs_buf_unlock(bp);
2121 return error;
2124 int __init
2125 xfs_buf_init(void)
2127 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2128 KM_ZONE_HWALIGN, NULL);
2129 if (!xfs_buf_zone)
2130 goto out;
2132 return 0;
2134 out:
2135 return -ENOMEM;
2138 void
2139 xfs_buf_terminate(void)
2141 kmem_zone_destroy(xfs_buf_zone);
2144 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2147 * Set the lru reference count to 0 based on the error injection tag.
2148 * This allows userspace to disrupt buffer caching for debug/testing
2149 * purposes.
2151 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2152 XFS_ERRTAG_BUF_LRU_REF))
2153 lru_ref = 0;
2155 atomic_set(&bp->b_lru_ref, lru_ref);