Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / xfs / xfs_buf_item.c
blob270ddb4d23131be0ffa19ea8a52a6c42afcd1d59
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_inode.h"
35 kmem_zone_t *xfs_buf_item_zone;
37 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
39 return container_of(lip, struct xfs_buf_log_item, bli_item);
42 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
44 static inline int
45 xfs_buf_log_format_size(
46 struct xfs_buf_log_format *blfp)
48 return offsetof(struct xfs_buf_log_format, blf_data_map) +
49 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
53 * This returns the number of log iovecs needed to log the
54 * given buf log item.
56 * It calculates this as 1 iovec for the buf log format structure
57 * and 1 for each stretch of non-contiguous chunks to be logged.
58 * Contiguous chunks are logged in a single iovec.
60 * If the XFS_BLI_STALE flag has been set, then log nothing.
62 STATIC void
63 xfs_buf_item_size_segment(
64 struct xfs_buf_log_item *bip,
65 struct xfs_buf_log_format *blfp,
66 int *nvecs,
67 int *nbytes)
69 struct xfs_buf *bp = bip->bli_buf;
70 int next_bit;
71 int last_bit;
73 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
74 if (last_bit == -1)
75 return;
78 * initial count for a dirty buffer is 2 vectors - the format structure
79 * and the first dirty region.
81 *nvecs += 2;
82 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
84 while (last_bit != -1) {
86 * This takes the bit number to start looking from and
87 * returns the next set bit from there. It returns -1
88 * if there are no more bits set or the start bit is
89 * beyond the end of the bitmap.
91 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
92 last_bit + 1);
94 * If we run out of bits, leave the loop,
95 * else if we find a new set of bits bump the number of vecs,
96 * else keep scanning the current set of bits.
98 if (next_bit == -1) {
99 break;
100 } else if (next_bit != last_bit + 1) {
101 last_bit = next_bit;
102 (*nvecs)++;
103 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
104 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
105 XFS_BLF_CHUNK)) {
106 last_bit = next_bit;
107 (*nvecs)++;
108 } else {
109 last_bit++;
111 *nbytes += XFS_BLF_CHUNK;
116 * This returns the number of log iovecs needed to log the given buf log item.
118 * It calculates this as 1 iovec for the buf log format structure and 1 for each
119 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
120 * in a single iovec.
122 * Discontiguous buffers need a format structure per region that that is being
123 * logged. This makes the changes in the buffer appear to log recovery as though
124 * they came from separate buffers, just like would occur if multiple buffers
125 * were used instead of a single discontiguous buffer. This enables
126 * discontiguous buffers to be in-memory constructs, completely transparent to
127 * what ends up on disk.
129 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
130 * format structures.
132 STATIC void
133 xfs_buf_item_size(
134 struct xfs_log_item *lip,
135 int *nvecs,
136 int *nbytes)
138 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
139 int i;
141 ASSERT(atomic_read(&bip->bli_refcount) > 0);
142 if (bip->bli_flags & XFS_BLI_STALE) {
144 * The buffer is stale, so all we need to log
145 * is the buf log format structure with the
146 * cancel flag in it.
148 trace_xfs_buf_item_size_stale(bip);
149 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
150 *nvecs += bip->bli_format_count;
151 for (i = 0; i < bip->bli_format_count; i++) {
152 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
154 return;
157 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
159 if (bip->bli_flags & XFS_BLI_ORDERED) {
161 * The buffer has been logged just to order it.
162 * It is not being included in the transaction
163 * commit, so no vectors are used at all.
165 trace_xfs_buf_item_size_ordered(bip);
166 *nvecs = XFS_LOG_VEC_ORDERED;
167 return;
171 * the vector count is based on the number of buffer vectors we have
172 * dirty bits in. This will only be greater than one when we have a
173 * compound buffer with more than one segment dirty. Hence for compound
174 * buffers we need to track which segment the dirty bits correspond to,
175 * and when we move from one segment to the next increment the vector
176 * count for the extra buf log format structure that will need to be
177 * written.
179 for (i = 0; i < bip->bli_format_count; i++) {
180 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
181 nvecs, nbytes);
183 trace_xfs_buf_item_size(bip);
186 static inline void
187 xfs_buf_item_copy_iovec(
188 struct xfs_log_vec *lv,
189 struct xfs_log_iovec **vecp,
190 struct xfs_buf *bp,
191 uint offset,
192 int first_bit,
193 uint nbits)
195 offset += first_bit * XFS_BLF_CHUNK;
196 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
197 xfs_buf_offset(bp, offset),
198 nbits * XFS_BLF_CHUNK);
201 static inline bool
202 xfs_buf_item_straddle(
203 struct xfs_buf *bp,
204 uint offset,
205 int next_bit,
206 int last_bit)
208 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
209 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
210 XFS_BLF_CHUNK);
213 static void
214 xfs_buf_item_format_segment(
215 struct xfs_buf_log_item *bip,
216 struct xfs_log_vec *lv,
217 struct xfs_log_iovec **vecp,
218 uint offset,
219 struct xfs_buf_log_format *blfp)
221 struct xfs_buf *bp = bip->bli_buf;
222 uint base_size;
223 int first_bit;
224 int last_bit;
225 int next_bit;
226 uint nbits;
228 /* copy the flags across from the base format item */
229 blfp->blf_flags = bip->__bli_format.blf_flags;
232 * Base size is the actual size of the ondisk structure - it reflects
233 * the actual size of the dirty bitmap rather than the size of the in
234 * memory structure.
236 base_size = xfs_buf_log_format_size(blfp);
238 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
239 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
241 * If the map is not be dirty in the transaction, mark
242 * the size as zero and do not advance the vector pointer.
244 return;
247 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
248 blfp->blf_size = 1;
250 if (bip->bli_flags & XFS_BLI_STALE) {
252 * The buffer is stale, so all we need to log
253 * is the buf log format structure with the
254 * cancel flag in it.
256 trace_xfs_buf_item_format_stale(bip);
257 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
258 return;
263 * Fill in an iovec for each set of contiguous chunks.
265 last_bit = first_bit;
266 nbits = 1;
267 for (;;) {
269 * This takes the bit number to start looking from and
270 * returns the next set bit from there. It returns -1
271 * if there are no more bits set or the start bit is
272 * beyond the end of the bitmap.
274 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
275 (uint)last_bit + 1);
277 * If we run out of bits fill in the last iovec and get out of
278 * the loop. Else if we start a new set of bits then fill in
279 * the iovec for the series we were looking at and start
280 * counting the bits in the new one. Else we're still in the
281 * same set of bits so just keep counting and scanning.
283 if (next_bit == -1) {
284 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
285 first_bit, nbits);
286 blfp->blf_size++;
287 break;
288 } else if (next_bit != last_bit + 1 ||
289 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
290 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
291 first_bit, nbits);
292 blfp->blf_size++;
293 first_bit = next_bit;
294 last_bit = next_bit;
295 nbits = 1;
296 } else {
297 last_bit++;
298 nbits++;
304 * This is called to fill in the vector of log iovecs for the
305 * given log buf item. It fills the first entry with a buf log
306 * format structure, and the rest point to contiguous chunks
307 * within the buffer.
309 STATIC void
310 xfs_buf_item_format(
311 struct xfs_log_item *lip,
312 struct xfs_log_vec *lv)
314 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
315 struct xfs_buf *bp = bip->bli_buf;
316 struct xfs_log_iovec *vecp = NULL;
317 uint offset = 0;
318 int i;
320 ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 (bip->bli_flags & XFS_BLI_STALE));
323 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
324 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
325 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
326 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
327 (bip->bli_flags & XFS_BLI_STALE));
331 * If it is an inode buffer, transfer the in-memory state to the
332 * format flags and clear the in-memory state.
334 * For buffer based inode allocation, we do not transfer
335 * this state if the inode buffer allocation has not yet been committed
336 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
337 * correct replay of the inode allocation.
339 * For icreate item based inode allocation, the buffers aren't written
340 * to the journal during allocation, and hence we should always tag the
341 * buffer as an inode buffer so that the correct unlinked list replay
342 * occurs during recovery.
344 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
345 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
346 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
347 xfs_log_item_in_current_chkpt(lip)))
348 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
349 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
352 for (i = 0; i < bip->bli_format_count; i++) {
353 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
354 &bip->bli_formats[i]);
355 offset += BBTOB(bp->b_maps[i].bm_len);
359 * Check to make sure everything is consistent.
361 trace_xfs_buf_item_format(bip);
365 * This is called to pin the buffer associated with the buf log item in memory
366 * so it cannot be written out.
368 * We also always take a reference to the buffer log item here so that the bli
369 * is held while the item is pinned in memory. This means that we can
370 * unconditionally drop the reference count a transaction holds when the
371 * transaction is completed.
373 STATIC void
374 xfs_buf_item_pin(
375 struct xfs_log_item *lip)
377 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
379 ASSERT(atomic_read(&bip->bli_refcount) > 0);
380 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
381 (bip->bli_flags & XFS_BLI_ORDERED) ||
382 (bip->bli_flags & XFS_BLI_STALE));
384 trace_xfs_buf_item_pin(bip);
386 atomic_inc(&bip->bli_refcount);
387 atomic_inc(&bip->bli_buf->b_pin_count);
391 * This is called to unpin the buffer associated with the buf log
392 * item which was previously pinned with a call to xfs_buf_item_pin().
394 * Also drop the reference to the buf item for the current transaction.
395 * If the XFS_BLI_STALE flag is set and we are the last reference,
396 * then free up the buf log item and unlock the buffer.
398 * If the remove flag is set we are called from uncommit in the
399 * forced-shutdown path. If that is true and the reference count on
400 * the log item is going to drop to zero we need to free the item's
401 * descriptor in the transaction.
403 STATIC void
404 xfs_buf_item_unpin(
405 struct xfs_log_item *lip,
406 int remove)
408 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
409 xfs_buf_t *bp = bip->bli_buf;
410 struct xfs_ail *ailp = lip->li_ailp;
411 int stale = bip->bli_flags & XFS_BLI_STALE;
412 int freed;
414 ASSERT(bp->b_log_item == bip);
415 ASSERT(atomic_read(&bip->bli_refcount) > 0);
417 trace_xfs_buf_item_unpin(bip);
419 freed = atomic_dec_and_test(&bip->bli_refcount);
421 if (atomic_dec_and_test(&bp->b_pin_count))
422 wake_up_all(&bp->b_waiters);
424 if (freed && stale) {
425 ASSERT(bip->bli_flags & XFS_BLI_STALE);
426 ASSERT(xfs_buf_islocked(bp));
427 ASSERT(bp->b_flags & XBF_STALE);
428 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
430 trace_xfs_buf_item_unpin_stale(bip);
432 if (remove) {
434 * If we are in a transaction context, we have to
435 * remove the log item from the transaction as we are
436 * about to release our reference to the buffer. If we
437 * don't, the unlock that occurs later in
438 * xfs_trans_uncommit() will try to reference the
439 * buffer which we no longer have a hold on.
441 if (lip->li_desc)
442 xfs_trans_del_item(lip);
445 * Since the transaction no longer refers to the buffer,
446 * the buffer should no longer refer to the transaction.
448 bp->b_transp = NULL;
452 * If we get called here because of an IO error, we may
453 * or may not have the item on the AIL. xfs_trans_ail_delete()
454 * will take care of that situation.
455 * xfs_trans_ail_delete() drops the AIL lock.
457 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
458 xfs_buf_do_callbacks(bp);
459 bp->b_log_item = NULL;
460 list_del_init(&bp->b_li_list);
461 bp->b_iodone = NULL;
462 } else {
463 spin_lock(&ailp->xa_lock);
464 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
465 xfs_buf_item_relse(bp);
466 ASSERT(bp->b_log_item == NULL);
468 xfs_buf_relse(bp);
469 } else if (freed && remove) {
471 * There are currently two references to the buffer - the active
472 * LRU reference and the buf log item. What we are about to do
473 * here - simulate a failed IO completion - requires 3
474 * references.
476 * The LRU reference is removed by the xfs_buf_stale() call. The
477 * buf item reference is removed by the xfs_buf_iodone()
478 * callback that is run by xfs_buf_do_callbacks() during ioend
479 * processing (via the bp->b_iodone callback), and then finally
480 * the ioend processing will drop the IO reference if the buffer
481 * is marked XBF_ASYNC.
483 * Hence we need to take an additional reference here so that IO
484 * completion processing doesn't free the buffer prematurely.
486 xfs_buf_lock(bp);
487 xfs_buf_hold(bp);
488 bp->b_flags |= XBF_ASYNC;
489 xfs_buf_ioerror(bp, -EIO);
490 bp->b_flags &= ~XBF_DONE;
491 xfs_buf_stale(bp);
492 xfs_buf_ioend(bp);
497 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
498 * seconds so as to not spam logs too much on repeated detection of the same
499 * buffer being bad..
502 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
504 STATIC uint
505 xfs_buf_item_push(
506 struct xfs_log_item *lip,
507 struct list_head *buffer_list)
509 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
510 struct xfs_buf *bp = bip->bli_buf;
511 uint rval = XFS_ITEM_SUCCESS;
513 if (xfs_buf_ispinned(bp))
514 return XFS_ITEM_PINNED;
515 if (!xfs_buf_trylock(bp)) {
517 * If we have just raced with a buffer being pinned and it has
518 * been marked stale, we could end up stalling until someone else
519 * issues a log force to unpin the stale buffer. Check for the
520 * race condition here so xfsaild recognizes the buffer is pinned
521 * and queues a log force to move it along.
523 if (xfs_buf_ispinned(bp))
524 return XFS_ITEM_PINNED;
525 return XFS_ITEM_LOCKED;
528 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
530 trace_xfs_buf_item_push(bip);
532 /* has a previous flush failed due to IO errors? */
533 if ((bp->b_flags & XBF_WRITE_FAIL) &&
534 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
535 xfs_warn(bp->b_target->bt_mount,
536 "Failing async write on buffer block 0x%llx. Retrying async write.",
537 (long long)bp->b_bn);
540 if (!xfs_buf_delwri_queue(bp, buffer_list))
541 rval = XFS_ITEM_FLUSHING;
542 xfs_buf_unlock(bp);
543 return rval;
547 * Release the buffer associated with the buf log item. If there is no dirty
548 * logged data associated with the buffer recorded in the buf log item, then
549 * free the buf log item and remove the reference to it in the buffer.
551 * This call ignores the recursion count. It is only called when the buffer
552 * should REALLY be unlocked, regardless of the recursion count.
554 * We unconditionally drop the transaction's reference to the log item. If the
555 * item was logged, then another reference was taken when it was pinned, so we
556 * can safely drop the transaction reference now. This also allows us to avoid
557 * potential races with the unpin code freeing the bli by not referencing the
558 * bli after we've dropped the reference count.
560 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
561 * if necessary but do not unlock the buffer. This is for support of
562 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
563 * free the item.
565 STATIC void
566 xfs_buf_item_unlock(
567 struct xfs_log_item *lip)
569 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
570 struct xfs_buf *bp = bip->bli_buf;
571 bool aborted = !!(lip->li_flags & XFS_LI_ABORTED);
572 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD);
573 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
574 #if defined(DEBUG) || defined(XFS_WARN)
575 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
576 #endif
578 /* Clear the buffer's association with this transaction. */
579 bp->b_transp = NULL;
582 * The per-transaction state has been copied above so clear it from the
583 * bli.
585 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
588 * If the buf item is marked stale, then don't do anything. We'll
589 * unlock the buffer and free the buf item when the buffer is unpinned
590 * for the last time.
592 if (bip->bli_flags & XFS_BLI_STALE) {
593 trace_xfs_buf_item_unlock_stale(bip);
594 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
595 if (!aborted) {
596 atomic_dec(&bip->bli_refcount);
597 return;
601 trace_xfs_buf_item_unlock(bip);
604 * If the buf item isn't tracking any data, free it, otherwise drop the
605 * reference we hold to it. If we are aborting the transaction, this may
606 * be the only reference to the buf item, so we free it anyway
607 * regardless of whether it is dirty or not. A dirty abort implies a
608 * shutdown, anyway.
610 * The bli dirty state should match whether the blf has logged segments
611 * except for ordered buffers, where only the bli should be dirty.
613 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
614 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
617 * Clean buffers, by definition, cannot be in the AIL. However, aborted
618 * buffers may be in the AIL regardless of dirty state. An aborted
619 * transaction that invalidates a buffer already in the AIL may have
620 * marked it stale and cleared the dirty state, for example.
622 * Therefore if we are aborting a buffer and we've just taken the last
623 * reference away, we have to check if it is in the AIL before freeing
624 * it. We need to free it in this case, because an aborted transaction
625 * has already shut the filesystem down and this is the last chance we
626 * will have to do so.
628 if (atomic_dec_and_test(&bip->bli_refcount)) {
629 if (aborted) {
630 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
631 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
632 xfs_buf_item_relse(bp);
633 } else if (!dirty)
634 xfs_buf_item_relse(bp);
637 if (!hold)
638 xfs_buf_relse(bp);
642 * This is called to find out where the oldest active copy of the
643 * buf log item in the on disk log resides now that the last log
644 * write of it completed at the given lsn.
645 * We always re-log all the dirty data in a buffer, so usually the
646 * latest copy in the on disk log is the only one that matters. For
647 * those cases we simply return the given lsn.
649 * The one exception to this is for buffers full of newly allocated
650 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
651 * flag set, indicating that only the di_next_unlinked fields from the
652 * inodes in the buffers will be replayed during recovery. If the
653 * original newly allocated inode images have not yet been flushed
654 * when the buffer is so relogged, then we need to make sure that we
655 * keep the old images in the 'active' portion of the log. We do this
656 * by returning the original lsn of that transaction here rather than
657 * the current one.
659 STATIC xfs_lsn_t
660 xfs_buf_item_committed(
661 struct xfs_log_item *lip,
662 xfs_lsn_t lsn)
664 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
666 trace_xfs_buf_item_committed(bip);
668 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
669 return lip->li_lsn;
670 return lsn;
673 STATIC void
674 xfs_buf_item_committing(
675 struct xfs_log_item *lip,
676 xfs_lsn_t commit_lsn)
681 * This is the ops vector shared by all buf log items.
683 static const struct xfs_item_ops xfs_buf_item_ops = {
684 .iop_size = xfs_buf_item_size,
685 .iop_format = xfs_buf_item_format,
686 .iop_pin = xfs_buf_item_pin,
687 .iop_unpin = xfs_buf_item_unpin,
688 .iop_unlock = xfs_buf_item_unlock,
689 .iop_committed = xfs_buf_item_committed,
690 .iop_push = xfs_buf_item_push,
691 .iop_committing = xfs_buf_item_committing
694 STATIC int
695 xfs_buf_item_get_format(
696 struct xfs_buf_log_item *bip,
697 int count)
699 ASSERT(bip->bli_formats == NULL);
700 bip->bli_format_count = count;
702 if (count == 1) {
703 bip->bli_formats = &bip->__bli_format;
704 return 0;
707 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
708 KM_SLEEP);
709 if (!bip->bli_formats)
710 return -ENOMEM;
711 return 0;
714 STATIC void
715 xfs_buf_item_free_format(
716 struct xfs_buf_log_item *bip)
718 if (bip->bli_formats != &bip->__bli_format) {
719 kmem_free(bip->bli_formats);
720 bip->bli_formats = NULL;
725 * Allocate a new buf log item to go with the given buffer.
726 * Set the buffer's b_log_item field to point to the new
727 * buf log item.
730 xfs_buf_item_init(
731 struct xfs_buf *bp,
732 struct xfs_mount *mp)
734 struct xfs_buf_log_item *bip = bp->b_log_item;
735 int chunks;
736 int map_size;
737 int error;
738 int i;
741 * Check to see if there is already a buf log item for
742 * this buffer. If we do already have one, there is
743 * nothing to do here so return.
745 ASSERT(bp->b_target->bt_mount == mp);
746 if (bip != NULL) {
747 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
748 return 0;
751 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
752 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
753 bip->bli_buf = bp;
756 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
757 * can be divided into. Make sure not to truncate any pieces.
758 * map_size is the size of the bitmap needed to describe the
759 * chunks of the buffer.
761 * Discontiguous buffer support follows the layout of the underlying
762 * buffer. This makes the implementation as simple as possible.
764 error = xfs_buf_item_get_format(bip, bp->b_map_count);
765 ASSERT(error == 0);
766 if (error) { /* to stop gcc throwing set-but-unused warnings */
767 kmem_zone_free(xfs_buf_item_zone, bip);
768 return error;
772 for (i = 0; i < bip->bli_format_count; i++) {
773 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
774 XFS_BLF_CHUNK);
775 map_size = DIV_ROUND_UP(chunks, NBWORD);
777 bip->bli_formats[i].blf_type = XFS_LI_BUF;
778 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
779 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
780 bip->bli_formats[i].blf_map_size = map_size;
783 bp->b_log_item = bip;
784 xfs_buf_hold(bp);
785 return 0;
790 * Mark bytes first through last inclusive as dirty in the buf
791 * item's bitmap.
793 static void
794 xfs_buf_item_log_segment(
795 uint first,
796 uint last,
797 uint *map)
799 uint first_bit;
800 uint last_bit;
801 uint bits_to_set;
802 uint bits_set;
803 uint word_num;
804 uint *wordp;
805 uint bit;
806 uint end_bit;
807 uint mask;
810 * Convert byte offsets to bit numbers.
812 first_bit = first >> XFS_BLF_SHIFT;
813 last_bit = last >> XFS_BLF_SHIFT;
816 * Calculate the total number of bits to be set.
818 bits_to_set = last_bit - first_bit + 1;
821 * Get a pointer to the first word in the bitmap
822 * to set a bit in.
824 word_num = first_bit >> BIT_TO_WORD_SHIFT;
825 wordp = &map[word_num];
828 * Calculate the starting bit in the first word.
830 bit = first_bit & (uint)(NBWORD - 1);
833 * First set any bits in the first word of our range.
834 * If it starts at bit 0 of the word, it will be
835 * set below rather than here. That is what the variable
836 * bit tells us. The variable bits_set tracks the number
837 * of bits that have been set so far. End_bit is the number
838 * of the last bit to be set in this word plus one.
840 if (bit) {
841 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
842 mask = ((1U << (end_bit - bit)) - 1) << bit;
843 *wordp |= mask;
844 wordp++;
845 bits_set = end_bit - bit;
846 } else {
847 bits_set = 0;
851 * Now set bits a whole word at a time that are between
852 * first_bit and last_bit.
854 while ((bits_to_set - bits_set) >= NBWORD) {
855 *wordp |= 0xffffffff;
856 bits_set += NBWORD;
857 wordp++;
861 * Finally, set any bits left to be set in one last partial word.
863 end_bit = bits_to_set - bits_set;
864 if (end_bit) {
865 mask = (1U << end_bit) - 1;
866 *wordp |= mask;
871 * Mark bytes first through last inclusive as dirty in the buf
872 * item's bitmap.
874 void
875 xfs_buf_item_log(
876 struct xfs_buf_log_item *bip,
877 uint first,
878 uint last)
880 int i;
881 uint start;
882 uint end;
883 struct xfs_buf *bp = bip->bli_buf;
886 * walk each buffer segment and mark them dirty appropriately.
888 start = 0;
889 for (i = 0; i < bip->bli_format_count; i++) {
890 if (start > last)
891 break;
892 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
894 /* skip to the map that includes the first byte to log */
895 if (first > end) {
896 start += BBTOB(bp->b_maps[i].bm_len);
897 continue;
901 * Trim the range to this segment and mark it in the bitmap.
902 * Note that we must convert buffer offsets to segment relative
903 * offsets (e.g., the first byte of each segment is byte 0 of
904 * that segment).
906 if (first < start)
907 first = start;
908 if (end > last)
909 end = last;
910 xfs_buf_item_log_segment(first - start, end - start,
911 &bip->bli_formats[i].blf_data_map[0]);
913 start += BBTOB(bp->b_maps[i].bm_len);
919 * Return true if the buffer has any ranges logged/dirtied by a transaction,
920 * false otherwise.
922 bool
923 xfs_buf_item_dirty_format(
924 struct xfs_buf_log_item *bip)
926 int i;
928 for (i = 0; i < bip->bli_format_count; i++) {
929 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
930 bip->bli_formats[i].blf_map_size))
931 return true;
934 return false;
937 STATIC void
938 xfs_buf_item_free(
939 struct xfs_buf_log_item *bip)
941 xfs_buf_item_free_format(bip);
942 kmem_free(bip->bli_item.li_lv_shadow);
943 kmem_zone_free(xfs_buf_item_zone, bip);
947 * This is called when the buf log item is no longer needed. It should
948 * free the buf log item associated with the given buffer and clear
949 * the buffer's pointer to the buf log item. If there are no more
950 * items in the list, clear the b_iodone field of the buffer (see
951 * xfs_buf_attach_iodone() below).
953 void
954 xfs_buf_item_relse(
955 xfs_buf_t *bp)
957 struct xfs_buf_log_item *bip = bp->b_log_item;
959 trace_xfs_buf_item_relse(bp, _RET_IP_);
960 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
962 bp->b_log_item = NULL;
963 if (list_empty(&bp->b_li_list))
964 bp->b_iodone = NULL;
966 xfs_buf_rele(bp);
967 xfs_buf_item_free(bip);
972 * Add the given log item with its callback to the list of callbacks
973 * to be called when the buffer's I/O completes. If it is not set
974 * already, set the buffer's b_iodone() routine to be
975 * xfs_buf_iodone_callbacks() and link the log item into the list of
976 * items rooted at b_li_list.
978 void
979 xfs_buf_attach_iodone(
980 xfs_buf_t *bp,
981 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
982 xfs_log_item_t *lip)
984 ASSERT(xfs_buf_islocked(bp));
986 lip->li_cb = cb;
987 list_add_tail(&lip->li_bio_list, &bp->b_li_list);
989 ASSERT(bp->b_iodone == NULL ||
990 bp->b_iodone == xfs_buf_iodone_callbacks);
991 bp->b_iodone = xfs_buf_iodone_callbacks;
995 * We can have many callbacks on a buffer. Running the callbacks individually
996 * can cause a lot of contention on the AIL lock, so we allow for a single
997 * callback to be able to scan the remaining items in bp->b_li_list for other
998 * items of the same type and callback to be processed in the first call.
1000 * As a result, the loop walking the callback list below will also modify the
1001 * list. it removes the first item from the list and then runs the callback.
1002 * The loop then restarts from the new first item int the list. This allows the
1003 * callback to scan and modify the list attached to the buffer and we don't
1004 * have to care about maintaining a next item pointer.
1006 STATIC void
1007 xfs_buf_do_callbacks(
1008 struct xfs_buf *bp)
1010 struct xfs_buf_log_item *blip = bp->b_log_item;
1011 struct xfs_log_item *lip;
1013 /* If there is a buf_log_item attached, run its callback */
1014 if (blip) {
1015 lip = &blip->bli_item;
1016 lip->li_cb(bp, lip);
1019 while (!list_empty(&bp->b_li_list)) {
1020 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1021 li_bio_list);
1024 * Remove the item from the list, so we don't have any
1025 * confusion if the item is added to another buf.
1026 * Don't touch the log item after calling its
1027 * callback, because it could have freed itself.
1029 list_del_init(&lip->li_bio_list);
1030 lip->li_cb(bp, lip);
1035 * Invoke the error state callback for each log item affected by the failed I/O.
1037 * If a metadata buffer write fails with a non-permanent error, the buffer is
1038 * eventually resubmitted and so the completion callbacks are not run. The error
1039 * state may need to be propagated to the log items attached to the buffer,
1040 * however, so the next AIL push of the item knows hot to handle it correctly.
1042 STATIC void
1043 xfs_buf_do_callbacks_fail(
1044 struct xfs_buf *bp)
1046 struct xfs_log_item *lip;
1047 struct xfs_ail *ailp;
1050 * Buffer log item errors are handled directly by xfs_buf_item_push()
1051 * and xfs_buf_iodone_callback_error, and they have no IO error
1052 * callbacks. Check only for items in b_li_list.
1054 if (list_empty(&bp->b_li_list))
1055 return;
1057 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1058 li_bio_list);
1059 ailp = lip->li_ailp;
1060 spin_lock(&ailp->xa_lock);
1061 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1062 if (lip->li_ops->iop_error)
1063 lip->li_ops->iop_error(lip, bp);
1065 spin_unlock(&ailp->xa_lock);
1068 static bool
1069 xfs_buf_iodone_callback_error(
1070 struct xfs_buf *bp)
1072 struct xfs_buf_log_item *bip = bp->b_log_item;
1073 struct xfs_log_item *lip;
1074 struct xfs_mount *mp;
1075 static ulong lasttime;
1076 static xfs_buftarg_t *lasttarg;
1077 struct xfs_error_cfg *cfg;
1080 * The failed buffer might not have a buf_log_item attached or the
1081 * log_item list might be empty. Get the mp from the available
1082 * xfs_log_item
1084 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1085 li_bio_list);
1086 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1089 * If we've already decided to shutdown the filesystem because of
1090 * I/O errors, there's no point in giving this a retry.
1092 if (XFS_FORCED_SHUTDOWN(mp))
1093 goto out_stale;
1095 if (bp->b_target != lasttarg ||
1096 time_after(jiffies, (lasttime + 5*HZ))) {
1097 lasttime = jiffies;
1098 xfs_buf_ioerror_alert(bp, __func__);
1100 lasttarg = bp->b_target;
1102 /* synchronous writes will have callers process the error */
1103 if (!(bp->b_flags & XBF_ASYNC))
1104 goto out_stale;
1106 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1107 ASSERT(bp->b_iodone != NULL);
1109 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1112 * If the write was asynchronous then no one will be looking for the
1113 * error. If this is the first failure of this type, clear the error
1114 * state and write the buffer out again. This means we always retry an
1115 * async write failure at least once, but we also need to set the buffer
1116 * up to behave correctly now for repeated failures.
1118 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1119 bp->b_last_error != bp->b_error) {
1120 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1121 bp->b_last_error = bp->b_error;
1122 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1123 !bp->b_first_retry_time)
1124 bp->b_first_retry_time = jiffies;
1126 xfs_buf_ioerror(bp, 0);
1127 xfs_buf_submit(bp);
1128 return true;
1132 * Repeated failure on an async write. Take action according to the
1133 * error configuration we have been set up to use.
1136 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1137 ++bp->b_retries > cfg->max_retries)
1138 goto permanent_error;
1139 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1140 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1141 goto permanent_error;
1143 /* At unmount we may treat errors differently */
1144 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1145 goto permanent_error;
1148 * Still a transient error, run IO completion failure callbacks and let
1149 * the higher layers retry the buffer.
1151 xfs_buf_do_callbacks_fail(bp);
1152 xfs_buf_ioerror(bp, 0);
1153 xfs_buf_relse(bp);
1154 return true;
1157 * Permanent error - we need to trigger a shutdown if we haven't already
1158 * to indicate that inconsistency will result from this action.
1160 permanent_error:
1161 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1162 out_stale:
1163 xfs_buf_stale(bp);
1164 bp->b_flags |= XBF_DONE;
1165 trace_xfs_buf_error_relse(bp, _RET_IP_);
1166 return false;
1170 * This is the iodone() function for buffers which have had callbacks attached
1171 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1172 * callback list, mark the buffer as having no more callbacks and then push the
1173 * buffer through IO completion processing.
1175 void
1176 xfs_buf_iodone_callbacks(
1177 struct xfs_buf *bp)
1180 * If there is an error, process it. Some errors require us
1181 * to run callbacks after failure processing is done so we
1182 * detect that and take appropriate action.
1184 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1185 return;
1188 * Successful IO or permanent error. Either way, we can clear the
1189 * retry state here in preparation for the next error that may occur.
1191 bp->b_last_error = 0;
1192 bp->b_retries = 0;
1193 bp->b_first_retry_time = 0;
1195 xfs_buf_do_callbacks(bp);
1196 bp->b_log_item = NULL;
1197 list_del_init(&bp->b_li_list);
1198 bp->b_iodone = NULL;
1199 xfs_buf_ioend(bp);
1203 * This is the iodone() function for buffers which have been
1204 * logged. It is called when they are eventually flushed out.
1205 * It should remove the buf item from the AIL, and free the buf item.
1206 * It is called by xfs_buf_iodone_callbacks() above which will take
1207 * care of cleaning up the buffer itself.
1209 void
1210 xfs_buf_iodone(
1211 struct xfs_buf *bp,
1212 struct xfs_log_item *lip)
1214 struct xfs_ail *ailp = lip->li_ailp;
1216 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1218 xfs_buf_rele(bp);
1221 * If we are forcibly shutting down, this may well be
1222 * off the AIL already. That's because we simulate the
1223 * log-committed callbacks to unpin these buffers. Or we may never
1224 * have put this item on AIL because of the transaction was
1225 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1227 * Either way, AIL is useless if we're forcing a shutdown.
1229 spin_lock(&ailp->xa_lock);
1230 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1231 xfs_buf_item_free(BUF_ITEM(lip));
1235 * Requeue a failed buffer for writeback
1237 * Return true if the buffer has been re-queued properly, false otherwise
1239 bool
1240 xfs_buf_resubmit_failed_buffers(
1241 struct xfs_buf *bp,
1242 struct list_head *buffer_list)
1244 struct xfs_log_item *lip;
1247 * Clear XFS_LI_FAILED flag from all items before resubmit
1249 * XFS_LI_FAILED set/clear is protected by xa_lock, caller this
1250 * function already have it acquired
1252 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1253 xfs_clear_li_failed(lip);
1255 /* Add this buffer back to the delayed write list */
1256 return xfs_buf_delwri_queue(bp, buffer_list);