2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/iversion.h>
43 * Allocate and initialise an xfs_inode.
53 * if this didn't occur in transactions, we could use
54 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
55 * code up to do this anyway.
57 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
60 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
61 kmem_zone_free(xfs_inode_zone
, ip
);
65 /* VFS doesn't initialise i_mode! */
66 VFS_I(ip
)->i_mode
= 0;
68 XFS_STATS_INC(mp
, vn_active
);
69 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
70 ASSERT(!xfs_isiflocked(ip
));
71 ASSERT(ip
->i_ino
== 0);
73 /* initialise the xfs inode */
76 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
80 ip
->i_cformat
= XFS_DINODE_FMT_EXTENTS
;
81 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
83 ip
->i_delayed_blks
= 0;
84 memset(&ip
->i_d
, 0, sizeof(ip
->i_d
));
90 xfs_inode_free_callback(
91 struct rcu_head
*head
)
93 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
94 struct xfs_inode
*ip
= XFS_I(inode
);
96 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
100 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
105 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
107 xfs_idestroy_fork(ip
, XFS_COW_FORK
);
110 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
111 xfs_inode_item_destroy(ip
);
115 kmem_zone_free(xfs_inode_zone
, ip
);
120 struct xfs_inode
*ip
)
122 /* asserts to verify all state is correct here */
123 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
124 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
126 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
131 struct xfs_inode
*ip
)
133 ASSERT(!xfs_isiflocked(ip
));
136 * Because we use RCU freeing we need to ensure the inode always
137 * appears to be reclaimed with an invalid inode number when in the
138 * free state. The ip->i_flags_lock provides the barrier against lookup
141 spin_lock(&ip
->i_flags_lock
);
142 ip
->i_flags
= XFS_IRECLAIM
;
144 spin_unlock(&ip
->i_flags_lock
);
146 __xfs_inode_free(ip
);
150 * Queue a new inode reclaim pass if there are reclaimable inodes and there
151 * isn't a reclaim pass already in progress. By default it runs every 5s based
152 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153 * tunable, but that can be done if this method proves to be ineffective or too
157 xfs_reclaim_work_queue(
158 struct xfs_mount
*mp
)
162 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
163 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
164 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
170 * This is a fast pass over the inode cache to try to get reclaim moving on as
171 * many inodes as possible in a short period of time. It kicks itself every few
172 * seconds, as well as being kicked by the inode cache shrinker when memory
173 * goes low. It scans as quickly as possible avoiding locked inodes or those
174 * already being flushed, and once done schedules a future pass.
178 struct work_struct
*work
)
180 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
181 struct xfs_mount
, m_reclaim_work
);
183 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
184 xfs_reclaim_work_queue(mp
);
188 xfs_perag_set_reclaim_tag(
189 struct xfs_perag
*pag
)
191 struct xfs_mount
*mp
= pag
->pag_mount
;
193 lockdep_assert_held(&pag
->pag_ici_lock
);
194 if (pag
->pag_ici_reclaimable
++)
197 /* propagate the reclaim tag up into the perag radix tree */
198 spin_lock(&mp
->m_perag_lock
);
199 radix_tree_tag_set(&mp
->m_perag_tree
, pag
->pag_agno
,
200 XFS_ICI_RECLAIM_TAG
);
201 spin_unlock(&mp
->m_perag_lock
);
203 /* schedule periodic background inode reclaim */
204 xfs_reclaim_work_queue(mp
);
206 trace_xfs_perag_set_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
210 xfs_perag_clear_reclaim_tag(
211 struct xfs_perag
*pag
)
213 struct xfs_mount
*mp
= pag
->pag_mount
;
215 lockdep_assert_held(&pag
->pag_ici_lock
);
216 if (--pag
->pag_ici_reclaimable
)
219 /* clear the reclaim tag from the perag radix tree */
220 spin_lock(&mp
->m_perag_lock
);
221 radix_tree_tag_clear(&mp
->m_perag_tree
, pag
->pag_agno
,
222 XFS_ICI_RECLAIM_TAG
);
223 spin_unlock(&mp
->m_perag_lock
);
224 trace_xfs_perag_clear_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
229 * We set the inode flag atomically with the radix tree tag.
230 * Once we get tag lookups on the radix tree, this inode flag
234 xfs_inode_set_reclaim_tag(
235 struct xfs_inode
*ip
)
237 struct xfs_mount
*mp
= ip
->i_mount
;
238 struct xfs_perag
*pag
;
240 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
241 spin_lock(&pag
->pag_ici_lock
);
242 spin_lock(&ip
->i_flags_lock
);
244 radix_tree_tag_set(&pag
->pag_ici_root
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
245 XFS_ICI_RECLAIM_TAG
);
246 xfs_perag_set_reclaim_tag(pag
);
247 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
249 spin_unlock(&ip
->i_flags_lock
);
250 spin_unlock(&pag
->pag_ici_lock
);
255 xfs_inode_clear_reclaim_tag(
256 struct xfs_perag
*pag
,
259 radix_tree_tag_clear(&pag
->pag_ici_root
,
260 XFS_INO_TO_AGINO(pag
->pag_mount
, ino
),
261 XFS_ICI_RECLAIM_TAG
);
262 xfs_perag_clear_reclaim_tag(pag
);
267 struct xfs_inode
*ip
)
269 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_INEW_BIT
);
270 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_INEW_BIT
);
273 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
274 if (!xfs_iflags_test(ip
, XFS_INEW
))
278 finish_wait(wq
, &wait
.wq_entry
);
282 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
283 * part of the structure. This is made more complex by the fact we store
284 * information about the on-disk values in the VFS inode and so we can't just
285 * overwrite the values unconditionally. Hence we save the parameters we
286 * need to retain across reinitialisation, and rewrite them into the VFS inode
287 * after reinitialisation even if it fails.
291 struct xfs_mount
*mp
,
295 uint32_t nlink
= inode
->i_nlink
;
296 uint32_t generation
= inode
->i_generation
;
297 uint64_t version
= inode_peek_iversion(inode
);
298 umode_t mode
= inode
->i_mode
;
299 dev_t dev
= inode
->i_rdev
;
301 error
= inode_init_always(mp
->m_super
, inode
);
303 set_nlink(inode
, nlink
);
304 inode
->i_generation
= generation
;
305 inode_set_iversion_queried(inode
, version
);
306 inode
->i_mode
= mode
;
312 * Check the validity of the inode we just found it the cache
316 struct xfs_perag
*pag
,
317 struct xfs_inode
*ip
,
320 int lock_flags
) __releases(RCU
)
322 struct inode
*inode
= VFS_I(ip
);
323 struct xfs_mount
*mp
= ip
->i_mount
;
327 * check for re-use of an inode within an RCU grace period due to the
328 * radix tree nodes not being updated yet. We monitor for this by
329 * setting the inode number to zero before freeing the inode structure.
330 * If the inode has been reallocated and set up, then the inode number
331 * will not match, so check for that, too.
333 spin_lock(&ip
->i_flags_lock
);
334 if (ip
->i_ino
!= ino
) {
335 trace_xfs_iget_skip(ip
);
336 XFS_STATS_INC(mp
, xs_ig_frecycle
);
343 * If we are racing with another cache hit that is currently
344 * instantiating this inode or currently recycling it out of
345 * reclaimabe state, wait for the initialisation to complete
348 * XXX(hch): eventually we should do something equivalent to
349 * wait_on_inode to wait for these flags to be cleared
350 * instead of polling for it.
352 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
353 trace_xfs_iget_skip(ip
);
354 XFS_STATS_INC(mp
, xs_ig_frecycle
);
360 * If lookup is racing with unlink return an error immediately.
362 if (VFS_I(ip
)->i_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
368 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
369 * Need to carefully get it back into useable state.
371 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
372 trace_xfs_iget_reclaim(ip
);
374 if (flags
& XFS_IGET_INCORE
) {
380 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
381 * from stomping over us while we recycle the inode. We can't
382 * clear the radix tree reclaimable tag yet as it requires
383 * pag_ici_lock to be held exclusive.
385 ip
->i_flags
|= XFS_IRECLAIM
;
387 spin_unlock(&ip
->i_flags_lock
);
390 error
= xfs_reinit_inode(mp
, inode
);
394 * Re-initializing the inode failed, and we are in deep
395 * trouble. Try to re-add it to the reclaim list.
398 spin_lock(&ip
->i_flags_lock
);
399 wake
= !!__xfs_iflags_test(ip
, XFS_INEW
);
400 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
402 wake_up_bit(&ip
->i_flags
, __XFS_INEW_BIT
);
403 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
404 trace_xfs_iget_reclaim_fail(ip
);
408 spin_lock(&pag
->pag_ici_lock
);
409 spin_lock(&ip
->i_flags_lock
);
412 * Clear the per-lifetime state in the inode as we are now
413 * effectively a new inode and need to return to the initial
414 * state before reuse occurs.
416 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
417 ip
->i_flags
|= XFS_INEW
;
418 xfs_inode_clear_reclaim_tag(pag
, ip
->i_ino
);
419 inode
->i_state
= I_NEW
;
421 ASSERT(!rwsem_is_locked(&inode
->i_rwsem
));
422 init_rwsem(&inode
->i_rwsem
);
424 spin_unlock(&ip
->i_flags_lock
);
425 spin_unlock(&pag
->pag_ici_lock
);
427 /* If the VFS inode is being torn down, pause and try again. */
429 trace_xfs_iget_skip(ip
);
434 /* We've got a live one. */
435 spin_unlock(&ip
->i_flags_lock
);
437 trace_xfs_iget_hit(ip
);
441 xfs_ilock(ip
, lock_flags
);
443 if (!(flags
& XFS_IGET_INCORE
))
444 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
445 XFS_STATS_INC(mp
, xs_ig_found
);
450 spin_unlock(&ip
->i_flags_lock
);
458 struct xfs_mount
*mp
,
459 struct xfs_perag
*pag
,
462 struct xfs_inode
**ipp
,
466 struct xfs_inode
*ip
;
468 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
471 ip
= xfs_inode_alloc(mp
, ino
);
475 error
= xfs_iread(mp
, tp
, ip
, flags
);
479 if (!xfs_inode_verify_forks(ip
)) {
480 error
= -EFSCORRUPTED
;
484 trace_xfs_iget_miss(ip
);
486 if ((VFS_I(ip
)->i_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
492 * Preload the radix tree so we can insert safely under the
493 * write spinlock. Note that we cannot sleep inside the preload
494 * region. Since we can be called from transaction context, don't
495 * recurse into the file system.
497 if (radix_tree_preload(GFP_NOFS
)) {
503 * Because the inode hasn't been added to the radix-tree yet it can't
504 * be found by another thread, so we can do the non-sleeping lock here.
507 if (!xfs_ilock_nowait(ip
, lock_flags
))
512 * These values must be set before inserting the inode into the radix
513 * tree as the moment it is inserted a concurrent lookup (allowed by the
514 * RCU locking mechanism) can find it and that lookup must see that this
515 * is an inode currently under construction (i.e. that XFS_INEW is set).
516 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
517 * memory barrier that ensures this detection works correctly at lookup
521 if (flags
& XFS_IGET_DONTCACHE
)
522 iflags
|= XFS_IDONTCACHE
;
526 xfs_iflags_set(ip
, iflags
);
528 /* insert the new inode */
529 spin_lock(&pag
->pag_ici_lock
);
530 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
531 if (unlikely(error
)) {
532 WARN_ON(error
!= -EEXIST
);
533 XFS_STATS_INC(mp
, xs_ig_dup
);
535 goto out_preload_end
;
537 spin_unlock(&pag
->pag_ici_lock
);
538 radix_tree_preload_end();
544 spin_unlock(&pag
->pag_ici_lock
);
545 radix_tree_preload_end();
547 xfs_iunlock(ip
, lock_flags
);
549 __destroy_inode(VFS_I(ip
));
555 * Look up an inode by number in the given file system.
556 * The inode is looked up in the cache held in each AG.
557 * If the inode is found in the cache, initialise the vfs inode
560 * If it is not in core, read it in from the file system's device,
561 * add it to the cache and initialise the vfs inode.
563 * The inode is locked according to the value of the lock_flags parameter.
564 * This flag parameter indicates how and if the inode's IO lock and inode lock
567 * mp -- the mount point structure for the current file system. It points
568 * to the inode hash table.
569 * tp -- a pointer to the current transaction if there is one. This is
570 * simply passed through to the xfs_iread() call.
571 * ino -- the number of the inode desired. This is the unique identifier
572 * within the file system for the inode being requested.
573 * lock_flags -- flags indicating how to lock the inode. See the comment
574 * for xfs_ilock() for a list of valid values.
591 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
592 * doesn't get freed while it's being referenced during a
593 * radix tree traversal here. It assumes this function
594 * aqcuires only the ILOCK (and therefore it has no need to
595 * involve the IOLOCK in this synchronization).
597 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
599 /* reject inode numbers outside existing AGs */
600 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
603 XFS_STATS_INC(mp
, xs_ig_attempts
);
605 /* get the perag structure and ensure that it's inode capable */
606 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
607 agino
= XFS_INO_TO_AGINO(mp
, ino
);
612 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
615 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
617 goto out_error_or_again
;
620 if (flags
& XFS_IGET_INCORE
) {
622 goto out_error_or_again
;
624 XFS_STATS_INC(mp
, xs_ig_missed
);
626 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
629 goto out_error_or_again
;
636 * If we have a real type for an on-disk inode, we can setup the inode
637 * now. If it's a new inode being created, xfs_ialloc will handle it.
639 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
640 xfs_setup_existing_inode(ip
);
644 if (!(flags
& XFS_IGET_INCORE
) && error
== -EAGAIN
) {
653 * "Is this a cached inode that's also allocated?"
655 * Look up an inode by number in the given file system. If the inode is
656 * in cache and isn't in purgatory, return 1 if the inode is allocated
657 * and 0 if it is not. For all other cases (not in cache, being torn
658 * down, etc.), return a negative error code.
660 * The caller has to prevent inode allocation and freeing activity,
661 * presumably by locking the AGI buffer. This is to ensure that an
662 * inode cannot transition from allocated to freed until the caller is
663 * ready to allow that. If the inode is in an intermediate state (new,
664 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
665 * inode is not in the cache, -ENOENT will be returned. The caller must
666 * deal with these scenarios appropriately.
668 * This is a specialized use case for the online scrubber; if you're
669 * reading this, you probably want xfs_iget.
672 xfs_icache_inode_is_allocated(
673 struct xfs_mount
*mp
,
674 struct xfs_trans
*tp
,
678 struct xfs_inode
*ip
;
681 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_INCORE
, 0, &ip
);
685 *inuse
= !!(VFS_I(ip
)->i_mode
);
691 * The inode lookup is done in batches to keep the amount of lock traffic and
692 * radix tree lookups to a minimum. The batch size is a trade off between
693 * lookup reduction and stack usage. This is in the reclaim path, so we can't
696 #define XFS_LOOKUP_BATCH 32
699 xfs_inode_ag_walk_grab(
700 struct xfs_inode
*ip
,
703 struct inode
*inode
= VFS_I(ip
);
704 bool newinos
= !!(flags
& XFS_AGITER_INEW_WAIT
);
706 ASSERT(rcu_read_lock_held());
709 * check for stale RCU freed inode
711 * If the inode has been reallocated, it doesn't matter if it's not in
712 * the AG we are walking - we are walking for writeback, so if it
713 * passes all the "valid inode" checks and is dirty, then we'll write
714 * it back anyway. If it has been reallocated and still being
715 * initialised, the XFS_INEW check below will catch it.
717 spin_lock(&ip
->i_flags_lock
);
719 goto out_unlock_noent
;
721 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
722 if ((!newinos
&& __xfs_iflags_test(ip
, XFS_INEW
)) ||
723 __xfs_iflags_test(ip
, XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
724 goto out_unlock_noent
;
725 spin_unlock(&ip
->i_flags_lock
);
727 /* nothing to sync during shutdown */
728 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
729 return -EFSCORRUPTED
;
731 /* If we can't grab the inode, it must on it's way to reclaim. */
739 spin_unlock(&ip
->i_flags_lock
);
745 struct xfs_mount
*mp
,
746 struct xfs_perag
*pag
,
747 int (*execute
)(struct xfs_inode
*ip
, int flags
,
754 uint32_t first_index
;
766 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
773 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
774 (void **)batch
, first_index
,
777 nr_found
= radix_tree_gang_lookup_tag(
779 (void **) batch
, first_index
,
780 XFS_LOOKUP_BATCH
, tag
);
788 * Grab the inodes before we drop the lock. if we found
789 * nothing, nr == 0 and the loop will be skipped.
791 for (i
= 0; i
< nr_found
; i
++) {
792 struct xfs_inode
*ip
= batch
[i
];
794 if (done
|| xfs_inode_ag_walk_grab(ip
, iter_flags
))
798 * Update the index for the next lookup. Catch
799 * overflows into the next AG range which can occur if
800 * we have inodes in the last block of the AG and we
801 * are currently pointing to the last inode.
803 * Because we may see inodes that are from the wrong AG
804 * due to RCU freeing and reallocation, only update the
805 * index if it lies in this AG. It was a race that lead
806 * us to see this inode, so another lookup from the
807 * same index will not find it again.
809 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
811 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
812 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
816 /* unlock now we've grabbed the inodes. */
819 for (i
= 0; i
< nr_found
; i
++) {
822 if ((iter_flags
& XFS_AGITER_INEW_WAIT
) &&
823 xfs_iflags_test(batch
[i
], XFS_INEW
))
824 xfs_inew_wait(batch
[i
]);
825 error
= execute(batch
[i
], flags
, args
);
827 if (error
== -EAGAIN
) {
831 if (error
&& last_error
!= -EFSCORRUPTED
)
835 /* bail out if the filesystem is corrupted. */
836 if (error
== -EFSCORRUPTED
)
841 } while (nr_found
&& !done
);
851 * Background scanning to trim post-EOF preallocated space. This is queued
852 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
856 struct xfs_mount
*mp
)
859 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
860 queue_delayed_work(mp
->m_eofblocks_workqueue
,
861 &mp
->m_eofblocks_work
,
862 msecs_to_jiffies(xfs_eofb_secs
* 1000));
867 xfs_eofblocks_worker(
868 struct work_struct
*work
)
870 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
871 struct xfs_mount
, m_eofblocks_work
);
872 xfs_icache_free_eofblocks(mp
, NULL
);
873 xfs_queue_eofblocks(mp
);
877 * Background scanning to trim preallocated CoW space. This is queued
878 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
879 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
883 struct xfs_mount
*mp
)
886 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_COWBLOCKS_TAG
))
887 queue_delayed_work(mp
->m_eofblocks_workqueue
,
888 &mp
->m_cowblocks_work
,
889 msecs_to_jiffies(xfs_cowb_secs
* 1000));
894 xfs_cowblocks_worker(
895 struct work_struct
*work
)
897 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
898 struct xfs_mount
, m_cowblocks_work
);
899 xfs_icache_free_cowblocks(mp
, NULL
);
900 xfs_queue_cowblocks(mp
);
904 xfs_inode_ag_iterator_flags(
905 struct xfs_mount
*mp
,
906 int (*execute
)(struct xfs_inode
*ip
, int flags
,
912 struct xfs_perag
*pag
;
918 while ((pag
= xfs_perag_get(mp
, ag
))) {
919 ag
= pag
->pag_agno
+ 1;
920 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1,
925 if (error
== -EFSCORRUPTED
)
933 xfs_inode_ag_iterator(
934 struct xfs_mount
*mp
,
935 int (*execute
)(struct xfs_inode
*ip
, int flags
,
940 return xfs_inode_ag_iterator_flags(mp
, execute
, flags
, args
, 0);
944 xfs_inode_ag_iterator_tag(
945 struct xfs_mount
*mp
,
946 int (*execute
)(struct xfs_inode
*ip
, int flags
,
952 struct xfs_perag
*pag
;
958 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
959 ag
= pag
->pag_agno
+ 1;
960 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
,
965 if (error
== -EFSCORRUPTED
)
973 * Grab the inode for reclaim exclusively.
974 * Return 0 if we grabbed it, non-zero otherwise.
977 xfs_reclaim_inode_grab(
978 struct xfs_inode
*ip
,
981 ASSERT(rcu_read_lock_held());
983 /* quick check for stale RCU freed inode */
988 * If we are asked for non-blocking operation, do unlocked checks to
989 * see if the inode already is being flushed or in reclaim to avoid
992 if ((flags
& SYNC_TRYLOCK
) &&
993 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
997 * The radix tree lock here protects a thread in xfs_iget from racing
998 * with us starting reclaim on the inode. Once we have the
999 * XFS_IRECLAIM flag set it will not touch us.
1001 * Due to RCU lookup, we may find inodes that have been freed and only
1002 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1003 * aren't candidates for reclaim at all, so we must check the
1004 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1006 spin_lock(&ip
->i_flags_lock
);
1007 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
1008 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
1009 /* not a reclaim candidate. */
1010 spin_unlock(&ip
->i_flags_lock
);
1013 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
1014 spin_unlock(&ip
->i_flags_lock
);
1019 * Inodes in different states need to be treated differently. The following
1020 * table lists the inode states and the reclaim actions necessary:
1022 * inode state iflush ret required action
1023 * --------------- ---------- ---------------
1025 * shutdown EIO unpin and reclaim
1026 * clean, unpinned 0 reclaim
1027 * stale, unpinned 0 reclaim
1028 * clean, pinned(*) 0 requeue
1029 * stale, pinned EAGAIN requeue
1030 * dirty, async - requeue
1031 * dirty, sync 0 reclaim
1033 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1034 * handled anyway given the order of checks implemented.
1036 * Also, because we get the flush lock first, we know that any inode that has
1037 * been flushed delwri has had the flush completed by the time we check that
1038 * the inode is clean.
1040 * Note that because the inode is flushed delayed write by AIL pushing, the
1041 * flush lock may already be held here and waiting on it can result in very
1042 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1043 * the caller should push the AIL first before trying to reclaim inodes to
1044 * minimise the amount of time spent waiting. For background relaim, we only
1045 * bother to reclaim clean inodes anyway.
1047 * Hence the order of actions after gaining the locks should be:
1049 * shutdown => unpin and reclaim
1050 * pinned, async => requeue
1051 * pinned, sync => unpin
1054 * dirty, async => requeue
1055 * dirty, sync => flush, wait and reclaim
1059 struct xfs_inode
*ip
,
1060 struct xfs_perag
*pag
,
1063 struct xfs_buf
*bp
= NULL
;
1064 xfs_ino_t ino
= ip
->i_ino
; /* for radix_tree_delete */
1069 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1070 if (!xfs_iflock_nowait(ip
)) {
1071 if (!(sync_mode
& SYNC_WAIT
))
1076 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1077 xfs_iunpin_wait(ip
);
1078 /* xfs_iflush_abort() drops the flush lock */
1079 xfs_iflush_abort(ip
, false);
1082 if (xfs_ipincount(ip
)) {
1083 if (!(sync_mode
& SYNC_WAIT
))
1085 xfs_iunpin_wait(ip
);
1087 if (xfs_iflags_test(ip
, XFS_ISTALE
) || xfs_inode_clean(ip
)) {
1093 * Never flush out dirty data during non-blocking reclaim, as it would
1094 * just contend with AIL pushing trying to do the same job.
1096 if (!(sync_mode
& SYNC_WAIT
))
1100 * Now we have an inode that needs flushing.
1102 * Note that xfs_iflush will never block on the inode buffer lock, as
1103 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1104 * ip->i_lock, and we are doing the exact opposite here. As a result,
1105 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1106 * result in an ABBA deadlock with xfs_ifree_cluster().
1108 * As xfs_ifree_cluser() must gather all inodes that are active in the
1109 * cache to mark them stale, if we hit this case we don't actually want
1110 * to do IO here - we want the inode marked stale so we can simply
1111 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1112 * inode, back off and try again. Hopefully the next pass through will
1113 * see the stale flag set on the inode.
1115 error
= xfs_iflush(ip
, &bp
);
1116 if (error
== -EAGAIN
) {
1117 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1118 /* backoff longer than in xfs_ifree_cluster */
1124 error
= xfs_bwrite(bp
);
1129 ASSERT(!xfs_isiflocked(ip
));
1132 * Because we use RCU freeing we need to ensure the inode always appears
1133 * to be reclaimed with an invalid inode number when in the free state.
1134 * We do this as early as possible under the ILOCK so that
1135 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1136 * detect races with us here. By doing this, we guarantee that once
1137 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1138 * it will see either a valid inode that will serialise correctly, or it
1139 * will see an invalid inode that it can skip.
1141 spin_lock(&ip
->i_flags_lock
);
1142 ip
->i_flags
= XFS_IRECLAIM
;
1144 spin_unlock(&ip
->i_flags_lock
);
1146 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1148 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1150 * Remove the inode from the per-AG radix tree.
1152 * Because radix_tree_delete won't complain even if the item was never
1153 * added to the tree assert that it's been there before to catch
1154 * problems with the inode life time early on.
1156 spin_lock(&pag
->pag_ici_lock
);
1157 if (!radix_tree_delete(&pag
->pag_ici_root
,
1158 XFS_INO_TO_AGINO(ip
->i_mount
, ino
)))
1160 xfs_perag_clear_reclaim_tag(pag
);
1161 spin_unlock(&pag
->pag_ici_lock
);
1164 * Here we do an (almost) spurious inode lock in order to coordinate
1165 * with inode cache radix tree lookups. This is because the lookup
1166 * can reference the inodes in the cache without taking references.
1168 * We make that OK here by ensuring that we wait until the inode is
1169 * unlocked after the lookup before we go ahead and free it.
1171 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1172 xfs_qm_dqdetach(ip
);
1173 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1175 __xfs_inode_free(ip
);
1181 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1182 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1184 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1185 * a short while. However, this just burns CPU time scanning the tree
1186 * waiting for IO to complete and the reclaim work never goes back to
1187 * the idle state. Instead, return 0 to let the next scheduled
1188 * background reclaim attempt to reclaim the inode again.
1194 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1195 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1196 * then a shut down during filesystem unmount reclaim walk leak all the
1197 * unreclaimed inodes.
1200 xfs_reclaim_inodes_ag(
1201 struct xfs_mount
*mp
,
1205 struct xfs_perag
*pag
;
1209 int trylock
= flags
& SYNC_TRYLOCK
;
1215 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1216 unsigned long first_index
= 0;
1220 ag
= pag
->pag_agno
+ 1;
1223 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1228 first_index
= pag
->pag_ici_reclaim_cursor
;
1230 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1233 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1237 nr_found
= radix_tree_gang_lookup_tag(
1239 (void **)batch
, first_index
,
1241 XFS_ICI_RECLAIM_TAG
);
1249 * Grab the inodes before we drop the lock. if we found
1250 * nothing, nr == 0 and the loop will be skipped.
1252 for (i
= 0; i
< nr_found
; i
++) {
1253 struct xfs_inode
*ip
= batch
[i
];
1255 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1259 * Update the index for the next lookup. Catch
1260 * overflows into the next AG range which can
1261 * occur if we have inodes in the last block of
1262 * the AG and we are currently pointing to the
1265 * Because we may see inodes that are from the
1266 * wrong AG due to RCU freeing and
1267 * reallocation, only update the index if it
1268 * lies in this AG. It was a race that lead us
1269 * to see this inode, so another lookup from
1270 * the same index will not find it again.
1272 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1275 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1276 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1280 /* unlock now we've grabbed the inodes. */
1283 for (i
= 0; i
< nr_found
; i
++) {
1286 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1287 if (error
&& last_error
!= -EFSCORRUPTED
)
1291 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1295 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1297 if (trylock
&& !done
)
1298 pag
->pag_ici_reclaim_cursor
= first_index
;
1300 pag
->pag_ici_reclaim_cursor
= 0;
1301 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1306 * if we skipped any AG, and we still have scan count remaining, do
1307 * another pass this time using blocking reclaim semantics (i.e
1308 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1309 * ensure that when we get more reclaimers than AGs we block rather
1310 * than spin trying to execute reclaim.
1312 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1324 int nr_to_scan
= INT_MAX
;
1326 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1330 * Scan a certain number of inodes for reclaim.
1332 * When called we make sure that there is a background (fast) inode reclaim in
1333 * progress, while we will throttle the speed of reclaim via doing synchronous
1334 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1335 * them to be cleaned, which we hope will not be very long due to the
1336 * background walker having already kicked the IO off on those dirty inodes.
1339 xfs_reclaim_inodes_nr(
1340 struct xfs_mount
*mp
,
1343 /* kick background reclaimer and push the AIL */
1344 xfs_reclaim_work_queue(mp
);
1345 xfs_ail_push_all(mp
->m_ail
);
1347 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1351 * Return the number of reclaimable inodes in the filesystem for
1352 * the shrinker to determine how much to reclaim.
1355 xfs_reclaim_inodes_count(
1356 struct xfs_mount
*mp
)
1358 struct xfs_perag
*pag
;
1359 xfs_agnumber_t ag
= 0;
1360 int reclaimable
= 0;
1362 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1363 ag
= pag
->pag_agno
+ 1;
1364 reclaimable
+= pag
->pag_ici_reclaimable
;
1372 struct xfs_inode
*ip
,
1373 struct xfs_eofblocks
*eofb
)
1375 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1376 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1379 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1380 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1383 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1384 xfs_get_projid(ip
) != eofb
->eof_prid
)
1391 * A union-based inode filtering algorithm. Process the inode if any of the
1392 * criteria match. This is for global/internal scans only.
1395 xfs_inode_match_id_union(
1396 struct xfs_inode
*ip
,
1397 struct xfs_eofblocks
*eofb
)
1399 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1400 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1403 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1404 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1407 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1408 xfs_get_projid(ip
) == eofb
->eof_prid
)
1415 xfs_inode_free_eofblocks(
1416 struct xfs_inode
*ip
,
1421 struct xfs_eofblocks
*eofb
= args
;
1424 if (!xfs_can_free_eofblocks(ip
, false)) {
1425 /* inode could be preallocated or append-only */
1426 trace_xfs_inode_free_eofblocks_invalid(ip
);
1427 xfs_inode_clear_eofblocks_tag(ip
);
1432 * If the mapping is dirty the operation can block and wait for some
1433 * time. Unless we are waiting, skip it.
1435 if (!(flags
& SYNC_WAIT
) &&
1436 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1440 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1441 match
= xfs_inode_match_id_union(ip
, eofb
);
1443 match
= xfs_inode_match_id(ip
, eofb
);
1447 /* skip the inode if the file size is too small */
1448 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1449 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1454 * If the caller is waiting, return -EAGAIN to keep the background
1455 * scanner moving and revisit the inode in a subsequent pass.
1457 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1458 if (flags
& SYNC_WAIT
)
1462 ret
= xfs_free_eofblocks(ip
);
1463 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1469 __xfs_icache_free_eofblocks(
1470 struct xfs_mount
*mp
,
1471 struct xfs_eofblocks
*eofb
,
1472 int (*execute
)(struct xfs_inode
*ip
, int flags
,
1476 int flags
= SYNC_TRYLOCK
;
1478 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1481 return xfs_inode_ag_iterator_tag(mp
, execute
, flags
,
1486 xfs_icache_free_eofblocks(
1487 struct xfs_mount
*mp
,
1488 struct xfs_eofblocks
*eofb
)
1490 return __xfs_icache_free_eofblocks(mp
, eofb
, xfs_inode_free_eofblocks
,
1491 XFS_ICI_EOFBLOCKS_TAG
);
1495 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1496 * multiple quotas, we don't know exactly which quota caused an allocation
1497 * failure. We make a best effort by including each quota under low free space
1498 * conditions (less than 1% free space) in the scan.
1501 __xfs_inode_free_quota_eofblocks(
1502 struct xfs_inode
*ip
,
1503 int (*execute
)(struct xfs_mount
*mp
,
1504 struct xfs_eofblocks
*eofb
))
1507 struct xfs_eofblocks eofb
= {0};
1508 struct xfs_dquot
*dq
;
1511 * Run a sync scan to increase effectiveness and use the union filter to
1512 * cover all applicable quotas in a single scan.
1514 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1516 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1517 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1518 if (dq
&& xfs_dquot_lowsp(dq
)) {
1519 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1520 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1525 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1526 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1527 if (dq
&& xfs_dquot_lowsp(dq
)) {
1528 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1529 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1535 execute(ip
->i_mount
, &eofb
);
1541 xfs_inode_free_quota_eofblocks(
1542 struct xfs_inode
*ip
)
1544 return __xfs_inode_free_quota_eofblocks(ip
, xfs_icache_free_eofblocks
);
1547 static inline unsigned long
1552 case XFS_ICI_EOFBLOCKS_TAG
:
1553 return XFS_IEOFBLOCKS
;
1554 case XFS_ICI_COWBLOCKS_TAG
:
1555 return XFS_ICOWBLOCKS
;
1563 __xfs_inode_set_blocks_tag(
1565 void (*execute
)(struct xfs_mount
*mp
),
1566 void (*set_tp
)(struct xfs_mount
*mp
, xfs_agnumber_t agno
,
1567 int error
, unsigned long caller_ip
),
1570 struct xfs_mount
*mp
= ip
->i_mount
;
1571 struct xfs_perag
*pag
;
1575 * Don't bother locking the AG and looking up in the radix trees
1576 * if we already know that we have the tag set.
1578 if (ip
->i_flags
& xfs_iflag_for_tag(tag
))
1580 spin_lock(&ip
->i_flags_lock
);
1581 ip
->i_flags
|= xfs_iflag_for_tag(tag
);
1582 spin_unlock(&ip
->i_flags_lock
);
1584 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1585 spin_lock(&pag
->pag_ici_lock
);
1587 tagged
= radix_tree_tagged(&pag
->pag_ici_root
, tag
);
1588 radix_tree_tag_set(&pag
->pag_ici_root
,
1589 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
), tag
);
1591 /* propagate the eofblocks tag up into the perag radix tree */
1592 spin_lock(&ip
->i_mount
->m_perag_lock
);
1593 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1594 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1596 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1598 /* kick off background trimming */
1599 execute(ip
->i_mount
);
1601 set_tp(ip
->i_mount
, pag
->pag_agno
, -1, _RET_IP_
);
1604 spin_unlock(&pag
->pag_ici_lock
);
1609 xfs_inode_set_eofblocks_tag(
1612 trace_xfs_inode_set_eofblocks_tag(ip
);
1613 return __xfs_inode_set_blocks_tag(ip
, xfs_queue_eofblocks
,
1614 trace_xfs_perag_set_eofblocks
,
1615 XFS_ICI_EOFBLOCKS_TAG
);
1619 __xfs_inode_clear_blocks_tag(
1621 void (*clear_tp
)(struct xfs_mount
*mp
, xfs_agnumber_t agno
,
1622 int error
, unsigned long caller_ip
),
1625 struct xfs_mount
*mp
= ip
->i_mount
;
1626 struct xfs_perag
*pag
;
1628 spin_lock(&ip
->i_flags_lock
);
1629 ip
->i_flags
&= ~xfs_iflag_for_tag(tag
);
1630 spin_unlock(&ip
->i_flags_lock
);
1632 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1633 spin_lock(&pag
->pag_ici_lock
);
1635 radix_tree_tag_clear(&pag
->pag_ici_root
,
1636 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
), tag
);
1637 if (!radix_tree_tagged(&pag
->pag_ici_root
, tag
)) {
1638 /* clear the eofblocks tag from the perag radix tree */
1639 spin_lock(&ip
->i_mount
->m_perag_lock
);
1640 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1641 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1643 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1644 clear_tp(ip
->i_mount
, pag
->pag_agno
, -1, _RET_IP_
);
1647 spin_unlock(&pag
->pag_ici_lock
);
1652 xfs_inode_clear_eofblocks_tag(
1655 trace_xfs_inode_clear_eofblocks_tag(ip
);
1656 return __xfs_inode_clear_blocks_tag(ip
,
1657 trace_xfs_perag_clear_eofblocks
, XFS_ICI_EOFBLOCKS_TAG
);
1661 * Set ourselves up to free CoW blocks from this file. If it's already clean
1662 * then we can bail out quickly, but otherwise we must back off if the file
1663 * is undergoing some kind of write.
1666 xfs_prep_free_cowblocks(
1667 struct xfs_inode
*ip
,
1668 struct xfs_ifork
*ifp
)
1671 * Just clear the tag if we have an empty cow fork or none at all. It's
1672 * possible the inode was fully unshared since it was originally tagged.
1674 if (!xfs_is_reflink_inode(ip
) || !ifp
->if_bytes
) {
1675 trace_xfs_inode_free_cowblocks_invalid(ip
);
1676 xfs_inode_clear_cowblocks_tag(ip
);
1681 * If the mapping is dirty or under writeback we cannot touch the
1682 * CoW fork. Leave it alone if we're in the midst of a directio.
1684 if ((VFS_I(ip
)->i_state
& I_DIRTY_PAGES
) ||
1685 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
) ||
1686 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_WRITEBACK
) ||
1687 atomic_read(&VFS_I(ip
)->i_dio_count
))
1694 * Automatic CoW Reservation Freeing
1696 * These functions automatically garbage collect leftover CoW reservations
1697 * that were made on behalf of a cowextsize hint when we start to run out
1698 * of quota or when the reservations sit around for too long. If the file
1699 * has dirty pages or is undergoing writeback, its CoW reservations will
1702 * The actual garbage collection piggybacks off the same code that runs
1703 * the speculative EOF preallocation garbage collector.
1706 xfs_inode_free_cowblocks(
1707 struct xfs_inode
*ip
,
1711 struct xfs_eofblocks
*eofb
= args
;
1712 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
1716 if (!xfs_prep_free_cowblocks(ip
, ifp
))
1720 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1721 match
= xfs_inode_match_id_union(ip
, eofb
);
1723 match
= xfs_inode_match_id(ip
, eofb
);
1727 /* skip the inode if the file size is too small */
1728 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1729 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1733 /* Free the CoW blocks */
1734 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
1735 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
1738 * Check again, nobody else should be able to dirty blocks or change
1739 * the reflink iflag now that we have the first two locks held.
1741 if (xfs_prep_free_cowblocks(ip
, ifp
))
1742 ret
= xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
, false);
1744 xfs_iunlock(ip
, XFS_MMAPLOCK_EXCL
);
1745 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1751 xfs_icache_free_cowblocks(
1752 struct xfs_mount
*mp
,
1753 struct xfs_eofblocks
*eofb
)
1755 return __xfs_icache_free_eofblocks(mp
, eofb
, xfs_inode_free_cowblocks
,
1756 XFS_ICI_COWBLOCKS_TAG
);
1760 xfs_inode_free_quota_cowblocks(
1761 struct xfs_inode
*ip
)
1763 return __xfs_inode_free_quota_eofblocks(ip
, xfs_icache_free_cowblocks
);
1767 xfs_inode_set_cowblocks_tag(
1770 trace_xfs_inode_set_cowblocks_tag(ip
);
1771 return __xfs_inode_set_blocks_tag(ip
, xfs_queue_cowblocks
,
1772 trace_xfs_perag_set_cowblocks
,
1773 XFS_ICI_COWBLOCKS_TAG
);
1777 xfs_inode_clear_cowblocks_tag(
1780 trace_xfs_inode_clear_cowblocks_tag(ip
);
1781 return __xfs_inode_clear_blocks_tag(ip
,
1782 trace_xfs_perag_clear_cowblocks
, XFS_ICI_COWBLOCKS_TAG
);