Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / xfs / xfs_icache.c
blobd53a316162d6c1ea8360bf40e6c71ee882d19ed0
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/iversion.h>
43 * Allocate and initialise an xfs_inode.
45 struct xfs_inode *
46 xfs_inode_alloc(
47 struct xfs_mount *mp,
48 xfs_ino_t ino)
50 struct xfs_inode *ip;
53 * if this didn't occur in transactions, we could use
54 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
55 * code up to do this anyway.
57 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
58 if (!ip)
59 return NULL;
60 if (inode_init_always(mp->m_super, VFS_I(ip))) {
61 kmem_zone_free(xfs_inode_zone, ip);
62 return NULL;
65 /* VFS doesn't initialise i_mode! */
66 VFS_I(ip)->i_mode = 0;
68 XFS_STATS_INC(mp, vn_active);
69 ASSERT(atomic_read(&ip->i_pincount) == 0);
70 ASSERT(!xfs_isiflocked(ip));
71 ASSERT(ip->i_ino == 0);
73 /* initialise the xfs inode */
74 ip->i_ino = ino;
75 ip->i_mount = mp;
76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 ip->i_afp = NULL;
78 ip->i_cowfp = NULL;
79 ip->i_cnextents = 0;
80 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
81 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 ip->i_flags = 0;
83 ip->i_delayed_blks = 0;
84 memset(&ip->i_d, 0, sizeof(ip->i_d));
86 return ip;
89 STATIC void
90 xfs_inode_free_callback(
91 struct rcu_head *head)
93 struct inode *inode = container_of(head, struct inode, i_rcu);
94 struct xfs_inode *ip = XFS_I(inode);
96 switch (VFS_I(ip)->i_mode & S_IFMT) {
97 case S_IFREG:
98 case S_IFDIR:
99 case S_IFLNK:
100 xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 break;
104 if (ip->i_afp)
105 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106 if (ip->i_cowfp)
107 xfs_idestroy_fork(ip, XFS_COW_FORK);
109 if (ip->i_itemp) {
110 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
111 xfs_inode_item_destroy(ip);
112 ip->i_itemp = NULL;
115 kmem_zone_free(xfs_inode_zone, ip);
118 static void
119 __xfs_inode_free(
120 struct xfs_inode *ip)
122 /* asserts to verify all state is correct here */
123 ASSERT(atomic_read(&ip->i_pincount) == 0);
124 XFS_STATS_DEC(ip->i_mount, vn_active);
126 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
129 void
130 xfs_inode_free(
131 struct xfs_inode *ip)
133 ASSERT(!xfs_isiflocked(ip));
136 * Because we use RCU freeing we need to ensure the inode always
137 * appears to be reclaimed with an invalid inode number when in the
138 * free state. The ip->i_flags_lock provides the barrier against lookup
139 * races.
141 spin_lock(&ip->i_flags_lock);
142 ip->i_flags = XFS_IRECLAIM;
143 ip->i_ino = 0;
144 spin_unlock(&ip->i_flags_lock);
146 __xfs_inode_free(ip);
150 * Queue a new inode reclaim pass if there are reclaimable inodes and there
151 * isn't a reclaim pass already in progress. By default it runs every 5s based
152 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153 * tunable, but that can be done if this method proves to be ineffective or too
154 * aggressive.
156 static void
157 xfs_reclaim_work_queue(
158 struct xfs_mount *mp)
161 rcu_read_lock();
162 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
163 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
164 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
166 rcu_read_unlock();
170 * This is a fast pass over the inode cache to try to get reclaim moving on as
171 * many inodes as possible in a short period of time. It kicks itself every few
172 * seconds, as well as being kicked by the inode cache shrinker when memory
173 * goes low. It scans as quickly as possible avoiding locked inodes or those
174 * already being flushed, and once done schedules a future pass.
176 void
177 xfs_reclaim_worker(
178 struct work_struct *work)
180 struct xfs_mount *mp = container_of(to_delayed_work(work),
181 struct xfs_mount, m_reclaim_work);
183 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
184 xfs_reclaim_work_queue(mp);
187 static void
188 xfs_perag_set_reclaim_tag(
189 struct xfs_perag *pag)
191 struct xfs_mount *mp = pag->pag_mount;
193 lockdep_assert_held(&pag->pag_ici_lock);
194 if (pag->pag_ici_reclaimable++)
195 return;
197 /* propagate the reclaim tag up into the perag radix tree */
198 spin_lock(&mp->m_perag_lock);
199 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
200 XFS_ICI_RECLAIM_TAG);
201 spin_unlock(&mp->m_perag_lock);
203 /* schedule periodic background inode reclaim */
204 xfs_reclaim_work_queue(mp);
206 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
209 static void
210 xfs_perag_clear_reclaim_tag(
211 struct xfs_perag *pag)
213 struct xfs_mount *mp = pag->pag_mount;
215 lockdep_assert_held(&pag->pag_ici_lock);
216 if (--pag->pag_ici_reclaimable)
217 return;
219 /* clear the reclaim tag from the perag radix tree */
220 spin_lock(&mp->m_perag_lock);
221 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
222 XFS_ICI_RECLAIM_TAG);
223 spin_unlock(&mp->m_perag_lock);
224 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
229 * We set the inode flag atomically with the radix tree tag.
230 * Once we get tag lookups on the radix tree, this inode flag
231 * can go away.
233 void
234 xfs_inode_set_reclaim_tag(
235 struct xfs_inode *ip)
237 struct xfs_mount *mp = ip->i_mount;
238 struct xfs_perag *pag;
240 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
241 spin_lock(&pag->pag_ici_lock);
242 spin_lock(&ip->i_flags_lock);
244 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
245 XFS_ICI_RECLAIM_TAG);
246 xfs_perag_set_reclaim_tag(pag);
247 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
249 spin_unlock(&ip->i_flags_lock);
250 spin_unlock(&pag->pag_ici_lock);
251 xfs_perag_put(pag);
254 STATIC void
255 xfs_inode_clear_reclaim_tag(
256 struct xfs_perag *pag,
257 xfs_ino_t ino)
259 radix_tree_tag_clear(&pag->pag_ici_root,
260 XFS_INO_TO_AGINO(pag->pag_mount, ino),
261 XFS_ICI_RECLAIM_TAG);
262 xfs_perag_clear_reclaim_tag(pag);
265 static void
266 xfs_inew_wait(
267 struct xfs_inode *ip)
269 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
270 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
272 do {
273 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
274 if (!xfs_iflags_test(ip, XFS_INEW))
275 break;
276 schedule();
277 } while (true);
278 finish_wait(wq, &wait.wq_entry);
282 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
283 * part of the structure. This is made more complex by the fact we store
284 * information about the on-disk values in the VFS inode and so we can't just
285 * overwrite the values unconditionally. Hence we save the parameters we
286 * need to retain across reinitialisation, and rewrite them into the VFS inode
287 * after reinitialisation even if it fails.
289 static int
290 xfs_reinit_inode(
291 struct xfs_mount *mp,
292 struct inode *inode)
294 int error;
295 uint32_t nlink = inode->i_nlink;
296 uint32_t generation = inode->i_generation;
297 uint64_t version = inode_peek_iversion(inode);
298 umode_t mode = inode->i_mode;
299 dev_t dev = inode->i_rdev;
301 error = inode_init_always(mp->m_super, inode);
303 set_nlink(inode, nlink);
304 inode->i_generation = generation;
305 inode_set_iversion_queried(inode, version);
306 inode->i_mode = mode;
307 inode->i_rdev = dev;
308 return error;
312 * Check the validity of the inode we just found it the cache
314 static int
315 xfs_iget_cache_hit(
316 struct xfs_perag *pag,
317 struct xfs_inode *ip,
318 xfs_ino_t ino,
319 int flags,
320 int lock_flags) __releases(RCU)
322 struct inode *inode = VFS_I(ip);
323 struct xfs_mount *mp = ip->i_mount;
324 int error;
327 * check for re-use of an inode within an RCU grace period due to the
328 * radix tree nodes not being updated yet. We monitor for this by
329 * setting the inode number to zero before freeing the inode structure.
330 * If the inode has been reallocated and set up, then the inode number
331 * will not match, so check for that, too.
333 spin_lock(&ip->i_flags_lock);
334 if (ip->i_ino != ino) {
335 trace_xfs_iget_skip(ip);
336 XFS_STATS_INC(mp, xs_ig_frecycle);
337 error = -EAGAIN;
338 goto out_error;
343 * If we are racing with another cache hit that is currently
344 * instantiating this inode or currently recycling it out of
345 * reclaimabe state, wait for the initialisation to complete
346 * before continuing.
348 * XXX(hch): eventually we should do something equivalent to
349 * wait_on_inode to wait for these flags to be cleared
350 * instead of polling for it.
352 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
353 trace_xfs_iget_skip(ip);
354 XFS_STATS_INC(mp, xs_ig_frecycle);
355 error = -EAGAIN;
356 goto out_error;
360 * If lookup is racing with unlink return an error immediately.
362 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
363 error = -ENOENT;
364 goto out_error;
368 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
369 * Need to carefully get it back into useable state.
371 if (ip->i_flags & XFS_IRECLAIMABLE) {
372 trace_xfs_iget_reclaim(ip);
374 if (flags & XFS_IGET_INCORE) {
375 error = -EAGAIN;
376 goto out_error;
380 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
381 * from stomping over us while we recycle the inode. We can't
382 * clear the radix tree reclaimable tag yet as it requires
383 * pag_ici_lock to be held exclusive.
385 ip->i_flags |= XFS_IRECLAIM;
387 spin_unlock(&ip->i_flags_lock);
388 rcu_read_unlock();
390 error = xfs_reinit_inode(mp, inode);
391 if (error) {
392 bool wake;
394 * Re-initializing the inode failed, and we are in deep
395 * trouble. Try to re-add it to the reclaim list.
397 rcu_read_lock();
398 spin_lock(&ip->i_flags_lock);
399 wake = !!__xfs_iflags_test(ip, XFS_INEW);
400 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
401 if (wake)
402 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
403 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
404 trace_xfs_iget_reclaim_fail(ip);
405 goto out_error;
408 spin_lock(&pag->pag_ici_lock);
409 spin_lock(&ip->i_flags_lock);
412 * Clear the per-lifetime state in the inode as we are now
413 * effectively a new inode and need to return to the initial
414 * state before reuse occurs.
416 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
417 ip->i_flags |= XFS_INEW;
418 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
419 inode->i_state = I_NEW;
421 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
422 init_rwsem(&inode->i_rwsem);
424 spin_unlock(&ip->i_flags_lock);
425 spin_unlock(&pag->pag_ici_lock);
426 } else {
427 /* If the VFS inode is being torn down, pause and try again. */
428 if (!igrab(inode)) {
429 trace_xfs_iget_skip(ip);
430 error = -EAGAIN;
431 goto out_error;
434 /* We've got a live one. */
435 spin_unlock(&ip->i_flags_lock);
436 rcu_read_unlock();
437 trace_xfs_iget_hit(ip);
440 if (lock_flags != 0)
441 xfs_ilock(ip, lock_flags);
443 if (!(flags & XFS_IGET_INCORE))
444 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
445 XFS_STATS_INC(mp, xs_ig_found);
447 return 0;
449 out_error:
450 spin_unlock(&ip->i_flags_lock);
451 rcu_read_unlock();
452 return error;
456 static int
457 xfs_iget_cache_miss(
458 struct xfs_mount *mp,
459 struct xfs_perag *pag,
460 xfs_trans_t *tp,
461 xfs_ino_t ino,
462 struct xfs_inode **ipp,
463 int flags,
464 int lock_flags)
466 struct xfs_inode *ip;
467 int error;
468 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
469 int iflags;
471 ip = xfs_inode_alloc(mp, ino);
472 if (!ip)
473 return -ENOMEM;
475 error = xfs_iread(mp, tp, ip, flags);
476 if (error)
477 goto out_destroy;
479 if (!xfs_inode_verify_forks(ip)) {
480 error = -EFSCORRUPTED;
481 goto out_destroy;
484 trace_xfs_iget_miss(ip);
486 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
487 error = -ENOENT;
488 goto out_destroy;
492 * Preload the radix tree so we can insert safely under the
493 * write spinlock. Note that we cannot sleep inside the preload
494 * region. Since we can be called from transaction context, don't
495 * recurse into the file system.
497 if (radix_tree_preload(GFP_NOFS)) {
498 error = -EAGAIN;
499 goto out_destroy;
503 * Because the inode hasn't been added to the radix-tree yet it can't
504 * be found by another thread, so we can do the non-sleeping lock here.
506 if (lock_flags) {
507 if (!xfs_ilock_nowait(ip, lock_flags))
508 BUG();
512 * These values must be set before inserting the inode into the radix
513 * tree as the moment it is inserted a concurrent lookup (allowed by the
514 * RCU locking mechanism) can find it and that lookup must see that this
515 * is an inode currently under construction (i.e. that XFS_INEW is set).
516 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
517 * memory barrier that ensures this detection works correctly at lookup
518 * time.
520 iflags = XFS_INEW;
521 if (flags & XFS_IGET_DONTCACHE)
522 iflags |= XFS_IDONTCACHE;
523 ip->i_udquot = NULL;
524 ip->i_gdquot = NULL;
525 ip->i_pdquot = NULL;
526 xfs_iflags_set(ip, iflags);
528 /* insert the new inode */
529 spin_lock(&pag->pag_ici_lock);
530 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
531 if (unlikely(error)) {
532 WARN_ON(error != -EEXIST);
533 XFS_STATS_INC(mp, xs_ig_dup);
534 error = -EAGAIN;
535 goto out_preload_end;
537 spin_unlock(&pag->pag_ici_lock);
538 radix_tree_preload_end();
540 *ipp = ip;
541 return 0;
543 out_preload_end:
544 spin_unlock(&pag->pag_ici_lock);
545 radix_tree_preload_end();
546 if (lock_flags)
547 xfs_iunlock(ip, lock_flags);
548 out_destroy:
549 __destroy_inode(VFS_I(ip));
550 xfs_inode_free(ip);
551 return error;
555 * Look up an inode by number in the given file system.
556 * The inode is looked up in the cache held in each AG.
557 * If the inode is found in the cache, initialise the vfs inode
558 * if necessary.
560 * If it is not in core, read it in from the file system's device,
561 * add it to the cache and initialise the vfs inode.
563 * The inode is locked according to the value of the lock_flags parameter.
564 * This flag parameter indicates how and if the inode's IO lock and inode lock
565 * should be taken.
567 * mp -- the mount point structure for the current file system. It points
568 * to the inode hash table.
569 * tp -- a pointer to the current transaction if there is one. This is
570 * simply passed through to the xfs_iread() call.
571 * ino -- the number of the inode desired. This is the unique identifier
572 * within the file system for the inode being requested.
573 * lock_flags -- flags indicating how to lock the inode. See the comment
574 * for xfs_ilock() for a list of valid values.
577 xfs_iget(
578 xfs_mount_t *mp,
579 xfs_trans_t *tp,
580 xfs_ino_t ino,
581 uint flags,
582 uint lock_flags,
583 xfs_inode_t **ipp)
585 xfs_inode_t *ip;
586 int error;
587 xfs_perag_t *pag;
588 xfs_agino_t agino;
591 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
592 * doesn't get freed while it's being referenced during a
593 * radix tree traversal here. It assumes this function
594 * aqcuires only the ILOCK (and therefore it has no need to
595 * involve the IOLOCK in this synchronization).
597 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
599 /* reject inode numbers outside existing AGs */
600 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
601 return -EINVAL;
603 XFS_STATS_INC(mp, xs_ig_attempts);
605 /* get the perag structure and ensure that it's inode capable */
606 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
607 agino = XFS_INO_TO_AGINO(mp, ino);
609 again:
610 error = 0;
611 rcu_read_lock();
612 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
614 if (ip) {
615 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
616 if (error)
617 goto out_error_or_again;
618 } else {
619 rcu_read_unlock();
620 if (flags & XFS_IGET_INCORE) {
621 error = -ENODATA;
622 goto out_error_or_again;
624 XFS_STATS_INC(mp, xs_ig_missed);
626 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
627 flags, lock_flags);
628 if (error)
629 goto out_error_or_again;
631 xfs_perag_put(pag);
633 *ipp = ip;
636 * If we have a real type for an on-disk inode, we can setup the inode
637 * now. If it's a new inode being created, xfs_ialloc will handle it.
639 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
640 xfs_setup_existing_inode(ip);
641 return 0;
643 out_error_or_again:
644 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
645 delay(1);
646 goto again;
648 xfs_perag_put(pag);
649 return error;
653 * "Is this a cached inode that's also allocated?"
655 * Look up an inode by number in the given file system. If the inode is
656 * in cache and isn't in purgatory, return 1 if the inode is allocated
657 * and 0 if it is not. For all other cases (not in cache, being torn
658 * down, etc.), return a negative error code.
660 * The caller has to prevent inode allocation and freeing activity,
661 * presumably by locking the AGI buffer. This is to ensure that an
662 * inode cannot transition from allocated to freed until the caller is
663 * ready to allow that. If the inode is in an intermediate state (new,
664 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
665 * inode is not in the cache, -ENOENT will be returned. The caller must
666 * deal with these scenarios appropriately.
668 * This is a specialized use case for the online scrubber; if you're
669 * reading this, you probably want xfs_iget.
672 xfs_icache_inode_is_allocated(
673 struct xfs_mount *mp,
674 struct xfs_trans *tp,
675 xfs_ino_t ino,
676 bool *inuse)
678 struct xfs_inode *ip;
679 int error;
681 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
682 if (error)
683 return error;
685 *inuse = !!(VFS_I(ip)->i_mode);
686 IRELE(ip);
687 return 0;
691 * The inode lookup is done in batches to keep the amount of lock traffic and
692 * radix tree lookups to a minimum. The batch size is a trade off between
693 * lookup reduction and stack usage. This is in the reclaim path, so we can't
694 * be too greedy.
696 #define XFS_LOOKUP_BATCH 32
698 STATIC int
699 xfs_inode_ag_walk_grab(
700 struct xfs_inode *ip,
701 int flags)
703 struct inode *inode = VFS_I(ip);
704 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
706 ASSERT(rcu_read_lock_held());
709 * check for stale RCU freed inode
711 * If the inode has been reallocated, it doesn't matter if it's not in
712 * the AG we are walking - we are walking for writeback, so if it
713 * passes all the "valid inode" checks and is dirty, then we'll write
714 * it back anyway. If it has been reallocated and still being
715 * initialised, the XFS_INEW check below will catch it.
717 spin_lock(&ip->i_flags_lock);
718 if (!ip->i_ino)
719 goto out_unlock_noent;
721 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
722 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
723 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
724 goto out_unlock_noent;
725 spin_unlock(&ip->i_flags_lock);
727 /* nothing to sync during shutdown */
728 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
729 return -EFSCORRUPTED;
731 /* If we can't grab the inode, it must on it's way to reclaim. */
732 if (!igrab(inode))
733 return -ENOENT;
735 /* inode is valid */
736 return 0;
738 out_unlock_noent:
739 spin_unlock(&ip->i_flags_lock);
740 return -ENOENT;
743 STATIC int
744 xfs_inode_ag_walk(
745 struct xfs_mount *mp,
746 struct xfs_perag *pag,
747 int (*execute)(struct xfs_inode *ip, int flags,
748 void *args),
749 int flags,
750 void *args,
751 int tag,
752 int iter_flags)
754 uint32_t first_index;
755 int last_error = 0;
756 int skipped;
757 int done;
758 int nr_found;
760 restart:
761 done = 0;
762 skipped = 0;
763 first_index = 0;
764 nr_found = 0;
765 do {
766 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
767 int error = 0;
768 int i;
770 rcu_read_lock();
772 if (tag == -1)
773 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
774 (void **)batch, first_index,
775 XFS_LOOKUP_BATCH);
776 else
777 nr_found = radix_tree_gang_lookup_tag(
778 &pag->pag_ici_root,
779 (void **) batch, first_index,
780 XFS_LOOKUP_BATCH, tag);
782 if (!nr_found) {
783 rcu_read_unlock();
784 break;
788 * Grab the inodes before we drop the lock. if we found
789 * nothing, nr == 0 and the loop will be skipped.
791 for (i = 0; i < nr_found; i++) {
792 struct xfs_inode *ip = batch[i];
794 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
795 batch[i] = NULL;
798 * Update the index for the next lookup. Catch
799 * overflows into the next AG range which can occur if
800 * we have inodes in the last block of the AG and we
801 * are currently pointing to the last inode.
803 * Because we may see inodes that are from the wrong AG
804 * due to RCU freeing and reallocation, only update the
805 * index if it lies in this AG. It was a race that lead
806 * us to see this inode, so another lookup from the
807 * same index will not find it again.
809 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
810 continue;
811 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
812 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
813 done = 1;
816 /* unlock now we've grabbed the inodes. */
817 rcu_read_unlock();
819 for (i = 0; i < nr_found; i++) {
820 if (!batch[i])
821 continue;
822 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
823 xfs_iflags_test(batch[i], XFS_INEW))
824 xfs_inew_wait(batch[i]);
825 error = execute(batch[i], flags, args);
826 IRELE(batch[i]);
827 if (error == -EAGAIN) {
828 skipped++;
829 continue;
831 if (error && last_error != -EFSCORRUPTED)
832 last_error = error;
835 /* bail out if the filesystem is corrupted. */
836 if (error == -EFSCORRUPTED)
837 break;
839 cond_resched();
841 } while (nr_found && !done);
843 if (skipped) {
844 delay(1);
845 goto restart;
847 return last_error;
851 * Background scanning to trim post-EOF preallocated space. This is queued
852 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
854 void
855 xfs_queue_eofblocks(
856 struct xfs_mount *mp)
858 rcu_read_lock();
859 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
860 queue_delayed_work(mp->m_eofblocks_workqueue,
861 &mp->m_eofblocks_work,
862 msecs_to_jiffies(xfs_eofb_secs * 1000));
863 rcu_read_unlock();
866 void
867 xfs_eofblocks_worker(
868 struct work_struct *work)
870 struct xfs_mount *mp = container_of(to_delayed_work(work),
871 struct xfs_mount, m_eofblocks_work);
872 xfs_icache_free_eofblocks(mp, NULL);
873 xfs_queue_eofblocks(mp);
877 * Background scanning to trim preallocated CoW space. This is queued
878 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
879 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
881 void
882 xfs_queue_cowblocks(
883 struct xfs_mount *mp)
885 rcu_read_lock();
886 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
887 queue_delayed_work(mp->m_eofblocks_workqueue,
888 &mp->m_cowblocks_work,
889 msecs_to_jiffies(xfs_cowb_secs * 1000));
890 rcu_read_unlock();
893 void
894 xfs_cowblocks_worker(
895 struct work_struct *work)
897 struct xfs_mount *mp = container_of(to_delayed_work(work),
898 struct xfs_mount, m_cowblocks_work);
899 xfs_icache_free_cowblocks(mp, NULL);
900 xfs_queue_cowblocks(mp);
904 xfs_inode_ag_iterator_flags(
905 struct xfs_mount *mp,
906 int (*execute)(struct xfs_inode *ip, int flags,
907 void *args),
908 int flags,
909 void *args,
910 int iter_flags)
912 struct xfs_perag *pag;
913 int error = 0;
914 int last_error = 0;
915 xfs_agnumber_t ag;
917 ag = 0;
918 while ((pag = xfs_perag_get(mp, ag))) {
919 ag = pag->pag_agno + 1;
920 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
921 iter_flags);
922 xfs_perag_put(pag);
923 if (error) {
924 last_error = error;
925 if (error == -EFSCORRUPTED)
926 break;
929 return last_error;
933 xfs_inode_ag_iterator(
934 struct xfs_mount *mp,
935 int (*execute)(struct xfs_inode *ip, int flags,
936 void *args),
937 int flags,
938 void *args)
940 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
944 xfs_inode_ag_iterator_tag(
945 struct xfs_mount *mp,
946 int (*execute)(struct xfs_inode *ip, int flags,
947 void *args),
948 int flags,
949 void *args,
950 int tag)
952 struct xfs_perag *pag;
953 int error = 0;
954 int last_error = 0;
955 xfs_agnumber_t ag;
957 ag = 0;
958 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
959 ag = pag->pag_agno + 1;
960 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
962 xfs_perag_put(pag);
963 if (error) {
964 last_error = error;
965 if (error == -EFSCORRUPTED)
966 break;
969 return last_error;
973 * Grab the inode for reclaim exclusively.
974 * Return 0 if we grabbed it, non-zero otherwise.
976 STATIC int
977 xfs_reclaim_inode_grab(
978 struct xfs_inode *ip,
979 int flags)
981 ASSERT(rcu_read_lock_held());
983 /* quick check for stale RCU freed inode */
984 if (!ip->i_ino)
985 return 1;
988 * If we are asked for non-blocking operation, do unlocked checks to
989 * see if the inode already is being flushed or in reclaim to avoid
990 * lock traffic.
992 if ((flags & SYNC_TRYLOCK) &&
993 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
994 return 1;
997 * The radix tree lock here protects a thread in xfs_iget from racing
998 * with us starting reclaim on the inode. Once we have the
999 * XFS_IRECLAIM flag set it will not touch us.
1001 * Due to RCU lookup, we may find inodes that have been freed and only
1002 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1003 * aren't candidates for reclaim at all, so we must check the
1004 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1006 spin_lock(&ip->i_flags_lock);
1007 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1008 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1009 /* not a reclaim candidate. */
1010 spin_unlock(&ip->i_flags_lock);
1011 return 1;
1013 __xfs_iflags_set(ip, XFS_IRECLAIM);
1014 spin_unlock(&ip->i_flags_lock);
1015 return 0;
1019 * Inodes in different states need to be treated differently. The following
1020 * table lists the inode states and the reclaim actions necessary:
1022 * inode state iflush ret required action
1023 * --------------- ---------- ---------------
1024 * bad - reclaim
1025 * shutdown EIO unpin and reclaim
1026 * clean, unpinned 0 reclaim
1027 * stale, unpinned 0 reclaim
1028 * clean, pinned(*) 0 requeue
1029 * stale, pinned EAGAIN requeue
1030 * dirty, async - requeue
1031 * dirty, sync 0 reclaim
1033 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1034 * handled anyway given the order of checks implemented.
1036 * Also, because we get the flush lock first, we know that any inode that has
1037 * been flushed delwri has had the flush completed by the time we check that
1038 * the inode is clean.
1040 * Note that because the inode is flushed delayed write by AIL pushing, the
1041 * flush lock may already be held here and waiting on it can result in very
1042 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1043 * the caller should push the AIL first before trying to reclaim inodes to
1044 * minimise the amount of time spent waiting. For background relaim, we only
1045 * bother to reclaim clean inodes anyway.
1047 * Hence the order of actions after gaining the locks should be:
1048 * bad => reclaim
1049 * shutdown => unpin and reclaim
1050 * pinned, async => requeue
1051 * pinned, sync => unpin
1052 * stale => reclaim
1053 * clean => reclaim
1054 * dirty, async => requeue
1055 * dirty, sync => flush, wait and reclaim
1057 STATIC int
1058 xfs_reclaim_inode(
1059 struct xfs_inode *ip,
1060 struct xfs_perag *pag,
1061 int sync_mode)
1063 struct xfs_buf *bp = NULL;
1064 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1065 int error;
1067 restart:
1068 error = 0;
1069 xfs_ilock(ip, XFS_ILOCK_EXCL);
1070 if (!xfs_iflock_nowait(ip)) {
1071 if (!(sync_mode & SYNC_WAIT))
1072 goto out;
1073 xfs_iflock(ip);
1076 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1077 xfs_iunpin_wait(ip);
1078 /* xfs_iflush_abort() drops the flush lock */
1079 xfs_iflush_abort(ip, false);
1080 goto reclaim;
1082 if (xfs_ipincount(ip)) {
1083 if (!(sync_mode & SYNC_WAIT))
1084 goto out_ifunlock;
1085 xfs_iunpin_wait(ip);
1087 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1088 xfs_ifunlock(ip);
1089 goto reclaim;
1093 * Never flush out dirty data during non-blocking reclaim, as it would
1094 * just contend with AIL pushing trying to do the same job.
1096 if (!(sync_mode & SYNC_WAIT))
1097 goto out_ifunlock;
1100 * Now we have an inode that needs flushing.
1102 * Note that xfs_iflush will never block on the inode buffer lock, as
1103 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1104 * ip->i_lock, and we are doing the exact opposite here. As a result,
1105 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1106 * result in an ABBA deadlock with xfs_ifree_cluster().
1108 * As xfs_ifree_cluser() must gather all inodes that are active in the
1109 * cache to mark them stale, if we hit this case we don't actually want
1110 * to do IO here - we want the inode marked stale so we can simply
1111 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1112 * inode, back off and try again. Hopefully the next pass through will
1113 * see the stale flag set on the inode.
1115 error = xfs_iflush(ip, &bp);
1116 if (error == -EAGAIN) {
1117 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118 /* backoff longer than in xfs_ifree_cluster */
1119 delay(2);
1120 goto restart;
1123 if (!error) {
1124 error = xfs_bwrite(bp);
1125 xfs_buf_relse(bp);
1128 reclaim:
1129 ASSERT(!xfs_isiflocked(ip));
1132 * Because we use RCU freeing we need to ensure the inode always appears
1133 * to be reclaimed with an invalid inode number when in the free state.
1134 * We do this as early as possible under the ILOCK so that
1135 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1136 * detect races with us here. By doing this, we guarantee that once
1137 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1138 * it will see either a valid inode that will serialise correctly, or it
1139 * will see an invalid inode that it can skip.
1141 spin_lock(&ip->i_flags_lock);
1142 ip->i_flags = XFS_IRECLAIM;
1143 ip->i_ino = 0;
1144 spin_unlock(&ip->i_flags_lock);
1146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1148 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1150 * Remove the inode from the per-AG radix tree.
1152 * Because radix_tree_delete won't complain even if the item was never
1153 * added to the tree assert that it's been there before to catch
1154 * problems with the inode life time early on.
1156 spin_lock(&pag->pag_ici_lock);
1157 if (!radix_tree_delete(&pag->pag_ici_root,
1158 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1159 ASSERT(0);
1160 xfs_perag_clear_reclaim_tag(pag);
1161 spin_unlock(&pag->pag_ici_lock);
1164 * Here we do an (almost) spurious inode lock in order to coordinate
1165 * with inode cache radix tree lookups. This is because the lookup
1166 * can reference the inodes in the cache without taking references.
1168 * We make that OK here by ensuring that we wait until the inode is
1169 * unlocked after the lookup before we go ahead and free it.
1171 xfs_ilock(ip, XFS_ILOCK_EXCL);
1172 xfs_qm_dqdetach(ip);
1173 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1175 __xfs_inode_free(ip);
1176 return error;
1178 out_ifunlock:
1179 xfs_ifunlock(ip);
1180 out:
1181 xfs_iflags_clear(ip, XFS_IRECLAIM);
1182 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1184 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1185 * a short while. However, this just burns CPU time scanning the tree
1186 * waiting for IO to complete and the reclaim work never goes back to
1187 * the idle state. Instead, return 0 to let the next scheduled
1188 * background reclaim attempt to reclaim the inode again.
1190 return 0;
1194 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1195 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1196 * then a shut down during filesystem unmount reclaim walk leak all the
1197 * unreclaimed inodes.
1199 STATIC int
1200 xfs_reclaim_inodes_ag(
1201 struct xfs_mount *mp,
1202 int flags,
1203 int *nr_to_scan)
1205 struct xfs_perag *pag;
1206 int error = 0;
1207 int last_error = 0;
1208 xfs_agnumber_t ag;
1209 int trylock = flags & SYNC_TRYLOCK;
1210 int skipped;
1212 restart:
1213 ag = 0;
1214 skipped = 0;
1215 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1216 unsigned long first_index = 0;
1217 int done = 0;
1218 int nr_found = 0;
1220 ag = pag->pag_agno + 1;
1222 if (trylock) {
1223 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1224 skipped++;
1225 xfs_perag_put(pag);
1226 continue;
1228 first_index = pag->pag_ici_reclaim_cursor;
1229 } else
1230 mutex_lock(&pag->pag_ici_reclaim_lock);
1232 do {
1233 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1234 int i;
1236 rcu_read_lock();
1237 nr_found = radix_tree_gang_lookup_tag(
1238 &pag->pag_ici_root,
1239 (void **)batch, first_index,
1240 XFS_LOOKUP_BATCH,
1241 XFS_ICI_RECLAIM_TAG);
1242 if (!nr_found) {
1243 done = 1;
1244 rcu_read_unlock();
1245 break;
1249 * Grab the inodes before we drop the lock. if we found
1250 * nothing, nr == 0 and the loop will be skipped.
1252 for (i = 0; i < nr_found; i++) {
1253 struct xfs_inode *ip = batch[i];
1255 if (done || xfs_reclaim_inode_grab(ip, flags))
1256 batch[i] = NULL;
1259 * Update the index for the next lookup. Catch
1260 * overflows into the next AG range which can
1261 * occur if we have inodes in the last block of
1262 * the AG and we are currently pointing to the
1263 * last inode.
1265 * Because we may see inodes that are from the
1266 * wrong AG due to RCU freeing and
1267 * reallocation, only update the index if it
1268 * lies in this AG. It was a race that lead us
1269 * to see this inode, so another lookup from
1270 * the same index will not find it again.
1272 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1273 pag->pag_agno)
1274 continue;
1275 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1276 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1277 done = 1;
1280 /* unlock now we've grabbed the inodes. */
1281 rcu_read_unlock();
1283 for (i = 0; i < nr_found; i++) {
1284 if (!batch[i])
1285 continue;
1286 error = xfs_reclaim_inode(batch[i], pag, flags);
1287 if (error && last_error != -EFSCORRUPTED)
1288 last_error = error;
1291 *nr_to_scan -= XFS_LOOKUP_BATCH;
1293 cond_resched();
1295 } while (nr_found && !done && *nr_to_scan > 0);
1297 if (trylock && !done)
1298 pag->pag_ici_reclaim_cursor = first_index;
1299 else
1300 pag->pag_ici_reclaim_cursor = 0;
1301 mutex_unlock(&pag->pag_ici_reclaim_lock);
1302 xfs_perag_put(pag);
1306 * if we skipped any AG, and we still have scan count remaining, do
1307 * another pass this time using blocking reclaim semantics (i.e
1308 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1309 * ensure that when we get more reclaimers than AGs we block rather
1310 * than spin trying to execute reclaim.
1312 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1313 trylock = 0;
1314 goto restart;
1316 return last_error;
1320 xfs_reclaim_inodes(
1321 xfs_mount_t *mp,
1322 int mode)
1324 int nr_to_scan = INT_MAX;
1326 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1330 * Scan a certain number of inodes for reclaim.
1332 * When called we make sure that there is a background (fast) inode reclaim in
1333 * progress, while we will throttle the speed of reclaim via doing synchronous
1334 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1335 * them to be cleaned, which we hope will not be very long due to the
1336 * background walker having already kicked the IO off on those dirty inodes.
1338 long
1339 xfs_reclaim_inodes_nr(
1340 struct xfs_mount *mp,
1341 int nr_to_scan)
1343 /* kick background reclaimer and push the AIL */
1344 xfs_reclaim_work_queue(mp);
1345 xfs_ail_push_all(mp->m_ail);
1347 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1351 * Return the number of reclaimable inodes in the filesystem for
1352 * the shrinker to determine how much to reclaim.
1355 xfs_reclaim_inodes_count(
1356 struct xfs_mount *mp)
1358 struct xfs_perag *pag;
1359 xfs_agnumber_t ag = 0;
1360 int reclaimable = 0;
1362 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1363 ag = pag->pag_agno + 1;
1364 reclaimable += pag->pag_ici_reclaimable;
1365 xfs_perag_put(pag);
1367 return reclaimable;
1370 STATIC int
1371 xfs_inode_match_id(
1372 struct xfs_inode *ip,
1373 struct xfs_eofblocks *eofb)
1375 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1376 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1377 return 0;
1379 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1380 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1381 return 0;
1383 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1384 xfs_get_projid(ip) != eofb->eof_prid)
1385 return 0;
1387 return 1;
1391 * A union-based inode filtering algorithm. Process the inode if any of the
1392 * criteria match. This is for global/internal scans only.
1394 STATIC int
1395 xfs_inode_match_id_union(
1396 struct xfs_inode *ip,
1397 struct xfs_eofblocks *eofb)
1399 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1400 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1401 return 1;
1403 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1404 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1405 return 1;
1407 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1408 xfs_get_projid(ip) == eofb->eof_prid)
1409 return 1;
1411 return 0;
1414 STATIC int
1415 xfs_inode_free_eofblocks(
1416 struct xfs_inode *ip,
1417 int flags,
1418 void *args)
1420 int ret = 0;
1421 struct xfs_eofblocks *eofb = args;
1422 int match;
1424 if (!xfs_can_free_eofblocks(ip, false)) {
1425 /* inode could be preallocated or append-only */
1426 trace_xfs_inode_free_eofblocks_invalid(ip);
1427 xfs_inode_clear_eofblocks_tag(ip);
1428 return 0;
1432 * If the mapping is dirty the operation can block and wait for some
1433 * time. Unless we are waiting, skip it.
1435 if (!(flags & SYNC_WAIT) &&
1436 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1437 return 0;
1439 if (eofb) {
1440 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1441 match = xfs_inode_match_id_union(ip, eofb);
1442 else
1443 match = xfs_inode_match_id(ip, eofb);
1444 if (!match)
1445 return 0;
1447 /* skip the inode if the file size is too small */
1448 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1449 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1450 return 0;
1454 * If the caller is waiting, return -EAGAIN to keep the background
1455 * scanner moving and revisit the inode in a subsequent pass.
1457 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1458 if (flags & SYNC_WAIT)
1459 ret = -EAGAIN;
1460 return ret;
1462 ret = xfs_free_eofblocks(ip);
1463 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1465 return ret;
1468 static int
1469 __xfs_icache_free_eofblocks(
1470 struct xfs_mount *mp,
1471 struct xfs_eofblocks *eofb,
1472 int (*execute)(struct xfs_inode *ip, int flags,
1473 void *args),
1474 int tag)
1476 int flags = SYNC_TRYLOCK;
1478 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1479 flags = SYNC_WAIT;
1481 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1482 eofb, tag);
1486 xfs_icache_free_eofblocks(
1487 struct xfs_mount *mp,
1488 struct xfs_eofblocks *eofb)
1490 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1491 XFS_ICI_EOFBLOCKS_TAG);
1495 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1496 * multiple quotas, we don't know exactly which quota caused an allocation
1497 * failure. We make a best effort by including each quota under low free space
1498 * conditions (less than 1% free space) in the scan.
1500 static int
1501 __xfs_inode_free_quota_eofblocks(
1502 struct xfs_inode *ip,
1503 int (*execute)(struct xfs_mount *mp,
1504 struct xfs_eofblocks *eofb))
1506 int scan = 0;
1507 struct xfs_eofblocks eofb = {0};
1508 struct xfs_dquot *dq;
1511 * Run a sync scan to increase effectiveness and use the union filter to
1512 * cover all applicable quotas in a single scan.
1514 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1516 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1517 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1518 if (dq && xfs_dquot_lowsp(dq)) {
1519 eofb.eof_uid = VFS_I(ip)->i_uid;
1520 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1521 scan = 1;
1525 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1526 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1527 if (dq && xfs_dquot_lowsp(dq)) {
1528 eofb.eof_gid = VFS_I(ip)->i_gid;
1529 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1530 scan = 1;
1534 if (scan)
1535 execute(ip->i_mount, &eofb);
1537 return scan;
1541 xfs_inode_free_quota_eofblocks(
1542 struct xfs_inode *ip)
1544 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1547 static inline unsigned long
1548 xfs_iflag_for_tag(
1549 int tag)
1551 switch (tag) {
1552 case XFS_ICI_EOFBLOCKS_TAG:
1553 return XFS_IEOFBLOCKS;
1554 case XFS_ICI_COWBLOCKS_TAG:
1555 return XFS_ICOWBLOCKS;
1556 default:
1557 ASSERT(0);
1558 return 0;
1562 static void
1563 __xfs_inode_set_blocks_tag(
1564 xfs_inode_t *ip,
1565 void (*execute)(struct xfs_mount *mp),
1566 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1567 int error, unsigned long caller_ip),
1568 int tag)
1570 struct xfs_mount *mp = ip->i_mount;
1571 struct xfs_perag *pag;
1572 int tagged;
1575 * Don't bother locking the AG and looking up in the radix trees
1576 * if we already know that we have the tag set.
1578 if (ip->i_flags & xfs_iflag_for_tag(tag))
1579 return;
1580 spin_lock(&ip->i_flags_lock);
1581 ip->i_flags |= xfs_iflag_for_tag(tag);
1582 spin_unlock(&ip->i_flags_lock);
1584 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1585 spin_lock(&pag->pag_ici_lock);
1587 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1588 radix_tree_tag_set(&pag->pag_ici_root,
1589 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1590 if (!tagged) {
1591 /* propagate the eofblocks tag up into the perag radix tree */
1592 spin_lock(&ip->i_mount->m_perag_lock);
1593 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1594 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1595 tag);
1596 spin_unlock(&ip->i_mount->m_perag_lock);
1598 /* kick off background trimming */
1599 execute(ip->i_mount);
1601 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1604 spin_unlock(&pag->pag_ici_lock);
1605 xfs_perag_put(pag);
1608 void
1609 xfs_inode_set_eofblocks_tag(
1610 xfs_inode_t *ip)
1612 trace_xfs_inode_set_eofblocks_tag(ip);
1613 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1614 trace_xfs_perag_set_eofblocks,
1615 XFS_ICI_EOFBLOCKS_TAG);
1618 static void
1619 __xfs_inode_clear_blocks_tag(
1620 xfs_inode_t *ip,
1621 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1622 int error, unsigned long caller_ip),
1623 int tag)
1625 struct xfs_mount *mp = ip->i_mount;
1626 struct xfs_perag *pag;
1628 spin_lock(&ip->i_flags_lock);
1629 ip->i_flags &= ~xfs_iflag_for_tag(tag);
1630 spin_unlock(&ip->i_flags_lock);
1632 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1633 spin_lock(&pag->pag_ici_lock);
1635 radix_tree_tag_clear(&pag->pag_ici_root,
1636 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1637 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1638 /* clear the eofblocks tag from the perag radix tree */
1639 spin_lock(&ip->i_mount->m_perag_lock);
1640 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1641 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1642 tag);
1643 spin_unlock(&ip->i_mount->m_perag_lock);
1644 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1647 spin_unlock(&pag->pag_ici_lock);
1648 xfs_perag_put(pag);
1651 void
1652 xfs_inode_clear_eofblocks_tag(
1653 xfs_inode_t *ip)
1655 trace_xfs_inode_clear_eofblocks_tag(ip);
1656 return __xfs_inode_clear_blocks_tag(ip,
1657 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1661 * Set ourselves up to free CoW blocks from this file. If it's already clean
1662 * then we can bail out quickly, but otherwise we must back off if the file
1663 * is undergoing some kind of write.
1665 static bool
1666 xfs_prep_free_cowblocks(
1667 struct xfs_inode *ip,
1668 struct xfs_ifork *ifp)
1671 * Just clear the tag if we have an empty cow fork or none at all. It's
1672 * possible the inode was fully unshared since it was originally tagged.
1674 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1675 trace_xfs_inode_free_cowblocks_invalid(ip);
1676 xfs_inode_clear_cowblocks_tag(ip);
1677 return false;
1681 * If the mapping is dirty or under writeback we cannot touch the
1682 * CoW fork. Leave it alone if we're in the midst of a directio.
1684 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1685 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1686 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1687 atomic_read(&VFS_I(ip)->i_dio_count))
1688 return false;
1690 return true;
1694 * Automatic CoW Reservation Freeing
1696 * These functions automatically garbage collect leftover CoW reservations
1697 * that were made on behalf of a cowextsize hint when we start to run out
1698 * of quota or when the reservations sit around for too long. If the file
1699 * has dirty pages or is undergoing writeback, its CoW reservations will
1700 * be retained.
1702 * The actual garbage collection piggybacks off the same code that runs
1703 * the speculative EOF preallocation garbage collector.
1705 STATIC int
1706 xfs_inode_free_cowblocks(
1707 struct xfs_inode *ip,
1708 int flags,
1709 void *args)
1711 struct xfs_eofblocks *eofb = args;
1712 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1713 int match;
1714 int ret = 0;
1716 if (!xfs_prep_free_cowblocks(ip, ifp))
1717 return 0;
1719 if (eofb) {
1720 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1721 match = xfs_inode_match_id_union(ip, eofb);
1722 else
1723 match = xfs_inode_match_id(ip, eofb);
1724 if (!match)
1725 return 0;
1727 /* skip the inode if the file size is too small */
1728 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1729 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1730 return 0;
1733 /* Free the CoW blocks */
1734 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1735 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1738 * Check again, nobody else should be able to dirty blocks or change
1739 * the reflink iflag now that we have the first two locks held.
1741 if (xfs_prep_free_cowblocks(ip, ifp))
1742 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1744 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1745 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1747 return ret;
1751 xfs_icache_free_cowblocks(
1752 struct xfs_mount *mp,
1753 struct xfs_eofblocks *eofb)
1755 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1756 XFS_ICI_COWBLOCKS_TAG);
1760 xfs_inode_free_quota_cowblocks(
1761 struct xfs_inode *ip)
1763 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1766 void
1767 xfs_inode_set_cowblocks_tag(
1768 xfs_inode_t *ip)
1770 trace_xfs_inode_set_cowblocks_tag(ip);
1771 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1772 trace_xfs_perag_set_cowblocks,
1773 XFS_ICI_COWBLOCKS_TAG);
1776 void
1777 xfs_inode_clear_cowblocks_tag(
1778 xfs_inode_t *ip)
1780 trace_xfs_inode_clear_cowblocks_tag(ip);
1781 return __xfs_inode_clear_blocks_tag(ip,
1782 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);